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ABSTRACT 

 

Comparative Analysis of Survival and Decay of Fecal Indicator Bacteria in Bovine Feces and 

Freshwater Microcosms 

by 

Reem Tariq 

 

Agricultural runoff can carry FIB that can pollute surface waters through the soil matrix. This 

study was designed to inspect the impact of temperature and matrix on the survival of FIB. The 

FIB were routinely enumerated over an 18-day period from fecal samples and freshwater 

microcosms maintained at 4oC, 22oC, and 35oC. It was found that the FIB studied underwent a 

primary growth of up to 1-log10 to 3-log10, highlighting the weakness of conventional FIB as 

indicators of pathogen contamination. The concentrations of FIB in the water phase were found 

to be significantly greater than those observed in the fecal phase in all FIB and their associated 

survivals were found to be significantly different too. Similarly, temperature was also found to 

be a significant factor for the survival of FIB. While the differences in the survival were 

significant, there was a slight variation in the patterns regarding the differences.  
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CHAPTER 1 

INTRODUCTION 

 

The regulatory standards used to assess microbial quality of recreational waters require 

the use of fecal indicator organisms [1]. Elevated concentration of fecal indicator organisms 

leads to the impairment of surface waters due to the implied risk of waterborne disease outbreaks 

[2]. According to a survey conducted by the Center for Disease Control and Prevention, cause of 

waterborne disease outbreaks that occurred from 1986-1998, where the causative agent could be 

identified, were predominantly from agricultural sources that was linked to animal farming [3]. 

In the United States, about 25% of the impaired surface waters listed on the 303d list are 

impaired due to pathogen contamination [2].  

Remediation of impaired waters depends on microbial inactivation rates which are 

influenced by environmental parameters such as temperature, exposure to solar radiation, 

salinity, predation, etc. Studies have predominantly focused on the decay and persistence of fecal 

indicator organisms in water and soil matrices; however, little data exists on the decay and 

persistence of indicator organisms in feces. Due to the distinct physicochemical environment, the 

survival of fecal indicators is suggested to be longer in feces compared to the survival of 

indicators in water or soil [4]. Very few studies have investigated the differential survival of 

fecal indicator bacteria in different matrices. Such measures will aid in the improvement of daily 

load programs to reduce pollutant loading to the nation’s water bodies in an attempt to remediate 

impaired waters [5].  
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Public Health and Regulatory Significance 

Agriculture is one of the leading sources of fecal contamination in water [6]. Notably, the waste 

from livestock feedlots can contribute substantially to the fecal pollution in the surrounding 

surface waters [4]. Runoff from agricultural waste can carry fecally-derived organisms that can 

potentially pollute surface waters and groundwater through the soil matrix [4]. Besides, the 

application of fecal waste on land in the form of manure or sludge can adversely affect the 

microbial populations in soil by altering the nutrient and decomposition cycle [7]. From a public 

health perspective, there is a substantial concern about disease transmission. Animals are known 

to be reservoirs for many enteric pathogens that are released into the environment in animal feces 

[8]. The presence of pathogenic bacteria of fecal origin in food and drinking water poses a public 

health hazard [9]. Ingestion of food or water tainted with fecal matter can cause a wide array of 

diseases such as gastroenteritis, hemorrhagic colitis, salmonellosis, shigellosis, etc. [10, 11]. 

Based on the intensity and the frequency of the exposure, these infections can range from mild to 

fatal [12]. Globally, diarrhea is considered the leading cause of enteric infections associated with 

poor sanitation and unclean water supply [13, 14].  

On the other hand, there has been a steady increase in the incidence of foodborne 

illnesses associated with fresh produce in the past three decades [15]. Contamination occurs 

when the produce comes in contact with fecal deposits from farm animals, contaminated manure 

or with animal reservoirs [15]. The increase in contaminated produce places an enormous public 

health burden and an economic burden concerning morbidity and mortality. This study also has 

applications in the improvement of zoonotic risk assessments, since the emphasis is placed on 

animal waste. 
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Although pathogen contamination in surface waters results from the fecal waste of many 

domestic and wild animals, fecal waste from cows requires closer examination. According to the 

USDA, the United States is the largest producer of beef and cow milk [16]. Likewise, the 2015 

World Food Statistics report compiled by the United Nations Food and Agriculture Organization 

(FAO) claimed that the United States ranked eighth with regards to the number of cattle per 

capita [17]. Given this, fecal pollution from cows ought to be scrutinized further based on its 

extensive impact.  

The United States Environmental Protection Agency (US EPA) recommends the use of 

fecal indicator bacteria to determine the extent of fecal pollution in water [18]. Surface waters 

that do not meet the required water quality standards are deemed impaired as per the federal 

Clean Water Act [5]. According to the US EPA, the Clean Water Act was enacted to maintain 

and restore the chemical, physical and biological integrity of American surface waters that are 

impaired or in danger of impairment. Under section 303d of the Clean Water Act, each state is 

required to monitor and assess the water quality of the surface waters to identify waters that are 

not in compliance with water quality standards. In case of impairment, the states are required to 

establish priorities and implement improvements. This is done through a the following steps – 1) 

defining water quality goals to be adopted; 2) monitoring and assessing state-wide surface 

waters; 3) compiling a list of impaired waters through data consolidation and water-quality 

assessment; 4) developing effective Total Maximum Daily Load (TMDL) plans; 5) controlling 

point sources and managing the nonpoint sources of pollution to help achieve the water quality 

goals [19].  

Remediation of impaired surface waters is accomplished using watershed implementation 

plans informed by the Total Maximum Daily Load (TMDL) and developed based on the fate and 
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transport of fecal bacteria. When establishing a criterion for water quality, it is important to be 

able to accurately and precisely determine the concentrations of bacteria within areas of fecal 

deposits or manure-treated soils that are proximal to impaired sources of water [20]. Based on 

the concentrations of bacteria within the fecal deposits or manure-amended soil, predictions 

about in-stream concentrations can be made [20]. Similarly, regulations regarding better 

management of animal fecal pollution will be made more efficient by studying the growth and 

survival of FIB in fecal matter used for land application [20]. According to Muirhead et al., there 

is a significant linear relationship between the concentration of E. coli in bovine feces and the 

concentration of E. coli in the run-off [21].  

In addition to studying the fate and transport properties of fecally-derived bacteria, 

attempts ought to be made to comprehensively identify all sources of the fecal pollution. 

Identifying sources of pollution is an integral part of the Total Maximum Daily Load Plan - the 

primary goal of which is to determine the required pollutant reductions for the restoration of 

impaired surface waters [5]. To attain necessary water quality standards, an effective TMDL 

needs to account for all pollution sources, including point and non-point sources [22]. A point 

source is a singular, identifiable source of pollution that is actively engaged in discharging 

pollutants as part of its operations, such as a municipal sewage plant. Non-point sources are more 

diffuse and come from a variety of sources such as land runoff, farm fields, forests, etc. [22, 23].   

Most TMDLs use a non-point source pollution model when determining the maximum 

allowable loading rate and loading quantity from identified sources [5]. A variety of different 

Microbial Source Tracking (MST) methods can be used within a TMDL framework to determine 

the major sources of pollution [23]. While the methods applied in this study do not aid with 
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source tracking, studying differential survival and inactivation rates of indicator organisms are 

integral to the establishment of an effective TMDL.  

Data from distinct studies suggest that persistence of indicator organisms, in different 

matrices such as water or feces, is not consistent across the matrices [6, 24, 25, 26]. One 

objective of this study was to determine if the distribution and proportionality of fecal indicator 

bacteria (E. coli and enterococcus) are consistent in bovine feces and freshwater microcosms. 

Since the persistence of fecal indicator bacteria can also be affected by physical and chemical 

factors, a microcosm was constructed that simulates, to some extent, the physicochemical 

properties typically found in the environment.     

 

Aim and Scope 

The objective of this study was to – 1) determine the influence of temperature on the 

survival and differential decay of the following fecal indicators – fecal coliforms, E. coli and 

enterococci – in cow feces; and 2) compare the decay kinetics for fecal indicators in feces and 

freshwater microcosm. In addition to fecal coliforms, E. coli, and enterococci, this study also 

investigates the change in total bacterial loads over an 18-day period. To our knowledge, no 

study has addressed the differential survival of the FIB in the fecal matrix and compared it to 

survival in freshwater microcosms. This study aimed to address this knowledge gap, under 

varying temperature conditions 
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Research Questions and Hypotheses 

In this study, the following questions were being examined –  

1) How does temperature influence the survival and decay of fecal indicator bacteria (fecal 

coliforms, E. coli, enterococci, and total bacteria) in bovine feces? 

2) How do the decay kinetics of fecal indicators compare in feces and freshwater 

microcosms? 

We hypothesized that the concentrations of total bacteria would be higher than that of 

fecal coliforms, E. coli and enterococci. No bacterial growth was expected to occur in the 

manure samples. In addition, it was hypothesized that the samples maintained at warmer 

temperatures would exhibit a rapid die-off, in comparison to the samples maintained at lower 

temperatures such as 4oC and 20oC. Such a scenario was anticipated since the survival of fecal 

indicator bacteria is favored by cold temperatures [3]. With regards to the matrix type, survival 

rates in water phase were expected similar to the persistence in the fecal phase.   
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CHAPTER 2 

LITERATURE REVIEW 

 

Bacteriological Pollution Due To Agriculture 

According to the Center for Disease Control and Prevention, livestock feeding operations 

are a primary source of surface and groundwater pollution [4, 27]. A report published by the US 

EPA estimated that fecal wastes from agricultural feedlots were responsible for the impairment 

of a staggering 173,629 river miles, 3,183,159 lake acres, and 2,971 estuary square miles [28]. 

Aside from feedlots, bacteriological pollution can also result from land application operations, 

pastures, manure stockpiles and treatment and storage lagoons. However, the most probable 

source of fecal pollution for the majority of the farms would be slurries and farmyard manure 

[29]. With the advent of intensive farming of animals, it has been estimated that cattle in the US 

produce about 1.2 billion tons of manure annually [30]. In traditional farming methods, 

composting destroyed the majority of the pathogens due to the high temperature and aerobic 

nature of the process. With agricultural intensification, waste is collected and stored in the form 

of semi-liquid slurries. The slurries form hot, anaerobic systems that fail to destroy pathogens 

[29]. Hence, these pathogens have the risk of being disseminated into the environment.       

When used in appropriate quantity as a fertilizer, manure can benefit the growth of crops. 

However, fecal wastes can become a hazard because of the release of nitrates and phosphates in 

an aqueous environment [29]. Improper management of fecal waste can have a dire impact on 

the environment. For instance, the runoff water from regions consisting of large quantities of 

fecal deposits will have high concentrations of nitrogen and phosphorus, causing a nutrient 

imbalance in nearby surface waters. This nutrient imbalance can lead to the formation of algal 



  

20 
 

blooms, causing the lakes to undergo eutrophication. Creating an imbalance in the nutrient will 

also exert a negative impact on the biodiversity of the aquatic life.    

 

Fecal Indicator Concept 

Given the extent of the fecal pollution and its associated human health hazards, it is 

important to monitor the surface waters for pathogens routinely. However, the direct testing of 

pathogens is difficult due to the following reasons: 1) pathogens are rare and sporadic; 2) 

pathogens are difficult to culture; and 3) working with pathogens poses a hazard due to their 

virulent and infectious nature to those assessing the water quality [31]. Arguments have been 

made in favor of using molecular techniques (microarrays, PCR, etc.) to assay pathogens, despite 

the concerns with sensitivity, specificity, and quantification [31]. Even in the case of molecular 

techniques, the risk of working with pathogens still exists. The indicator paradigm was 

introduced with the intent of minimizing risk to lab personnel and the associated costs of 

monitoring pathogens directly. 

A fecal indicator is a group of organisms that indicate the presence of fecal contamination 

in surface waters, which implies pathogen presence [32]. Based on the pathogen of interest, 

different classes of indicators can be used, such as bacterial, viral, protozoan, etc. Based on 

adaptability to environmental conditions and environmental resistance, indicator systems differ 

regarding survival and persistence [32].  While the presence of fecally-derived microorganisms 

is an indicator of the poor water quality, it does not serve as a confirmation of the presence of 

fecal pathogens. Specifically, fecal indicators only act as a proxy in water quality assessment 

[33]. 
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  An organism is considered an ideal fecal indicator if it meets the following criteria: 1) it 

is a nonpathogenic organism typically found in the gut of humans and animals and is shed in 

fecal matter; 2) it is present in relatively higher concentration than the pathogen in the fecal 

matter; 3) it does not replicate in the environment; 4) it is easy to culture, isolate and quantify 

from all types of samples; 5) it is more susceptible to disinfection and environmental conditions; 

and 6) the density of the organism must correlate with the pathogenic microbial pollution or the 

potential health risks of the pathogen [34]. 

 

Fecal Indicators – Conventional and Alternative 

Historically, total coliforms, fecal coliforms, E. coli, and enterococci have been used as 

fecal indicator organisms to monitor microbial impairment of aquatic systems [35, 36, 37]. 

Although waters could be impaired due to excessive concentrations of pathogenic bacteria, 

protozoa, and viruses, microbial water quality assessments are moreover based on bacterial 

concentrations of fecal indicators. However, there are many different types of fecal indicator 

organisms. The fecal indicators can broadly be classified as conventional and alternative.  

Conventional indicators are bacterial – namely, total coliforms, fecal coliforms, E. coli, 

and enterococci [38]. These microorganisms are typically found in the gut microflora of higher 

mammals and birds; hence, they are associated with enteric pathogens. However, the 

predominant criteria for water quality assessment based on E. coli and enterococci are 

problematic and incomprehensive. This is due to the genetic diversity between isolates from the 

same host animal, ability to replicate outside of the host animal and variation between spatial and 

temporal stability [39]. Other limitations suggested by Savichtcheva et al. include the following: 

1) their inability to identify the source of pollution; 2) low levels of correlation with the 
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pathogens; and 3) diminished sensitivity to detection methods [35]. Despite the limitations, they 

are widely used due to the following reasons – 1) easy to cultivate; 2) inexpensive quantification 

methods; and 3) low risk to human health [38].   

Conversely, alternative indicators are often used in conjunction with conventional 

indicators, making for a more robust indicator system [34, 36, 39, 40]. Alternative indicators are 

broadly categorized as fecal anaerobes, viruses, and fecal organic compounds, where each 

category has its strengths and limitations [35, 36, 40]. Fecal anaerobes that qualify for the 

indicator criteria include Bifidobacterium, Bacteroides and Clostridium perfringens [35]. 

Bacteriophage that infects Bacteroides fragilis HSP40 and Coliphages (FRNA phage) are 

frequently used as viral indicators of fecal pollution in environmental samples [35, 41, 42]. 

Lastly, coprostanol is a fecal sterol that is used as a chemical indicator of fresh fecal 

contamination, since it has a relatively short half-life (<10 days at 20oC) in aerobic aquatic 

conditions [35].    

 

Molecular Markers as Indicator and Microbial Source Tracking 

Although the use of conventional indicator organisms as a surrogate for pathogens is 

common for performing water quality assessment, these indicators cannot specify the source of 

the fecal pollution [4, 6]. The use of molecular markers as indicators for fecal pathogens has 

been adopted in the recent decades. Molecular markers are defined as host-specific (human, 

ruminant, avian, etc.) oligonucleotides that are adopted from the genetic information of indicator 

organisms, such as Bacteroides, Bifidobacterium, E. coli, enterococci, etc. The popularity of 

molecular markers in contemporary water quality research is due to its ability to identify 

agricultural sources of pollution (point and non-point) that will help develop an effective water 
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quality criteria. Approaches that use the library-based and culture-independent microbial source-

tracking (MST) methods are being adopted at a rapid pace due to MSTs ability to identify the 

source of the fecal pollution [24]. MST is based on the assumption that the population 

distribution of fecal indicator bacteria and MST markers in the matrix is proportional to their 

distribution in the fecal sample [24]. 

 

Fecal Indicator Bacteria 

The use of coliforms as indicators began in Britain in 1901 [32]. The term coliform was 

coined based on Bacillus coli, which was later named Escherichia coli. In 1880, Von Fritsch 

identified Klebsiella pneumoniae and Klebsiella rhinoscleromatis as microorganisms that are 

specifically found in human feces. Since then bacteria have been used as indicators of water 

quality. In 1885, Percy and Grace Frankland pioneered the use of bacteriological examination to 

test the quality of drinking water in London. However, the enumeration of coliform colonies did 

not occur until the early 1900s [32]. Also, the development of MacConkey Broth in 1905 aided 

in the identification of coliform bacteria based on it lactose-fermenting properties. The 

development of the IMViC test (indole, methyl red, Voges-Proskauer, Citrate) in the 1920s also 

helped in the identification and the characterization of the coliforms [32].  

The conventional fecal indicators of contemporary times are fecal coliforms, E. coli and 

enterococci. These organisms are favored over other indicators because they are typically found 

in the gut microflora of higher mammals and birds, which explains their association with enteric 

pathogens.  Also, these organisms are easy to cultivate, inexpensive and safe to handle [5]. Fecal 

coliforms used to be considered the predominant indicator, typically used to assess bacterial 

hazards in surface waters, but E. coli and enterococci assessments have been used more 
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frequently in the past decades since they are known to have a higher association with food-borne 

illness outbreaks [58]. Figure 1 shows a classification of the fecal indicators. 

 

Total Coliform 

The total coliforms (TC) are a group of aerobic and facultative anaerobic, gram-negative, 

non-spore-forming rod-shaped bacteria that produce gas upon lactose fermentation in the 

appropriate media at 35oC after 48 hours [44]. The total coliform group includes many types of 

bacterial genera such as Citrobacter, Enterobacter, and Klebsiella [45]. The coliform bacteria 

were used to assess water quality for most of the 20th century. Membrane filtration (MF) and 

most probable number (MPN) were the most commonly used identification and quantification 

methods.    

 Despite their extensive use in the recent past, the use of total coliforms as fecal indicators 

has many limitations. All members of the coliform group have been known to regrow in the 

natural aquatic environment. The decay rate of TC depends on the ambient temperature and the 

amount of organic matter in the water. Bacterial concentrations of TC tend to be high when the 

temperatures and organic matter content are elevated [44, 46]. In the event of high regrowth rates 

due to favorable abiotic factors, there is an important concern regarding the false indication of 

fecal contamination [44].  

 

Fecal Coliform 

 Fecal coliforms (FC) are a subset of the total coliform group. The fecal coliforms include 

Escherichia and Klebsiella genera. They are different from total coliforms due to their ability to 

ferment lactose at 44.5oC within 24 hours [44]. As with total coliforms, fecal coliforms are
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Figure 1. Classification of conventional and unconventional fecal indicators. (Adapted from Ashbolt et al.) [32]  
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limited in their indicative capacity for fecal pathogens. Fecal coliforms are known to frequently 

occur in unpolluted tropical and temperate waters/soils, which may lead to erroneous 

assumptions regarding contamination [47, 48].      

