
East Tennessee State University East Tennessee State University 

Digital Commons @ East Digital Commons @ East 

Tennessee State University Tennessee State University 

Electronic Theses and Dissertations Student Works 

5-2018 

Identification of “fhuA” Like Genes in Rhizobium leguminosarum Identification of “fhuA” Like Genes in Rhizobium leguminosarum 

ATCC 14479 and its Role in Vicibactin Transport and Investigation ATCC 14479 and its Role in Vicibactin Transport and Investigation 

of Heme Bound Iron Uptake System of Heme Bound Iron Uptake System 

Sushant Khanal 

Follow this and additional works at: https://dc.etsu.edu/etd 

 Part of the Biology Commons, and the Other Microbiology Commons 

Recommended Citation Recommended Citation 
Khanal, Sushant, "Identification of “fhuA” Like Genes in Rhizobium leguminosarum ATCC 14479 and its 
Role in Vicibactin Transport and Investigation of Heme Bound Iron Uptake System" (2018). Electronic 
Theses and Dissertations. Paper 3354. https://dc.etsu.edu/etd/3354 

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @ 
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an 
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please 
contact digilib@etsu.edu. 

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=dc.etsu.edu%2Fetd%2F3354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/54?utm_source=dc.etsu.edu%2Fetd%2F3354&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


Identification of “fhuA” Like Genes in Rhizobium leguminosarum ATCC 14479 and Its Role in 

Vicibactin Transport and Investigation of Heme Bound Iron Uptake System 

 

_____________________ 

 

 

A thesis 

 

presented to 

 

the faculty of the Department of Health Sciences 

 

East Tennessee State University 

 

 

In partial fulfillment 

 

of the requirements for the degree 

 

Master of Science in Biology 

 

_____________________ 

 

 

by 

 

Sushant Khanal 

 

May 2018 

 

_____________________ 

 

 

Dr. Ranjan Chakraborty, Chair 

 

Dr. Christopher Pritchett 

 

Dr. Cecilia A. McIntosh 

 

Keywords: Rhizobium leguminosarum ATCC 14479, fhuA, vicibactin, heme, iron uptake 

 

 

 



2 

 

ABSTRACT 

Identification of “fhuA” Like Genes in Rhizobium leguminosarum ATCC 14479, and Its Role in 

Vicibactin Transport and Investigation of Heme Bound Iron Uptake System 

by 

Sushant Khanal 

Siderophores are low molecular weight, iron chelating compounds produced by many bacteria 

for uptake of iron in case of iron scarcity. Vicibactin is a trihydroxamate type siderophore 

produced by Rhizobium leguminosarum bv. trifolii ATCC 14479. This work focuses on 

identifying an outer membrane receptor involved in the transport of vicibactin. We have 

confirmed the presence of the putative fhuA gene in R. leguminosarum bv. trifolii ATCC 14479. 

This bacteria shows mutualistic symbiosis with the red clover plant Trifoliium prantense. 

Leghemoglobin, with its cofactor heme is present in the plant root nodules that surrounds the 

infecting organism present in the nodules. This work attempts to elucidate the ability of 

Rhizobium leguminosarum bv. trifolii ATCC 14479 to utilize heme-bound iron and genes 

involved in the transport. We have also elucidated the role of energy transducing proteins TonB-

ExbB-ExbD on the heme-bound iron uptake system. 
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 CHAPTER 1 

 

INTRODUCTION 

Rhizobium leguminosarum 

 

Rhizobium leguminosarum is a gram-negative bacillus. It is an aerobic and motile soil 

bacterium. It dwells in a symbiotic relationship with legume plants and is present in legume plant 

roots. The legume roots get infected by these bacteria, that results in the formation of root 

nodules. This symbiosis facilitates the host plant and the bacteria by providing essential nutrients 

to each other for survival. The plant provides a habitat and energy for the bacteria to survive. The 

bacterium provides nitrogen to the plant by performing nitrogen fixation with a process of 

converting atmospheric nitrogen into nitrogen compounds (Postgate 1998). Nitrogen compounds 

are essential for growth and development of the plants (Postgate 1998). The abundance of these 

compounds helps the legume plants to compete with other plants in their surroundings (Postgate 

1998). When these legume plants are dead and decayed, the nitrogen is then released into the soil 

and is available to other plants, which when accumulated in the soil helps to increase the soil 

fertility (Postgate 1998). Crop rotation can also be done growing legume plants and non-legume 

plants in turns to increase the soil fertility (Postgate 1998).  

Rhizobia are present in free-living form in the soil and they infect legume plant roots. 

There is an involvement of various flavonoid inducers in this infection process (Peters et al. 

