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ABSTRACT 

Self-Organized Structures: Modeling Polistes dominula Nest Construction with Simple Rules 

by 

Matthew S. Harrison 

The self-organized nest construction behaviors of European paper wasps (Polistes dominula) 

show potential for adoption in artificial intelligence and robotic systems where centralized 

control proves challenging. However, P. dominula nest construction mechanisms are not fully 

understood. This research investigated how nest structures stimulate P. dominula worker action 

at different stages of nest construction. A novel stochastic site selection model, weighted by 

simple rules for cell age, height, and wall count, was implemented in a three-dimensional, step- 

by-step nest construction simulation. The simulation was built on top of a hexagonal coordinate 

system to improve precision and performance. Real and idealized nest data were used to evaluate 

simulated nests via two parameters: outer wall counts and compactness numbers. Structures 

generated with age-based rules were not significantly different from real nest structures along 

both parameters. 
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CHAPTER 1 

INTRODUCTION 

 Swarm robotics is a branch of robotics that focuses on coordinating groups of simple 

robots with algorithms inspired by research performed on different species of social insects 

(Şahin 2004). One area of active research in swarm robotics is achieving group coordination 

using models based on self-organizing behaviors of ants (Rosalie, et al. 2017) via ant colony 

optimization (Dorigo 2011) and fireflies (De Rango, et al. 2015). Related research on termites 

(Mizumoto, Kobayashi and Matsuura 2015) and bees (Johnson 2009) focuses on self-organized 

construction behaviors performed by each type of insect. Other social insects, such as paper 

wasps, also demonstrate self-organized construction behaviors. A previous study (Karsai and 

Pénzes 1996) of nests built by European paper wasps (Polistes dominula) found P. dominula 

construct compact and complex structures with several properties that stay consistent across 

nests of varying size, including outer wall and buildable site ratios. Understanding how P. 

dominula coordinate construction behaviors without centralized control helps further knowledge 

of the biology behind other insect societies and could lead to further research into decentralized 

control algorithms in swarm robotics. 

 Mechanisms for nest construction by paper wasps are not fully understood. A previous 

investigation (Karsai and Pénzes 1993) into P. dominula nest construction created a three-

dimensional simulation to model nest construction behaviors with probabilities assigned to 

different worker actions. A later two-dimensional model was built and investigated the role 

simple rules play in P. dominula workers selecting initiation locations (Karsai and Pénzes 2000).  

The overall goal of this research was to develop a novel model for how P. dominula 

construct nests by combining aspects of the two previous models from (Karsai and Pénzes 1993) 
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and (Karsai and Pénzes 2000) into a stepwise, three-dimensional simulation. The simulation 

applied simple rules to a stochastic site selection model and two nest parameters, outer wall 

counts and compactness numbers, were recorded for all simulated nests for comparison against 

randomly-generated nests, idealized nests, and real nests from (Karsai and Pénzes 1996). Design 

and implementation of a hexagonal coordinate system was first completed to serve as the 

foundation of the three-dimensional simulation. Nests generated with the three-dimensional 

simulation were visually inspected to verify realistic structures; discovery of unnatural structures 

through visual inspection led to the development of building constraints applicable to site 

selection in all rules. Visual inspection also helped determine which rules generated structures 

like those found in nature, which helped narrow down rules for statistical analysis by outer wall 

counts and compactness numbers.  

 The rest of this report is divided into five chapters. Chapter 2 provides background 

information about self-organization, stigmergy, and Polistes dominula. Chapter 3 describes the 

foundational work on a hexagonal coordinate system for use with the new model. Chapter 4 

details the methods for the creation of the three-dimensional simulation and stochastic model. 

Chapter 5 reports the results obtained from nests generated from the use of simple rules in the 

simulation. Chapter 6 discusses the results and suggests directions for future work. 
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CHAPTER 2 

BACKGROUND 

 

2.1: Self-Organization 

 Self-organizational behaviors are found in many types of social animals. Birds, insects, 

and mammals create and maintain systems to fulfill some purpose. While humans create plans, 

leadership hierarchies, and control systems, social insects, such as ants, termites, and wasps, 

build and maintain systems with no overall plan, no central leadership, and no understanding of 

the system as a whole (Middleton and Latty 2016).  Instead, these insect species rely on 

individual workers making decisions and completing actions using self-organizing systems. 

Social insect workers follow a simple set of rules to make decisions. These rules start with some 

form of local input, such as the physical characteristics of a worker’s location. Using this input, 

the worker then follows a simple algorithm to arrive at decisions. The workers take the action, 

which transitions the system from one state to another state. Worker insects do not keep any 

history of actions taken or states observed; workers act based only on the current state of the 

system. No recorded history, paired with local environmental cues, allow multiple workers to act 

in parallel without any sort of centralized leadership controlling the system (Karsai 1999). 

 Self-organization, as a modern concept in biology, was inspired by works from the 

Renaissance and the early modern era. Self-organization was first described from a theoretical 

point of view (Descartes 1637) and from the perspective of how disorder tends to increase in an 

isolated thermodynamic system (Clausius 1851). The modern definition of self-organization 

focuses on the underlying parts of a system: a dynamic system will tend towards an equilibrium 

determined by the environment generated by the system’s own member subsystems (Ashby 
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1947). The subsystems of a system place constraints on the entire system and promote state 

transitions towards a point of equilibrium (Ashby 1947).  

 

2.1.1: Positive Feedback Loops 

An attractor is a system state that drives a system forward towards that attractor state, 

such as equilibrium. As the system’s subsystems influence each other towards the attractor state, 

a positive feedback loop forms: changes of one subsystem to the attractor state causes other 

subsystems to also change to the attractor state. 

Positive feedback loops take several forms, one of which is based on network effects. A 

network effect describes how the value of a system is impacted by the number of individuals 

using the system (Shapiro and Varian 1998). An example of the network effect is the telephone: 

as more users use the telephone system, the more valuable a telephone is to an individual user, 

which then attracts additional users to the telephone system in a positive feedback loop. A more 

modern example of this type of network effect is a social network gaining popularity as more 

users join the network. 

As these positive feedback loops create synergistic dependencies between subsystems, 

new behaviors and system structures appear. This process is known as emergence and describes 

any system where some higher-level entity comes into being through the interactions of lower-

level parts of the whole. One example of emergence is formation of snowflakes through the 

arrangement of ice crystals. A second example of emergence is termite colony building; a study 

of termites that modified two attractor state parameters resulted in emergent construction 

behaviors (Mizumoto, Kobayashi and Matsuura 2015). 
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2.2 Stigmergy 

 Stigmergy is a mechanism in which the results of prior actions are the stimulus for new 

actions. The term was coined to describe observations of termite workers stimulated to act by 

way of other termites’ prior efforts (Grassé 1959). Stigmergy also serves as a mechanism for 

indirect communication of information. Indirect communication was observed among ant 

workers: as workers completed a task, other workers would observe the system’s changed state 

and take further action based on those changes (Huber 1861). Other researchers noted the 

phenomenon in their own work: The terms “indirect social interactions” (Michener 1974) and 

“sematectonic communication” (Wilson 2000) describe the same phenomena as stigmergy. 

 

2.2.1: Application 

 Researchers have applied stigmergy to robotic systems to do useful work. A set of 

experiments were performed where up to five robots, using simple algorithms, gathered 

randomly-distributed items into piles (Beckers, Holland and Deneubourg 1994). Compared to a 

single agent, gathering efficiency increased as up to two additional agents were added; however, 

efficiency decreased when a fourth or fifth agent were added due to additional time-intensive 

interactions between the robotic agents (Beckers, Holland and Deneubourg 1994). 

 Inspired by behavior observed in ants sorting their brood and the work in (Beckers, 

Holland and Deneubourg 1994), another experiment created robots that sort two different Frisbee 

types using algorithms to account for seven different possible stimuli (Holland and Melhuish 

1999). These robots possessed only the ability to discern between the two Frisbee types and did 

not contain any memory or any ability to orient in space; it was determined that the algorithms, 
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as implemented, did not always provide good sorting but was a candidate for further 

investigations (Holland and Melhuish 1999). 

 Recent work used stigmergic feedback to enable agent communication and coordination 

in emergency situations, such as a bomb defusal scenario (Eleftherakis, et al. 2015).  Additional 

work incorporated stigmergic models in ad-hoc communications between failure-prone agents 

conducting terrain exploration (Rodriguez, Gomez and Diaconescu 2015). Stigmergic round 

robin was utilized amongst swarming agents to establish Mobile Ad-hoc Networks across 

regular, irregular, and dynamic network topologies (Fraser and Hunjet 2016). 

 

2.3 Polistes dominula Nest Construction 

 European paper wasps (P. dominula) are social wasps that build nest structures to rear 

offspring. Each nest consists of a comb composed of hexagonal cells and at least one petiole 

(stalk that anchors the nest to another surface).  Individual hexagonal cells contain one offspring.  

The stimuli that influence P. dominula nest construction behaviors are not fully 

understood. While earlier work on wasps proposed a plan-based building mechanism for wasp 

species that build with a single worker (Smith 1978), plan-based building will prove difficult in 

larger colonies that require coordination between workers (Camazine 2003), such as those 

constructed by P. dominula (Karsai 1999).  

 

2.3.1: Stigmergic Influence 

 Stigmergy is one possible explanation for nest-building behaviors observed in wasp 

genus Polistes (Karsai 1999). However, not all the research agrees on the role stigmergy plays at 

various stages of nest construction. One proposal in (Downing and Jeanne 1988) stated that 
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Polistes nest-building behaviors are initially split into two phases: work completed before the 

nest reaches two cells in size and work completed after. Other research found that Polistes create 

two-celled nests via multiple pathways and nest structures: Different stimuli, such as gravity and 

wasp leg positioning on the petiole, appear to play a role in when workers switch from petiole 

building to cell construction  (Karsai and Theraulaz 1995). 