 

Escherichia coli 

 Escherichia coli is a gram-negative bacillus that belongs to the Enterobacteriaceae 

family. E. coli is a type of a fecal coliform, which is distinguishable from other fecal coliforms 

based on the absence of urease and the presence of β-glucuronidase enzymes. E. coli occurs in 

several different strains that are broadly classified into 6 different subgroups; each strain 

occupies a certain ecological niche and can be broadly categorized as commensal or pathogenic 

[49]. The pathogenic strains are further classified as verotoxigenic, enterohemorrhagic, 

enteroinvasive and/or uropathogenic, which are all capable of causing harm to humans. It is 

noteworthy that the pathogenic strains of E. coli are responsible for causing deadly foodborne 

illness outbreaks based on their high pathogenicity and tolerance to low pH environment. The 

commensal form of E. coli is a harmless bacterium that is an important member of the 

human/ruminant gut microflora, which is known to assist in the breakdown of specific carbon 

compounds such as cellulose, pectin, hemicellulose etc. [50]  

Due to its presence in the gut microflora, Theobald Smith first proposed the use of E. coli 

as a surrogate for pathogens in drinking water in the 1890s [36]. The earliest experiments 

developed to test for the presence of E. coli exploited its thermotolerant properties. E. coli is 

deemed a thermotolerant coliform based on its ability to ferment lactose at 44-45oC [45]. Aside 

from its ability to thrive at higher temperatures, it is a non-spore forming facultative anaerobe 

that is able to ferment lactose along with the typical gas and acid production within 48-hours 



  

27 
 

[29]. Given its presence in the gut microflora of humans and ruminants, E. coli was considered a 

good indicator of fecal pollution due to the ease with which it can be cultured [36]. However, 

with the advent of sequencing technology, it is now known that E. coli makes up only 1% of the 

total intestinal bacterial population in cattle [36]. Also, some studies have shown that E. coli can 

replicate in the environment [20, 26]. Despite its weaknesses as an indicator, it is considered 

relevant in water quality studies due to its possible application as a surrogate for its well-known 

pathogenic strain, E. coli O157: H7 [55]. Although the E. coli species consists of biovars that are 

mostly harmless commensals, a few strains of E. coli have been involved in deadly outbreaks 

and are classified as the causative agents of diarrhea diseases, urinary infections and meningitis 

[25, 29, 52]. 

 

Specific Characteristics Affecting Fate and Transport. The fate and transport of E. coli 

are influenced by physiological properties that dictate aspects of bacterial attachment and 

inactivation. Bacterial attachment is a product of cell surface structures such as 

lipopolysaccharides (LPS), flagella, and fimbriae [45]. The composition of LPS, including the 

hydrophobic lipid A constituent, core oligosaccharide and O antigen, governs the bacterial 

attachment dynamics, uptake of metal ions and precipitation and dissolution reactions induced by 

microbial activity [45]. On the other hand, bacterial inactivation is caused by a multitude of 

environmental factors such as temperature, sunlight, predation etc. which will be further 

elaborated in the following sections.   
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Enterococcus 

           Enterococci are gram-positive spherical bacteria that commonly occur in pairs or a chain-

like arrangement [37, 54]. These bacteria are catalase-negative, non-spore forming species that 

are categorized as obligate fermentative chemoorganotrophs [37]. While a few enterococcus 

species act as opportunistic pathogens (E. faecalis or E. faecium), most enterococci are 

commensal bacteria that are a constituent of the gut microflora in warm-blooded animals [37, 

55]. Potential health hazards that are commonly associated with enterococcus include 

nosocomial infections, neonatal infections, bacteremia and central nervous system (CNS) 

infections [37]. Although pathogenic enterococci exhibit low virulence, the potential health 

hazards and the economic burden associated with it can be mitigated by using non-virulent 

strains as a surrogate for the pathogenic strains.  

Currently, enterococci enumeration is a standard method to test for microbial pollution in 

marine waters [56]. A 1946 study conducted by Ostrolenk et al. was the first to consider 

enterococci as a potential indicator for fecal contamination [55]. Enterococcus was considered an 

ideal indicator based on its non-pathogenic, easy-to-culture characteristics and positive density 

correlation with high pathogen contamination [37]. However, there are some weaknesses that 

challenge its indicator value. Enterococci do not exclusively originate from fecal matter and can 

be found in soils and sediments as part of the endogenous microbial population [37]. Also, 

enterococci can be shed by a variety of host species (wild and domestic); but, the health risks 

associated with enterococci from different host species is highly variable [37]. 

 

Specific Characteristics Affecting Fate and Transport. Surface properties that are typical 

of enterococci, such as net charge and hydrophobicity, greatly influence the fate of the bacteria 
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[57]. Extracellular polymeric substances like peptidoglycans and polysaccharides create a 

negative net charge on the cell surface, thereby favoring bacterial attachment to a substance that 

has a positive charge [57]. Enterococci often attach to sediment and vegetation resulting in 

temporary sequestering [37]. Upon disturbance, however, these organisms can reenter the water 

column [37].   

 

Generalized Fate and Transport Model for FIB 

An important pathway of entry of fecal pollution into surface waters occurs when surface 

waters are in close proximity to pastures; the contaminated surface waters serve as a habitat for 

the fecally-derived microorganisms [33]. Watershed-modeling often includes fate and transport 

processes that begin with the fecal deposits on land in the form of defecation or land application 

[33, 58]. These fecal deposits introduce the fecally-derived microorganisms to the soil surface, 

which are then mobilized through rainfall or irrigation. The fecally-derived microorganisms are 

then carried through the soil matrix as particle-associated or soil-solution fractions [33]. 

Throughout this process, bacterial concentrations within the fecal deposits are changing due to 

growth or die-off resulting from abiotic and biotic factors. The remaining bacteria within the 

deposits partition into runoff pathways or an infiltration pathway. The run-off directly leads to 

the proximal water-source, whereas the infiltration transports the fecally-derived microorganism 

to the groundwater and/or artificial drainage. Fecally-derived microorganisms may get 

transported to the surface water from the groundwater as they get released due to resuspension 

caused by high flow. Figure 2 shows a graphic representation of the fate and transport pathway 

of fecally-derived microorganisms from fecal deposits to the water source [33].  
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Figure 2. Fate and transport pathway of fecally-derived microorganisms from fecal deposits to the 

water source [33]. Printed with permission from Elsevier Science.  
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Many processes can limit bacterial movement within the soil matrix. Of all process, 

physical filtration is considered the most dominant process that limits bacterial mobility through 

the soil matrix into the water systems [25]. Based on the size of a typical fecal indicator bacteria 

(0.2 to 5 µm), many of the microbes are subject to straining, which ultimately impacts the overall 

bacterial load in the water systems [44]. In addition to filtration, adsorption can mitigate bacterial 

movement. In a typical porous media, bacteria transport is normally calculated using low water 

content and high clay content, are much more likely to filter out fecally-derived microorganisms 

[59]. Conversely, high porosity soils with high water content can filter out the advection-

dispersion-sorption equation [45]. According to Reddy et al., soils with low porosity, bacteria, 

since the bacteria do not occur as free cells in the liquid phase; instead, they adhere to the clay 

particles via adsorption and may be filtered out in the process [25].   

The study of fate and transport characteristics of fecally-derived microorganisms are 

integral to developing effective criteria for water quality because it improves the accuracy and 

precision of estimation of in-stream bacterial concentration for modeling purposes. Estimations 

of in-stream bacterial concentrations can be based on information from the following – 

parameters of bacterial survival in fecal/soil matrix, the rate of release from fecal deposits or 

sediment/soil, parameters of bacterial survival in aquatic systems etc. 

In sum, the fecal bacteria fate and transport are dependent upon water and sediment 

transport processes. Models that apply current hydrologic and erosion approaches are 

increasingly used in watershed modeling studies, because of the models’ accuracy. For instance, 

Hydrological Simulation Program-FORTRAN and Soil and Water Assessment Tool are the most 

commonly used watershed models in the U.S. that include the aforementioned approaches [43].    
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Factors Influencing Survival of FIB 

 There are several factors that affect the survival of fecal indicator bacteria in different 

matrices [25]. These factors can broadly be classified as abiotic and biotic factors [56]. Also, it is 

noteworthy that while all the following factors affect the survival of fecal indicator bacteria, the 

degree to which they impact the die-off depends on the geochemical properties of the residential 

matrix [60]. Some factors exert a greater influence on microbial persistence than others, based on 

lack of uniform exposure to the factor impacting the die-off. Also, the influence of the factors 

affecting survival tends to differ depending on spatial and temporal variability [60]. Although the 

role of each factor can be tested in a microcosm or mesocosm in a controlled laboratory setting, 

multiple factors simultaneously impact the survival of fecally-derived microorganism in the 

natural environment [24]. The following discussion further expounds on the abiotic and biotic 

factors and their respective influences on the survival and decay of fecal indicator bacteria.     

 

Abiotic Factors 

 Abiotic factors are those that impact the survival of fecally-derived microbes based on 

physicochemical properties of the environment. These include factors like temperature, UV light, 

the degree of acidity or alkalinity (pH), salinity, the presence of oxygen, moisture content, 

suspended solids, nutrient availability and matrix composition etc. [58, 60, 61]. The atmospheric 

conditions dictate the solar radiation (UV light), temperature and moisture (precipitation), 

whereas the physicochemical properties of the environment affect the pH, nutrient availability, 

organic matter content and elemental composition. In the natural environment, a combination of 

abiotic factors can largely influence the survival and persistence of fecal indicator bacteria. 
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Furthermore, many of these factors, such as suboptimal temperatures, prolonged exposure to 

solar radiation, and limitation of nutrients can lead to loss of culturability [47].  

 

Temperature. Temperature is considered one of the most critical and well-studied of the 

abiotic factors that impact survival of fecal indicator bacteria [49]. However, different research 

groups have adopted a variety of unique conditions to study the effect of temperature on the 

decay rate of FIB, which renders the data difficult to compare. For instance, researchers have 

chosen to study the survival of FIB in different residential matrices like sediment, water etc. 

Despite the heterogeneous conditions, a trend collectively emerges from the research data across 

the board, in which temperature is observed to share a decreasing exponential relationship with 

the survival rate of bacteria [62]. Also, research data suggests that survival of FIB tends to higher 

in stable and constant temperature scenarios compared to fluctuating temperature, with survival 

being lower when temperate fluctuation was larger (greater than 7oC) than smaller fluctuations 

(less than 4oC) [49]. Temperatures below 5oC can trigger fecal indicator bacteria to enter a 

dormant state, where the bacteria are considered viable but not culturable. Alternatively, high 

temperatures of greater than 35oC can rapidly increase the die-off of fecal indicator organisms 

due to thermal stress [56]. The link between thermal stress and gene expression patterns offers an 

explanation to why high temperatures and temperature fluctuations can impede bacterial 

survival, particularly in E coli. A recent study showed that many E. coli genes that are 

thermoregulated at 20oC and 35oC are controlled by the same histone-like nucleoid structuring 

protein; hence, differential gene regulation in response to temperature fluctuations occurs in 

close proximity to genes responsible for regulation that occurs at a single temperature [49]. 
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However, the current understanding of the relationship between temperature and heat and cold 

shock proteins is still limited.   

 A study carried out by Howell et al. focused on the survival of fecal coliforms and fecal 

streptococci at three temperatures (4oC, 25oC, and 35oC) in bovine feces-amended sediments of 

varying particle size [63]. The experiments were carried out under controlled laboratory 

conditions using physiological saline to decrease cell death due to osmotic shock. The results 

revealed that temperature significantly affected the mortality rates of fecal coliforms and fecal 

streptococci. In the same vein, Guber et al. studied the effect of temperature on the survival of E. 

coli in white-tailed deer feces [26]. A series of deer pellets were collected and incubated at 4oC, 

25oC, and 35oC respectively. Survival of E. coli was determined on various days over a 32-day 

period using membrane filtration technique, followed by incubation on mTEC media. The results 

showed that the bacteria initially underwent a short growth phase, followed by a relatively long 

die-off phase. While the growth rates were found to be different for each temperature, the die-off 

rates were observed to be quite similar at 4oC, 20oC, and 35oC. The computed values of the 

inactivation rates of E. coli maintained at 4oC, 20oC, and 35oC were 0.158, 0.175 and 0.194 per 

day respectively. The growth rate lasted much longer for the organisms that were maintained at 

20oC compared to the samples maintained at 4oC and 35oC. In addition to undergoing long-

lasting growth, the fecal indicator bacteria maintained at 20oC exhibited the fastest growth and 

the die-off phase did not commence until the eighth day of the survival study.   

 

Sunlight and Solar Radiation. In addition to temperature, insolation also plays an integral 

and a potent role in the inactivation of fecal indicator bacteria in the natural environment [64, 65, 

66]. When subjected to sunlight, the bacterial populations are affected based on the exposure to 
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UV radiation from the sun. Inactivation by UV is primarily caused by genetic damage, due to the 

formation of pyridine dimers and other nucleic acid lesions as byproducts of photoreactions [65]. 

These byproducts ultimately obstruct DNA replication and transcription, which in turn inhibits 

cell division. Hence, solar radiation is inversely proportional to the survival of fecal indicator 

bacteria [62]. 

 Many attempts have been made to study the effect of irradiation on the survival of fecal 

indicators. One such study was carried out by Sinton et al., in which the researchers aimed at 

estimating inactivation rates of fecal indicators, fecal coliforms, E. coli, enterococci, and 

coliphages, due to exposure to sunlight [64]. Ten outdoor experiments were conducted in 

multiple 300-litre chambers, containing effluents from waste stabilization pond mixed with fresh 

or saline waters that were incubated at 14oC. The inactivation rates for the fecal indicators were 

found to be higher in the presence of sunlight compared to inactivation rates estimated for 

containers placed in the absence of sunlight (KS > KD) [64]. Furthermore, the decay was found to 

be the fastest in enterococci, followed by fecal coliform, E. coli, and the coliphages respectively. 

Seasonal differences were also considered, and it was found that enterococci were inactivated 

much faster in summer than the winter [64]. Other studies that focused on marine and freshwater 

environments determined that survival tends to be lower in marine waters compared to 

freshwaters when exposed to solar radiation [66].     

 A study carried out by Korajkic focused on the survival of fecal indicator bacteria (E. coli 

and enterococci) in bovine manure and sewage fecal source exposed to insolation [66]. 

Submersible mesocosms were set up and deployed for 7-days in a freshwater site and marine 

water site. The results revealed that sunlight played a significant role in lowering the survival of 

enterococci from cattle waste [66].   
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pH. The pH, which is the measure of acidity or basicity of a solution, can impact the survival and 

persistence of bacteria. Although there are some bacteria that thrive in highly acidic conditions, 

most bacteria tend to grow best in the pH range of 6.0 – 7.5. The same is true for fecal indicators. 

According to a study conducted by Šolić et al., the optimum pH for fecal coliforms ranges from 

6 to 7, with a rapid decline in survival for pH conditions not within the given range [62]. The 

time taken for 90% reduction in fecal coliform (T90) was found to be 40% less under acidic 

conditions compared to basic conditions [62]. 

 Pearson et al. studied the effect of pH on the survival of fecal coliforms in waste 

stabilization ponds in Portugal [67]. The physicochemical properties of the pond were monitored 

and fecal coliforms were enumerated using the membrane filtration method. Inactivation rate 

increased above pH of 8.5, the inactivation rate was greater in nutrient-poor conditions. The 

largest die-off was observed when the pH was in the range of 8.5 to 9.0 [67]. The bacterial 

populations were observed to undergo bacterial regrowth when the pH was adjusted and brought 

closer to 7, which is considered more favorable. A similar die-off pattern was observed in 

nutrient-rich conditions, followed by the bacterial regrowth that was seen upon the adjustment of 

pH to more favorable conditions [67].   

 

Oxygen. While the effect of most abiotic factors on the survival of fecal indicator 

bacteria are well studied, the same cannot be said about the effect of dissolved oxygen. With the 

rise in concentrations of organic carbon in a water source, anaerobic or microaerophilic 

conditions may develop as a consequence. These conditions, in turn, impact the survival of the 

bacterial load within those waters.  
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Since fecal indicator bacteria originate from a source where they are adapted to low 

oxygen concentrations (i.e., the lower intestine of warm-blooded animals and birds), Roslev et al. 

hypothesized that the high concentrations of dissolved oxygen will adversely impact the survival 

of fecal indicators in nondisinfected drinking water [68]. To study the effect, aerobic and 

anaerobic drinking water microcosms were constructed, which were inoculated with certain 

strains of E. coli or raw sewage. Survival of E. coli was measured using membrane filtration and 

in situ hybridization with 16S rRNA-targeted fluorescent oligonucleotide probes. Anaerobic 

conditions increased survival of both inoculated and indigenous sewage E. coli [68]. Under 

aerobic conditions, E. coli underwent a biphasic decrease in survival, where the initial first-order 

decay rate was found to be -0.11 day-1. The initial phase was followed by a faster decay rate of -

0.35 day-1 [68]. Also, enterococci were enumerated from the sewage samples using Slanetz-

Bartley agar followed by transfer to bile-aesculin-azide agar. Similar to E. coli, aerobic 

conditions also decreased survival of enterococci.    

 Pearson et al. also reported a similar impact of dissolved oxygen on the survival of fecal 

coliforms in waste stabilization ponds [67]. It was found that fecal coliform concentrations were 

much higher at lower depths in the ponds, where the oxygen concertation was depleted. Overall, 

these results indicate a negative relationship between survival of fecal indicators and dissolved 

oxygen [67, 68]. 

 

Salinity. High salinity in the matrix is known to lower the survival of the fecal indicator 

bacteria [64, 69, 70]. Bordalo et al. conducted a study to investigate the survival of fecal coliform 

and enterococci in a tropical estuary in Eastern Thailand under varying salinities and sunlight 

conditions [69]. Three salinity conditions were set up in water microcosms spiked with raw 
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urban sewage – low salinity, progressive mixing with brackish water and fast mixing with high 

salinity. Enterococci had shown a higher resistance to salinity compared to fecal coliforms. 

Survival of FIB was found to be lowest in the fast mixing, high salinity environment, followed 

by progressive mixing with moderate salinity. The highest survival rates were observed for the 

low salinity environment.   

 Similarly, Sinton et al. performed an experiment that studied the impact of salinity, in 

conjunction with sunlight inactivation, on the survival of the fecal indicator bacteria in waste 

stabilization ponds [64]. It was observed that sunlight inactivation was rapid in high salinity 

conditions. The sunlight inactivation coefficients for fecal coliforms were 0.622 in seawater, 

0.452 in 50:50 freshwater and seawater mixture, and 0.281 in freshwater conditions. Similar 

coefficients were observed for E. coli. As for enterococci, the sunlight inactivation coefficients 

were 0.197 in seawater, 0.155 in 50:50 freshwater and seawater mixture, and 0.133 in freshwater 

conditions. 