1986). The infection of the plant roots is a process which involves quorum sensing mediated via 

acyl homoserine lactones (AHLs) (Walker and Downie 2000).  The symbiosis helps bacteria in 

various ways viz. growth and development, survival and association with the host (McAnulla et 

al. 2007). Quorum sensing might also be a factor for successful nodule formation (Walker and 
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Downie 2000). This symbiotic relationship between the plant and the bacteria is important for 

both of them to acquire proper nutrients, nitrogen, for the plant; and sugar, minerals and amino 

acids for the bacteria (Postgate 1998). 

Rhizobium leguminosarum biovar trifolii ATCC 14479 

 

There are two commonly studied biovars of R. leguminosarum; the R. 

leguminosarum biovar trifolii, and R. leguminosarum biovar viciae (Ann and Kim 1998). Both 

share some common characteristics such as symbiotic nitrogen fixation, root infection and root 

nodule formation. The strain used in this research is R. leguminosarum biovar trifolii ATCC 

14479 (R. leguminosarum ATCC) and is the most effective for nodule formation in roots of the 

red clover, Trifoliium prantese (Ramirez-Bahena et al. 2008). This strain is also known as strains 

USDA 2046, DSM 6040 and R. trifolii Danegeard 1926 (Ramirez-Bahena et al. 2008). 

R. leguminosarum ATCC produces a hydroxamate type siderophore, vicibactin, for iron 

chelation and uptake (Wright et al. 2013). The transport of iron via outer membrane receptors 

requires energy; however, there is no energy source available in the outer membrane. The inner 

membrane protein complex TonB-ExbB-ExbD is presumably responsible for energy 

transduction during the vicibactin transport in R. leguminosarum ATCC (Hill 2014; Barisic 

2015). 

Iron and Its Importance 

 

Iron is one of the most common and abundant elements on earth and is also one of the 

most important elements for all the living beings, ranging from highly developed multicellular 

organisms such as humans to unicellular microorganisms such as bacteria. An overdose of iron 
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in humans causes hemochromatosis, causes damage to lipids, proteins and DNA, damages 

digestive cells inside the human gut, damages cells in the heart, liver and anywhere else there is 

excess iron leading to shock, organ failure, coma, and even death (CDC 1998). The 

unavailability of iron in humans leads to anemia, which leads to insufficient amount of 

hemoglobin in the blood that makes children and adult women susceptible to various diseases 

(CDC 1998). 

Lack of iron in bacteria affects the bacterial cell composition causing the inhibition of 

growth and changes the cell morphology in bacteria. It also decreases the rate of RNA and DNA 

synthesis (Messenger and Barclay 1983). Promotion of sporulation in bacteria is also dependent 

on sufficient iron concentration and sufficient siderophore production (Grandchamp et al. 2017). 

It also affects the intermediary metabolism in bacterial cells as they need iron for the 

tricarboxylic acid cycle (TCA cycle), electron transport, oxidative phosphorylation, nitrogen 

fixation and aromatic compound biosynthesis (Messenger and Barclay 1983). Metabolic 

products in various bacteria such as cytochromes, pigments (e.g. bioluminescent Pseudomonas 

aeruginosa), porphyrins, vitamins, siderophores, toxins (e.g. diphtheria toxin produced by 

Corynebacterium diphtheria) and antibiotics are either upregulated or downregulated by the 

amount of iron available in the cell (Messenger and Barclay 1983; Kunkle et al. 2003; Hannauer 

et al. 2010). Protein and enzyme synthesis are also dependent on available iron concentration 

(Messenger and Barclay 1983). The proteins/enzymes that are dependent on iron are peroxidases, 

ribonucleotide reductase, glutamate synthase, superoxide dismutase, ferritin, nitrogenase, 

ferridoxins, flavoproteins, hydrogenase and many others (Messenger and Barclay 1983). 
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Availability of Iron in the Environment and Iron Scavenging Systems in Bacteria 

 

Iron is the fourth most abundant element in Earth’s crust after oxygen, silicate, and 

aluminum (Rudnick et al. 2003). Iron has a wide range of oxidation states from −2 to +7 similar 

to other transition metals such as ruthenium and osmium in group 8 of IUPAC (International 

Union of Pure and Applied Chemistry) nomenclature, although +2 (ferrous iron) and +3 (ferric 

iron) are the most common forms (Meija 2016). It is very reactive in the presence of water and 

oxygen at physiological pH (Sund 1980). The formation of polymeric iron hydroxides occurs in 

such environment, which is commonly known as rust (Sund 1980). Soluble iron also reacts with 

sulfides, chlorides and oxalates to make insoluble complexes, causing depletion of soluble iron 

in the environment. Hence, the soluble iron concentration in the environment is calculated to be 

approx. 10
-18 

M which is much lower than what a bacterium has inside the cell (10
-6

 M). This 

intercellular iron concentration in a bacterial cell should be maintained to survive (Andrews et al. 