  Research into termite construction behaviors proposed that stigmergy fails to describe 

when nest-construction behaviors by social insects should end (Stuart 1967), a view also put 

forth in (Downing and Jeanne 1988) regarding Polistes. However, later research showed social 

insect nests are not limited in shape, size, or age, but stigmergy cannot account for all nest-

building processes, i.e., there are other factors unrelated to nest structure that have roles in nest-

building behaviors (Karsai 1999). 

 Separate work on termites found that stigmergy does not account for nest repair and 

reconfigurations (Harris and Sands 1965), which was also applied to Polistes in (Downing and 

Jeanne 1988). More recent work investigating Polistes found that workers appear to behave in 

the same manner, regardless of the type of construction activity (Karsai and Theraulaz 1995). 

 

2.3.2: Modeling Construction Behaviors  

 Researchers have worked towards a better understanding of P. dominula nest 

construction behaviors by building simulations to evaluate the effectiveness of nest construction 

models in producing lifelike structures. One such model was created as a complete simulation of 

building behavior from pulp foraging to depositing pulp on the nest (Karsai and Pénzes 1993). 

Static probabilities were used to represent stimulus for different wasp actions, e.g., the agent had 

a lower chance to deposit pulp at a cell site with two or fewer walls versus cell sites with three or 
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more walls (Karsai and Pénzes 1993). Later work used Markov chains to select cell initiation 

sites based on simple “rules of thumb” (Karsai and Pénzes 2000). An earlier model (Karsai and 

Pénzes 1998) found that individual construction rules can lead to well-formed nest structures; the 

two-dimensional model described in (Karsai and Pénzes 2000) determined the best “rule of 

thumb” for constructing naturally occurring nest forms with few non-natural forms was an age-

based rule that summed neighboring cell ages where each eligible initiation site had a weight 

assigned to it based on the calculated summed ages of neighboring cells.   

 More recent work (Adoe 2010) extended the simple rules from (Karsai and Pénzes 2000) 

to a simulation that investigated all the possible nest forms producible with the use of different 

simple rules. Generated nests were evaluated across five variables; however, the limits of 

precision inherent to primitive data types caused difficulty in discerning between distinct nest 

configurations, requiring the use of arbitrarily large number libraries that significantly impacted 

simulation performance (Adoe 2010).  



22 
 

CHAPTER 3 

HEXAGONAL COORDINATES 

 The overall goal of this research was to investigate the role simple rules play in a step-by-

step, three-dimensional simulation of nest construction and evaluate if generated nest structures 

resemble naturally-occurring nest structures. However, the precision issues observed in previous 

work (Adoe 2010) necessitated the development of some alternative system that addressed 

precision issues inherent to Cartesian coordinates before building the simulation and running the 

experiment. Additionally, any alternate coordinate system to Cartesian coordinates should allow 

comparison of simulated data against real nest data. A hexagonal coordinate system addresses 

precision issues inherent to Cartesian coordinates and calculations derived from hexagonal 

coordinates, such as compactness, are directly comparable to calculations from Cartesian-

mapped nests, e.g., real nest data obtained in (Karsai and Pénzes 1996). 

 

3.1: Design 

The core idea that led to an integer-based hexagonal coordinate system was eliminating 

as many irrational numbers as possible from the simulation. Irrational numbers were the root 

cause of the precision issue in (Adoe 2010): mapping hexagons to a Cartesian plane, which 

requires an irrational coefficient of √3 (Fig. 1), results in approximations that affect all 

calculations that involve coordinates, such as the sum of squared distances calculation. Floating 

point approximations further affect compactness number calculations, which requires taking the 

square root of the sum of squared distances. A hexagonal coordinate system addresses the 

precision issues by using integers in place of irrational numbers. 
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3.1.1: Hexagonal Coordinate System 

 The hexagonal coordinate system was designed to answer the following questions:  

• Can the precision issue be addressed in a way that allows sufficiently sensitive nest 

comparison without resorting to arbitrarily large number libraries?  

• Will switching to an integer-based system improve performance of a nest generating 

simulation? 

• Can measurements and calculations made in hexagonal coordinates be directly compared 

to measurements and calculations made in Cartesian coordinates? 

 

 
Figure 1: Irrational coefficient in Cartesian coordinates. 
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 A hexagonal coordinate system uses three axes instead of two to map a hexagonal lattice 

to a two-dimensional plane, as seen in Figure 2. The Cartesian x-axis is split into two separate 

axes: a hexagonal x-axis that is 30° below the Cartesian x-axis and a hexagonal y-axis that is 30° 

above the Cartesian x-axis. The Cartesian y-axis becomes the hexagonal z-axis. 

 Hexagonal coordinates are represented by an ordered triple (x, y, z), where each element 

is an integer. Hexagonal coordinate representations eliminate the irrational coefficient present in 

hexagons mapped to Cartesian planes while retaining the same scale of the nest. 

 

3.1.2: Cartesian Nest Calculations 

 The compactness number, one parameter used in (Karsai and Pénzes 1996) to evaluate 

nests of the same size but with a different arrangement of cells, measures the sum of the 

 
Figure 2: Hexagonal coordinate system where red represents the x axis and coordinate, green the y axis 
and coordinate, and blue the z axis and coordinate. 
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distances from a cell’s center to the geometric center of the nest. Equation 1 shows how to 

calculate a nest’s compactness number in Cartesian coordinates (CR). Equation 2 shows the 

Cartesian sum of squared distances (DR), which is the calculation the compactness calculation is 

derived from. Equation 3 demonstrates the calculation of a nest’s geometric center. 

 

 𝐶$ = ∑ '(𝑥*	 − 𝑥-)/ + (𝑦*	 − 𝑦-)/	*  (1) 

 𝐷$ = ∑ (𝑥*	 − 𝑥-)/ + (𝑦*	 − 𝑦-)/*  (2) 

	 (𝑥-	 =
3
4
× 	∑ 𝑥*, 	* 𝑦-	 =

3
4
× 	 ∑ 𝑦*)	*  (3) 

 

3.1.3: Hexagonal Nest Calculations 

 Converting between Cartesian coordinates and hexagonal coordinates requires a few 

simple equations. Averaging the hexagonal x and y coordinates results in the equivalent 

Cartesian x coordinate, while multiplying the hexagonal z coordinate by an irrational coefficient 

results in the equivalent Cartesian y coordinate, as shown in Eq. 4. Converting a Cartesian 

coordinate pair to a hexagonal coordinate triple requires solving a system of linear equations, 

shown in Eq. 5, 6, and 7. 

	 (𝑥, 	𝑦, 𝑧) = (89:
/
, 	 √;

/
× 𝑧) 

(4) 

 𝑧< =
/√;
;
𝑦=  

(5) 

 𝑥< + 𝑦< = 2𝑥=  (6) 

 𝑥< − 𝑦< = −𝑧< (7) 

  

Calculating nest measurements in hexagonal coordinates necessitates changes to the 

Cartesian-based equations. Hexagonal coordinate calculations of geometric nest center (Eq. 8), 



26 
 

sum of squared distances (Eq. 9), and compactness number (Eq. 10) all have the z coordinate 

added to the equation. 

  

	 (𝑥-	 =
3
4
× ∑ 𝑥*,* 	𝑦-	 =

3
4
× ∑ 𝑦*,* 	𝑧-	 =

3
4
× ∑ 𝑧** ) (8) 

𝐷? =@ (𝑥*	 − 𝑥-)/ + (𝑦*	 − 𝑦-)/+	(𝑧*	 − 𝑧-)/
*

 
(9) 

 

𝐶? =@ '(𝑥*	 − 𝑥-)/ + (𝑦*	 − 𝑦-)/+	(𝑧*	 − 𝑧-)/	
*

 
(10) 

 

3.2: Implementation 

In this two-dimensional simulation, all nest permutations of 10 cells and fewer were 

procedurally generated and then compared against one another to detect distinct permutations. 

Nest generation was completed with Cartesian coordinates, floating point-based hexagonal 

coordinates, and integer-based hexagonal coordinates. Nests were compared with calculated 

compactness numbers as the primary comparer and nest eccentricity1 along individual axes as the 

secondary comparer. 

A nest visualization utility was constructed to help analyze nest data and evaluate specific 

nest statistics across multiple coordinate systems. 

 

3.2.1: Software 

 This simulation was built in the C# programming language using Visual Studio 2015. 

The operating system environment was Windows 10 Professional 64-bit. All data generated was 

output to flat files for storage. 

                                                
1 Eccentricity is the distance the first initiated cell is from the two-dimensional geometric nest center. 
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3.2.2: Hardware 

 The test platform for the experiment was a desktop computer with an Intel Core i5-6600k 

CPU at 3.50 GHz ran on Intel’s Z170 Express chipset. The test platform had 16 gigabytes of 

DDR4 RAM at 2133 MHz and 14/14/14/35 CAS timing. 

 

3.3: Results 

 Counts of distinct permutations from nest simulation was compared against data 

generated in (Adoe 2010). Cartesian coordinate and floating point-based hexagonal coordinate 

compactness comparisons resulted in the same number of generated nests as those observed in  

(Adoe 2010), except for two duplicate nest forms, one at N=9 and one at N=10, for the Cartesian 

coordinates.  

 

 

Table 1: Hexagonal coordinate system simulation results. * indicates duplicate nest structures. 

 



28 
 

 The integer-based hexagonal coordinates located additional unique nest configurations at 

N=6 (Fig. 3), N=8, N=9, and N=10 cells. In addition, execution time for the integer-based 

hexagonal coordinates was, on average, three times faster than the execution time for Cartesian 

coordinates and floating point-based hexagonal coordinates. 