While high salinity in conjunction with sunlight expedites inactivation in an aquatic 

environment, bacterial survival increases in the sediments despite unfavorable conditions like 

high salinity and the presence of UV radiation [70]. This is because bacteria get adsorbed to 

sediment particles, which in turn protects the microbes from decay and inactivation. Also, 

adsorbed bacteria are able to feed on nutrients associated with the sediment particles, which 

allows for bacterial growth [70].    

 

Nutrient Availability and Moisture. Since bacteria depend on organic matter for nutrition, 

nutrient availability within the matrix promotes the survival of fecal indicators and may aid in 

the regrowth of enteric bacteria. The impact of nutrient availability on the survival of fecal 
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indicators differs based on the type of matrix in which the fecal indicators are thriving. Access to 

nutrients is considered an integral abiotic factor for survival of microbes in sediment/soil. Once 

enteric bacteria are removed from their primary habitat through fecal deposits, their survival 

depends on the nutrient supply in the secondary habitat, which can range from eutrotrophic to 

oligotrophic levels [71]. If the secondary habitat has a high concentration of organic material, the 

decay rate for fecal indicators is low. This is because access to a high concentration of organic 

matter leads to retention of nutrients, thereby promoting the growth of bacteria. However, in the 

aquatic environment, available organic carbon becomes less accessible since the water dilutes the 

mixture. Additionally, the survival rates of fecal indicator bacteria in the soil surface tends to be 

higher than the survival rates in the subsurface levels due to the lack of nitrogen in the lower 

levels [25].  

 The level of moisture is an important survival factor for fecally derived microorganisms 

present in the soil and fecal matrix [71]. In addition to intrinsic soil properties, soil moisture 

content depends on characteristics such as vegetation cover, land use, soil type, slope gradient 

etc. [72]. For solid phase matrix, elevated moisture content results in enhanced survival. Survival 

of conventional indicators have been found to be elevated after high rainfall event or in flooded 

conditions [25]. This may be due to increased release and mobilization of fecal indicator bacteria 

in high moisture conditions. The relationship between increased flooding due to rainfall and 

increased incidence of diarrheal diseases have been observed in several epidemiological studies. 

Based on enhanced dispersion and dissemination of fecal indicators, it is fitting that hydrology 

plays an important role in the survival of fecal indicators [72].    
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Biotic Factors 

Fecally-derived microorganisms and other autochthonous organisms influence the 

survival of fecal indicator bacteria in the secondary habitat. Their influence collectively 

manifests in the form of biotic factors. Biotic factors include predation and competition [49, 61]. 

In the natural environment, the population of fecal indicator bacteria will interact with other 

fecally-derived microorganisms, which can result in all microbes competing for the same 

resources. Additionally, predation from protozoan species can cause a sharp decline in the 

bacterial concentrations within a sample [49]. These interactions can be loose or intricate and the 

cumulative effect of these interactions negatively impacts fecal indicator bacteria. Finally, as 

seen in abiotic factors, a combination of biotic factors can lead to loss of culturability for the 

fecal indicator bacteria.  

 

Predation. Predation is one of the chief biotic factors that affect the survival of fecal 

indicator bacteria in aquatic systems [57, 58]. Studies that focused on the impact of 

autochthonous microbiota on the survival of enteric bacteria in natural waters suggest that the 

autochthonous organisms cause a sharp decline in the viable FIB populations [57]. These 

autochthonous organisms include protozoa, parasitic bacteria (such as Bdellovibrio sp.) and 

bacteriophages. However, protozoan predation has been shown to negatively affect FIB survival 

in natural waters more than other autochthonous organisms [58]. A study conducted by Enzinger 

and Cooper studied the decay of E. coli (introduced using fecal samples) in estuarine waters that 

contained protozoa and lytic bacteria [73]. The results revealed that the selective filtration of 

protozoa from the estuarine water caused a negligible decline in FIB populations. Whereas, the 

addition of excess protozoa into estuarine water caused a rapid decline in FIB survival. This 
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implies that the protozoan grazing of FIB impacts enteric bacterial populations far more than 

other predatory organisms included in the autochthonous microbiota. In the same vein, Davies et 

al. studied the impact of cycloheximide on the survival of fecal coliform, fecal streptococci and 

Clostridium perfringens in marine and freshwater sediments [70]. Cycloheximide is a chemical 

agent that inhibits the growth of flagellate and ciliate protozoa. In this study, the addition of 

cycloheximide inhibited the growth of predatory protozoa, which ultimately led to a surge in the 

survival of fecal coliform and streptococci. In the absence of cycloheximide, the protozoan 

grazing led to a net FIB die-off [70].     

Competition. The presence of heterotrophic bacteria among the autochthonous microbiota 

causes the FIB to compete for nutrients, which in turn negatively impacts the survival of FIB. In 

addition to competing for limited resources, the autochthonous bacteria may also produce 

antagonistic compounds, causing cellular injury to the fecally-derived microorganisms leading to 

an enhanced FIB die-off rate. However, research shows that the impact of competition on the 

survival of fecal indicators varies based the type of FIB. For instance, Wanjugi and Harwood 

conducted a study in which the influence of competition from indigenous on FIB survival was 

measured using kanamycin treatment [74]. The addition of kanamycin was meant to reduce the 

numbers of indigenous bacteria, thereby limiting competition. The results of this experiment 

showed that the survival of E. coli improved greatly upon the addition of kanamycin, whereas 

the kanamycin did not affect the survival of enterococci sp. [74]. Similarly, a study carried out 

by Korajkic specifically focused on the survival of fecal indicator bacteria (E. coli and 

enterococci) in bovine manure and sewage fecal source in the presence of indigenous microbiota 

population [66]. Submersible mesocosms were set up and deployed for 7-days in a freshwater 

site and marine water site. According to the results, the presence of indigenous microorganisms 
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significantly impacted the survival of E. coli and enterococci. The presence of indigenous 

microbiota caused a total variation of 21.2% (p-value – 0.0048) for enterococci and a total 

variation of 23.4% (p-value – 0.0031) for E. coli [66].   

 

Viability and Dormancy 

Fecal indicator bacteria occur in different physiological states. When under stress due to 

biotic and abiotic factors, the fecally-derived bacteria may enter a viable-but-non-culturable 

(VBNC) state [75]. Coined by Rita Colwell and her coworkers in 1985, the term VBNC is 

defined as a dormant state in which a bacterium is metabolically active but unable to multiply on 

a medium that normally supports its growth due to specific physicochemical and biological 

environmental parameters [76, 77]. These parameters can include low temperature, lack of 

nutrients, unfavorable pH etc. [77]. 

Bacterial cells are considered viable if they are metabolically active [77]. According to 

Kell et al., the concept of culturability can be operationally defined as the state of being 

immediately culturable using conventional or unconventional culture-based techniques [78]. 

Non-culturable cells are capable of shrinking significantly in size to the extent that they escape 

detection using traditional methods such as collection by filtration followed by microscopy [76].   

 

Survival in Fecal Matrix 

To construct a material budget for pathogen contamination in aquatic systems, it is 

important to estimate the potential impact of animal fecal deposits on water quality of proximal 

surface waters [79]. The fecal deposits on pastures are subject to a variety of factors that impacts 

the environmental survival of bacteria. Based on environmental factors (such as rainfall, 
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exposure to sunlight, and high temperatures), the fecal deposits may disintegrate, blend with the 

soil systems, and eventually get washed into nearby surface waters. However, the survival of 

fecal indicator bacteria is governed by a specific set of factors before they are transported into 

aquatic systems. Survival of FIB in fecal or soil systems is chiefly affected by moisture content, 

temperature, organic matter, and antagonism. According to Gerba et al., the survival of FIB and 

pathogens in soils is less than 2-3 months [80]. Few studies have investigated the survival of FIB 

in the fecal matrix. Once such study performed by Oladeinde et al. investigated the survival of 

FIB and Bacteroides-associated MST markers in cow pats that were subject to various sunlight 

and temperature conditions [6]. The decay rate of E. coli was found to be -0.176 day-1 in the 

shaded treatment.          

 

Decay Models 

Modeling the survival of fecal indicator bacteria is integral to the development of 

deterministic models that calculate the total maximum input of fecal deposits into the 

environmental systems without eroding its ecological integrity. Inactivation or decay of fecal 

indicator bacteria is defined as reduction of FIB concentration (N) due to exposure to a 

disinfectant (concentration C) during time t [83]. In the context of viability, inactivation may also 

be deemed as the loss of culturability of FIB [61]. However, under favorable conditions, VBNC 

bacteria may revert back to their culturable status [81]. The variation in decay rates of fecal 

indicator bacteria are dependent on the biotic and abiotic factors. In addition to offering 

quantitative and qualitative information on bacterial mortality, bacterial kinetics can distinguish 

between environmental factors that impede survival and those that promote growth [59]. Factors 
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that modulate rapid inactivation in fecal indicator bacteria include exposure to sunlight, 

fluctuating ambient temperatures, low moisture content, and lack of nutrients, etc. [81].  

 

First Order Kinetic Model 

Although inactivation of fecal indicator bacteria can be described in terms of a second-

order decay kinetics, a first-order rate expression is used more frequently in FIB inactivation 

studies [81, 82, 87]. However, historically, inactivation was assumed to exclusively follow first-

order kinetics as postulated by Chick et al. [83, 84]. Chick’s first order kinetics model postulated 

that bacterial inactivation can be represented as a straight line on a semi-logarithmic graph, and 

is represented as follows: 

𝑑𝑁(𝑡)

𝑑𝑡
=  −𝑘 ∗ 𝑁(𝑡) …………………………………………………………………………….. (1) 

where dN(t) is the change in concentration of FIB over time t and k is the first-order inactivation 

rate [81, 84].  Notably, the application of other parameters that impact inactivation rates renders 

the log-linear assumption weak, since the mechanism of inactivation is far more complex than 

the one proposed by Chick, which essentially mirrors a unimolecular reaction [72, 73]. Watson 

refined Chick’s model by using k as a function where its magnitude is controlled by the factors 

that impede bacterial survival [81]. The Chick-Watson first-order decay equation is written as 

follows:  

ln(
𝑁

𝑁0
) =  −

𝑘𝐶0
𝑛

𝑛𝑘
[1 − exp(−𝑛𝑘 ∗ 𝑡)] ………………………………………………………….. (2) 

where N/N0 is the change in concentration of FIB over time t, k is the first-order inactivation rate, 

C is the concentration of the disinfectant/inactivation parameter and n is a constant of dilution 

[85, 86]. The first order decay model does not account for inactivation resistant subpopulation. In 

an attempt to circumvent this drawback, many researchers have applied a biphasic decay model 
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for a better fit. Hellweger et al. applied biphasic kinetics while investigating the decay of fecal 

bacteria in surface waters that flowed a biphasic pattern of decay. The initial decay was found to 

be much higher than the latter due to change in cell density [88].   
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CHAPTER 3 

MATERIALS AND METHODS 

 

Manure Collection 

Freshly voided cow feces were collected from three farms in East Tennessee. Figure 3 

shows the geographical locations of these farms. The manure samples were collected three times 

during February-March 2017. Of the three farms from which samples were collected, one 

specialized in beef production, and the other two were dairy farms. Each farm housed about 10-

50 cattle. 

 

Figure 3. Locations of the three farms that provided the samples for this study. Yellow – Jones 

Farm (Farm 1); Red – Cows Are Out Farm (Farm 2); purple – Swenson Farm (Farm 3). Image 

taken from Google Maps.  

 

The freshly excreted feces from three farms were collected in large sterile Whirl-Pak 

(Nasco, WI) bags and stored on ice with no exposure to light. The bags were then rapidly 
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transported to the study site. The study was conducted in the Environmental Health Sciences 

Laboratory housed in the Department of Environmental Health at East Tennessee State 

University (ETSU).  

 

Preparation of Manure for Bacteriological Analysis 

After collection, the manure samples were homogenized thoroughly using high-speed 

mechanical blending. While processing the samples, care was taken to reduce the light exposure 

as much as possible. The homogenized samples were then split into two parts: the fecal phase 

and the freshwater microcosms.  

 

Temperature and Matrix Variation 

For the fecal phase, about 150g of homogenized manure sample was split into three 

portions for the temperature variation. Each portion was stored in a container fitted with a lid to 

minimize loss of moisture due to evaporation. Additionally, the containers used for storing fecal 

samples were covered with aluminum foil to minimize exposure to light. For each homogenized 

manure sample, 50g of fecal sample was weighed using a calibrated digital balance (Scout Pro 

Model; Ohaus Corp., Pine Brook, NJ) and stored in three containers that were incubated at 4oC, 

22oC, and 35oC respectively.  

For the water phase, three foil-covered containers, fitted with lids, were used to setup 

microcosms. The water for the microcosm was taken from Sinking Creek (Site 1). Located in 

Johnson City, Sinking Creek is listed as an impaired surface water on the 303d list due to 

pathogen contamination. The collected water sample was then triple-filtered through 47mm   
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Figure 4. Experimental setup of manure collection and processing 
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0.2µm hydrophilic polypropylene membrane filters (Gelman Sciences, Ann Arbor, MI) using a 

filtering apparatus. This was done to filter out the autochthonous microorganisms that might be 

present in the water while maintaining its physicochemical nature. The microorganisms are 

removed from the filtrate to avoid competition for resources within the microcosm. The filtrate 

was then used to setup 100ml microcosms that were inoculated with 1g aliquot of homogenized 

fecal material. Each container was thoroughly mixed for 60s to release the bacteria from the fecal 

material. The three microcosms were stored in incubators set at 4oC, 22oC, and 35oC 

respectively. Figure 4 illustrates the preparation and sample variation used in the experiments. 

 

Sampling and Enumeration of Bacteria for Survival Analysis 

 The samples from each matrix and temperature variant were collected on the following 

days: 0, 2, 4, 6, 8, 10, 14, and 18. Day 0 is the day on which the manure samples were collected. 

For all fecal phase samples, 1g aliquot of fecal material was collected from each temperature 

variant using sterile spatulas and suspended in a sterilized reagent grade water in a 1:10 ratio. To 

aid in releasing the bacteria from the fecal material, the solution was thoroughly vortexed for 90s 

(Vortex-Genie; Scientific Industries, New York, NY). Dilution series of 10-fold (10-1 – 10-6) for 

each suspension were prepared for drop plating.  

For the freshwater microcosms, each container was swirled for 30s before sampling. A 

1ml aliquot of water sample was pipetted from each temperature variant into 9ml of reagent-

grade water.  The solution was thoroughly vortexed for 30s. Serial dilutions of 10-fold (10-1 – 10-

6) for each suspension were prepared for drop plating. Fecal coliforms, E. coli, enterococci and 

total bacteria were enumerated using drop-plate technique as described by Alam et al. [89]. 

Figure 5 shows a schematic representation of the drop-plate setup.



  

50 
 

1) Total bacteria – 10 µl of each suspended sample and its dilutions were plated onto tryptic 

soy agar. After plating each sample, the plates were left undisturbed for 30 min to allow 

for the plated samples to be absorbed into the media. Once the samples were absorbed, 

the plates were inverted and incubated at 35oC for 24 hrs. The white colonies were 

counted using a dissecting microscope.  

 

2) Fecal coliforms – 10 µl of each suspended sample and its dilutions were plated onto m-

fecal coliform (FC) agar. After plating each sample, the plates were left undisturbed for 

30 min to allow for the plated samples to be absorbed into the media. Once the samples 

were absorbed, the plates were inverted and incubated at 44oC for 24 hrs. The blue 

colonies were counted using a dissecting microscope.  

 

3) E. coli – 10 µl of each suspended sample and its dilutions were plated onto eosin 

methylene blue (EMB) agar. After plating each sample, the plates were left undisturbed 

for 30 min to allow for the plated samples to be absorbed into the media. Once the 

samples were absorbed, the plates were inverted and incubated at 35oC for 24 hrs. The 

colonies with dark centers and metallic green sheen were counted using a dissecting 

microscope.  

 

4) Enterococci – 10 µl of each suspended sample and its dilutions were plated onto m-

enterococcusal agar. After plating each sample, the plates were left undisturbed for 30 

min to allow for the plated samples to be absorbed into the media. Once the samples were 



  

51 
 

absorbed, the plates were inverted and incubated at 44oC for 24 hrs. The dark pink 

colonies were counted using a dissecting microscope.  

 

 

Figure 5. Drop-plate setup. Two dilutions from each matrix type of a temperature-variant were 

plated as illustrated.  

 

Quality Assurance and Quality Control 

Field procedures. The information regarding the samples collected were recorded at the 

time of collection. Information that was recorded included the date and time of sampling, sample 

type, number of cattle from which the fecal samples were collected, farming practices from 

which the sample was collected, and sample storage conditions. Also, equipment blanks were 

used to ensure that samples were not contaminated via sampling. 

 

Laboratory procedures. For each of the five media used, a blank sterile sample (sterile 

milli-Q water) was used as the negative control. Additionally, positive controls of Escherichia 

coli (ATCC#25922) was used on EMB agar and m-FC agar. Similarly, a positive control of 

Enterococcus faecium (ATCC#667) was used on m-enterococcusal agar. The results were 

accepted only if the negative controls indicated no colonies. The positive controls were expected 
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to show the presence of organisms that were used in the inoculation. The samples were rejected 

if the positive controls were found to be negative.      

 

Analytical procedures. A qualitative assessment of the data was performed initially to 

observe the trends of decay and persistence of the bacteria. Data resulting from samples not 

meeting the data quality objectives was excluded in the analysis. A confirmation of consistency 

was determined based on the observable patterns displayed by each manure sample. The 

confirmation was based on statistical analysis that are further expounded on in the next section. 

 

Analysis of Data 

The number of colony forming units (CFUs) were determined per gram of wet weight of 

manure for each matrix and temperature variant using Microsoft Excel 2013. The number of 

colony forming units were calculated using the following formula –  

CFU g 𝑤𝑤−1 =  
𝐶𝑜𝑙𝑜𝑛𝑦 𝐶𝑜𝑢𝑛𝑡𝑠

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑃𝑙𝑎𝑡𝑒𝑑
∗ 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟   ………………………………………… (3) 

The colony counts were then log10 transformed to meet the normality assumption. Geometric 

means were calculated for each treatment condition. The survival data for each bacterial group 

based on temperature and matrix variants were plotted against time using SigmaPlot Version 13 

(Systat Software Inc., San Jose, CA). Furthermore, regression analyses were performed to 

determine the inactivation rates for each treatment condition. The time taken for 90% reduction 

in bacterial concentrations (T90) were estimated by taking the reciprocal of the decay rate. All 

regression analyses were performed on SigmaPlot. The effects of temperature, matrix type and 

time were assessed using a three-way analysis of variance (ANOVA), followed by Bonferroni 

post hoc tests. A Bonferroni post hoc test were preferred over other post hoc tests such as Tukey, 
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Scheffe, Newman-Keuls etc. because it preserves the alpha while performing both simple and 

complex contrasts. The statistical analyses were performed on SAS 9.4 (SAS Institute Inc., Cary, 

NC). Statistical significance was set at α = 0.05.   
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CHAPTER 4 

RESULTS 

 

 Survival was evaluated for total bacteria, fecal coliforms, E. coli and enterococci in fecal 

and water phases incubated at 4oC, 22oC, and 35oC respectively. Figure 7 depicts the E. coli, 

enterococci, fecal coliform and total bacterial colonies on EMB, m-enterococcusal, m-FC agar 

and TSA respectively. The survival was measured on days 0, 2, 4, 6, 8, 10, 14, and 18. The first 

factor (matrix type) has 2 levels; hence a = 2. The second factor is the temperature used, which 

has 3 levels; hence b = 3. The third factor is the number of days on which the survival was 

measured, which is eight; hence, c = 8. So, there are abc = 48 possible treatment combinations. 