2003). Therefore, bacteria, fungi, and plants produce iron chelating compounds known as 

siderophores. These are iron scavenging compounds, and they form complexes with the ferric 

iron in the environment, that is transported into the cell via complex mechanism (Messenger and 

Barclay 1983). 

Some other sources of iron for pathogenic and some nonpathogenic bacteria are hemin, 

hemoglobin, ferritin, lactoferrin, and transferrin (Noya et al. 1997). These molecules contain 

heme as a cofactor. Heme contains a central iron molecule in its porphyrin ring structure.  Many 

bacteria uptake the heme-bound iron by either breaking down the heme-containing compound 

outside the cell using hemophores or taking in the whole compound inside and breaking it down 

within the cell (Tong and Guo 2009). The HasA uptake system in Ps. aeruginosa involves 
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hemophore mediated heme uptake; the phuSTUVW system in the same organism can uptake 

heme without using hemophores (Létoffé et al. 1996; Ochsner et al. 2000). 

Siderophore Mediated Iron Transport 

 

Siderophores are compounds that are produced by bacteria for iron uptake. These 

compounds chelate and transport iron from iron complexes. Siderophores are low molecular 

weight compounds (< 2 kDa) and have the strongest association constant with ferric iron 

(Loomis and Raymond 1991). The siderophore “enterobactin” in Escherichia coli has an 

association constant of 10
52

 with ferric iron (Loomis and Raymond 1991). The synthesis of 

siderophore starts when the amount of ferrous iron inside the cell is less than 10
-6

 M, which is a 

bacterial threshold (Miethke and Marahiel 2007). More than 90 genes that are involved in 

biosynthesis and uptake of siderophore are controlled by Fur (Ferric uptake regulator) repressor 

(Wexler et al. 2003). It is hence, considered as a global iron regulator protein. The DNA binding 

site for Fur is known as the Fur box, and it regulates siderophore synthesis and transport genes 

using Fe
2+

 and Mn
2+

 as corepressors (Wexler et al. 2003). However, in gram-positive bacteria 

such as C. diphtheria, the DtxR family of proteins replaces Fur and controls iron regulation 

(Kunkle et al. 2003).  

In some gram negative bacteria, other regulator proteins replace the Fur proteins. For 

example, Rhizobial iron regulator (RirA) controls iron regulation and uptake in the case of 

nitrogen-fixing Rhizobium (Rudolph et al. 2006). Only alphaproteobacteria show the presence of 

a RirA homolog that has no sequence similarity with Fur proteins (Rudolph et al. 2006). R. 

leguminosarum being in alphaproteobacteria class also shows the presence of RirA proteins that 

belong to the Rrf2 family of transcription regulators, and it controls the synthesis, uptake, and 
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regulation of the siderophore vicibactin that is produced by R. leguminosarum (Rudolph et al. 

2006). 

Production of siderophore is found even in plants, though a small number of plants show 

such character (e.g. mugineic acid produced by Graminaceae) (Loper and Buyer 1991; Miethke 

and Marahiel 2007). The plants in symbiosis with siderophore producing rhizobacteria have also 

been found to yield more food products than plants that do not associate with rhizobacteria. 

Pseudomonas fluorescens-putida produces siderophore that helps its host plant’s growth and 

development and increases the host plant food product yield up to 144% (Kloepper et al. 1980). 

Graminaceous plants (grasses, cereals, and rice) are among the few plants that are 

capable of producing siderophores (Sugiura and Nomoto 1984). These plants secrete 

phytosiderophores into the soil. The secretion is carried out when the soil is calcareous, that 

means there is a lot of precipitation of calcium carbonate. Maize plants carry out the process of 

siderophore uptake by using plant roots (Bar-Ness et al. 1992). They also steal the siderophore 

produced by other microorganisms such as rhizospores (Bar-Ness et al. 1992). As stated earlier, 

the soil has a lot of free iron, that complex into oxides because of the presence of oxygen and 

suitable pH. Deoxymugineic acid is an example of a siderophore that is produced by the plant for 

transport of iron in case of iron unavailability (Sugiura and Nomoto 1984). 

Types of Siderophores 

 

Bacteria produce three main types of siderophores namely catecholates (catecholates and 

phenolates), hydroxymates, and carboxylates (Miethke and Marahiel 2007). There is also the 

presence of a mixed type of siderophore (Miethke and Marahiel 2007). Siderophores are 

classified based on their ability to associate with ferric iron and also their chemical properties. 