 

 

 

Figure 3: Two distinct nest forms with the same compactness number. Nests differ in eccentricity and 
sums of squared distances. 
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3.3.1: Ratios Between Compactness Numbers 

 In the generated nests, a relationship emerged between sums of squared distances and 

compactness numbers calculated in Cartesian coordinates and hexagonal coordinates: hexagonal 

sums of squared distances were twice as large as corresponding Cartesian sums of squared 

distances (Equation 11). In addition, hexagonal compactness numbers were √2 larger than 

Cartesian compactness numbers (Equation 12). After multiplying by the appropriate coefficient, 

hexagonal calculations were directly comparable to Cartesian calculations, and vice versa. See 

Appendix A for a direct proof of this relationship. 

 

 𝐷?	=	2	× 𝐷$ (11) 

 𝐶?	=	√2 × 𝐶$ (12) 
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 CHAPTER 4 

THREE-DIMENSIONAL NEST SIMULATION 

 The overall goal of this research was to investigate which simple rules generate nest 

structures that resemble those found in nature. This chapter discusses the design of the 

experiment, the stochastic model, the three-dimensional simulation, and the utilities necessary to 

implement the simulation and run the experiment. 

 

4.1: Experimental Design 

 Nests were generated in the three-dimensional simulation and compared against real nest 

data across two parameters: outer cell walls / number of cells and compactness / number of cells. 

Additionally, generated nests were visually inspected with the 3D visualizer application to aid in 

understanding generated nest data. 

 Loads of paper pulp was used as the time metric in the simulation, where each load of 

pulp represents a wasp worker’s successful gathering effort. A load of pulp is used at one cell 

site, either in site initiation or site lengthening. The simulation requires 25 loads of pulp for a cell 

to undergo initiation and lengthening to a mature height, e.g., a 100-cell nest of mature, 

maximum height cells would have 2500 loads of pulp, whereas a less-mature 100-cell nest would 

have fewer loads of pulp deposited. Pulp was deposited to the minimum wall(s) of a nest before 

any taller walls were lengthened. This type of lengthening allows for newly-initiated cells to 

“catch up” to the height of existing walls before those existing walls are lengthened. 

 Heights of walls were represented by an integer where each unit of height is equal to 100 

microns, or one-tenth of a millimeter. For example, a wall height of 200 represents a wall that is 

20 mm tall. 
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20,000 nests were generated per rule, with 200 nests generated per 10 loads of pulp in the 

range of 10-500, and 200 nests generated per 100 loads of pulp in the range of 500-5500. 

Additionally, for each pulp load target, 100 nests were generated without site selection 

constraints while 100 nests were generated with site selection constraints.  

 The hexagonal coordinate system designed and implemented in Chapter 3 was adapted 

for use in the simulation by adding a fourth (w) axis to represent height of a cell. A cell’s 

coordinates were represented by a 4-tuple (x, y, z, w) where w was the minimum wall height of 

the cell. A cell with equal walls can be conceptualized as a hexagonal prism (see Figure 4). 

  

 

 

Figure 4: Hexagonal prism representation with hexagonal coordinate axes. Red is the x axis, green is the 
y axis, blue is the z axis, and orange is the w axis. 
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4.1.1: Statement of Questions 

 Three questions were asked for this experiment: 

1. Do nests generated with non-random rules differ significantly from randomly-generated 

nests in outer wall counts and compactness numbers as a function of nest size? 

2. Do generated nests differ significantly from ideal nests in outer wall counts and 

compactness numbers as a function of nest size? 

3. Do generated nests differ significantly from real nest data in outer wall counts and 

compactness numbers as a function of nest size? 

 

To determine if any differences exist between test data (generated nests) and control data 

(randomly generated nests, idealized nest data, and real nest data), scatterplots of generated nest 

outer wall counts and compactness numbers were created. Power functions were fit to the data: 

goodness of power function fit to the plotted data were evaluated through coefficients of 

determination. Each rule had two stratified random samples taken from the rule’s simulated nest 

population, based on the pulp load counts between 10-500 and 100-5000. Heat maps of each 

rule’s population were created to evaluate how representative the two samples taken were of the 

overall population. The power coefficient (b) for each fitted power function from experimental 

data (be) was then tested against power coefficients from control data (brandom, bideal, and breal) by 

use of two-sample t-test, assuming unequal variances. The 99% confidence level was selected to 

evaluate the hypotheses. 
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4.1.2: Statement of Hypotheses 

Question 1: 

• Null hypothesis (H0): brandom - be = 0 

• Alternate hypothesis (Ha): brandom - be ≠ 0 

 

Question 2: 

• Null hypothesis (H0): bideal - be = 0 

• Alternate hypothesis (Ha): bideal - be ≠ 0 

 

Question 3: 

• Null hypothesis (H0): breal - be = 0 

• Alternate hypothesis (Ha): breal - be ≠ 0 

 

4.1.3: Model Assumptions 

 Several aspects of nest construction and worker action were simplified or abstractly 

represented: 

• Pulp gathering was not modeled in this simulation: it was assumed that the agent had 

access to an unlimited supply of material for construction and always successfully 

gathered pulp. 

• Each load of pulp brought back to the nest was assumed to be the same amount. 

Modeling varying-sized loads of pulp did not directly impact the experiment. 
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• Construction actions that are not initiation or lengthening were not modeled: it was 

assumed worker(s) will strengthen the petiole(s) or further build the base sheet of the nest 

as necessary. 

• The base sheet is modeled as flat: real nests do not always have a flat base sheet. 

• Cells are modeled at a constant diameter: real nest cells can be thinner at the base and 

wider at the mouth. 

• A single agent performed all nest construction. Additionally, that single agent had the 

ability to evaluate every site on the nest. In real nests, multiple agents that check a limited 

number of sites before building (H. A. Downing 1994) would be concurrently acting on 

the nest.  

• Brood were not directly modeled in the simulation; however, brood stimuli possibly play 

a role in both the maximum age rule and the maximum height rule (Karsai and Pénzes 

2000). 

 

4.1.4: Simulation Constraints 

 Three constraints were designed and implemented for use with the nest simulation: a 

maximum height constraint, a site initiation constraint, and a site lengthening constraint. All 

generated nests were subject to the maximum height constraint. Half of the generated nests, 

termed unconstrained nests, were generated without use of the site initiation constraint and the 

site lengthening constraint. The other half of generated nests, termed constrained nests, were 

subject to the site initiation and site lengthening constraints.  Formal statements of the three 

constraints are below: 
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1. A maximum height of 30 mm, or 300 height units (one height unit equals 100 microns), 

was enforced on each wall: this constraint was placed on all generated nests and comes 

from the average height of mature nests observed in (Karsai and Pénzes 1996). 

2. A site initiation constraint was implemented that limited site initiation to locations with 

two or more existing walls. This constraint was enforced on half of the dataset. Visual 

inspection of the unconstrained data set prompted creation of this constraint (see chapter 

5, section 5.1.1). 

3. A site lengthening constraint was implemented that limited lengthening to sites that had 

at least two neighboring cells with minimum walls taller than the candidate site. This 

constraint was enforced on half of the dataset. “Chimney-building” behavior observed in 

the unconstrained data set prompted creation of this constraint. 

 

4.2: Site Selection Model 

 A stochastic model that assigns weights to each potential initiation site and existing cell 

was built for use in the three-dimensional simulation. Each step of the simulation represented the 

depositing of one load of pulp on the nest at a site selected by the model. After each load, the 

weights of each eligible build site were calculated based on the current state of the nest. The 

experimental model did not track previous states, i.e., the model has the Markov property.  

 

4.2.1: Rules 

Each rule represent one or more stimuli P. dominula workers may use to make decisions 

in real nest construction, such as chemical or mechanical stimuli (Karsai and Pénzes 2000). 
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Weights applied to each eligible site are integer calculations based on different properties of the 

nest, such as age, height, and existing walls.  

Eligible sites for rules to evaluate were limited by the simulation constraint. For example, 

a constrained random rule nest will not weigh a site with only one existing wall since the site 

initiation constraint removes any one-cell initiation sites from the set of eligible sites. Similarly, 

the maximum height rule will only weigh eligible sites that have at least two taller neighbors due 

to the site lengthening constraint.  

 

4.2.1.1: Random rule. Each eligible site has the same probability to be selected; eligible 

sites are assigned a weight of 1 (Eq. 13). The random rule serves as a baseline for analysis of the 

other rules.  

 

 𝑊𝑒𝑖𝑔ℎ𝑡(𝑟𝑎𝑛𝑑𝑜𝑚) = 	1 (13) 

 

4.2.1.2: Maximum wall rule. Each eligible site’s weight is the count of existing walls (Eq. 

14). A site with six existing walls has a weight of 6 while a site with two existing walls has 

weight 2. 

 

 𝑊𝑒𝑖𝑔ℎ𝑡(𝑚𝑎𝑥_𝑤𝑎𝑙𝑙) = 	∑ 𝐸𝑥𝑖𝑠𝑡𝑠(𝑤𝑎𝑙𝑙*)		*  (14) 

 

4.2.1.3: Maximum age rule. Each eligible site’s weight is the sum of the ages of the site’s 

walls (Eq. 15). Eligible sites have at least one wall and at most six walls. Age of a wall is 

calculated by subtracting the pulp load the wall was initiated on from the current pulp load. For 
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example, on the fourth pulp load in a three-celled nest, the oldest cell would have the largest 

probability factor of 18, followed by the second-oldest cell at 13, followed by the youngest cell 

at 9. 

Existing cells tend to have higher probability factors than initiation sites; however, two 

older walls in an initiation site may have a higher probability factor than a newly-initiated cell on 

the frontier of the nest. 