Each bacterial group had 1296 observations based on 9 samples and three replicate data points. 

The survival plots for each bacterial indicator group are illustrated in the following section, in 

addition to decay rates and results from the ANOVAs.   

 

 

 
Figure 6. E. coli, enterococci, fecal coliform and total bacterial colonies on Eosin Methylene 

Blue (EMB), m-enterococcusal, m-Fecal Coliform agar and Tryptic Soy Agar (TSA) 

respectively.  
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Total Bacteria 

The rate of decline of total bacteria was determined in fecal and water matrices at varying 

temperatures of 4oC, 22oC, and 35oC. The decay rate was measured in terms of a log10 reduction 

over an eighteen-day period. The survival of total bacteria in fecal and water matrices at varying 

temperatures are illustrated in Figure 7 and Figure 8 respectively. As illustrated by the survival 

boxplots, the bacteria underwent an initial growth phase, which was followed by a long die-off 

phase. For the fecal matrix, the growth phase seemed to have lasted from the day that the sample 

was collected up to day 4 – 6. The total bacterial growth for the water matrix apparently peaked 

at day 4. Overall, the concentrations of total bacteria were found to be higher in the water phase, 

compared to the fecal phase. Furthermore, the concentrations of total bacteria were found to be 

higher in samples that were maintained at 22oC, compared to samples maintained at 4oC and 

35oC.  

 
Figure 7. Survival of total bacteria in the fecal phase at 4oC, 22oC, and 35oC.  
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Figure 8. Survival of total bacteria in the water phase at 4oC, 22oC, and 35oC. 

 

 

 Regression equations were determined using the geometric means of the log10 (CFU/ g 

wet weight) of total bacteria observed on days 0, 2, 4, 6, 8, 10, 14, and 18. Table 1 lists the 

regression equations, decay rates and the T90 values for each matrix and temperature 

combination. There are two regression equations listed for each treatment type – overall and 

post-growth. Overall decay signifies the decay observed from day 0 to day 18, whereas post-

growth decay only accounts for the observed die-off that takes place after the initial growth. The 

coefficient of determination was found to be higher for the post-growth regression equations, 

making for a better fit compared to the overall model. Figure 9 and 10 display the post-growth 

decay rates and T90 values for each matrix and temperature combination.  The decay rates were 

higher for the samples maintained in the water phase compared to the fecal phase. Conversely, 

the T90 values were found to be higher for samples maintained in the fecal phase. The highest T90 

value of 12.76 days was observed for fecal samples incubated at 22 oC.    
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Table 1. Regression equations, coefficient of determinations, decay rates and T90 values for total 

bacteria at varying treatment conditions based on temperature and matrix for overall and post-

growth phases. The decay rates and the T90 values are denoted with an identifying letter to 

demarcate significance patterns on the following post-growth die-off rates and T90 values for the 

bar graph 

Treatment/Condition Regression Equation R2 Value  Decay Rate T90 (Days) 

Matrix – Fecal  

Temperature - 4  

 

Overall -  

y = -0.0547x + 8.5564 

0.3536 -0.0547 18.2815 

Post-growth – 

y = -0.1243x + 9.4271 

0.9866 -0.1243 a 8.04505 a 

Matrix – Water  

Temperature - 4  

 

Overall -  

y = -0.0281x + 8.9777 

0.0566 -0.0281 35.5872 

Post-growth – 

y = -0.1361x + 10.323 

0.9702 -0.1361 d 7.34754 d 

Matrix – Fecal  

Temperature - 22 

 

Overall –  

y = -0.024x + 8.537 

0.3536 -0.024 41.6667 

Post-growth – 

y = -0.0784x + 9.2128 

0.9485 -0.0784 b 12.7551 b 

Matrix – Water 

Temperature - 22  

 

Overall –  

y = -0.0203x + 9.0304 

0.0274 -0.0203 49.2611 

Post-growth – 

y = -0.1338x + 10.445 

0.9644 -0.1338 e 7.47384 e 

Matrix – Fecal  

Temperature - 35  

Overall –  

y = -0.0501x + 8.4544 

0.4143 -0.0501 19.9601 

Post-growth – 

y = -0.1052x + 9.1424 

0.9655 -0.1052 c 9.5057 c 

Matrix – Water  

Temperature - 35  

 

Overall -  

y = -0.0258x + 8.9346 

0.0496 -0.0258 38.7597 

Post-growth – 

y = -0.1309x + 10.245 

0.9419 -0.1309 f 7.63942 f 
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Figure 9. Post-growth decay rates for total bacteria in treatments based on matrix and 

temperature. The combination of letters indicate significance at α = 0.05, relative to other 

temperature groups within each matrix. 

 
Figure 10. T90 for total bacteria in different treatment based on matrix and temperature. T90 was 

calculated based on post-growth die-off rates. The combination of letters indicate significance at 

α = 0.05, relative to other temperature groups within each matrix. 
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 In order to compare the different treatments of temperature and matrix over time, a three-

way ANOVA was performed (Appendix C). The data was log10 transformed to meet the 

parametric assumption of normality and variance homogeneity. The results of the ANOVA 

showed that the model was significant (F = 242.99; P <0.0001) as shown in Table 2. The 

interaction effects were found to be significant for each factor, temperature, day and matrix, in 

addition to the following combinations - temperature*matrix, day*matrix, temperature*day and 

temperature*matrix*day (Table 3). 

Table 2. Three-way ANOVA analysis for survival of total bacteria in fecal and water matrices at 

three temperatures of 4oC, 22oC, and 35oC over an 18-day period. The significance level was set 

to 0.05.  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 47 1363.787829 29.016762 242.99 <.0001 

Error 1248 149.030219 0.119415     

Corrected Total 1295 1512.818048       

 

Table 3. Three-way ANOVA showing the interactions between temperature, day and matrix for 

the survival of total bacteria in fecal and water matrices at three temperatures of 4oC, 22oC, and 

35oC over an 18-day period. The significance level was set to 0.05. * indicates significance.   

Variable DF SS Mean Square F Value Pr > F 

Temperature 2 10.7478745 5.3739372 45.00 <.0001* 

Day 7 474.7112786 67.8158969 567.90 <.0001* 

Temperature*Day 14 5.3144285 0.3796020 3.18 <.0001* 

Matrix 1 831.7769436 831.7769436 6965.42 <.0001* 

Temperature*Matrix 2 1.2194795 0.6097398 5.11 0.0062* 

Day*Matrix 7 35.1235347 5.0176478 42.02 <.0001* 

Temperature*Day*Matrix 14 4.8942896 0.3495921 2.93 0.0002* 

 

 To understand the differences among the various treatment conditions, Bonferroni post 

hoc tests were performed. Tables 4 and 5 indicate which temperature comparisons and matrix 

comparisons were found to be significant. For the total bacteria, all temperature comparisons 

were deemed significant with the exception of comparisons between 4oC and 35oC. Likewise, the 
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differences between the fecal and water matrices were also found to be significant. Results 

indicating differences between days are included in the Appendix C.     

Table 4. Bonferroni test indicating which temperature comparisons are significant. Comparisons 

significant at the 0.05 level are included.  

Temperature 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 Significance 

22 - 4 0.16415 0.10897 0.21932 Yes 

22 - 35 0.21288 0.15771 0.26806 Yes 

4 - 35 0.04874 -0.00644 0.10391 No 

 

Table 5. Bonferroni test indicating which temperature comparisons are significant. Comparisons 

significant at the 0.05 level are included.  

Matrix 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

Significance  

2 - 1 1.60225 1.56459 1.63992 Yes 

To test if there were any differences among the results based on the farms from which the 

samples were collected, an additional three-way ANOVA was performed within each matrix 

type with temperature, farm and day as three independent variables. For the survival of total 

bacteria in the fecal phase, the differences between samples collected from the three farms were 

found to be significant (P = 0.0036). Upon performing the Bonferroni test, it was found that the 

besides the differences between Farm 1 and 3, all other differences are signifinant (Table 6) .  

Table 6. Bonferroni test for the survival of total bacteria in fecal matrix indicating which farm 

comparisons are significant. Comparisons significant at the 0.05 level are included.  

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 Significance 

2 - 3 0.08655 0.00186 0.17125 Yes 

2 - 1 0.11390 0.02920 0.19859 Yes 

3 - 1 0.02734 -0.05735 0.11204 No 

  

Conversly, for the water matrix, the differences between samples collected from the three 

farms were found to be insignificant (P = 0.1163). As expected, the Bonferroni test showed no 

significant differences in any of the pairwise comparisons (Table 7). 
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Table 7. Bonferroni test for the survival of total bacteria in water matrix indicating which farm 

comparisons are significant. Comparisons significant at the 0.05 level are included.  

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 Significance 

3 - 2 0.00525 -0.06767 0.07816 No 

3 - 1 0.05709 -0.01582 0.13001 No 

2 - 1 0.05185 -0.02107 0.12476 No 

   

Fecal coliforms 

Using a similar comparison as used for total bacteria, the decay of fecal coliforms was 

determined in fecal and water matrices at varying temperatures of 4oC, 22oC, and 35oC. The 

decay rate was measured in terms of a log10 reduction over an eighteen-day period. The survival 

of fecal coliforms in fecal and water matrices at varying temperatures are illustrated in Figure 11 

and 12 respectively. According to the survival boxplots, the fecal coliforms underwent an initial 

growth phase, which was followed by a long die-off phase. Overall, the growth phase in water 

and fecal matrices seemed to have lasted from the day that the sample was collected up to day 4. 

Furthermore, the concentrations of fecal coliforms were found to be higher in the water phase, 

compared to the fecal phase. However, regarding the temperature variation, the concentrations of 

fecal coliforms were found to be higher in samples that were maintained at 22oC, compared to 

samples maintained at 4oC and 35oC.  
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Figure 11. Survival of fecal coliforms in the fecal phase at 4oC, 22oC, and 35oC. 

 
Figure 12. Survival of fecal coliforms in the water phase at 4oC, 22oC, and 35oC. 

 

Regression equations were determined based on the geometric means of the log10 (CFU/ g 

wet weight) of fecal coliforms observed on days 0, 2, 4, 6, 8, 10, 14, and 18. Table 8 lists the 

regression equations, decay rates and the T90 values for each matrix and temperature 

combination. There are two regression equations listed for each treatment type – overall and 
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post-growth. Overall decay signifies the decay observed from day 0 to day 18, whereas post-

growth decay only accounts for the observed die-off that takes place after the initial growth. The 

coefficient of determination was found to be higher for the post-growth regression equations, 

making for a better fit compared to the overall model. Figure 13 and 14 display the post-growth 

decay rates and T90 values for each matrix and temperature combination.  The decay rates were 

highest for the samples maintained at 22oC, followed by the samples incubated at 35oC and 4oC 

respectively. The highest T90 value of 11.86 days was observed for water samples incubated at 

4oC. 

Table 8. Decay rates for fecal coliforms at varying treatment conditions based on temperature 

and matrix. The decay rates and the T90 values are denoted with an identifying letter to 

demarcate significance patterns on the following post-growth die-off rates and T90 values for the 

bar graph. 

Treatment/ 

Condition 

Regression Equation Coefficient of 

Determination  

Decay Rate T90 (Days) 

Matrix – Fecal  

Temperature - 4  

 

Overall -  

y = -0.0553x + 7.7849 

0.685 -0.0553  18.083 

Post-growth – 

y = -0.0857x + 8.1658 

0.911 -0.0857 a  11.669 a 

Matrix – Water  

Temperature - 4  

 

Overall -  

y = -0.0556x + 7.7796 

0.7161 -0.0556 17.986 

Post-growth – 

y = -0.0843x + 8.1377 

0.9208 -0.0843 d 11.862 d 

Matrix – Fecal  

Temperature - 22 

 

Overall -  

y = -0.0559x + 8.0475 

0.5038 -0.0559 17.889 

Post-growth – 

y = -0.1047x + 8.654 

0.9356 -0.1047 b 9.551 b 

Matrix – Water 

Temperature - 22  

 

Overall -  

y = -0.0556x + 8.9116 

0.3272 -0.0556 17.985 

Post-growth – 

y = -0.1231x + 9.7394 

0.9721 -0.1231 e 8.123 e 

Matrix – Fecal  

Temperature - 35  

 

Overall -  

y = -0.0544x + 7.7891 

0.4806 

 

-0.0544 18.382 

Post-growth – 

y = -0.0989x + 8.3384 

0.8724 

 

-0.0989 c 10.111 c 

Matrix – Water  

Temperature - 35  

 

Overall -  

y = -0.0587x + 8.7627 

0.6456 

 

-0.0587 17.036 

Post-growth – 

y = -0.0949x + 9.2062 

0.9944 

 

-0.0949 f  10.537 f 
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To compare the effect of temperature and matrix over time, a three-way ANOVA was 

performed (Appendix C). The data was log10 transformed to meet the parametric assumption of 

normality and variance homogeneity. The results of the ANOVA showed that the model was 

significant (F =500.63; P <0.0001) as shown in Table 9. The differences within each factor were 

found to be significant, in addition to the following combinations - temperature*matrix, 

day*matrix, temperature*day and temperature*matrix*day (Table 10). Bonferroni post hoc tests 

were performed to ascertain which pairwise comparisons were significantly different.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Post-growth die-off rates for fecal coliform in different treatments based on matrix 

and temperature. The combination of letters indicate significance at α = 0.05, relative to other 

temperature groups within each matrix. 
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Figure 14. T90 for fecal coliforms in different treatment based on matrix and temperature. T90 

was calculated based on post-growth die-off rates. The combination of letters indicate 

significance at α = 0.05, relative to other temperature groups within each matrix. 

 

Table 9. Three-way ANOVA analysis for survival of fecal coliforms in fecal and water matrices 

at three temperatures of 4oC, 22oC, and 35oC over an 18-day period. The significance level was 

set to 0.05. * indicates significance.   

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 47 616.1548567 13.1096778 500.63 <.0001* 

Error 1248 32.6806888 0.0261864     

Corrected Total 1295 648.8355455       
 

Table 10. Three-way ANOVA showing the interactions between temperature, day and matrix for 

the survival of fecal coliforms in fecal and water matrices at three temperatures of 4oC, 22oC, and 

35oC over an 18-day period. The significance level was set to 0.05. * indicates significance.   

Source DF Type I SS Mean Square F Value Pr > F 

temp 2 14.7033712 7.3516856 280.74 <.0001* 

day 7 202.9582549 28.9940364 1107.22 <.0001* 

temp*day 14 28.1933941 2.0138139 76.90 <.0001* 

matrix 1 324.3713763 324.3713763 12387.0 <.0001* 

temp*matrix 2 3.3326064 1.6663032 63.63 <.0001* 

day*matrix 7 24.5679086 3.5097012 134.03 <.0001* 

temp*day*matrix 14 18.0279451 1.2877104 49.17 <.0001* 
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The results for the Bonferroni multiple comparison tests are displayed in Tables 4 and 5, 

indicating which temperature comparisons and matrix comparisons were found to be significant. 

For the fecal coliforms, all temperature comparisons were significant. Likewise, the differences 

between the fecal and water matrices were also found to be significant. Results indicating 

differences between days are included in the Appendix C.     

Table 11. Bonferroni test for the survival of fecal coliforms indicating which temperature 

comparisons are significant. Comparisons significant at the 0.05 level are included.  
 

Temperature 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 Significance 

22 - 35 0.20857 0.18273 0.23441 Yes 

22 - 4 0.24003 0.21420 0.26587 Yes 

35 - 4 0.03146 0.00563 0.05730 Yes 

 

Table 12. Bonferroni test for the survival of fecal coliforms indicating which matrix comparisons 

are significant. Comparisons significant at the 0.05 level are included. 

Matrix 

Comparison 

Difference 

Between Means 

Simultaneous 95% Confidence 

Limits 

 Significance 

1 - 2 1.000573 0.982936 1.018210 Yes 

 

To test if there were any differences among the results based on the farms from which the 

samples were collected, an additional three-way ANOVA was performed within each matrix 

type with temperature, farm and day as three independent variables. For the survival of fecal 

coliforms in the fecal phase, the differences between samples collected from the three farms 

were found to be insignificant (P = 0.3605). Similarly, for the water matrix, the differences 

between samples collected from the three farms were also found to be insignificant (P = 0.7375).  

As expected, the Bonferroni tests showed no significant differences in any of the pairwise 

comparisons (Table 13 and 14). 

 

 



  

67 
 

Table 13. Bonferroni test for the survival of fecal coliforms in fecal matrix indicating which farm 

comparisons are significant. Comparisons significant at the 0.05 level are included.  

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 Significance 

1 - 3 0.01768 -0.01949 0.05485 No 

1 - 2 0.02038 -0.01679 0.05754 No 

3 - 2 0.00270 -0.03447 0.03986 No 

 

Table 14. Bonferroni test for the survival of total bacteria in water matrix indicating which farm 

comparisons are significant. Comparisons significant at the 0.05 level are included.  

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 Significance  

3 - 2 0.00519 -0.03254 0.04293 No 

3 - 1 0.01222 -0.02551 0.04996 No 

2 - 1 0.00703 -0.03071 0.04477 No 

 

Escherichia coli 

E. coli is frequently used as a fecal indicator for pathogen contamination. Using a similar 

comparison as used for coliforms and total bacteria, the E. coli die-off rate was determined in 

fecal and water matrices at varying temperatures of 4oC, 22oC, and 35oC. The decay rate was 

measured in terms of a log10 reduction over an eighteen-day period. The survival of E. coli in 

fecal and water matrices at varying temperatures are illustrated in Figure 15 and 16 respectively. 

As shown in Figures 15 and 16, the E. coli underwent an initial growth phase, which was 

followed by a long die-off phase. Overall, the growth phase in water and fecal matrices seemed 

to have lasted from the day that the sample was collected up to day 4. Furthermore, the 

concentrations of E. coli were found to be higher in the water phase, compared to the fecal phase. 

However, regarding the temperature variation, the concentrations of E. coli for the fecal phase 

were found to be higher in samples that were maintained at 22oC, compared to samples 

maintained at 4oC and 35oC. For the water phase, some fluctuations were observed.  
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Figure 15. Survival of E. coli in the fecal phase at 4oC, 22oC, and 35oC. 

 

 
Figure 16. Survival of E. coli in the water phase at 4oC, 22oC, and 35oC. 