The pKa value also differentiates the types of siderophores, e.g. hydroxamate types have a pKa 
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value of 8-9 (Miethke and Marahiel 2007). The stability of the siderophore and its affinity with 

ferric iron also define its type (Drechsel and Jung 1988). 

Catecholate type siderophores (e.g. enterobactin) have the strongest scavenging ability 

and are known to be the most efficient iron chelator compared to any other types of siderophore 

(Drechsel and Jung 1988). The association constant (Ka) between ferric iron and enterobactin is 

10
52 

M
-1 

(Loomis and Raymond 1991). Carboxylate type siderophores are produced in extremely 

acidic conditions which makes them unique. They are not as effective chelators as catecholate 

type siderophores (Miethke and Marahiel 2007). 

Vicibactin 

 

Vicibactin is a cyclic trihydroxamate type siderophore (Fig.1), is produced by R. 

leguminosarum ATCC, and shows similarity to the siderophore produced by other Rhizobial  

                           

Figure 1: Vicibactin 
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strains (Wright et al. 2013). Vicibactin is produced in multiple steps and processed through 

multiple modifications mediated via the gene products of VbsO, VbsP, VbsA, VbsL, VbsC, VbsG, 

VbsD, and ending at VbsS which has the central role in synthesizing the cyclic vicibactin (Carter 

et al. 2002). The proteins that are involved in vicibactin secretion after vicibactin is made are not 

known.  

In Ps. aeruginosa, the siderophore  pyoverdine (containing a carboxylic group with a 

chromophore) is secreted by the same system responsible for its uptake (Hannauer et al. 2010). 

The proteins associated with secretion of pyoverdine are outer membrane protein OmpQ, 

periplasmic protein PvdR, and inner membrane protein PvdT (Hannauer et al. 2010). Two other 

outer membrane proteins, FpvA and FpvB, are responsible for Fe-pyoverdine uptake and 

secretion of newly synthesized pyoverdine (Hannauer et al. 2010).  

fhuCDB and fhuA Mediated Siderophore Uptake 

 

R. leguminosarum strain 8401 bv. viciae has an operon fhuCDB that consists of three 

genes fhuC, fhuD and fhuB (Fig. 2). It also has a pseudogene fhuA whose expression was 

undetectable (Stevens et al. 1999). The siderophore produced by R. Leguminosarum viciae is 

also vicibactin (Dilworth et al. 1998). The fhuA gene in R. leguminosarum viciae was present 

downstream of the fhuB gene that codes for an inner membrane protein required for the transport 

of siderophore inside the cell (Stevens et al. 1999).  Also, the roles of other genes in the 

fhuCDBA operon have been confirmed (Stevens et al. 1999). FhuD was confirmed as a 

periplasmic transport protein similar to that found in E. coli (Stevens et al. 1999). FhuC is an 

ATPase and FhuB is a cytoplasmic membrane protein that also showed identity with genes from 

E. coli (Stevens et al. 1999). 
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Figure 2: Graphical representation of fhuCDBA operon in R. leguminosarum 8401 

A transposon mutant with a Tn5::lacZ reporter showed that fhuB, fhuC, and fhuD are in 

the same transcriptional unit (Stevens et al. 1999). The pseudogene FhuA in R. leguminosarum 

8401 was identical with E. coli FhuA towards the C-terminal end (Stevens et al. 1999).  The 

predicted promoter part of the protein FhuA was cloned in promoter-probe vector pMP220 and 

plasmid pBIO410 and then was mobilized to R. leguminosarum 8401 with lacZ marker. This 

failed to show β-galactosidase activity under low iron concentration in the media (Stevens et al. 

1999). This also suggested that R. leguminosarum 8401 contains the pseudogene version of fhuA. 

FhuA is an outer membrane protein of molecular weight 78 kDa. It is a 22 β stranded 

barrel-shaped protein (Ferguson et al. 1998). Its role in E. coli is to bind a hydroxamate type 

siderophore ferrichrome (produced by fungi Ustilago tritici) and transport the ferric-siderophore 

complex into the cell (Ferguson et al. 1998). The crystal structure of FhuA reveals a structurally 

distinct domain consisting of the 4β strand and 4α helices located inside the barrel as a "cork" 

(Ferguson et al. 1998). FhuA in E. coli works along with various other inner membrane and 

periplasmic proteins as a multiprotein complex that involves TonB, an energy transducing 

protein, as the transport process is energy dependent (Fig.3) (Pawelek et al. 2006). The fhuCDBA 

operon is involved in ferrichrome transport (Pawelek et al. 2006). The siderophore ferrichrome is 

produced by fungus U. tritici and is a hydroxamate type siderophore similar to vicibactin. 

fhuC fhuD fhuB fhuA 
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Ferrichrome is transported by outer membrane receptor protein FhuA in E. coli (Pawelek et al. 