 

 𝑊𝑒𝑖𝑔ℎ𝑡(𝑚𝑎𝑥_𝑎𝑔𝑒) = 	∑ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑙𝑜𝑎𝑑 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑑	𝑙𝑜𝑎𝑑(𝑤𝑎𝑙𝑙*)		*  (15) 

 

4.2.1.4: Maximum height rule. Each eligible site’s weight is the sum of the height of its 

walls (Eq. 16). A cell with six walls, each height 10, would have a weight of 60, while initiation 

sites with two of those walls would have a weight of 20. 

 

 𝑊𝑒𝑖𝑔ℎ𝑡(𝑚𝑎𝑥_ℎ𝑒𝑖𝑔ℎ𝑡) = 	∑ 𝐻𝑒𝑖𝑔ℎ𝑡(𝑤𝑎𝑙𝑙*)		*  (16) 

 

4.2.1.5: Height difference rule. Each eligible site’s weight is the difference between the 

site’s tallest wall and the site’s shortest wall (Eq. 17). For example, a site with a maximum wall 

height of 100 and a minimum wall height of 60 would have a weight of 40. Each of these integer 

units represents 100 microns: a cell wall modeled with a height of 100 represents a wall with a 

real height of 10 mm. 

 

 𝑊𝑒𝑖𝑔ℎ𝑡(ℎ𝑒𝑖𝑔ℎ𝑡_𝑑𝑖𝑓𝑓) = 	𝑀𝑎𝑥𝑊𝑎𝑙𝑙(𝑠𝑖𝑡𝑒) − 	𝑀𝑖𝑛𝑊𝑎𝑙𝑙(𝑠𝑖𝑡𝑒) (17) 
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4.2.1.6: Hybrid rules. Rules that combine the maximum rules with the height difference 

rule were designed and implemented (Eq. 18). No scaling between the weights were applied to 

examine the effect each hybrid rule had on the nests generated. 

 

 𝑊𝑒𝑖𝑔ℎ𝑡(ℎ𝑦𝑏𝑟𝑖𝑑) = 𝑊𝑒𝑖𝑔ℎ𝑡(𝑚𝑎𝑥_𝑟𝑢𝑙𝑒) + 𝑊𝑒𝑖𝑔ℎ𝑡(ℎ𝑒𝑖𝑔ℎ𝑡_𝑑𝑖𝑓𝑓) (18) 

 

4.2.2: Site Selection Algorithm  

 Stochastic selection of weighted sites was implemented by randomly selecting an integer 

between 0 and the sum of the eligible site weights. Site weights were then subtracted from the 

randomly generated integer until the difference became negative, indicating the selected site. 

Conceptually, this system draws inspiration from roulette wheel selection found in genetic 

algorithms. 

 

4.3: Random Number Generation 

 Implementation of the stochastic model required a random number generator. Software 

random number generation is achieved through pseudorandom number generators. 

Pseudorandom number generators generate random numbers by applying a mathematical 

function to a previous state to generate the next state. The first state acted on by a pseudorandom 

number generator is the seed state.  

 The randomness of numbers generated by pseudorandom number generators is an area of 

ongoing research in fields that require high-quality random numbers, such as cryptography. 

Pseudorandom number generators possess properties that are necessary to pass testing developed 

in (Rukhin, et al. 2001), including truly random values for seeding a pseudorandom number 
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generator, uniformity of pseudorandom outputs, and consistency of generator behavior across 

different seeds.  

The stochastic model does not require cryptographically-sound random numbers. 

However, the model does require a pseudorandom number generator with a sufficiently-large 

period, a low failure rate, and an ability to generate large quantities of pseudorandom numbers 

with minimal impact on performance in terms of compute time and memory space. 

 

4.3.1: Pseudorandom Number Generator 

The pseudorandom number generator chosen for this experiment is xoroshiro128+. 

Xoroshiro is a combination of the operations performed on the prior state to generate the 

successor state: XOR, rotate, shift, and rotate. Xorshiro128+ was designed as an updated version 

of xorshift generators (Vigna 2016), which was preceded by (Marsaglia 2003). 

In (Vigna 2016) and (Vigna 2017), the TestU01 testing framework (L'Ecuyer and Simard 

2007) and PractRand testing suite (Doty-Humphrey 2014) were employed to evaluate the quality 

of xorshift-based generators against other common pseudorandom number generators, such as 

Mersenne Twister (Matsumoto and Nishimura 1998). Testing showed that xoroshiro128+ 

produced fewer failures (where p-value statistics fell outside the test interval) in the BigCrush 

battery of tests than prior xorshift generators and Mersenne Twister while generating random 

128-bit integers in less than one nanosecond and passing PractRand testing (Vigna 2017). 

To verify implementation of xoroshiro128+ with the stochastic model, a simple binning 

test was created where 1 billion random integers in were generated from 0 to UINT64_MAX 

(18,446,744,073,709,551,615 on the test hardware) and counted in 10 bins representing 
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percentages of UINT64_MAX. This binning test was performed 100 times. Results from this test 

showed equidistributed xoroshiro128+-generated numbers across the 10 bins (see Table 2). 

   

4.3.2: Seed Source 

 Xoroshiro128+ requires a truly-random seed to generate high-quality pseudorandom 

numbers. Intel’s Digital Random Number Generator (DRNG) was selected as the seed 

generation source. DRNG is a technology built into Intel processor chips that utilize three 

components to generate nondeterministic seeds: a hardware-based source of entropy, a 

conditioner that uses AES-CBC-MAC to output a 256-bit number, and a nondeterministic 

random number generator to scale the conditioner output to an arbitrary n-bit value  (Intel 

Corporation 2014). Independent analysis found DRNG capable of generating cryptographically-

sound random numbers and suitable seeds for pseudorandom number generators (Hamburg, 

Kocher and Marson 2012). 

  

Table 2: Xoroshiro128+ binning test. 

Bin (Percent) Mean Count Std. Deviation 
0% - 10% 99999833.42 9054.123102 
10% - 20% 99999657.49 8934.339742 
20% - 30% 100000691 9581.776946 
30% - 40% 100001208.4 8822.812362 
40% - 50% 99999654.36 9412.002029 
50% - 60% 99997438.87 8769.796361 
60% - 70% 100000618.5 8697.225702 
70% - 80% 100001916.7 8784.505183 
80% - 90% 99999977.57 9791.111558 
90% - 100% 99999003.67 9749.518619 
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4.4: Software 

 The site selection model, three-dimensional simulation, and xoroshiro128+ were 

implemented in Visual C++ (C++11 standard) using Microsoft Visual Studio 2015. Additional 

libraries used in the simulation implementation were Boost v1.66, Mongocxx v3.2.0, and 

Bsoncxx v3.2.0. All simulated nests were stored in MongoDB Community Server v3.6. 

 The 3D visualizer utility was written in Python v3.6 in the Anaconda v5.1 distribution. 

Additional libraries used in the visualizer were PyMongo v3.6.1, Vpython v7.4.1, and 

GlowScript v2.7. 

 Heat maps were generated with the use of the MatPlotLib, PyPlot, and NumPy libraries. 

Statistical analysis was performed with a combination of NumPy and Microsoft Excel’s data 

analysis module. 

 The operating system environment was Windows 10 Professional 64-bit. 

 

4.5: Hardware 

 The test platform for the experiment was a desktop computer with an Intel Core i5-6600k 

CPU at 3.50 GHz ran on Intel’s Z170 Express chipset. The test platform had 16 gigabytes of 

DDR4 RAM at 2133 MHz and 14/14/14/35 CAS timing. 
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CHAPTER 5 

RESULTS 

 

5.1: Visual Inspection 

 Generated nests were first inspected visually to look for any unexpected appearances or 

unanticipated model behavior. Each rule had a minimum of 100 nests visually inspected at load 

sizes 100, 500, 1000, 2000, and 4000. 

 

5.1.1 Unconstrained Nests 

 Unconstrained nests are generated nests that were not constrained by the site initiation or 

site lengthening constraints described in Chapter 4, section 4.1.4. Unconstrained nests had the 

site selection rules weigh eligible sites that contained one existing wall and sites with zero or one 

taller neighbor. Unconstrained nests were still constrained by the maximum cell height 

constraint. 

Random rule nests appeared as expected (Fig. 5); non-random rule nests did not appear as 

initially expected (Figs. 6, 7, and 8). These unexpected nest configurations were due to the large 

  

Figure 5: Random rule, unconstrained, 500 pulp loads. 
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number of one-wall initiation sites marked eligible by the unconstrained rule model. Each 

individual one-wall initiation site is not heavily weighted; however, the sum of those weights 

resulted in a disproportionate number of one-wall cell initiations.  

 

The maximum height rule tended to build “chimneys” away from any other structure. 

This behavior was due to the self-reinforcing nature of the maximum height rule: weights on 

individual cells become greater as the cell walls grow taller. These chimney-like cells would not 

 

  

Figure 6: Maximum age rule, unconstrained, 500 pulp loads. 

 

  

Figure 7: Maximum height rule, unconstrained, 500 pulp loads. 
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survive in nature due to the relative structural weakness of one freestanding paper cell. While the 

maximum age rule also resulted in some chimney-like cells, the maximum height rule was the 

primary source of this behavior. 

 The height difference rule resulted in nests with more in common with random nests than 

nests generated by other non-random rules. This was due to how the height difference rule was 

calculated. If an eligible initiation site had a maximum wall height of n and a minimum wall 

height of 0, then the weight of that site was n. Since evenly-built cells have smaller weights than 

uninitiated cells, the model selects more initiation sites than lengthening sites. The height 

difference initiation preference led to the creation of the hybrid rules to allow other rules, such as 

maximum age and maximum height, to be influenced by the stimulus provided by the height 

difference rule. 