 

 

Regression equations were determined using the geometric means of the log10 (CFU/ g 

wet weight) of fecal coliforms observed on days 0, 2, 4, 6, 8, 10, 14, and 18. Table 8 lists the 

regression equations, decay rates and the T90 values for each matrix and temperature 

combination. There are two regression equations listed for each treatment type – overall and 
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post-growth. Overall decay signifies the decay observed from day 0 to day 18, whereas post-

growth decay only accounts for the observed die-off that takes place after the initial growth. The 

coefficient of determination was found to be higher for the post-growth regression equations, 

making for a better fit compared to the overall model. Figure 13 and 14 display the post-growth 

decay rates and T90 values for each matrix and temperature combination.  The decay rates were 

highest for the samples maintained at 22oC, whereas the decay rates for samples incubated at 

35oC and 4oC were quite similar. The highest T90 value of 10.78 days was observed for water 

samples incubated at 35oC. 

Table 15. Decay rates for E. coli at varying treatment conditions based on temperature and 

matrix. The decay rates and the T90 values are denoted with an identifying letter to demarcate 

significance patterns on the following post-growth die-off rates and T90 values for the bar graph 

 

Treatment/Condition Regression equation R2 value  Decay rate T90 (days) 

Matrix – Fecal  

Temperature - 4  

 

Overall -  

y = -0.067x + 7.8253 

0.6134 -0.067 14.93 

Post-growth –  

y = -0.1119x + 8.3909 

0.9334 -0.1119 a 8.94 a 

Matrix – Water  

Temperature - 4  

 

Overall -  

y = -0.0842x + 8.8061 

0.8264 -0.0842 11.88 

Post-growth – 

y = -0.1076x + 9.093 

0.8904 -0.1076 d 9.29 d 

Matrix – Fecal  

Temperature - 22 

 

Overall -  

y = -0.0687x + 8.0817 

0.5066 -0.0687 14.56 

Post-growth – 

y = -0.1277x + 8.8179 

0.9198 -0.1277 b 7.83 b 

Matrix – Water 

Temperature - 22  

 

Overall -  

y = -0.0841x + 9.1662 

0.4318 -0.0841 11.89 

Post-growth – 

y = -0.1466x + 9.94 

0.7015 -0.1466 e 6.82 e 

Matrix – Fecal  

Temperature - 35  

 

Overall –  

y = -0.0546x + 7.6475 

 

0.444 -0.0546 18.32 

Post-growth – 

y = -0.1049x + 8.267 

0.9088 -0.1049 c 9.53 c 

Matrix – Water  

Temperature - 35  

 

Overall -  

y = -0.0648x + 8.848 

0.7205 -0.0648 15.43 

Post-growth – 

y = -0.0928x + 9.1926 

0.8792 -0.0928 f 10.78 f 
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To compare the effect of temperature and matrix over time, a three-way ANOVA was 

performed (Appendix C). The data was log10 transformed to meet the parametric assumption of 

normality and variance homogeneity. The results of the ANOVA showed that the model was 

significant (F = 725.83; P <0.0001) as shown in Table 16. The differences within each factor 

were found to be significant, in addition to the following combinations - temperature*matrix, 

day*matrix, temperature*day and temperature*matrix*day (Table 17). Bonferroni post hoc tests 

were performed to ascertain which pairwise comparisons were significantly different.  

 

 
Figure 17. Post-growth die-off rates for E. coli in different treatments based on matrix and 

temperature. The combination of letters indicate significance at α = 0.05, relative to other 

temperature groups within each matrix. 
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Figure 18. T90 for E. coli in different treatment based on matrix and temperature. T90 was 

calculated based on post-growth die-off rates. The combination of letters indicate significance at 

α = 0.05, relative to other temperature groups within each matrix. 

Table 16. Three-way ANOVA analysis for survival of E. coli in fecal and water matrices at three 

temperatures of 4oC, 22oC, and 35oC over an 18-day period. The significance level was set to 

0.05. * indicates significance.   

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 47 735.2120750 15.6428101 725.83 <.0001 

Error 1248 26.8966026 0.0215518     

Corrected Total 1295 762.1086775     
 

 

Table 17. Three-way ANOVA showing the interactions between temperature, day and matrix for 

the survival of E. coli in fecal and water matrices at three temperatures of 4oC, 22oC, and 35oC 

over an 18-day period. The significance level was set to 0.05. * indicates significance.   

Source DF Type I SS Mean Square F Value Pr > F 

Temperature 2 22.1789312 11.0894656 514.55 <.0001* 

Day 7 318.0227172 45.4318167 2108.03 <.0001* 

Temperature*Day 14 33.1878412 2.3705601 109.99 <.0001* 

Matrix 1 329.8102331 329.8102331 15303.2 <.0001* 

Temperature*Matrix 2 2.3068450 1.1534225 53.52 <.0001* 

Day*Matrix 7 16.1075241 2.3010749 106.77 <.0001* 

Temperature*Day*Matrix 14 13.5979832 0.9712845 45.07 <.0001* 
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The results for the Bonferroni multiple comparison tests are displayed in Tables 18 and 

19, indicating which temperature comparisons and matrix comparisons were found to be 

significant. For the E. coli, all temperature comparisons were significant. Likewise, the 

differences between the fecal and water matrices were also found to be significant. Results 

indicating differences between days are included in the Appendix C.     

Table 18. Bonferroni test for the survival of E. coli indicating which temperature comparisons 

are significant. Comparisons significant at the 0.05 level are indicated. 

Temperature 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

Significance   

22 - 35 0.223555 0.199609 0.247500 Yes 

22 - 4 0.310593 0.286648 0.334538 Yes 

35 - 4 0.087038 0.063093 0.110984 Yes 

 

 

Table 19. Bonferroni test for the survival of E. coli indicating which temperature comparisons 

are significant. Comparisons significant at the 0.05 level are indicated. 

Matrix 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

Significance 

2 - 1 1.008927 0.992926 1.024927 Yes 

 

To test if there were any differences among the results based on the farms from which the 

samples were collected, an additional three-way ANOVA was performed within each matrix 

type with temperature, farm and day as three independent variables. For the survival of E. coli in 

the fecal phase, the differences between samples collected from the three farms were found to be 

insignificant (P = 0.0776). Similarly, for the water matrix, the differences between samples 

collected from the three farms were also found to be insignificant (P = 0.7844).  As expected, the 

Bonferroni tests showed no significant differences in any of the pairwise comparisons (Table 20 

and 21). 
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Table 20. Bonferroni test for the survival of E. coli in fecal matrix indicating which farm 

comparisons are significant. Comparisons significant at the 0.05 level are indicated. 

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 Significance 

2 - 3 0.02296 -0.01302 0.05894 No 

2 - 1 0.03315 -0.00283 0.06912 No 

3 - 1 0.01018 -0.02579 0.04616 No 

 

 

Table 21. Bonferroni test for the survival of E. coli in water matrix indicating which farm 

comparisons are significant. Comparisons significant at the 0.05 level are indicated. 

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

Significance 

3 - 1 0.006337 -0.025408 0.038082 No 

3 - 2 0.008965 -0.022780 0.040709 No 

1 - 2 0.002627 -0.029118 0.034372 No 

 

Enterococci 

The decay of enterococci was determined in fecal and water matrices at varying 

temperatures of 4oC, 22oC, and 35oC. The decay rate was measured in terms of a log10 reduction 

over an eighteen-day period. The survival of enterococci in fecal and water matrices at varying 

temperatures are illustrated in Figure 19 and 20 respectively. Similar to bacterial subgroups, the 

enterococci also underwent an initial growth phase, which was followed by a long die-off phase. 

Overall, the growth phase in water and fecal matrices seemed to have lasted from the day that the 

sample was collected up to day 6-8. Furthermore, the concentrations of enterococci were found 

to be higher in the water phase, compared to the fecal phase. However, regarding the temperature 

variation, the concentrations of enterococci were found to be slightly higher in samples that were 

maintained at 22oC, compared to samples maintained at 4oC and 35oC.  
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Figure 19. Survival of enterococci in the fecal phase at 4oC, 22oC, and 35oC. 

 

Figure 20. Survival of enterococci in the water phase at 4oC, 22oC, and 35oC. 

Regression equations were determined using the geometric means of the log10 (CFU/ g 

wet weight) of enterococci observed on days 0, 2, 4, 6, 8, 10, 14, and 18. Table 8 lists the 

regression equations, decay rates and the T90 values for each matrix and temperature 

combination. There are two regression equations listed for each treatment type – overall and 
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post-growth. Overall decay signifies the decay observed from day 0 to day 18, whereas post-

growth decay only accounts for the observed die-off that takes place after the initial growth. The 

coefficient of determination was found to be higher for the post-growth regression equations, 

making for a better fit compared to the overall model. Figure 21 and 22 display the post-growth 

decay rates and T90 values for each matrix and temperature combination.  The decay rates were 

highest for the samples maintained in the fecal phase compared to samples maintained in the 

water phase. For the fecal phase, the decay rate was highest at 35oC (T90 = 11.68), followed by 

22oC and 4oC respectively. Conversely, the highest decay rates were observed in samples 

maintained at 4oC, followed by 22oC and 35oC respectively.  

Table 22. Decay rates for enterococci at varying treatment conditions based on temperature and 

matrix. The decay rates and the T90 values are denoted with an identifying letter to demarcate 

significance patterns on the following post-growth die-off rates and T90 values for the bar graph. 

Treatment/Condition Regression equation R2 value  Decay rate T90 (days) 

Matrix – Fecal  

Temperature - 4  

 

Overall –  

y = -0.1595x + 7.9859 

0.7846 -0.1595 6.27 

Post-growth –  

y = -0.2328x + 8.9087 

0.9767 -0.2328 a 4.30 a 

Matrix – Water  

Temperature - 4  

 

Overall -  

y = -0.0298x + 8.2155 

0.0192 -0.0122 81.97 

Post-growth – 

y = -0.1097x + 9.2485 

0.9701 -0.1097 d 9.12 d  

Matrix – Fecal  

Temperature - 22 

 

Overall -  

y = -0.141x + 8.1431 

0.6405 -0.1410 7.09 

Post-growth – 

y = -0.2578x + 9.643 

0.9525 -0.2578 b  3.88 b 

Matrix – Water 

Temperature - 22  

 

Overall –  

y = -0.007x + 8.1188 

0.0052 -0.007 142.86 

Post-growth – 

y = -0.0964x + 9.4275 

0.9677 -0.0964 e  10.37 e  

Matrix – Fecal  

Temperature - 35  

 

Overall -  

y = -0.1612x + 7.9089 

0.6775 -0.1612 6.20 

Post-growth – 

y = -0.2611x + 9.1537 

0.9636 -0.2611 c 3.83 c 

Matrix – Water  

Temperature - 35  

 

Overall –  

y = -0.0032x + 8.0253 

0.0012 -0.0032 312.5 

Post-growth – 

y = -0.0856x + 9.0574 

0.7051 -0.0856 f 11.68 f 
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To compare the effect of temperature and matrix over time, a three-way ANOVA was 

performed (Appendix C). The data was log10 transformed to meet the parametric assumption of 

normality and variance homogeneity. The results of the ANOVA showed that the model was 

significant (F = 865.56; P <0.0001) as shown in Table 23. The differences within each factor 

were found to be significant, in addition to the following combinations - temperature*matrix, 

day*matrix, temperature*day and temperature*matrix*day (Table 24). Bonferroni post hoc tests 

were performed to ascertain which pairwise comparisons were significantly different.  

 
Figure 21. Post-growth die-off rates for enterococci in different treatments based on matrix and 

temperature. The combination of letters indicate significance at α = 0.05, relative to other 

temperature groups within each matrix. 
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Figure 22. T90 for enterococci in different treatment based on matrix and temperature. T90 was 

calculated based on post-growth die-off rates. The combination of letters indicate significance at 

α = 0.05, relative to other temperature groups within each matrix.  

 

Table 23. Three-way ANOVA analysis for survival of fecal coliforms in fecal and water matrices 

at three temperatures of 4oC, 22oC, and 35oC over an 18-day period. The significance level was 

set to 0.05. * indicates significance.   

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 47 1605.636924 34.162488 865.56 <.0001* 

Error 1248 49.256707 0.039469     

Corrected Total 1295 1654.893631 
   

 

 

Table 24. Three-way ANOVA showing the interactions between temperature, day and matrix for 

the survival of enterococci in fecal and water matrices at three temperatures of 4oC, 22oC, and 

35oC over an 18-day period. The significance level was set to 0.05. * indicates significance.   

Source DF Type I SS Mean Square F Value Pr > F 

Temperature 2 14.2506414 7.1253207 180.53 <.0001 

Day 7 741.0996953 105.8713850 2682.43 <.0001 

Temperature*Day 14 11.3115200 0.8079657 20.47 <.0001 

Matrix 1 551.6360772 551.6360772 13976.6 <.0001 

Temperature*Matrix 2 3.6550282 1.8275141 46.30 <.0001 

Day*Matrix 7 275.3839328 39.3405618 996.76 <.0001 

Temperature*Day*Matrix 14 8.3000288 0.5928592 15.02 <.0001 
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The results for the Bonferroni multiple comparison tests are displayed in Tables 23 and 

24, indicating which temperature comparisons and matrix comparisons were found to be 

significant. For the enterococci, all temperature comparisons were significant. Likewise, the 

differences between the fecal and water matrices were also found to be significant. Results 

indicating differences between days are included in the Appendix C.     

 

Table 23. Bonferroni test indicating which temperature comparisons are significant. 

Comparisons significant at the 0.05 level are indicated. 

Temperature 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

Significance  

22 - 35 0.19165 0.15924 0.22405 Yes 

22 - 4 0.24393 0.21152 0.27633 Yes 

35 - 4 0.05228 0.01988 0.08469 Yes 

 

Table 24. Bonferroni test indicating which temperature comparisons are significant. 

Comparisons significant at the 0.05 level are indicated. 

Matrix 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 Significance 

2 - 1 1.30483 1.28318 1.32648 Yes 

 

To test if there were any differences among the results based on the farms from which the 

samples were collected, an additional three-way ANOVA was performed within each matrix 

type with temperature, farm and day as three independent variables. For the survival of 

enterococci in the fecal phase, the differences between samples collected from the three farms 

were found to be significant (P = 0.0004). Table 25 indicates which pairwise comparisons are 

significant. The differences were signifincat for all comparisosns with the exception for Farms 2 

and 3. For the water matrix, the differences between samples collected from the three farms were 

found to be insignificant (P = 0.7591).  As expected, the Bonferroni tests showed no significant 

differences in any of the pairwise comparisons (Table 26). 
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Table 25. Bonferroni test for the survival of enterococci in fecal matrix indicating which farm 

comparisons are significant. Comparisons significant at the 0.05 level are included.  

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

Significance  

2 - 3 0.00538 -0.04514 0.05590 No  

2 - 1 0.07532 0.02480 0.12585 Yes 

3 - 1 0.06994 0.01942 0.12046 Yes 

 

Table 26. Bonferroni test for the survival of enterococci in water matrix indicating which farm 

comparisons are significant. Comparisons significant at the 0.05 level are included.  

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

 Significance 

1 - 3 0.00584 -0.03450 0.04618 No 

1 - 2 0.01247 -0.02787 0.05281 No  

3 - 2 0.00663 -0.03371 0.04696 No  
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CHAPTER 5 

DISCUSSION 

 

This study was designed to inspect the impact of temperature and matrix on the temporal 

fate (growth, survival and die-off) of fecal indicators bacteria. Total bacteria, fecal coliform, E. 

coli, and enterococci were routinely enumerated over an 18-day period from fecal samples and 

freshwater microcosms maintained at three different temperatures of 4oC, 22oC, and 35oC. The 

experiments were performed to examine the extent of bacterial pollution due to runoff from 

pastures, since runoff from pasturelands is considered one of the key polluters of streams and 

rivers. The decay rates of the fecal indicator bacteria were characterized to represent two 

agricultural scenarios for comparison purpose. In the first scenario, bovine feces are surface 

deposited on pasturelands, without being amended into the soil. Alternatively, in the second 

scenario, the fecal matter is washed into a proximal water source. This study was executed in a 

laboratory setting since examining the differential survival of FIB in cow pats and natural waters 

would be difficult to carry out and unethical as it would further compromise the environmental 

integrity of soil and water. Surface deposited fecal matter can be a significant source of FIB for 

proximal waters [6]. Therefore, it is critical to examine the comparative survival of FIB in dry 

fecal matter and stream water inoculated with fecal matter. 

Several studies have examined the survival and fate of fecal indicators in soil and water 

matrices [4, 5, 6, 8, 9 15, 18, 20]. However, very few studies have placed the emphasis on the 

persistence of FIB in fecal matrix. In addition to being a key contributor of FIB to proximal 

waters, manure also provides a distinct biological and physico-chemical environment for fecal 

indicator bacteria, which can collectively impact the survival and release of bacteria from the 
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fecal matter [4]. Hence, comparative studies that examine differential survival of FIB are critical 

for the determination of the total maximum bacterial inputs into an impaired stream for 

remediation purposes.  

Fecal coliform, E. coli and enterococci are routinely used as bacterial fecal indicators for 

pathogen contamination in surface waters, hence they were used as the primary FIB in this study 

[36, 47, 48, 56]. Historically, total bacterial load was used as an indicator for fecal pollution, 

which is why it was included in this study as a potential fecal indicator [32]. Although the impact 

of abiotic factors on the survival of FIB is well studied, to our knowledge, no study has 

examined the differential decay of FIB derived from bovine feces in fecal and water phase 

simultaneously.  

 

Initial Growth 

A major finding in this study is that all bacterial groups studied underwent a primary 

growth of up to 1-log10 to 3-log10 compared to the initial concertation, regardless of the matrix 

and temperature variation. Many studies have reported similar findings regarding initial increase 

in bacterial concentrations in fecal matter, manure-amended soils, sediments and surface waters 

[26, 61, 88, 91]. The results of the survival analysis for all bacterial subgroups displayed an 

initial growth that last from day 0 up to day 2-8. Overall, the concentrations of FIB increased by 

1 to 3 orders of magnitude for all the bacterial groups. Also, the growth was found to be higher 

in water phase compared to the fecal phase. Muirhead and Little John arrived at a similar 

conclusion while studying the E. coli die-off in intact and disrupted cow pats [92].  

In addition to moisture content, FIB survival was also influenced by temperature [92].       

Furthermore, initial increase appeared to be the highest at 22oC, followed by 4oC and 35oC. This 
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finding is in agreement with the study conducted by Guber et al., in which the researchers were 

examining the effect of temperature on survival of E. coli derived from White-Tailed Deer feces. 

The growth detected at 20oC was much higher than the FIB growth observed at 4oC and 35oC. 