2006). The fhuA like genes have been reported earlier in R. leguminosarum (Stevens et al. 1999). 

 

Figure 3: FhuA dependent uptake system in E. coli 

FhuA is also involved in uptake of phages T1 and Φ80, colicin M, antibiotics Viz. rifamycin 

CGP 4832 and albomycin (Braun et al. 1999; Ferguson et al. 2000). 

RosR and FhuF 

 

RosR is a transcriptional regulator protein with a Cys2-His2 type zinc finger motif that 

belongs to the Ros/MucR family of rhizobial transcriptional regulators (Rachwal et al. 2016). 

The mutation in rosR showed an effect on cellular motility and synthesis of cell surface 

components. The cells surface became hydrophobic lacking in polysaccharides and the bacteria 

were defective in symbiotic interaction with clover plants (Rachwal et al. 2016). The gene rosR 

is present upstream of fhuA in R. leguminosarum Rt 24.2 trifolii and codes for a 15.7 kDa protein 

(Rachwal et al. 2016). 



23 

 

Downstream of fhuA is fhuF, a 786 Bp gene that codes siderophore-iron reductase protein 

in R. leguminosarum bv. viciae (Carter et al. 2002 ). In Firmicutes such as Bacillus halodurans, 

when fhuF was mutated, the intracellular ferric-siderophore complexes were not efficiently 

metabolized. However, their transportation was not affected. As a result, the non-metabolized 

ferric-siderophore complexes accumulated inside the bacterial cells (Miethke et al. 2011). 

Other System for Iron Acquisition 

 

In addition to siderophore-mediated iron uptake, various pathogenic bacteria and some 

nonpathogenic bacteria are reported to overcome the problem of iron unavailability using 

different iron uptake systems such as lactoferrin, transferrin, hemoglobin, hemin and ferritin-

bound iron uptake (Noya et al. 1997). The hemoglobin, hemin or heme-bound iron uptake 

system is very common in pathogenic bacteria. Once the bacteria enter the host, they have access 

to hemoglobin and other heme bound compounds. As bacteria are always in need of iron to 

support their growth and development, they often use a heme-bound iron uptake system to 

acquire iron (Miethke and Marahiel 2007). Non-pathogenic Rhizobium species can also utilize 

heme-bound iron (Noya et al. 1997). The leghemoglobin present in the plant roots is also a good 

source of heme-bound iron (Noya et al. 1997). 

Heme Iron Uptake/ hmuPSTUV Operon and Its Function 

 

Some known and commonly studied systems for heme uptake are BhuR in Bordetella 

pertussis, HemR in Yersinia enterocolitic, HmbR and HpuB in Neisseria meningitides, HmuR 

(Heme utilization receptor) in Porphyromonas gingivalis, and ShuA in Shigella dysenteriae 

(Tong and Guo 2009). R. leguminosarum viciae has a TonB dependent operon hmuPSTUV 
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(Wexler et al. 2001). The proteins in this uptake system showed similarity with the transporter 

and degrading proteins that were present in heme uptake system in different pathogenic bacteria 

(Wexler et al. 2001). 

Heme bound iron uptake systems are also found in Ps. aeruginosa with a Fur-regulated 

PhuR outer membrane receptor that binds with heme and then is transported to phuSTUVW 

operon system (Ochsner et al. 2000). Besides the phuSTUVW system in Ps. aeruginosa, another 

system, the HasA uptake system, uses hemophore to bind heme (Létoffé et al. 1996). This 

system consists of a protein known as HasA which is a heme binding and acquisition protein 

(Létoffé et al. 1996). 

Hemophores are heme binding compounds mostly produced by pathogenic bacteria under 

limited iron availability; they scavenge heme and transport it into the bacterial cell (Tong and 

Guo 2009). There are only two known types of hemophore associated heme acquisition systems. 

One is HasA (heme acquisition system), and it is present in Serratia marcescens, Ps. 

aeruginosa, Ps. fluorescens, Y. pestis and Y. enterocolitica (Tong and Guo 2009). The other type 

of hemophore associated heme acquisition system is HxuA (heme/hemopexin utilization) and is 

only known to be present in Hemophilus influenza (Yong Tong et al. 2009). Similar to all other 

iron uptake systems, the hemophore-mediated uptake system is also TonB dependent and Fur-

regulated (Ochsner et al. 2000). The binding affinity of the hemophore to HasA in S. marcescens 

is 5.3 x 10
10

 M
-1 

(Deniau et al. 2003). 
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Hemin/ Hemoglobin/ Leghemoglobin and Heme  

Hemin is a ligand that contains a ferric iron in a porphyrin IX ring with a chloride (Fig. 4) 

(Hans 1941). Lyophilized hemin powder is frequently used in research and other medical 

purposes. It is prepared by treating blood  using glacial acetic acid and salt (Elvehjem 1931). Its 

chemical formula is C34H32N4O4FeCl. The transport of hemin as a sole source of iron is carried 

out by bacteria in cases of iron scarcity (Noya et al. 1997). 