  

The behavior of the unconstrained rules prompted the implementation of the site 

initiation and site lengthening constraints for subsequent nest generation. No further analysis was 

performed on unconstrained nests or the height difference rule as a standalone rule. 

 

 

  

Figure 8: Height difference rule, unconstrained, 500 pulp loads. 
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5.1.2 Constrained Nests 

 Generated nests that were constrained with the site initiation and site lengthening 

constraints do not exhibit the single-cell tails or chimneys observed in unconstrained nests due to 

the removal of single-walled initiation sites and sites without at least two taller neighbors. Nests 

generated by rules constrained by the constraints described in Chapter 4, section 4.1.4, appear to 

be more compact than those nests generated by the same rules without the constraints in place.  

The random rule, with its equally-weighted sites, still generated unnatural nest forms, 

including missing initiation sites (Fig. 9). From a visual standpoint, the maximum age (Fig. 10) 

and hybrid age (Fig. 11) rules and the maximum height (Fig. 12) and hybrid height (Fig. 13) 

rules generated the most well-formed structures.  

 

 

  

Figure 9: Random rule, constrained, 500 pulp loads. 
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The hybrid version of the age rule does not appear to generate different nest structures 

from the maximum age rule. This observation may stem from how the weights are calculated. 

For example, a 1000-pulp load nest could have sites with weights in the 5000s for cell walls 

initiated early in construction ((1000 – 100) * 6 = 5400). In comparison, the height difference 

rule exerts a small fraction of that weight on the nest, e.g., a site with a maximum wall height of 

250 and a minimum wall height of 50 has a height difference weight of 200. Future work 

(discussed in chapter 6, section 6.1) could apply either a static or dynamic weighting to the age 

component and the height difference component of the hybrid rule. 

 

  

Figure 10: Maximum age rule, constrained, 500 pulp loads. 
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Visual comparisons of the constrained age rules and height rules show that while the 

height rules generated fewer cells per pulp load target (compare Figs. 10 and 12), the age-based 

rules appear to generate nests with a smoother gradient of heights from the center of the nest 

towards the edges of the nest.  

 

 

As observed with the age-based rules, the maximum height rule and the hybrid height 

rule generate visually similar structures. While not as drastic a ratio as that of the age-based 

rules, the ratio of weights between the two height-based rules still strongly favors the sum of 

  

Figure 11: Hybrid age rule, constrained, 500 pulp loads. 

  

Figure 12: Maximum height rule, constrained, 500 pulp loads. 
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wall heights over the height difference: a site with five walls of 200 height units and one wall of 

50 height units (summing to 1050 weight) will have a height difference weight of 150.   

 

 

 

The maximum wall and hybrid wall rules (Figs. 14 and 15) did not generate well-formed 

structures: wall-based structures visually appear to have more in common with random nests 

(Fig. 9) than nests generated with the age-based and height-based rules (Figs. 10 – 13). The 

weight exerted by sites with six existing walls is three times greater than the weight exerted by a 

site with two existing walls. In comparison, an age-based, center-nest site with six walls of total 

weight 5000 will outweigh an outer-nest initiation site with two walls of total weight 100 by a 

factor of 50. 

 

  

Figure 13: Hybrid height rule, constrained, 500 pulp loads. 
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The height difference portion of the hybrid height rule could exert more weight on site 

selection versus the maximum-wall portion of the rule. For example, a site with six walls, with 

maximum height 100 and minimum height 50, would have weight 6 from the maximum-wall 

portion of the rule and weight 50 from the hybrid height portion of the rule. However, there did 

not appear to be significant differences between the nests generated by the maximum wall rule 

(Fig. 14) and the hybrid wall rule (Fig. 15). 

 

 

  

Figure 14: Maximum wall rule, constrained, 500 pulp loads. 

  

Figure 15: Hybrid wall rule, constrained, 500 pulp loads. 
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5.2: Quantitative Parameter Analysis 

 Data from (Karsai and Pénzes 1996) recommended that intra-species studies of nest 

variability in Polistes fit a curve between number of cells and two quantitative traits: outer wall 

count and compactness. The fitted curves for the nests generated with non-random rules were 

then compared against curves for each quantitative trait from control nests: random nests, ideal 

nests, and real nests. Fitted curves for number of cells versus outer walls and number of cells 

versus compactness for real nest data were found to have an r2 = 0.97 and r2 = 1, respectively 

(Karsai and Pénzes 1996); t tests found no significant difference between idealized and real nests 

data for outer walls (p > 0.1) but a significant difference between idealized and real nest data for 

compactness (p < 0.01)  (Karsai and Pénzes 1996).  

Analysis for constrained generated nests consisted of generating scatter plots for outer 

walls and compactness, each versus number of cells in a nest, and fitting power regressions to the 

data. Regression coefficients (b) were compared between data generated with one of the non-

random rules (be) and data from a control source (brandom, bideal, and breal) were tested for 

significance via two sample t-test with the assumption of unequal variances.  

 

5.2.1: Sampling Strategy 

 For each rule of interest, 1000 nests were sampled in two different stratified random 

samples: 500 nests total were sampled from 10-500 loads of pulp, with 10 nests randomly 

sampled every 10 pulp loads, and 500 nests total from 100-5000 loads of pulp, with 10 nests 

randomly sampled every 100 pulp loads. 10% of the total constrained nest population was 

sampled by each stratified random sample.  
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 MongoDB provides random sampling through use of the aggregation pipeline and the 

$sample command. Samples are randomly selected by MongoDB using a pseudorandom sort on 

a collection’s documents and then selecting the first 10 randomly-sorted nest documents. 

 

5.2.2: Sample Quality 

 Heat maps for each rule’s population were created, based on sampling range (10-500 pulp 

loads or 100-5000 pulp loads) and analyzed parameter (outer wall count or compactness 

number). Figure 16 shows the key for interpreting the heat maps.  

 

 

The color points represent a rule’s total population, plotted by parameter (outer wall 

counts or compactness numbers) as a function of number of cells. One point represents one or 

more nests, depending on the color of the point. Red (warm) points represent large 

concentrations of individuals while blue (cool) points represent sparse concentrations of 

individuals. The grayscale points plotted above the population heat map represent sampled 

points. Darker points had more samples taken than lighter points. 

 

Figure 16: Color bars for heat map interpretation. The grayscale bar is for sampled points. The lighter 
the sample point color, the fewer number of samples taken at that point. The color bar is for the 
population of nests generated by a rule, separated by sample range and parameter (outer wall counts and 
compactness number). The cooler the color of the population points, the fewer individuals that had the 
parameter value at that number of cells. 
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5.2.2.1: Outer Wall Samples. Figure 17 shows a heat map for random rule nest data from 

the broad (100-5000 pulp load) sample. Darker sample points are concentrated in warmer areas 

of the population heat map. The stratified random sample obtained from the random rule’s 

population appears to be a representative sample. 

 

  

Figure 18 shows a heat map for the maximum age rule from the broad sample. As with 

the random rule’s heat map, it appears that the sample taken for the maximum age rule is 

representative. 

 

Figure 17: Random rule heat map of the outer walls parameter for the broad sample. Colorized points are 
the rule’s generated nest population for the 100–5000 pulp load range while the grayscale points are for 
the sample taken from the random rule’s population. Warmer / darker points represent higher densities. 



53 
 

 Heat maps of outer wall data for the remaining rules in the broad sample (Figs. 36 - 40) 

and for all rules in the narrow sample (Figs. 41 – 47) also appear to be representative samples of 

their respective populations. The other rules’ heat maps are in Appendix B of this report. 

 

    

 5.2.2.2: Compactness Samples. Figure 19 is a heat map of the compactness data from the 

random rule’s 100-5000 pulp load population data overlaid with the sample data. The same 

scaling for outer wall heat maps apply to the compactness heat maps. As with the outer wall data, 

the sample’s compactness data appears representative of the random rule’s population. 

 

Figure 18: Maximum age rule heat map of the outer walls parameter for the broad sample. 
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 Figure 20 is a heat map of compactness data for the maximum age rule. As with the outer 

wall heat map, the compactness heat map for the maximum age rule shows similar distributions 

for the sampled points and the population points. 

 Appendix B contains the remaining rules’ broad sample heat maps (Figs. 48 – 52) and all 

the rules’ narrow sample heat maps (Figs. 53 - 59) for compactness numbers. 

 

Figure 19: Random rule heat map of the compactness parameter for the broad sample. The same key 
from outer wall heat maps (Fig. 16) applies to compactness heat maps. 
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5.3: Real and Idealized Data 

Data from (Karsai and Pénzes 1996) were used to generate comparison coefficients to 

test against generated nest parameters. Scatterplots of real nest data with fitted power functions 

were created for outer wall counts (Fig. 21) and compactness numbers (Fig. 22). Both parameters 

showed high coefficients of determination (R2 > 0.99), indicating both parameters strongly 

depend on the number of cells in real nests. This correlation was also observed in (Karsai and 

Pénzes 1996). 

 

 

 

Figure 20: Maximum age rule heat map of the compactness parameter for the broad sample. 
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For each parameter, the power function regression coefficient was compared against 

idealized nest data derived from minimally-compact nest forms. Ideal nest forms are the most 

compact nest forms for a given number of cells, which, in turn, have the fewest outer walls. Ideal 

calculations from (Karsai and Pénzes 1993) and data from (Karsai and Pénzes 2000) were used 

to generate idealized nest forms. 

 

 

Scatterplots of idealized nest data with fitted power functions for outer wall counts (Fig. 

23) and compactness numbers (Fig. 24) were created for comparison against real nest data. As 

with the real nest data coefficients of determination, values for both parameters of ideal nests 

strongly depend on the number of cells in the nest (R2 > 0.999). 