The observed growth at 22oC surpassing the growth at 35oC could be explained by the apparent 

dominance of cold-adapted fecally-derived organisms. Since the manure samples were collected 

during February and March, the organisms seemed to have acclimated to the cold temperatures, 

resulting in an increased growth at cooler temperatures such as 22oC. Growth at 4oC was 

observed to be fairly low since the incubation temperature was far too low to favor high growth 

rates [93]. The bacterial growth observed in this study has serious implications for the use of FIB 

concentrations derived from freshly voided feces, since these concentrations do not account for 

the growth that subsequently occurs and cannot be used to inform the TMDL models. Using FIB 

concentrations of freshly voided feces for TMDLs could lead to considerable underestimation of 

the bacteria inputs.       

It was understood that the conventional FIB would not be able to survive in a secondary 

habitat since they have been evolved to occupy a niche in lower intestines of warm-blooded 

animals. However, several studies have shown that FIB can flourish in extraintestinal 

environments. Many factors collectively aid in the initial increase of FIB concentrations in the 

secondary habitat. These factors include oxygen, nutrient availability, and moisture content. All 

these three factors could have potentially played a role in the subsequent growth observed in the 

water matrix. However, the extraintestinal growth of FIB in secondary habitats does to some 

degree compromise its indicator status since it could lead to false indication of pathogen 

contamination [44, 81].  
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Effect of temperature on survival 

The temperature was found to be a significant factor for the survival of all bacterial 

subgroups over an 18-day period. Other studies have also found temperature to be an integral 

factor that drives survival patterns of fecal indicator bacteria [4, 26, 52, 62, 63, 93, 96]. However, 

the patterns of survival were found to be different across the bacterial subgroups that were 

analyzed. For the survival of total bacteria, the observed decay rate patterns were different for 

the two matrices. In the fecal phase, the decay rate was found to be the highest in samples 

maintained at 4oC, followed by 35oC and 22oC respectively. Similarly, the decay rates for the 

water phase were found to be the highest at 4oC. However, the decay rates in water phase 

observed at 22oC were greater than those at 35oC, whereas the opposite was found to be true for 

the fecal phase. This could be attributed to the interaction between matrix type and temperature. 

The survival was found to be the lowest for samples maintained at 4oC possibly due to loss of 

culturability. Furthermore, the results for the total bacteria survival indicate that the FIB that 

were isolated were cold-adapted, which is reasonable since the manure samples were collected 

during the February and March. This finding is significant since it has important implications for 

altering TMDLs based on seasonal variations.      

As for the survival of fecal coliform and E. coli, the patterns for both matrices were 

similar, based on temperature. For both matrices, the decay rates were the highest for samples 

maintained at 22oC followed by 35oC and 4oC. All comparisons were significant. However, the 

decay rates for samples maintained at 4oC were found to be higher in E. coli than those 

maintained at 35oC, instead of the opposite observed in the fecal coliforms. A similar pattern was 

reported by Guber and colleagues, where the decay rate for samples maintained at 20oC was 

found to be greater than those maintained at 4oC. However, decay rate for samples maintained at 
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35oC was found to be the highest in Guber et al., which is distinct from our findings. This finding 

refutes the hypothesis that expected a rapid die-off for samples maintained at relatively higher 

temperature of 35oC, compared to 4oC and 22oC. This finding is significant since it insinuates 

that a temperature of 35oC is conducive to longer survival.  

Lastly, there was a clear pattern detected for the decay rates for enterococci in fecal phase 

– 4oC > 22oC > 35oC. Interestingly, the opposite was true for samples maintained in the water 

phase, hence the decays rates were as follows - 35oC > 22oC > 4oC. The results for the water 

phase are in line with other studies that reported a similar pattern of more rapid die-off with 

increasing temperatures [5, 6]. However, the observed pattern for the fecal phase is unique to our 

study. It is more likely that the die-off appears to be more rapid, but the cells probably changed 

states from being culturable to viable but non-culturable for the colder temperatures.  

Overall, the results for the temperature analysis reported in this study have identified 

certain unique survival patterns, which are critical for the establishment of an effective TMDL 

plan. However, since this study exhibited a high degree of deviation in the survival patterns of 

each bacterial subgroup in response to matrix and temperature variation, this study also 

highlights the complexity of extrapolating the laboratory-derived findings to field conditions 

[51]. One standard regulation cannot be used to regulate diverse types of pasturelands and water 

bodies.   

 

Effect of matrix type on survival 

The concentrations of FIB in the water phase were significantly greater than the 

concentrations observed in the fecal phase in all bacterial subgroups. However, the difference 

between survival of FIB in samples maintained in fecal and water matrices were found to be 
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significantly contrasting for all bacterial subgroups. While the differences in the decay rates in 

the two matrices were identified as significant, there was a slight variation in the patterns 

regarding the differences among various bacterial subgroups. For the survival of total bacteria, 

the observed decay rates were significantly higher in the water phase compared to the fecal 

phase. Anderson et al. reached a similar conclusion when testing for survival of fecal coliforms 

and enterococci in freshwater microcosms and sediments [24]. According to their findings, fecal 

coliform decay rates in sediments were significantly lower than decay rates observed in the water 

column. Likewise, Oladeinde and colleagues also reported longer persistence of fecal indicators 

in the fecal matrix [6]. However, no comparative analysis was performed by Oladeinde et al. to 

compare the survival of FIB in fecal and water matrices. Wang et al. surveyed the effect of 

temperature on the survival of FIB derived from bovine feces, in addition to studying the effect 

of moisture content on persistence [4]. However, no microcosms were used in the experiment 

and the fecal samples were maintained at a maximum moisture level of 83%. Notably, 

temperature was found to produce a significant effect on survival of FIB, whereas moisture 

content was found to play a significant role in the survival of enterococci only. The evidence 

presented in our study is at odds with the findings produced by Wang et al. However, the 

moisture levels used in our study were significantly higher than those used in the Wang’s 

research.    

The survival of fecal coliforms in different matrices were significantly different without a 

specific pattern. The FC survival was much higher at 22oC in water samples but lower for 4oC 

and 35oC. The same is true for the E. coli survival, where E. coli survival was higher for the 

water phase at 22oC but lower for 4oC and 35oC. It makes sense that the survival patterns match 

for these two bacterial groups, since E. coli is a subset of the fecal coliform group. Although the 
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differences between the matrices were found to be significant, the survival of fecal coliforms and 

E. coli seem to be more responsive to temperature than matrix variation due to the lack of pattern 

between the two matrices. Other studies have reported similar results were temperature played a 

more integral role in determining the survival pattern in fecal coliforms [6, 94, 95].    

A specific pattern was detected in the decay rates of enterococci based on matrix 

variation. The enterococci were detected to be significantly more persistent in the water phase 

compared to the fecal phase. Kibbey et al. conducted a study to examine the effect of 

temperature and moisture on enterococci in soils [96]. Their study revealed results that are in line 

with our finding; i.e., T95 values for soils saturated with moisture were much higher in 

comparison to 50% field capacity moisture levels or air-dried soils. This can be explained due to 

drought stress which can significantly impact the survival rate of fecal indicators.  

The results regarding the matrix type refute the hypothesis that decay rates are similar in 

water and fecal matrices. The decay rates based on the matrix type varied on the for each bacteria 

group. Fecal coliform and E. coli exhibited no specific pattern regarding matrix type, perhaps 

due to the greater influence of temperature. Great decay rates were observed in enterococci in the 

fecal phase, as opposed to the water phase. Alternatively, the decay rates of total bacteria were 

found to be higher in water phase, when compared to fecal phase. These results signify the 

weakness of the common fecal indicator bacteria, since they are leading to conflicting results 

with regards to the role of matrix in the survival of fecally-derived microorganisms.      
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Effect of farming practices on survival 

 

Samples for this study were collected from three farms in East Tennessee. The designated 

Farm 1 (Jones Farm) and Farm 3 (Swenson Farm) specialized in beef-production, whereas the 

Farm 2 (The Cows Are Out Farm) specialized in dairy farming. According to the results from the 

multivariate ANOVAs, the differences between samples collected from each farm were not 

significant with a few exceptions. The differences were significant for the survival of total 

bacteria in fecal phase between Farm 1: Farm 2 and Farm 2: Farm 3. The differences between 

Farm 1 and Farm 3 were deemed not significant. Since both Farm 1 and Farm 3 specialize in 

beef production and are fairly close to each other, variables such as diet and environmental 

factors are much similar for cattle that are housed in those farms. This could explain the 

significant differences between samples collected from Farm 2, compared to Farms 1 and 3. 

Similarly, the pairwise comparisons performed to test for significant differences between farms 

for the survival of enterococci in the fecal phase was found to be significantly different between 

Farms 1 and 2. The difference in the mean concentrations of fecal indicator bacteria based on 

farming practices and land use is in agreement with the findings of Crowther et al. [90]. 

According to Crowther et al., the mean concentrations of fecal indicator bacteria (E. coli) were 

significantly different based on livestock type – dairy and beef cattle. However, the difference 

between samples collected from Farms 1 and 3 were also found to be significantly different for 

the survival of enterococci in fecal phase. This difference could be attributed to the introduced 

artifacts during manure sample collection. Care was taken to collect the freshly voided, 

undisturbed cow feces, however, on a few occasions, the cows pats were trampled on by the 
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cattle which could have slightly altered the bacterial composition with regards to enterococci 

[91].        
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

Two different matrices were used to measure the survival of fecal indicator bacteria - 

fecal and water. The survival was measured at three different temperatures – 4oC, 22oC, and 

35oC. The survival of the FIB was determined based on cultivation-based methods. Fecal 

coliform, E. coli, enterococci and total bacterial load were used as bacterial fecal indicators for 

pathogen contamination in surface waters. Although the impact of abiotic factors on the survival 

of FIB is well studied, to our knowledge, no study has examined the differential decay of FIB 

derived from bovine feces in fecal and water phase simultaneously. Initial growth was observed 

in all bacterial subgroups indicating the weakness of these fecal indicator bacteria, since ideal 

indicators ought not to exhibit extraintestinal growth.   

The results indicated matrix type and temperature to be a significant factor for all 

bacterial subgroups. However, Bonferroni tests were applied to perform pairwise comparisons to 

indicate which comparisons were significant. While many of the survival patterns reported in this 

study are in agreement with previously published work, certain patterns were found to be unique 

to our study. For instance, decay rates for enterococci in fecal phase displayed the following 

patterns – 4oC > 22oC > 35oC, whereas the decay rates for the water phase followed the opposite 

pattern as shown - 35oC > 22oC > 4oC. These findings highlight the complications in 

extrapolating laboratory-derived data to field conditions that might apply to pasturelands [51].  

Overall, this study provides important information about the survival of typical FIB in 

fecal and water matrix under the influence of varying temperatures. This study also highlights 

the weakness of using conventionally used FIB as indicators of pathogen contamination. Future 
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studies that examine the survival of genetic markers and alternative indicators of fecal 

contamination are required to further bolster the establishment of effective TMDL plans.   
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APPENDICES 

Appendix A:  Raw Data 

1) Total bacteria 
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2) Fecal coliform 
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3) E. coli 
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4) Enterococci 

 



  

102 
 

Appendix B:  Regression Graphs 

1) Total bacteria 

 

2) Fecal Coliform 
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3) E. coli 

 

4) Enterococci 
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Appendix C:  SAS Code and Comprehensive Outputs 

1) Total bacteria 

Proc import datafile = "E:\Survivaltest.xlsx" 

out = Survivaltest DBMS = excel2000 REPLACE; 

SHEET = "Sheet1"; 

RANGE = "A1:G"; 

run; 

DATA Survivaltest2; 

set survivaltest; 

run; 

Proc print data = Survivaltest2; 

run; 

proc sort DATA=survivaltest2; 

by matrix; 

run; 

proc glm data = survivaltest2; 

   class Temp day matrix; 

   model log10CFUgww = Temp|day|matrix; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

proc glm data=Survivaltest2; 

   class Temp day matrix; 

   model log10CFUgww = Temp|day|matrix; 

   means temp day matrix /Bon alpha=.05 cldiff; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

proc glm data=Survivaltest2; 

   class Temp day Farm; 

   by matrix; 

   model log10CFUgww = temp day farm temp*day temp*farm; 

   means temp day farm /Bon alpha=.05 cldiff; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

symbol1 v=circle l=32  c = black; 

PROC GPLOT data=pred; 

 PLOT resid*ybar/vref=0; 

By matrix; 

run; 

PROC UNIVARIATE DATA=survivaltest2 normal; 

  QQPLOT resid / normal; 

  VAR resid; 

By matrix; 

run; 

OUTPUT FOR TOTAL BACTERIA 

Comprehensive results of the GLM Procedure  

Class Level Information 

Class Levels Values 

temp 3 4 22 35 

day 8 0 2 4 6 8 10 14 18 

matrix 2 1 2 

 

Number of Observations Read 1296 

Number of Observations Used 1296 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 47 1363.787829 29.016762 242.99 <.0001 

Error 1248 149.030219 0.119415     
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Corrected Total 1295 1512.818048       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.901488 3.865844 0.345565 8.938931 

 

Source DF Type I SS Mean Square F Value Pr > F 

temp 2 10.7478745 5.3739372 45.00 <.0001 

day 7 474.7112786 67.8158969 567.90 <.0001 

temp*day 14 5.3144285 0.3796020 3.18 <.0001 

matrix 1 831.7769436 831.7769436 6965.42 <.0001 

temp*matrix 2 1.2194795 0.6097398 5.11 0.0062 

day*matrix 7 35.1235347 5.0176478 42.02 <.0001 

temp*day*matrix 14 4.8942896 0.3495921 2.93 0.0002 

 

Source DF Type III SS Mean Square F Value Pr > F 

temp 2 10.7478745 5.3739372 45.00 <.0001 

day 7 474.7112786 67.8158969 567.90 <.0001 

temp*day 14 5.3144285 0.3796020 3.18 <.0001 

matrix 1 831.7769436 831.7769436 6965.42 <.0001 

temp*matrix 2 1.2194795 0.6097398 5.11 0.0062 

day*matrix 7 35.1235347 5.0176478 42.02 <.0001 

temp*day*matrix 14 4.8942896 0.3495921 2.93 0.0002 

 
Bonferroni (Dunn) t Tests for log10CFUgww – temperature comparisons: 

 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.119415 

Critical Value of t 2.39721 

Minimum Significant Difference 0.0564 

 

Comparisons significant at the 0.05 level are 

indicated by ***. 

temp 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

22 - 4 0.16415 0.10778 0.22051 *** 

22 - 35 0.21288 0.15652 0.26925 *** 

4 - 22 -0.16415 -0.22051 -0.10778 *** 

4 - 35 0.04874 -0.00763 0.10510   

35 - 22 -0.21288 -0.26925 -0.15652 *** 

35 - 4 -0.04874 -0.10510 0.00763   

 

Bonferroni (Dunn) t Tests for log10CFUgww – day comparisons: 

 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.119415 

Critical Value of t 3.13048 

Minimum Significant Difference 0.1202 

 
Comparisons significant at the 0.05 level are indicated by ***. 

day 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

4 - 6 0.08265 -0.03755 0.20284   

4 - 8 0.34148 0.22128 0.46168 *** 

4 - 10 0.73340 0.61320 0.85360 *** 

4 - 2 1.05828 0.93808 1.17848 *** 
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4 - 14 1.06882 0.94862 1.18902 *** 

4 - 18 1.59744 1.47724 1.71764 *** 

4 - 0 1.68871 1.56851 1.80891 *** 

6 - 4 -0.08265 -0.20284 0.03755   

6 - 8 0.25883 0.13863 0.37903 *** 

6 - 10 0.65075 0.53055 0.77095 *** 

6 - 2 0.97563 0.85544 1.09583 *** 

6 - 14 0.98617 0.86597 1.10637 *** 

6 - 18 1.51479 1.39460 1.63499 *** 

6 - 0 1.60606 1.48587 1.72626 *** 

8 - 4 -0.34148 -0.46168 -0.22128 *** 

8 - 6 -0.25883 -0.37903 -0.13863 *** 

8 - 10 0.39192 0.27172 0.51212 *** 

8 - 2 0.71680 0.59660 0.83700 *** 

8 - 14 0.72734 0.60714 0.84754 *** 

8 - 18 1.25596 1.13576 1.37616 *** 

8 - 0 1.34723 1.22703 1.46743 *** 

10 - 4 -0.73340 -0.85360 -0.61320 *** 

10 - 6 -0.65075 -0.77095 -0.53055 *** 

10 - 8 -0.39192 -0.51212 -0.27172 *** 

10 - 2 0.32488 0.20468 0.44508 *** 

10 - 14 0.33542 0.21522 0.45562 *** 

10 - 18 0.86404 0.74384 0.98424 *** 

10 - 0 0.95531 0.83511 1.07551 *** 

2 - 4 -1.05828 -1.17848 -0.93808 *** 

2 - 6 -0.97563 -1.09583 -0.85544 *** 

2 - 8 -0.71680 -0.83700 -0.59660 *** 

2 - 10 -0.32488 -0.44508 -0.20468 *** 

2 - 14 0.01054 -0.10966 0.13074   

2 - 18 0.53916 0.41896 0.65936 *** 

2 - 0 0.63043 0.51023 0.75063 *** 

14 - 4 -1.06882 -1.18902 -0.94862 *** 

14 - 6 -0.98617 -1.10637 -0.86597 *** 

14 - 8 -0.72734 -0.84754 -0.60714 *** 

14 - 10 -0.33542 -0.45562 -0.21522 *** 

14 - 2 -0.01054 -0.13074 0.10966   

14 - 18 0.52862 0.40842 0.64882 *** 

14 - 0 0.61989 0.49969 0.74009 *** 

18 - 4 -1.59744 -1.71764 -1.47724 *** 

18 - 6 -1.51479 -1.63499 -1.39460 *** 

18 - 8 -1.25596 -1.37616 -1.13576 *** 

18 - 10 -0.86404 -0.98424 -0.74384 *** 

18 - 2 -0.53916 -0.65936 -0.41896 *** 

18 - 14 -0.52862 -0.64882 -0.40842 *** 

18 - 0 0.09127 -0.02893 0.21147   

0 - 4 -1.68871 -1.80891 -1.56851 *** 

0 - 6 -1.60606 -1.72626 -1.48587 *** 

0 - 8 -1.34723 -1.46743 -1.22703 *** 

0 - 10 -0.95531 -1.07551 -0.83511 *** 

0 - 2 -0.63043 -0.75063 -0.51023 *** 

0 - 14 -0.61989 -0.74009 -0.49969 *** 

0 - 18 -0.09127 -0.21147 0.02893 
 

 
Bonferroni (Dunn) t Tests for log10CFUgww – matrix comparisons: 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.119415 

Critical Value of t 1.96187 

Minimum Significant Difference 0.0377 
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Comparisons significant at the 0.05 level are 

indicated by ***. 

matrix 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

2 - 1 1.60225 1.56459 1.63992 *** 

1 - 2 -1.60225 -1.63992 -1.56459 *** 

 

Differences between farms –  

Matrix 1 (Fecal) – 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 29 167.6423881 5.7807720 43.00 <.0001 

Error 618 83.0865702 0.1344443     

Corrected Total 647 250.7289583       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.668620 4.505717 0.366666 8.137805 

 

Source DF Type I SS Mean Square F Value Pr > F 

temp 2 9.5775877 4.7887939 35.62 <.0001 

day 7 147.5323754 21.0760536 156.76 <.0001 

Farm 2 1.5272405 0.7636203 5.68 0.0036 

temp*day 14 7.6450235 0.5460731 4.06 <.0001 

temp*Farm 4 1.3601609 0.3400402 2.53 0.0396 

 

Source DF Type III SS Mean Square F Value Pr > F 

temp 2 9.5775877 4.7887939 35.62 <.0001 

day 7 147.5323754 21.0760536 156.76 <.0001 

Farm 2 1.5272405 0.7636203 5.68 0.0036 

temp*day 14 7.6450235 0.5460731 4.06 <.0001 

temp*Farm 4 1.3601609 0.3400402 2.53 0.0396 

 
Bonferroni (Dunn) t Tests for log10CFUgww for differences between farms -  

Matrix = 1 (Fecal) 

Alpha 0.05 

Error Degrees of Freedom 618 

Error Mean Square 0.134444 

Critical Value of t 2.40052 

Minimum Significant Difference 0.0847 

 

Comparisons significant at the 0.05 level 

are indicated by ***. 