                                         

Figure 4: Hemin 

 Hemoglobin (Hb) is a 65kDa transport protein in red blood cells of vertebrates and 

contains oxygen and iron (Anthea et al. 1993). The hemoglobin present in blood carries oxygen 

from respiratory organs such as lungs and gills to almost every part of the body (Anthea et al. 

1993). Hemoglobin consists of four globular proteins that are tightly attached to each other. Each 

subunit contains heme and heme contains the iron (Fig.5). Similar to hemin, heme contains a 

central iron molecule and has a porphyrin ring structure (Fig. 6). The iron may be either Fe
2+

 or 

Fe
3+

, in which the Fe
3+ 

ion (also known as met-hemoglobin) cannot bind to the oxygen molecule  
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Figure 5: Hemoglobin  

(Linberg et al. 1998). The iron molecule in the hemoglobin is targeted by the bacteria in case of 

iron unavailability and hence some bacteria can uptake hemoglobin in case of iron scarcity 

(Noya et al.1997). 

Leghemoglobin is nitrogen/oxygen carrier and is present in the root nodules of nitrogen  

Figure 6: Heme  
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fixing and leguminous plants. Roots that are not infected by symbiotic rhizobia do not produce 

leghemoglobin (Ott et al. 2005).  The cytoplasm of the plant cells that are infected by Rhizobium 

accumulates leghemoglobin, and they are known to avoid inactivation of oxygen-labile 

nitrogenase enzyme by acting as a binder/trap for free oxygen (Ott et al. 2005).  

Hemoglobin in blood is functionally, structurally, and chemically very similar to 

leghemoglobin in plants. The cofactor is heme in both hemoglobin and leghemoglobin and is 

required for formation of these proteins (Ott et al. 2005). The uptake of heme bound iron by soil 

bacteria such as Rhizobium has been reported previously (Noya et al. 1997). 

Present Work 

 

As stated earlier, the previous work in R. leguminosarum ATCC in our lab has already 

concluded the presence and involvement of TonB-ExbB-ExbD and Tol-Pal system in the 

transport of siderophore, vicibactin, a siderophore produced by R. leguminosarum ATCC 

(Wright et al. 2013; Hill 2014; Barisic 2015). The active transport system should have an outer 

membrane receptor for Fe-vicibactin complex as vicibactin has a molecular weight of 774 Da 

(Wright et al. 2013), and is larger than the molecules transported via porins (>600 Da). Fe-

vicibactin complex is larger than 800 Da. The presence of fhuA like genes has been reported by 

many researchers in Rhizobium (Stevens et al. 1999). Outer membrane protein FhuA in E. coli is 

known to transport ferrichrome, a hydroxamate-type siderophore, similar to vicibactin (Ferguson 

et al. 1998). Therefore, we came up with a hypothesis that, a FhuA like protein is present and is 

involved in transport of vicibatin in R. leguminosarum ATCC. 

The body of this work involves identification of fhuA like genes in R. leguminosarum 

ATCC and the possible involvement of the protein FhuA in the transport of vicibactin. 
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Expression of the putative FhuA under different iron concentrations was determined to test its 

possible involvement in iron transport to test our hypotheses. Deletion of the putative fhuA was 

carried out and the characteristics shown by the mutant and WT were compared. 

This work also includes a second hypotheses that R. leguminosarum ATCC is able to 

utilize heme/hemoglobin as a sole source of iron. This research focuses on identification of the 

genes possibly involved in the heme-bound iron transport. One such TonB-ExbB-ExbD 

dependent operon, hmuPSTUV in R. leguminosarum viciae, is responsible for transport of heme 

bound iron (Wexler et al. 2001). We have also detected the presence of a similar operon in R. 

leguminosarum ATCC for the energy dependent uptake of heme-bound iron. The role of energy 

transducing protein complex, TonB-ExbB-ExbD, in heme bound iron transport was also studied. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

Bacterial Strain and Growth 

Bacterial Strains 

 

The rhizobial strain used in this study is R. leguminosarum ATCC 14479 trifolii and was 

obtained from American Type Culture Collection. The E. coli strains used were SM10λpir and 

BL21/DE3. 