 

 

Figure 21: Real nest data - outer walls (Karsai and Pénzes 1996). 

y = 6.8858x0.5142

R² = 0.9982

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180

O
ut

er
 W

al
ls

Number of Cells

Real Nest Data: Outer Walls



57 
 

 

 

For each parameter, t-tests were performed on the regression (b) coefficients of real vs 

ideal nest data as a control. There was no significant difference between idealized and real data 

(p > 0.1) for outer wall data; there was a significant difference in compactness data between 

idealized and real data (t-test, p < 0.01). The calculated p-values from the t-tests match the p-

values calculated in (Karsai and Pénzes 1996). 

 

 

 

 

 

Figure 22: Real nest data - compactness (Karsai and Pénzes 1996). 

y = 0.3395x1.5082

R² = 0.9999

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160 180

Co
m

pa
ct

ne
ss

Number of Cells

Real Nest Data: Compactness



58 
 

 

 

 

 

Figure 23: Idealized nest data – outer walls. 
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Figure 24: Idealized nest data – compactness. 
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5.4: Tests of Hypotheses: Outer Wall Counts 

  

5.4.1: Random Rule 

 Randomly-generated nests did not result in lifelike structures. Figures 25 and 26 show 

scatterplots with similar fitted power functions (R2 > 0.96) for the two samples, indicating that 

randomly-generated nests, while less dependent on number of cells than real and idealized nest 

data, still have high correlation between each nest parameter and the number of cells in a nest.  

 

 

For both the narrow and broad samples, calculated regression coefficients for random 

rule nests were significantly different from both real nests (p < 0.01) and ideal nests (p < 0.01). 

The significant difference between random data and control data by outer wall counts means that 

real nests and idealized nests are not likely to be randomly built. 

 

Figure 25: Random rule – outer wall data for 10 – 500 pulp loads. 
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5.4.2: Wall Rules 

  The maximum wall rule and the hybrid wall rule generated similar nests in terms of outer 

wall counts. Figure 27 shows the broad-sample scatterplot for outer wall counts as a function of 

number of cells. A high coefficient of determination (R2 > 0.97) was calculated for the fitted 

power function. Scatterplots for the maximum wall rule outer wall counts in the narrow sample 

(Fig. 68) and for the hybrid wall rule outer wall counts in both samples (Figs. 64 and 65) are in 

Appendix C.  

Analysis of regression coefficients found different results based on the pulp load strata. 

For the narrow sample, the regression coefficients for the maximum wall rule were significantly 

different from random (p < 0.01), ideal (p < 0.01), and real (p < 0.01) regression coefficients. 

However, the broad sample for the maximum wall rule regression coefficients were not 

significantly different (p > 0.01) from the random coefficient. Significantly different regression 

 

Figure 26: Random rule – outer wall data for 100 – 5000 pulp loads. 
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coefficients were found in the maximum wall rule broad sample from both idealized data (p < 

0.01) and real data (p < 0.01).  

 

 

 The hybrid wall rule showed identical t-test results to the maximum wall rule: significant 

differences from random (p < 0.01), ideal (p < 0.01), and real (p < 0.01) regression coefficients 

in the narrow sample and ideal (p < 0.01) and real (p < 0.01) data in the broad sample. No 

significant differences (p > 0.01) between the broad sample outer wall regression coefficients 

and the random rule regression coefficients were found. 

 

5.4.3: Age Rules 

 The maximum age and hybrid age rules generated similar structures across the outer wall 

parameter. Power functions fit to the maximum age and hybrid age data sets had high 

 

Figure 27: Max wall rule – outer wall data for 100 – 5000 pulp loads. 
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coefficients of determination (R2 > 0.97).  Figure 28 shows the scatterplot for the broad sample 

of the maximum age rule. Scatterplots for the narrow sample of the maximum age data (Fig. 66) 

and for both samples of the hybrid age data (Figs. 60 and 61) are in Appendix C. 

 

 

Regression coefficients for the maximum age rule data in the narrow sample showed 

significant differences with random coefficients (p < 0.01), ideal coefficients (p < 0.01), and real 

coefficients (p < 0.01). The regression coefficients for the maximum age rule data in the broad 

sample showed significant differences with random coefficients (p < 0.01) and ideal coefficients 

(p < 0.01). However, there was no significant difference between the regression coefficients in 

the maximum age broad sample and real nest data (p > 0.1), indicating that the broad sample 

maximum age nests, in counts of outer walls as a function of number of cells, show an 

insignificant difference to real nest data along the outer wall parameter.  

 

Figure 28: Max age rule – outer wall data for 100 – 5000 pulp loads. 
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Hybrid age rule data differed from maximum age rule data along the outer wall parameter 

in the narrow sample. While the regression coefficients for the hybrid age rule in the narrow 

sample had significant differences with the regression coefficients of random nests (p < 0.01) 

and idealized nests (p < 0.01), no significant difference with the regression coefficients of real 

nests (p > 0.01) was found. The hybrid age rule data in the broad sample had the same test 

results as the maximum age rule: significant differences were found between hybrid age 

regression coefficients, random coefficients (p < 0.01), and ideal coefficients (p < 0.01), but no 

significant difference between hybrid age coefficients and real nest coefficients (p > 0.1). 

 

5.4.4: Height Rules 

 The scatterplots for the maximum height and hybrid height rules outer wall counts were 

not as tightly packed as the other non-random rules. However, power functions fit to the data had 

high coefficients of determination (R2 > 0.95). Figure 29 shows the scatterplot for the maximum 

height rule in the broad sample. Scatterplots of the maximum height rule in the narrow sample 

(Fig. 67) and they hybrid height rule in both samples (Figs. 62 and 63) are in Appendix C.  

Analysis of the regression coefficients between the maximum height rule and the random 

rule in both the narrow sample and the broad sample found no significant difference (p > 0.01) 

between the data. Significant differences in regression coefficients were observed between the 

maximum height data, idealized data (p < 0.01), and real data (p < 0.01) in both the narrow and 

broad samples. 
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The hybrid height rule analysis found analogous results to those found with the maximum 

height rule: no significant difference in regression coefficients between hybrid height data and  

random data (p > 0.01) was calculated across both samples.  Significant differences were 

calculated between hybrid height regression coefficients, idealized coefficients (p < 0.01) and 

real coefficients (p < 0.01) over both samples. 

 

5.5 Tests of Hypotheses: Compactness Numbers 

  

5.5.1: Random Rule 

 The random rule did not generate compact nest structures, which provides a contrast to 

the compact nest structures of idealized and real data. Power functions fit to the random rule 

 

Figure 29: Max age rule – outer wall data for 100 – 5000 pulp loads. 
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compactness numbers in the narrow sample (Fig. 30) and the broad sample (Fig. 31) both have 

high coefficients of determination (R2 > 0.99).  

 

  

Statistical analysis of the random rule regression coefficients in the narrow and broad 

samples found significant differences between random data and ideal data (p < 0.01). Significant 

differences between regression coefficients of random data and real nest data (p < 0.01) were 

also found. The significant differences reinforce the observations from visual inspection of 

randomly generated nest structures—random nests are not compact, implying that the compact 

structures seen in idealized nests and real nests have a low likelihood of being the result of 

random construction behaviors. 

 

 

 

Figure 30: Random rule – compactness data for 10 – 500 pulp loads. 
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5.5.2: Wall Rules 

 The wall-based rules generated the least compact nest structures of the non-random rules: 

visually, the wall-based nests appeared to have compactness numbers closer to random data than 

to data from the age-based and height-based rules. Number of cells strongly predicts 

compactness numbers of nests generated with wall-based rules (R2 > 0.99). Figure 32 shows the 

scatterplot of the maximum wall rule in the broad sample. Scatterplots for the maximum wall 

rule in the narrow sample (Fig. 77) and for the hybrid wall rule in both samples (Figs. 73 and 74) 

are in Appendix C. 

 Statistical analysis of maximum wall rule regression coefficients confirms what was 

visually observed regarding compactness similarities to randomly-generated nests. There was no 

significant difference between regression coefficients of the maximum wall data and the random 

data in the narrow sample (p > 0.1). The similarity between random and maximum wall 

 

Figure 31: Random rule – compactness data for 100 – 5000 pulp loads. 
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compactness data increases in the broad sample: the p-value between random data and maximum 

wall data in the broad sample was greater than 0.5, indicating there is little difference in 

compactness between maximum wall rule nests and random rule nests. Significant differences 

between maximum wall data and idealized data were found in both the narrow sample (p < 0.01) 

and the broad sample (p < 0.01). There was no significant difference in regression coefficients 

between maximum wall data and real data in the narrow sample (p > 0.01); there was a 

significant difference in the broad sample (p < 0.01). However, the much-larger p-value between 

random data and maximum wall data suggests maximum walls have more in common with 

random nests than real nests.  

 

 

 Analysis of hybrid wall nest data along the compactness number parameter resulted in 

similar p-values as those from the maximum wall rule analysis. No significant difference was 

 

Figure 32: Max wall rule – compactness data for 100 – 5000 pulp loads. 
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found between regression coefficients of random data and hybrid wall data in the narrow sample 

(p > 0.1) and in the broad sample (p > 0.5). Significant differences in regression coefficients 

between maximum wall data and idealized data were found in both the narrow sample (p < 0.01) 

and the broad sample (p < 0.01). Regression coefficients between hybrid wall data and real data 

had no significant difference in the narrow sample (p > 0.01) but had a significant difference in 

the broad sample (p < 0.01). 