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

2 - 3 0.08655 0.00186 0.17125 *** 

2 - 1 0.11390 0.02920 0.19859 *** 

3 - 2 -0.08655 -0.17125 -0.00186 *** 

3 - 1 0.02734 -0.05735 0.11204   

1 - 2 -0.11390 -0.19859 -0.02920 *** 

1 - 3 -0.02734 -0.11204 0.05735   

 

Matrix 2 (Water) – 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 29 368.7338553 12.7149605 127.61 <.0001 
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Error 618 61.5782912 0.0996412     

Corrected Total 647 430.3121465       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.856899 3.240844 0.315660 9.740057 

 

Source DF Type I SS Mean Square F Value Pr > F 

temp 2 2.3897663 1.1948832 11.99 <.0001 

day 7 362.3024380 51.7574911 519.44 <.0001 

Farm 2 0.4302055 0.2151027 2.16 0.1163 

temp*day 14 2.5636946 0.1831210 1.84 0.0304 

temp*Farm 4 1.0477509 0.2619377 2.63 0.0336 

 

Source DF Type III SS Mean Square F Value Pr > F 

temp 2 2.3897663 1.1948832 11.99 <.0001 

day 7 362.3024380 51.7574911 519.44 <.0001 

Farm 2 0.4302055 0.2151027 2.16 0.1163 

temp*day 14 2.5636946 0.1831210 1.84 0.0304 

temp*Farm 4 1.0477509 0.2619377 2.63 0.0336 

 

 

 

 

Bonferroni (Dunn) t Tests for log10CFUgww for differences between farms -  

Matrix = 2 (Water) 

Alpha 0.05 

Error Degrees of Freedom 618 

Error Mean Square 0.099641 

Critical Value of t 2.40052 

Minimum Significant Difference 0.0729 

 
Comparisons significant at the 0.05 level 

are indicated by ***. 

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

3 - 2 0.00525 -0.06767 0.07816   

3 - 1 0.05709 -0.01582 0.13001   

2 - 3 -0.00525 -0.07816 0.06767   

2 - 1 0.05185 -0.02107 0.12476   

1 - 3 -0.05709 -0.13001 0.01582   

1 - 2 -0.05185 -0.12476 0.02107 
 

 

QQ Plots - residuals 
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2) Fecal coliform 

Proc import datafile = "E:\fcsurvival.xlsx" 

out = fcsurvival DBMS = excel2000 REPLACE; 

SHEET = "Sheet1"; 

RANGE = "A1:G"; 

run; 

DATA fcsurvival2; 

set fcsurvival; 

run; 

Proc print data = fcsurvival2; 

run; 

proc glm data = fcsurvival2; 

   class Temp day matrix; 

   model log10CFUgww = Temp|day|matrix; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

proc glm data=fcsurvival2; 

   class Temp day matrix; 

   model log10CFUgww = Temp|day|matrix; 

   means temp day matrix /Bon alpha=.05 cldiff; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

proc glm data=fcsurvival2; 
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   class Temp day Farm; 

   by matrix; 

   model log10CFUgww = temp day farm temp*day temp*farm; 

   means temp day farm /Bon alpha=.05 cldiff; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

symbol1 v=circle l=32  c = black; 

PROC GPLOT data=pred; 

 PLOT resid*ybar/vref=0; 

By matrix; 

run; 

PROC UNIVARIATE DATA=fcsurvival2 normal; 

  QQPLOT resid / normal; 

  VAR resid; 

By matrix; 

run; 

Comprehensive results of the GLM Procedure  

Class Level Information 

Class Levels Values 

temp 3 4 22 35 

day 8 0 2 4 6 8 10 14 18 

matrix 2 1 2 

 

Number of Observations Read 1296 

Number of Observations Used 1296 

 

 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 47 616.1548567 13.1096778 500.63 <.0001 

Error 1248 32.6806888 0.0261864     

Corrected Total 1295 648.8355455       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.949632 2.033307 0.161822 7.958575 

 

Source DF Type I SS Mean Square F Value Pr > F 

temp 2 14.7033712 7.3516856 280.74 <.0001 

day 7 202.9582549 28.9940364 1107.22 <.0001 

temp*day 14 28.1933941 2.0138139 76.90 <.0001 

matrix 1 324.3713763 324.3713763 12387.0 <.0001 

temp*matrix 2 3.3326064 1.6663032 63.63 <.0001 

day*matrix 7 24.5679086 3.5097012 134.03 <.0001 

temp*day*matrix 14 18.0279451 1.2877104 49.17 <.0001 

 

Source DF Type III SS Mean Square F Value Pr > F 

temp 2 14.7033712 7.3516856 280.74 <.0001 

day 7 202.9582549 28.9940364 1107.22 <.0001 

temp*day 14 28.1933941 2.0138139 76.90 <.0001 

matrix 1 324.3713763 324.3713763 12387.0 <.0001 

temp*matrix 2 3.3326064 1.6663032 63.63 <.0001 

day*matrix 7 24.5679086 3.5097012 134.03 <.0001 

temp*day*matrix 14 18.0279451 1.2877104 49.17 <.0001 

 

Bonferroni (Dunn) t Tests for log10CFUgww – temperature comparisons: 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.026186 

Critical Value of t 2.39721 
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Minimum Significant Difference 0.0264 

 

Comparisons significant at the 0.05 level are 

indicated by ***. 

temp 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

22 - 35 0.20857 0.18218 0.23496 *** 

22 - 4 0.24003 0.21364 0.26643 *** 

35 - 22 -0.20857 -0.23496 -0.18218 *** 

35 - 4 0.03146 0.00507 0.05786 *** 

4 - 22 -0.24003 -0.26643 -0.21364 *** 

4 - 35 -0.03146 -0.05786 -0.00507 *** 

 

Bonferroni (Dunn) t Tests for log10CFUgww – day comparisons: 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.026186 

Critical Value of t 3.13048 

Minimum Significant Difference 0.0563 

 

Comparisons significant at the 0.05 level are indicated by ***. 

day 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

4 - 6 0.22942 0.17313 0.28571 *** 

4 - 2 0.39231 0.33602 0.44860 *** 

4 - 8 0.40387 0.34758 0.46016 *** 

4 - 0 0.61578 0.55950 0.67207 *** 

4 - 14 0.78710 0.73081 0.84339 *** 

4 - 10 0.78824 0.73195 0.84453 *** 

4 - 18 1.37998 1.32370 1.43627 *** 

6 - 4 -0.22942 -0.28571 -0.17313 *** 

6 - 2 0.16289 0.10660 0.21917 *** 

6 - 8 0.17445 0.11816 0.23074 *** 

6 - 0 0.38636 0.33008 0.44265 *** 

6 - 14 0.55768 0.50139 0.61397 *** 

6 - 10 0.55882 0.50253 0.61511 *** 

6 - 18 1.15056 1.09428 1.20685 *** 

2 - 4 -0.39231 -0.44860 -0.33602 *** 

2 - 6 -0.16289 -0.21917 -0.10660 *** 

2 - 8 0.01156 -0.04472 0.06785   

2 - 0 0.22347 0.16719 0.27976 *** 

2 - 14 0.39479 0.33851 0.45108 *** 

2 - 10 0.39593 0.33964 0.45222 *** 

2 - 18 0.98767 0.93139 1.04396 *** 

8 - 4 -0.40387 -0.46016 -0.34758 *** 

8 - 6 -0.17445 -0.23074 -0.11816 *** 

8 - 2 -0.01156 -0.06785 0.04472   

8 - 0 0.21191 0.15563 0.26820 *** 

8 - 14 0.38323 0.32694 0.43952 *** 

8 - 10 0.38437 0.32808 0.44065 *** 

8 - 18 0.97611 0.91982 1.03240 *** 

0 - 4 -0.61578 -0.67207 -0.55950 *** 

0 - 6 -0.38636 -0.44265 -0.33008 *** 

0 - 2 -0.22347 -0.27976 -0.16719 *** 

0 - 8 -0.21191 -0.26820 -0.15563 *** 

0 - 14 0.17132 0.11503 0.22760 *** 

0 - 10 0.17246 0.11617 0.22874 *** 
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0 - 18 0.76420 0.70791 0.82049 *** 

14 - 4 -0.78710 -0.84339 -0.73081 *** 

14 - 6 -0.55768 -0.61397 -0.50139 *** 

14 - 2 -0.39479 -0.45108 -0.33851 *** 

14 - 8 -0.38323 -0.43952 -0.32694 *** 

14 - 0 -0.17132 -0.22760 -0.11503 *** 

14 - 10 0.00114 -0.05515 0.05743   

14 - 18 0.59288 0.53660 0.64917 *** 

10 - 4 -0.78824 -0.84453 -0.73195 *** 

10 - 6 -0.55882 -0.61511 -0.50253 *** 

10 - 2 -0.39593 -0.45222 -0.33964 *** 

10 - 8 -0.38437 -0.44065 -0.32808 *** 

10 - 0 -0.17246 -0.22874 -0.11617 *** 

10 - 14 -0.00114 -0.05743 0.05515   

10 - 18 0.59174 0.53546 0.64803 *** 

18 - 4 -1.37998 -1.43627 -1.32370 *** 

18 - 6 -1.15056 -1.20685 -1.09428 *** 

18 - 2 -0.98767 -1.04396 -0.93139 *** 

18 - 8 -0.97611 -1.03240 -0.91982 *** 

18 - 0 -0.76420 -0.82049 -0.70791 *** 

18 - 14 -0.59288 -0.64917 -0.53660 *** 

18 - 10 -0.59174 -0.64803 -0.53546 *** 

 

Bonferroni (Dunn) t Tests for log10CFUgww – matrix comparisons: 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.026186 

Critical Value of t 1.96187 

Minimum Significant Difference 0.0176 

 

Comparisons significant at the 0.05 level are indicated by ***. 

matrix 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

2 - 1 1.000573 0.982936 1.018210 *** 

1 - 2 -1.000573 -1.018210 -0.982936 *** 

 

Differences between farms –  

Matrix 1 (Fecal) – 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 29 143.8955079 4.9619141 191.66 <.0001 

Error 618 15.9994650 0.0258891     

Corrected Total 647 159.8949729       

 

Square Coeff Var Root MSE log10CFUgww Mean 

0.899938 2.157344 0.160901 7.458288 

 

Source DF Type I SS Mean Square F Value Pr > F 

temp 2 5.3184298 2.6592149 102.72 <.0001 

day 7 110.9550319 15.8507188 612.25 <.0001 

Farm 2 0.0529218 0.0264609 1.02 0.3605 

temp*day 14 27.5058209 1.9647015 75.89 <.0001 

temp*Farm 4 0.0633035 0.0158259 0.61 0.6546 

 

Source DF Type III SS Mean Square F Value Pr > F 

temp 2 5.3184298 2.6592149 102.72 <.0001 
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day 7 110.9550319 15.8507188 612.25 <.0001 

Farm 2 0.0529218 0.0264609 1.02 0.3605 

temp*day 14 27.5058209 1.9647015 75.89 <.0001 

temp*Farm 4 0.0633035 0.0158259 0.61 0.6546 

 

Bonferroni (Dunn) t Tests for log10CFUgww for differences between farms -  

Matrix = 1 (Fecal) 

 

Alpha 0.05 

Error Degrees of Freedom 618 

Error Mean Square 0.025889 

Critical Value of t 2.40052 

Minimum Significant Difference 0.0372 

 

Comparisons significant at the 0.05 level 

are indicated by ***. 

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

1 - 3 0.01768 -0.01949 0.05485   

1 - 2 0.02038 -0.01679 0.05754   

3 - 1 -0.01768 -0.05485 0.01949   

3 - 2 0.00270 -0.03447 0.03986   

2 - 1 -0.02038 -0.05754 0.01679   

2 - 3 -0.00270 -0.03986 0.03447   

Matrix 2 (Water) – 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 29 148.0750432 5.1060360 191.31 <.0001 

Error 618 16.4941531 0.0266896     

Corrected Total 647 164.5691963       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.899774 1.931341 0.163369 8.458861 

 

Source DF Type I SS Mean Square F Value Pr > F 

temp 2 12.7175478 6.3587739 238.25 <.0001 

day 7 116.5711317 16.6530188 623.95 <.0001 

Farm 2 0.0162610 0.0081305 0.30 0.7375 

temp*day 14 18.7155183 1.3368227 50.09 <.0001 

temp*Farm 4 0.0545843 0.0136461 0.51 0.7275 

 

Source DF Type III SS Mean Square F Value Pr > F 

temp 2 12.7175478 6.3587739 238.25 <.0001 

day 7 116.5711317 16.6530188 623.95 <.0001 

Farm 2 0.0162610 0.0081305 0.30 0.7375 

temp*day 14 18.7155183 1.3368227 50.09 <.0001 

temp*Farm 4 0.0545843 0.0136461 0.51 0.7275 

 

Bonferroni (Dunn) t Tests for log10CFUgww for differences between farms -  

Matrix = 2 (Water) 

Alpha 0.05 

Error Degrees of Freedom 618 

Error Mean Square 0.02669 

Critical Value of t 2.40052 

Minimum Significant Difference 0.0377 
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Comparisons significant at the 0.05 level 

are indicated by ***. 

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

3 - 2 0.00519 -0.03254 0.04293   

3 - 1 0.01222 -0.02551 0.04996   

2 - 3 -0.00519 -0.04293 0.03254   

2 - 1 0.00703 -0.03071 0.04477   

1 - 3 -0.01222 -0.04996 0.02551   

1 - 2 -0.00703 -0.04477 0.03071 
 

 

 

QQ Plots – residuals 

 
 

 
 

3) E. coli 

Proc import datafile = "E:\ecsurvival.xlsx" 

out = ecsurvival DBMS = excel2000 REPLACE; 

SHEET = "Sheet1"; 
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RANGE = "A1:G"; 

run; 

DATA ecsurvival2; 

set ecsurvival; 

run; 

Proc print data = ecsurvival2; 

run; 

proc glm data = ecsurvival2; 

   class Temperature Day Matrix; 

   model log10CFUgww = Temperature|Day|Matrix; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

proc glm data=ecsurvival2; 

   class Temperature Day Matrix; 

   model log10CFUgww = Temperature|Day|Matrix; 

   means Temperature Day Matrix /Bon alpha=.05 cldiff; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

proc glm data=ecsurvival2; 

   class Temperature Day Farm; 

   by matrix; 

   model log10CFUgww = Temperature Day Farm Temperature*Day Temperature*Farm; 

   means Temperature Day Farm /Bon alpha=.05 cldiff; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

symbol1 v=circle l=32  c = black; 

PROC GPLOT data=pred; 

 PLOT resid*ybar/vref=0; 

By matrix; 

run; 

PROC UNIVARIATE DATA=ecsurvival2 normal; 

  QQPLOT resid / normal; 

  VAR resid; 

By matrix; 

run; 

 

Comprehensive results of the GLM Procedure  

Class Level Information 

Class Levels Values 

Temperature 3 4 22 35 

Day 8 0 2 4 6 8 10 14 18 

Matrix 2 1 2 

 

Number of Observations Read 1296 

Number of Observations Used 1296 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 47 735.2120750 15.6428101 725.83 <.0001 

Error 1248 26.8966026 0.0215518     

Corrected Total 1295 762.1086775       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.964708 1.876870 0.146805 7.821808 

 

Source DF Type I SS Mean Square F Value Pr > F 

Temperature 2 22.1789312 11.0894656 514.55 <.0001 

Day 7 318.0227172 45.4318167 2108.03 <.0001 

Temperature*Day 14 33.1878412 2.3705601 109.99 <.0001 

Matrix 1 329.8102331 329.8102331 15303.2 <.0001 

Temperature*Matrix 2 2.3068450 1.1534225 53.52 <.0001 
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Day*Matrix 7 16.1075241 2.3010749 106.77 <.0001 

Temperatu*Day*Matrix 14 13.5979832 0.9712845 45.07 <.0001 

 

Source DF Type III SS Mean Square F Value Pr > F 

Temperature 2 22.1789312 11.0894656 514.55 <.0001 

Day 7 318.0227172 45.4318167 2108.03 <.0001 

Temperature*Day 14 33.1878412 2.3705601 109.99 <.0001 

Matrix 1 329.8102331 329.8102331 15303.2 <.0001 

Temperature*Matrix 2 2.3068450 1.1534225 53.52 <.0001 

Day*Matrix 7 16.1075241 2.3010749 106.77 <.0001 

Temperatu*Day*Matrix 14 13.5979832 0.9712845 45.07 <.0001 

 

Bonferroni (Dunn) t Tests for log10CFUgww – temperature comparisons: 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.021552 

Critical Value of t 2.39721 

Minimum Significant Difference 0.0239 

 

Comparisons significant at the 0.05 level are indicated by ***. 

Temperature 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

22 - 35 0.223555 0.199609 0.247500 *** 

22 - 4 0.310593 0.286648 0.334538 *** 

35 - 22 -0.223555 -0.247500 -0.199609 *** 

35 - 4 0.087038 0.063093 0.110984 *** 

4 - 22 -0.310593 -0.334538 -0.286648 *** 

4 - 35 -0.087038 -0.110984 -0.063093 *** 

Bonferroni (Dunn) t Tests for log10CFUgww – day comparisons: 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.021552 

Critical Value of t 3.13048 

Minimum Significant Difference 0.0511 

 

Comparisons significant at the 0.05 level are indicated by ***. 