Table 1: Bacterial strains and plasmids used in this work 

Strains Characteristics References/Source 

E. coli 

 

 

SM10λpir 

Used during biparental conjugation to mobilize 

pEXFHU into R. leguminosarum ATCC 

 

BL21(DE3) used for general cloning and to express pET17b::fhuA 

Novagen (EMD 

millipore) 

R. leguminosarum 

 

 

ATCC 14479 Wild-type strain ATCC 

RL Δ TonB 

R. leguminosarum ATCC with an in-frame deletion of 

tonB Hill 2014 

RL Δ ExbBD 

R. leguminosarum ATCC with an in-frame deletion of 

exbB-exbD. Barisic 2015 
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Table 1(continued) 

RL Δ FhuA 

R. leguminosarum ATCC with an in-frame deletion of 

fhuA This work 

RL::pBIO1187 

R. leguminosarum  ATCC with pLAFR1-based cosmid, 

contains vbs genes plus rpoI; TetR 

Yeoman et al. 

2002 

Plasmids 

pEX18Gm Suicide vector; Gm
R
 Schweizer et al. 

pEXFHU 

pEX18Gm plasmid with R. leguminosarum SOE 

fragment with an in-frame deletion of fhuA gene This work 

pET17b Amp
R 

plasmid Novagen 

pET17b::fhuA pET17b containing fhuA This work 

 

Growth Conditions and Media Used 

 

R. leguminosarum ATCC was grown on Yeast Mannitol Broth (YMB) and Congo Red 

(CR) agar. The growth of the bacteria under restricted iron concentration was carried out in 

Modified-Manhart and Wong Medium (MMW) (Manhart and Wong 1979). The LB media was 

used for growth of all E.coli strains. R. leguminosarum ATCC was grown at 30°C under static 

condition or on shaker at 250 rpm when grown in liquid media. 

CR agar contained 1% mannitol, 0.05% K2HPO4, 0.02% MgSO4*7H20, 0.01% NaCl, 

0.1% yeast extract, 2.5 x 10
-5

 % Congo red dye, and 3% Bacto-agar. Use of 1% aqueous Congo 

red dye stock solution was done and was added accordingly before autoclaving the media. The 

pH was adjusted to 6.8 using 6M NaOH before autoclaving (Hammond 2008). Congo red dye is 
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used for identification of Rhizobium. The dye is absorbed very slowly by Rhizobium species; 

while the other organisms take up the dye quickly and form reddish colonies. In case of 

Rhizobium, they form whitish or pinkish colonies (Kneen and Larue 1983). This is also helpful to 

identify the contaminants such as E. coli, which forms reddish colonies. 

As stated earlier, YMB was used when iron concentration was not to be restricted. YMB 

contained 1% mannitol, 0.05% K2HPO4, 0.02% MgSO4*7H20, 0.01% NaCl, and 0.1% yeast 

extract. The pH was adjusted to 6.8 using 6M NaOH before autoclaving.  

Minimal media MMW was used when the amount of iron in the media was to be 

regulated. MMW media contained the following (w/v): 0.0764% K2HPO4, 0.1% KH2PO4, 0.15% 

Glutamate, 0.018% MgSO4, 0.013% CaSO4*2H2O, and 0.6% dextrose. The pH was adjusted to 

6.8 using 12M NaOH, and the media was autoclaved. The media was kept in 55°C water bath to 

let it cool before addition of vitamin solution and antibiotics. Filter-sterilized 1000X vitamin 

solution (see appendix) was added to the media after the temperature was brought down to less 

than 55°C. The vitamin solution was stored at 4°C in container wrapped with aluminum foil to 

prevent the degradation of certain vitamins by light (Manhart and Wong 1979). 

The LB broth contained 1% tryptone, 0.5% yeast extract, and 0.5% NaCl. For the agar 

plates, 1.5% agar was added to the media. Before autoclaving, the pH was adjusted to 7.5 using 

6M NaOH. Antibiotic was added after the media was cooled down to 55°C or lower. LB media 

was used to grow E.coli strains only because R. leguminosarum does not grow in LB media. This 

characteristic was helpful to avoid contamination in R. leguminosarum. E. coli strains were 

grown at 37°C. Use of shaker at 250 rpm was done when cells were grown in liquid media. 
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The final antibiotic concentrations used for R. leguminosarum ATCC and other bacteria 

were as follows: 

Table 2: Antibiotic concentrations 

Antibiotic Final concentration 

Nalidixic acid (Na10) 10 μg/mL 

Penicillin G (Pen50) 50 μg/mL 

Ampicillin (Amp100) 100 μg/mL 

Gentamycin (Gm10) 10 μg/mL 

Kanamycin (Kan50) 50 μg/mL 

Tetracycline (Tet10) 10 μg/mL 

 