 

5.5.3: Age Rules 

 The age-based rules, from a visual standpoint, generated relatively compact nest 

structures. Coefficients of determination were all high (R2 > 0.99) for the scatterplots of the age-

based rules. Figure 33 is the scatterplot for the maximum age rule in the broad sample. Appendix 

C contains figures for the maximum age rule in the narrow sample (Fig. 75) and for the hybrid 

age rule in both the narrow sample (Fig. 69) and the broad sample (Fig. 70). 

 Statistical analysis of the maximum age rule by the compactness number parameter 

yielded a mixed result. There was no significant difference in the narrow sample’s regression 

coefficients between maximum age data, random data (p > 0.05), and real data (p > 0.05). There 

was a significant difference in the narrow sample’s regression coefficients between maximum 

age data and idealized data (p < 0.01). For the narrow sample, it seems the maximum age nests 

occupy a middle ground of compactness between real nests and random nests since real nests and 

random nests significantly differ in compactness. The broad sample had no significant difference 

in the regression coefficients between maximum age data and random data (p > 0.05). There was 

a significant difference between coefficients in the maximum age data, idealized data (p < 0.01), 

and real data (p < 0.01). 
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The hybrid age rule’s compactness parameter also gave a mixed result; however, the 

hybrid age data tended more towards random data than real data. There was no significant 

difference in the narrow sample’s regression coefficients between hybrid age data, random data 

(p > 0.1), and real data (p > 0.01). As evidenced by the p-values, the narrow sample’s hybrid data 

had more in common with random data than real data. In the broad sample, there was no 

significant difference in the regression coefficients between hybrid age data and random data (p 

> 0.05); there was a significant difference between the coefficients in the hybrid age data and the 

real data (p < 0.01). Idealized data regression coefficients differed significantly from hybrid age 

data coefficients in both the narrow sample (p < 0.01) and the broad sample (p < 0.01). 

  

 

Figure 33: Max age rule – compactness data for 100 – 5000 pulp loads. 
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5.5.4: Height Rules 

 The height-based rules, like the age-based rules, generated relatively compact structures 

from a visual standpoint. The fitted power functions for the height-based scatterplots all had high 

coefficients of determination (R2 > 0.99). Figure 34 is a scatterplot of the maximum height rule 

data from the broad sample. Scatterplots for the maximum height rule data from the narrow 

sample (Fig. 76) and hybrid height rule data for both samples (Figs. 71 and 72) are in Appendix 

C.  

 

 

 The statistical analysis of the maximum height rule in the narrow sample yielded an 

interesting result. Significant differences were found between regression coefficients of the 

maximum height data, random data (p < 0.01), and idealized data (p < 0.01). Real nest 

compactness data and maximum height compactness data were remarkably similar: no 

 

Figure 34: Max height rule – compactness data for 100 – 5000 pulp loads 
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significant difference in regression coefficients were found (p > 0.9). In contrast, the broad 

sample’s maximum height data had no significant difference in regression coefficients with 

random data (p > 0.5) but had significant differences with both idealized data (p < 0.01) and real 

data (p < 0.01). 

 Analysis of the hybrid height rule revealed a similar result to that of the maximum height 

rule, albeit with less extreme p-values. The same statistically significant similarity to real nest 

data was found in the hybrid height rule’s narrow sample (p > 0.7) while significant differences 

were seen in the regression coefficients of random data (p < 0.01) and idealized data (p < 0.01). 

The broad sample data found no significant difference in regression coefficients between the 

hybrid height data and the random data (p > 0.4). Significant differences were found in the 

regression coefficients of hybrid height data with idealized data (p < 0.01) and real data (p < 

0.01). 
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CHAPTER 6 

DISCUSSION 

 This report described two separate pieces of work: the foundational design and 

implementation of a hexagonal coordinate system and the design, implementation, and analysis 

of a novel three-dimensional nest construction simulation that stochastically modeled P. 

dominula decision making with simple rules. To perform this work, an applications suite of 

seven different utilities, including two-dimensional and three-dimensional visualization utilities, 

simulations, and analysis tools were designed and implemented across three programming 

languages. The simulations written in the foundational work and the experimental work 

accomplished the goals set out for each in their respective designs. The hexagonal coordinate 

system improved simulation performance by implementing integer-based coordinates, which 

allowed direct comparison of hexagonal coordinate calculations and Cartesian coordinate 

calculations. Hexagonal coordinates also provided a greater than three times improvement in 

execution time in the procedural nest generation utility.  

The design and implementation of the novel three-dimensional simulation was completed 

successfully with nearly a million nests generated using simple rules. Visual analysis of the 

generated nest structures gave a good baseline impression of each rule and helped shape the 

direction of the experiment by demonstrating the unnatural nest forms resulting from 

unconstrained nest generation. Visual inspection also helped narrow down which rules were 

more likely to generate natural nest forms, shaping the statistical analysis. The statistical analysis 

found that while no single rule could always generate realistic nest data across both parameters, 

the age-based rules, paired with the site selection constraints, were able to consistently generate 
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nests that resembled real nest data in terms of outer cell wall counts and compactness numbers. 

The age-based rules make a good basis for future work based on stochastic site selection. 

6.1: Analysis of Hypotheses 

The statistical analysis was performed to evaluate the null and alternate hypotheses 

proposed in Chapter 4, section 4.1.2. The first question asked for this experiment was whether 

randomly-generated nests differed from non-randomly generated nests. The null hypothesis for 

random nests stated that there was no difference between random nests and non-random nests 

along two parameters: outer wall counts and compactness numbers (both as a function of the 

number of cells in the compared nests). The alternate hypothesis stated there was a difference 

between random nests and non-random nests along the two parameters. In comparison to real 

and idealized nest data, the null hypothesis was rejected: there are statistically significant 

differences between random data, real nest data, and idealized data. The significant differences 

found when calculating the regression coefficients between random nests and real nests in both 

parameters agrees with results seen in prior research (Karsai and Pénzes 1993; Karsai and Pénzes 

2000). 

Analysis of the random rule against the wall-based, age-based, and height-based rules 

showed no clear answers across both parameters and both samples. Using outer wall counts as 

the nest parameter, the null hypothesis was rejected for the age-based rules, accepted for the 

height-based rules, and, depending on which sample, rejected (narrow sample) and accepted 

(broad sample) for the wall-based rules. When compactness is the nest comparison parameter, 

the null hypothesis is accepted for both the age-based rules and the wall-based rules across both 

samples, meaning no significant difference was found between those non-random data and 

random data in terms of nest compactness as a function of number of cells. In the narrow sample, 
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the height-based rules rejected the null hypothesis, i.e., were significantly different from random 

data; however, the null hypothesis was accepted in the broad sample. 

The failure to reject the null hypothesis in the compactness parameter comparisons across 

all three rules may point to some factor all the rules had in common: the site selection 

constraints. The enforced selection of initiation sites that have at least two existing walls and 

lengthening sites with at least two taller neighbors may exert more pressure on the shaping of the 

nest than the individual rules do in terms of overall nest compactness. However, this trend did 

not appear in the analysis of outer wall counts. Analysis of the unconstrained nests may help 

shed some light on the impact of the constraints on overall site selection weighting. 

 

6.1.1: Idealized and Real Data Analysis 

 The second experimental question was whether idealized nest data differed significantly 

from generated nest data. Across all rules, both random and non-random, and across both 

samples, the null hypothesis was rejected. Idealized nest forms likely differ significantly from all 

constrained nest data. This is not surprising: real nest data is significantly different from 

idealized nest data using the compactness parameter as comparison. Some nests, such as narrow-

sample height-based nests, did come closer to the 99% confidence level threshold for 

significance; however, no generated nest data was ever less than a power of 10 away from 

crossing the significance threshold. 

 The third experimental question was whether real nest data differed significantly from 

generated nest data. Results of this hypothesis test depended on the rule, the sample, and the 

parameter. The wall-based rules, with one exception, all rejected the null hypothesis: wall rule 

nests were significantly different from real nests. The one occurrence where the null hypothesis 
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was accepted was in the narrow sample along the compactness parameter; however, p-values 

were not far above 0.01.  

The age-based rules often failed to reject the null hypothesis, meaning the age-based nest 

structures had both parameters in common with real nests at equivalent numbers of cells. The 

cases where the null hypothesis was rejected are the broad sample compactness and the 

maximum age rule’s narrow outer wall counts. The maximum age rejection was close to the 

threshold; a different random sample may result in failing to reject the null hypothesis. The 

compactness broad sample rejections are part of a larger trend observed across all the non-

random generation rules. There are several possible causes for this trend. One possible 

explanation is the inability of these rules to predict nests at larger sizes. Another possible 

explanation is the limitation of the model as a single-agent, fully observable state model. Large 

P. dominula nests have multiple agents with partial environmental knowledge of the nest. Those 

wasp agents do not wander indefinitely; another species of Polistes averages 38 seconds and 18 

site checks before making a final building decision (H. A. Downing 1994). A third explanation 

may be the previously-described constraint weighting forcing nests down a certain path, 

regardless of rule influence. 

The height-based rules, with one exception, led to the rejection of the null hypothesis in 

comparison to real nest data. The exception was the narrow sample for the compactness number 

parameter, which found a remarkable similarity in compactness between real nests and height-

based nests. One reason for this similarity may be how real nests grow at this phase. Once real 

nests reach 12-16 cells, they undergo an extended lengthening stage to grow the cells tall enough 

to accommodate the hatched larvae (Karsai and Pénzes 1996). After this lengthening phase, 
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further site initiations resume to continue growing the nest; nest lengthening does not continue 

much further past the point reached during the larval stage (Karsai and Pénzes 1996). 