Day 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

4 - 6 0.43691 0.38585 0.48798 *** 

4 - 2 0.59133 0.54027 0.64239 *** 

4 - 8 0.72025 0.66918 0.77131 *** 

4 - 0 0.90827 0.85721 0.95934 *** 

4 - 10 1.02735 0.97628 1.07841 *** 

4 - 14 1.46459 1.41353 1.51566 *** 

4 - 18 1.60755 1.55649 1.65861 *** 

6 - 4 -0.43691 -0.48798 -0.38585 *** 

6 - 2 0.15442 0.10335 0.20548 *** 

6 - 8 0.28333 0.23227 0.33440 *** 

6 - 0 0.47136 0.42030 0.52242 *** 

6 - 10 0.59043 0.53937 0.64150 *** 

6 - 14 1.02768 0.97662 1.07874 *** 

6 - 18 1.17064 1.11957 1.22170 *** 

2 - 4 -0.59133 -0.64239 -0.54027 *** 

2 - 6 -0.15442 -0.20548 -0.10335 *** 

2 - 8 0.12892 0.07785 0.17998 *** 

2 - 0 0.31694 0.26588 0.36801 *** 

2 - 10 0.43602 0.38495 0.48708 *** 
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2 - 14 0.87326 0.82220 0.92433 *** 

2 - 18 1.01622 0.96516 1.06728 *** 

8 - 4 -0.72025 -0.77131 -0.66918 *** 

8 - 6 -0.28333 -0.33440 -0.23227 *** 

8 - 2 -0.12892 -0.17998 -0.07785 *** 

8 - 0 0.18803 0.13696 0.23909 *** 

8 - 10 0.30710 0.25604 0.35816 *** 

8 - 14 0.74435 0.69328 0.79541 *** 

8 - 18 0.88730 0.83624 0.93837 *** 

0 - 4 -0.90827 -0.95934 -0.85721 *** 

0 - 6 -0.47136 -0.52242 -0.42030 *** 

0 - 2 -0.31694 -0.36801 -0.26588 *** 

0 - 8 -0.18803 -0.23909 -0.13696 *** 

0 - 10 0.11907 0.06801 0.17014 *** 

0 - 14 0.55632 0.50526 0.60738 *** 

0 - 18 0.69928 0.64821 0.75034 *** 

10 - 4 -1.02735 -1.07841 -0.97628 *** 

10 - 6 -0.59043 -0.64150 -0.53937 *** 

10 - 2 -0.43602 -0.48708 -0.38495 *** 

10 - 8 -0.30710 -0.35816 -0.25604 *** 

10 - 0 -0.11907 -0.17014 -0.06801 *** 

10 - 14 0.43725 0.38618 0.48831 *** 

10 - 18 0.58020 0.52914 0.63127 *** 

14 - 4 -1.46459 -1.51566 -1.41353 *** 

14 - 6 -1.02768 -1.07874 -0.97662 *** 

14 - 2 -0.87326 -0.92433 -0.82220 *** 

14 - 8 -0.74435 -0.79541 -0.69328 *** 

14 - 0 -0.55632 -0.60738 -0.50526 *** 

14 - 10 -0.43725 -0.48831 -0.38618 *** 

14 - 18 0.14296 0.09189 0.19402 *** 

18 - 4 -1.60755 -1.65861 -1.55649 *** 

18 - 6 -1.17064 -1.22170 -1.11957 *** 

18 - 2 -1.01622 -1.06728 -0.96516 *** 

18 - 8 -0.88730 -0.93837 -0.83624 *** 

18 - 0 -0.69928 -0.75034 -0.64821 *** 

18 - 10 -0.58020 -0.63127 -0.52914 *** 

18 - 14 -0.14296 -0.19402 -0.09189 *** 

 

Bonferroni (Dunn) t Tests for log10CFUgww – matrix comparisons: 

 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.021552 

Critical Value of t 1.96187 

Minimum Significant Difference 0.016 

 

Comparisons significant at the 0.05 level are indicated by ***. 

Matrix 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

2 - 1 1.008927 0.992926 1.024927 *** 

1 - 2 -1.008927 -1.024927 -0.992926 *** 

 

Differences between farms –  

Matrix 1 (Fecal) – 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 29 178.4433144 6.1532177 253.63 <.0001 
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Error 618 14.9931787 0.0242608     

Corrected Total 647 193.4364932       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.922490 2.128625 0.155759 7.317345 

 

Source DF Type I SS Mean Square F Value Pr > F 

Temperature 2 9.0703841 4.5351921 186.93 <.0001 

Day 7 160.1174236 22.8739177 942.83 <.0001 

Farm 2 0.1245302 0.0622651 2.57 0.0776 

Temperature*Day 14 9.0844117 0.6488866 26.75 <.0001 

Temperature*Farm 4 0.0465648 0.0116412 0.48 0.7506 

 

Source DF Type III SS Mean Square F Value Pr > F 

Temperature 2 9.0703841 4.5351921 186.93 <.0001 

Day 7 160.1174236 22.8739177 942.83 <.0001 

Farm 2 0.1245302 0.0622651 2.57 0.0776 

Temperature*Day 14 9.0844117 0.6488866 26.75 <.0001 

Temperature*Farm 4 0.0465648 0.0116412 0.48 0.7506 

 

Bonferroni (Dunn) t Tests for log10CFUgww for differences between farms -  

Matrix = 1 (Fecal) 

Alpha 0.05 

Error Degrees of Freedom 618 

Error Mean Square 0.024261 

Critical Value of t 2.40052 

Minimum Significant Difference 0.036 

 

Comparisons significant at the 0.05 level 

are indicated by ***. 

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

2 - 3 0.02296 -0.01302 0.05894   

2 - 1 0.03315 -0.00283 0.06912   

3 - 2 -0.02296 -0.05894 0.01302   

3 - 1 0.01018 -0.02579 0.04616   

1 - 2 -0.03315 -0.06912 0.00283   

1 - 3 -0.01018 -0.04616 0.02579 
 

 

Matrix 2 (Water) – 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 29 227.1897793 7.8341303 414.79 <.0001 

Error 618 11.6721719 0.0188870     

Corrected Total 647 238.8619513       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.951134 1.650559 0.137430 8.326272 

 

Source DF Type I SS Mean Square F Value Pr > F 

Temperature 2 15.4153921 7.7076961 408.10 <.0001 

Day 7 174.0128177 24.8589740 1316.19 <.0001 

Farm 2 0.0091746 0.0045873 0.24 0.7844 

Temperature*Day 14 37.7014126 2.6929580 142.58 <.0001 

Temperature*Farm 4 0.0509823 0.0127456 0.67 0.6096 

 

Source DF Type III SS Mean Square F Value Pr > F 



  

119 
 

Temperature 2 15.4153921 7.7076961 408.10 <.0001 

Day 7 174.0128177 24.8589740 1316.19 <.0001 

Farm 2 0.0091746 0.0045873 0.24 0.7844 

Temperature*Day 14 37.7014126 2.6929580 142.58 <.0001 

Temperature*Farm 4 0.0509823 0.0127456 0.67 0.6096 

 

Bonferroni (Dunn) t Tests for log10CFUgww for differences between farms -  

Matrix = 2 (Water) 

Alpha 0.05 

Error Degrees of Freedom 618 

Error Mean Square 0.018887 

Critical Value of t 2.40052 

Minimum Significant Difference 0.0317 

 

Comparisons significant at the 0.05 level are 

indicated by ***. 

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

3 - 1 0.006337 -0.025408 0.038082   

3 - 2 0.008965 -0.022780 0.040709   

1 - 3 -0.006337 -0.038082 0.025408   

1 - 2 0.002627 -0.029118 0.034372   

2 - 3 -0.008965 -0.040709 0.022780   

2 - 1 -0.002627 -0.034372 0.029118   

 

 

 

 

QQ Plots - residuals 
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4) Enterococci 

Proc import datafile = "E:\entsurvival.xlsx" 

out = entsurvival DBMS = excel2000 REPLACE; 

SHEET = "Sheet1"; 

RANGE = "A1:G"; 

run; 

DATA entsurvival2; 

set entsurvival; 

run; 

proc glm data = entsurvival2; 

   class Temperature Day Matrix; 

   model log10CFUgww = Temperature|Day|Matrix; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

proc glm data=entsurvival2; 

   class Temperature Day Matrix; 

   model log10CFUgww = Temperature|Day|Matrix; 

   means Temperature Day Matrix /Bon alpha=.05 cldiff; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

proc glm data=entsurvival2; 

   class Temperature Day Farm; 

   by matrix; 

   model log10CFUgww = Temperature Day Farm Temperature*Day Temperature*Farm; 

   means Temperature Day Farm /Bon alpha=.05 cldiff; 

  OUTPUT out=pred p=ybar r=resid; 

run; 

symbol1 v=circle l=32  c = black; 

PROC GPLOT data=pred; 

 PLOT resid*ybar/vref=0; 

By matrix; 

run; 

PROC UNIVARIATE DATA=entsurvival2 normal; 

  QQPLOT resid / normal; 

  VAR resid; 

By matrix; 

run; 

Comprehensive results of the GLM Procedure  

Class Level Information 

Class Levels Values 
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Temperature 3 4 22 35 

Day 8 0 2 4 6 8 10 14 18 

Matrix 2 1 2 

 

Number of Observations Read 1296 

Number of Observations Used 1296 

 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 47 1605.636924 34.162488 865.56 <.0001 

Error 1248 49.256707 0.039469     

Corrected Total 1295 1654.893631       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.970236 2.699892 0.198667 7.358325 

 

Source DF Type I SS Mean Square F Value Pr > F 

Temperature 2 14.2506414 7.1253207 180.53 <.0001 

Day 7 741.0996953 105.8713850 2682.43 <.0001 

Temperature*Day 14 11.3115200 0.8079657 20.47 <.0001 

Matrix 1 551.6360772 551.6360772 13976.6 <.0001 

Temperature*Matrix 2 3.6550282 1.8275141 46.30 <.0001 

Day*Matrix 7 275.3839328 39.3405618 996.76 <.0001 

Temperatu*Day*Matrix 14 8.3000288 0.5928592 15.02 <.0001 

 

Source DF Type III SS Mean Square F Value Pr > F 

Temperature 2 14.2506414 7.1253207 180.53 <.0001 

Day 7 741.0996953 105.8713850 2682.43 <.0001 

Temperature*Day 14 11.3115200 0.8079657 20.47 <.0001 

Matrix 1 551.6360772 551.6360772 13976.6 <.0001 

Temperature*Matrix 2 3.6550282 1.8275141 46.30 <.0001 

Day*Matrix 7 275.3839328 39.3405618 996.76 <.0001 

Temperatu*Day*Matrix 14 8.3000288 0.5928592 15.02 <.0001 

Bonferroni (Dunn) t Tests for log10CFUgww – temperature comparisons: 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.039469 

Critical Value of t 2.39721 

Minimum Significant Difference 0.0324 

 

Comparisons significant at the 0.05 level are 

indicated by ***. 

Temperature 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

22 - 35 0.19165 0.15924 0.22405 *** 

22 - 4 0.24393 0.21152 0.27633 *** 

35 - 22 -0.19165 -0.22405 -0.15924 *** 

35 - 4 0.05228 0.01988 0.08469 *** 

4 - 22 -0.24393 -0.27633 -0.21152 *** 

4 - 35 -0.05228 -0.08469 -0.01988 *** 

Bonferroni (Dunn) t Tests for log10CFUgww – day comparisons: 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.039469 

Critical Value of t 3.13048 

Minimum Significant Difference 0.0691 

 

Comparisons significant at the 0.05 level are indicated by ***. 



  

122 
 

Day 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

4 - 6 0.00691 -0.06219 0.07601   

4 - 8 0.22146 0.15236 0.29056 *** 

4 - 2 0.62268 0.55357 0.69178 *** 

4 - 10 0.89021 0.82111 0.95932 *** 

4 - 14 1.54385 1.47475 1.61295 *** 

4 - 0 1.70369 1.63459 1.77279 *** 

4 - 18 2.07118 2.00207 2.14028 *** 

6 - 4 -0.00691 -0.07601 0.06219   

6 - 8 0.21455 0.14545 0.28365 *** 

6 - 2 0.61577 0.54666 0.68487 *** 

6 - 10 0.88330 0.81420 0.95241 *** 

6 - 14 1.53694 1.46784 1.60604 *** 

6 - 0 1.69678 1.62768 1.76588 *** 

6 - 18 2.06427 1.99516 2.13337 *** 

8 - 4 -0.22146 -0.29056 -0.15236 *** 

8 - 6 -0.21455 -0.28365 -0.14545 *** 

8 - 2 0.40122 0.33211 0.47032 *** 

8 - 10 0.66875 0.59965 0.73786 *** 

8 - 14 1.32239 1.25329 1.39149 *** 

8 - 0 1.48223 1.41313 1.55133 *** 

8 - 18 1.84972 1.78061 1.91882 *** 

2 - 4 -0.62268 -0.69178 -0.55357 *** 

2 - 6 -0.61577 -0.68487 -0.54666 *** 

2 - 8 -0.40122 -0.47032 -0.33211 *** 

2 - 10 0.26754 0.19844 0.33664 *** 

2 - 14 0.92117 0.85207 0.99028 *** 

2 - 0 1.08101 1.01191 1.15011 *** 

2 - 18 1.44850 1.37940 1.51760 *** 

10 - 4 -0.89021 -0.95932 -0.82111 *** 

10 - 6 -0.88330 -0.95241 -0.81420 *** 

10 - 8 -0.66875 -0.73786 -0.59965 *** 

10 - 2 -0.26754 -0.33664 -0.19844 *** 

10 - 14 0.65364 0.58453 0.72274 *** 

10 - 0 0.81347 0.74437 0.88258 *** 

10 - 18 1.18096 1.11186 1.25006 *** 

14 - 4 -1.54385 -1.61295 -1.47475 *** 

14 - 6 -1.53694 -1.60604 -1.46784 *** 

14 - 8 -1.32239 -1.39149 -1.25329 *** 

14 - 2 -0.92117 -0.99028 -0.85207 *** 

14 - 10 -0.65364 -0.72274 -0.58453 *** 

14 - 0 0.15984 0.09074 0.22894 *** 

14 - 18 0.52733 0.45822 0.59643 *** 

0 - 4 -1.70369 -1.77279 -1.63459 *** 

0 - 6 -1.69678 -1.76588 -1.62768 *** 

0 - 8 -1.48223 -1.55133 -1.41313 *** 

0 - 2 -1.08101 -1.15011 -1.01191 *** 

0 - 10 -0.81347 -0.88258 -0.74437 *** 

0 - 14 -0.15984 -0.22894 -0.09074 *** 

0 - 18 0.36749 0.29838 0.43659 *** 

18 - 4 -2.07118 -2.14028 -2.00207 *** 

18 - 6 -2.06427 -2.13337 -1.99516 *** 

18 - 8 -1.84972 -1.91882 -1.78061 *** 

18 - 2 -1.44850 -1.51760 -1.37940 *** 

18 - 10 -1.18096 -1.25006 -1.11186 *** 

18 - 14 -0.52733 -0.59643 -0.45822 *** 

18 - 0 -0.36749 -0.43659 -0.29838 *** 
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Bonferroni (Dunn) t Tests for log10CFUgww – matrix comparisons: 

Alpha 0.05 

Error Degrees of Freedom 1248 

Error Mean Square 0.039469 

Critical Value of t 1.96187 

Minimum Significant Difference 0.0217 

 

Comparisons significant at the 0.05 level are 

indicated by ***. 

Matrix 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

2 - 1 1.30483 1.28318 1.32648 *** 

1 - 2 -1.30483 -1.32648 -1.28318 *** 

 

Differences between farms –  

Matrix 1 (Fecal) – 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 29 873.7603552 30.1296674 629.78 <.0001 

Error 618 29.5660019 0.0478414     

Corrected Total 647 903.3263571       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.967270 3.261702 0.218727 6.705910 

 

Source DF Type I SS Mean Square F Value Pr > F 

Temperature 2 14.6706696 7.3353348 153.33 <.0001 

Day 7 844.7651416 120.6807345 2522.52 <.0001 

Farm 2 0.7627828 0.3813914 7.97 0.0004 

Temperature*Day 14 13.5011540 0.9643681 20.16 <.0001 

Temperature*Farm 4 0.0606071 0.0151518 0.32 0.8669 

 

Source DF Type III SS Mean Square F Value Pr > F 

Temperature 2 14.6706696 7.3353348 153.33 <.0001 

Day 7 844.7651416 120.6807345 2522.52 <.0001 

Farm 2 0.7627828 0.3813914 7.97 0.0004 

Temperature*Day 14 13.5011540 0.9643681 20.16 <.0001 

Temperature*Farm 4 0.0606071 0.0151518 0.32 0.8669 

 

Bonferroni (Dunn) t Tests for log10CFUgww for differences between farms -  

Matrix = 1 (Fecal) 

Alpha 0.05 

Error Degrees of Freedom 618 

Error Mean Square 0.047841 

Critical Value of t 2.40052 

Minimum Significant Difference 0.0505 

 

Comparisons significant at the 0.05 level 

are indicated by ***. 

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

2 - 3 0.00538 -0.04514 0.05590   

2 - 1 0.07532 0.02480 0.12585 *** 

3 - 2 -0.00538 -0.05590 0.04514   
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3 - 1 0.06994 0.01942 0.12046 *** 

1 - 2 -0.07532 -0.12585 -0.02480 *** 

1 - 3 -0.06994 -0.12046 -0.01942 *** 

 

Matrix 2 (Water) – 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 29 181.0855932 6.2443308 204.77 <.0001 

Error 618 18.8456030 0.0304945     

Corrected Total 647 199.9311962       

 

R-Square Coeff Var Root MSE log10CFUgww Mean 

0.905740 2.179908 0.174627 8.010740 

 

Source DF Type I SS Mean Square F Value Pr > F 

Temperature 2 3.2350001 1.6175000 53.04 <.0001 

Day 7 171.7184865 24.5312124 804.45 <.0001 

Farm 2 0.0168146 0.0084073 0.28 0.7591 

Temperature*Day 14 6.1103947 0.4364568 14.31 <.0001 

Temperature*Farm 4 0.0048974 0.0012243 0.04 0.9969 

 

Source DF Type III SS Mean Square F Value Pr > F 

Temperature 2 3.2350001 1.6175000 53.04 <.0001 

Day 7 171.7184865 24.5312124 804.45 <.0001 

Farm 2 0.0168146 0.0084073 0.28 0.7591 

Temperature*Day 14 6.1103947 0.4364568 14.31 <.0001 

Temperature*Farm 4 0.0048974 0.0012243 0.04 0.9969 

 

Bonferroni (Dunn) t Tests for log10CFUgww for differences between farms -  

Matrix = 2 (Water) 

Alpha 0.05 

Error Degrees of Freedom 618 

Error Mean Square 0.030495 

Critical Value of t 2.40052 

Minimum Significant Difference 0.0403 

 

Comparisons significant at the 0.05 level 

are indicated by ***. 

Farm 

Comparison 

Difference 

Between 

Means 

Simultaneous 95% Confidence 

Limits 

  

1 - 3 0.00584 -0.03450 0.04618   

1 - 2 0.01247 -0.02787 0.05281   

3 - 1 -0.00584 -0.04618 0.03450   

3 - 2 0.00663 -0.03371 0.04696   

2 - 1 -0.01247 -0.05281 0.02787   

2 - 3 -0.00663 -0.04696 0.03371   

 

QQ Plots - residuals 
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