6.2: Study Limitations 

 This study was not without limitations. One limitation was the lack of characterization of 

nests in three dimensions versus two-dimensional analysis. Three-dimensional compactness of 

simulated structures was calculated but had two issues: it was not directly comparable to real 

nest compactness numbers and three-dimensional compactness was not at the same scale as the 

other three axes of the nest, limiting its usefulness. A second limitation was the debatable 

usefulness of the hybrid rules. Analysis showed little difference between hybrid and maximum 

versions of the wall, age, and height rules. Resolving the lack of three-dimensional 

characterization may help address the effect hybrid rules have on nest construction. Adding 

scaling coefficients to the stochastic site selection model to increase or decrease the influence of 

each rule may also help differentiate the hybrid rules from the maximum rules. 

Another limitation was the role constraints played in site selection. Unconstrained nests 

were subjected to visually inspected and the unconstrained rules were discarded after discovery 

of chimney elongation and single-wall initiations. Further investigation into the difference 

between fully constrained, partially constrained, and unconstrained rules may shed light on how 

much constraints affected nest parameters. Finally, none of these findings directly address the 

underlying stimuli of how P. dominula construct nests. The age-based rule, for example, could 

be influenced by multiple stimuli, including the nest structure itself, pheromones deposited on 

the structure after various worker actions (H. Downing 1991), or pupae in the cells (Karsai 

1997). 
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6.3: Future Work 

 One avenue for future projects to pursue is removing abstractions and simplifications 

from the model and attempting to separate as many stimuli into discrete variables as possible. 

For example, the age-based rule could be limited to site initiations, as in the model from (Karsai 

and Pénzes 2000) and another mechanism designed for cell lengthening, such as implementing 

realistic brood mechanics as a stimulus for cell elongation. The design of the stochastic site 

selection model could serve as a good basis for implementation of discrete stimuli and less 

generalized models, e.g., a site lengthening model weighted by brood mechanics and a site 

initiation model weighted by wall ages or pheromone deposits.  

 A second direction for future work is the implementation of a multi-agent simulation that 

utilizes workers with limited knowledge of the nest structure. Additional features for this future 

work could include worker collisions (and how those collisions affect site selection) and real-

time simulation of pulp gathering to examine how timing affects the limited decision-making 

windows Polistes workers possess. 
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APPENDICES 

Appendix A 

Proof of Direct Comparison of Compactness Numbers 

 This section contains a direct proof of the relationship observed between hexagonal 

coordinate sum of squared distances equation and Cartesian coordinate sum of squared distances 

equation. Equations 19, 20, and 21 show the initial steps to the proof. 

 𝐷?	=	2× 𝐷$	 (19) 

 2𝐷$ = 2∑ (𝑥=*	 − 𝑥=-)/ + (𝑦=*	 − 𝑦=-)/*  (20) 

 = 2∑ 𝑥=*/ − 2𝑥=*𝑥=- + 𝑥=*/ + 𝑦=*/ − 2𝑦=*𝑦=- + 𝑦=*/* 	 	 (21) 

 

 

 Using Eq. 3, substitute hexagonal coordinates for Cartesian coordinates. 

 = 2∑ Y8Z[9:Z[
/

\
/
− 2 Y8Z[9:Z[

/
\ Y8Z]9:Z]

/
\ + Y8Z]9:Z]

/
\
/

* 	

	 	+ Y√;
/
𝑧<*\

/
− 2 Y√;

/
𝑧<*\ Y

√;
/
𝑧<-\ + Y

√;
/
𝑧<-\

/
	  

(22) 

 

 Expand and combine like terms. 

 

 =	3
/
∑ (𝑥<*	 − 𝑥<-)/ + (𝑦<*	 − 𝑦<-)/ + 2(𝑧<*	 − 𝑧<-)/* 		

	 +(𝑧<*/ − 2𝑧<*𝑧<- + 𝑧<-/ ) + 2(𝑥<*	 − 𝑥<-)	(𝑦<*	 − 𝑦<-) 

(23) 
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 Substitute hexagonal x and y into expanded hexagonal z terms using Eq. 4, 5, and 6. 

 	=	3
/
∑ (𝑥<*	 − 𝑥<-)/ + (𝑦<*	 − 𝑦<-)/ + 2(𝑧<*	 − 𝑧<-)/* 	

	 	+(𝑦<* − 𝑥<*)/ − 2(𝑦<* − 𝑥<*)(𝑦<- − 𝑥<-) + (𝑦<* − 𝑥<*)/	

	 +2(𝑥<* − 𝑥<-)	(𝑦<* 	 − 𝑦<-) 

(24) 

 

 Expand and combine like terms. 

 =	3
/
∑ 2(𝑥<*	 − 𝑥<-)/ + 2(𝑦<* 	 − 𝑦<-)/ + 2(𝑧<*	 − 𝑧<-)/* 	

	 −2(𝑥<*	 − 𝑥<-)	(𝑦<*	 − 𝑦<-)	+	2(𝑥<*	 − 𝑥<-)	(𝑦<*	 − 𝑦<-) 

(25) 

 

 Hexagonal sum of squared distances equation results from substitution into Cartesian 

sum of squared distances equation. 

 =	∑ (𝑥<*	 − 𝑥<-)/ + (𝑦<* 	 − 𝑦<-)/ + (𝑧<*	 − 𝑧<-)/*  (26) 

∎ 
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Appendix B 

Heat Maps of Stratified Random Samples 

 This section contains heat maps not shown in Chapter 5’s discussion of sampling quality. 

See Fig. 35 for the heat map key. 

 

 

 

Figure 35: Color bars for heat map interpretation. The grayscale bar is for sampled points. The lighter 
the sample point color, the fewer number of samples taken at that point. The color bar is for the 
population of nests generated by a rule, separated by sample range and parameter (outer wall counts and 
compactness number). The cooler the color of the population points, the fewer individuals that had the 
parameter value at that number of cells. 
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Figure 36: Hybrid age rule heat map of the outer walls parameter for the broad sample. 

 

Figure 37: Hybrid height rule heat map of the outer walls parameter for the broad sample. 



86 
 

 

 

 

Figure 38: Hybrid wall rule heat map of the outer walls parameter for the broad sample. 

 

Figure 39: Maximum height rule heat map of the outer walls parameter for the broad sample. 
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Figure 40: Maximum wall rule heat map of the outer walls parameter for the broad sample. 

 

Figure 41: Random rule heat map of the outer walls parameter for the narrow sample. 



88 
 

 

 

 

Figure 42: Hybrid age heat map of the outer walls parameter for the narrow sample. 

 

Figure 43: Hybrid height heat map of the outer walls parameter for the narrow sample. 
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Figure 44: Hybrid wall heat map of the outer walls parameter for the narrow sample. 

 

Figure 45: Maximum age heat map of the outer walls parameter for the narrow sample. 
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Figure 46: Maximum height heat map of the outer walls parameter for the narrow sample. 

 

Figure 47: Maximum wall heat map of the outer walls parameter for the narrow sample. 
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Figure 48: Hybrid age heat map of the compactness parameter for the broad sample. 

 

Figure 49: Hybrid height heat map of the compactness parameter for the broad sample. 
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Figure 50: Hybrid wall heat map of the compactness parameter for the broad sample. 

 

Figure 51: Maximum height heat map of the compactness parameter for the broad sample. 
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Figure 52: Maximum wall heat map of the compactness parameter for the broad sample. 

 

Figure 53: Random heat map of the compactness parameter for the narrow sample. 
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Figure 54: Hybrid age heat map of the compactness parameter for the narrow sample. 

 

Figure 55: Hybrid height heat map of the compactness parameter for the narrow sample. 
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Figure 56: Hybrid wall heat map of the compactness parameter for the narrow sample. 

 

Figure 57: Maximum age heat map of the compactness parameter for the narrow sample. 
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Figure 58: Maximum height heat map of the compactness parameter for the narrow sample. 

 

Figure 59: Maximum wall heat map of the compactness parameter for the narrow sample. 
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Appendix C 

Scatterplots of Nest Parameters 

 This section contains the scatterplots of outer wall counts and compactness numbers not 

shown in Chapter 5’s statistical analysis. 

 

 

 

Figure 60: Hybrid age rule – outer wall data for 10 – 500 pulp loads. 
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Figure 61: Hybrid age rule – outer wall data for 100 – 5000 pulp loads. 
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Figure 62: Hybrid height rule – outer wall data for 10 – 500 pulp loads. 
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Figure 63: Hybrid height rule – outer wall data for 100 – 5000 pulp loads. 
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Figure 64: Hybrid wall rule – outer wall data for 10 – 500 pulp loads. 
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Figure 65: Hybrid wall rule – outer wall data for 100 – 5000 pulp loads. 
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Figure 66: Max age rule – outer wall data for 10 – 500 pulp loads. 
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Figure 67: Max height rule – outer wall data for 10 – 500 pulp loads. 
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Figure 68: Max wall rule – outer wall data for 10 – 500 pulp loads. 
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Figure 69: Hybrid age rule – compactness data for 10 – 500 pulp loads. 
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Figure 70: Hybrid age rule – compactness data for 100 – 5000 pulp loads. 
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Figure 71: Hybrid height rule – compactness data for 10 – 500 pulp loads. 
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Figure 72: Hybrid height rule – compactness data for 100 – 5000 pulp loads. 
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Figure 73: Hybrid wall rule – compactness data for 10 – 500 pulp loads. 
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Figure 74: Hybrid wall rule – compactness data for 100 – 5000 pulp loads. 
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Figure 75: Max age rule – compactness data for 10 – 500 pulp loads. 
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Figure 76: Max height rule – compactness data for 10 – 500 pulp loads. 

y = 0.3502x1.5148

R² = 0.9984

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

Co
m

pa
ct

ne
ss

Number of Cells

Max Height Compactness: 10 - 500 Pulp Loads



106 
 

 

  

 

Figure 77: Max wall rule – compactness data for 10 – 500 pulp loads. 
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