Iron Concentrations and Growth 

 

As stated earlier, MMW media was used when the organisms were grown under iron 

restricted conditions. The media was supplemented with the desired iron concentration. The 

different iron concentrations used were 0 μM, 0dipi (with dipyridyl), 0.05 μM, 0.1 μM, 0.5 μM, 

2.5 μM, 50 μM and 100 μM. Conical flasks (250 mL) were treated with concentrated nitric acid 

overnight to remove any contaminating iron from the glass surface. Next day, the flasks were 

thoroughly washed with water to remove acid before autoclaving. A total volume of 50 mL of 

MMW media with 500 μL of inoculum was used for each flask. The inoculum used was prepared 

in MMW with no added iron (0 μM). To supplement other flasks with different known iron 

concentrations, the filter sterilized iron was added to each flask separately and carefully. They 

were incubated at 250 rpm for 2-3 days at 30°C. The cells were used for protein and RNA 

extraction. The growth of cells was measured using UV/Vis spectrophotometer at O.D600 nm and 
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cells diluted to an O.D600 of 0.8 as necessary before extracting either protein or RNA. This was 

done to maintain approximately equal number of cells while performing protein and RNA 

extraction. 

 2’2 dipyridyl was added to achieve absolute zero iron concentration by removing 

contaminant iron present in the media ingredients. 2’2 dipyridyl is a chelating agent that 

scavenges the free or soluble iron present in the media. 2’2 dipyridyl was used at 0.25 mM 

concentration in the media to create an absolute zero iron concentration. 

Different concentrations of hemoglobin/hemin were added to the MMW media while 

studying heme uptake. The media was supplemented with hemoglobin/hemin as the only iron 

source. Human lyophilized hemoglobin was bought from Sigma Aldrich and was suspended in 

sterile distilled water. Bovine lyophilized hemin was also bought from Sigma Aldrich. 

Amplification of the Putative Genes 

 

Genomic DNA Extraction 

 

A CR plate was used to inoculate R. leguminosarum ATCC from a -80°C freezer stock 

and grown at 30°C for 48-72 hrs. A single isolated colony of the bacteria with a slow absorption 

of Congo red dye was picked and used to inoculate 3 mL YMB broth supplemented with 

penicillin G to inhibit the growth of gram-positive contaminants. Nalidixic acid was used to 

prevent contamination from E. coli. 

The culture was then transferred to 1.5 mL microcentrifuge tubes and was centrifuged for 

10 min. at 13000 rpm (7600 xg). The supernatant was poured off, and the pellet was washed with 

sterile 0.85% NaCl for three times to remove the exopolysaccharides produced by the bacteria. 
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After washing, the pellet was used for genomic DNA extraction following a method previously 

used for bacterial genomic extraction (Kalia et al. 1999).  

Agarose gel (1%) in TAE buffer was used to analyze the quantity and quality of the 

extracted genomic DNA. Nanodrop 2000 from Thermo Scientific was used to confirm the 

quality and concentration of the genomic DNA. Absorbance at 260 nm, 230 nm, and 280 nm was 

measured by the nanodrop reader and the ratio of the absorbance at different wavelengths was 

calculated, confirming the quality of the extracted sample. Any sample with the ratio of less than 

1.80 was considered to be an impure sample. 

Primers Used for Gene Amplification 

 

List of primers used in this study are as follows. All the primers were designed and 

analyzed using NCBI primer designing tool/ and were ordered through ETSU core molecular 

biology facility. The primers were made by Integrated DNA Technologies (IDT). All the 

sequencing work was performed at ETSU molecular biology core facility.  

Table 3: fhuA primers from different bacterial species (Primers made by IDT) 

PRIMERS 

Name Sequence (5’ – 3’) 

SMfhuFWDseq 1 TGCTTTATGGCGGGTCCAATCCG 

SMfhuREVseq 1 AGGTCCAGCCATTGTCGAAG 

SMfhuFWDseq 2 TCGACAATGGCTGGACCTTC 

SMfhuREVseq 2 CGCCAAAACGAATCTGGTCC 

ECfhuFWD ATCATGCGTGGTCCGGTATC 
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Table 3 (continued) 

ECfhuREV AGTGCATCGTCGTCTTTGG 

RLfhuFWD GGCGATGTTCGATTTCGGTG 

RLfhuREV GTCGCATAGGAGACGAAGGG 

E. Coli, 2243 Bp forward ATGGCGCGTTCCAAAACTGCTCAGCC 

E. Coli, 2243 Bp reverse TTAGAAACGGAAGGTTGCGGTTGCAACG 

Shinorhizobium meliloti forward ATGAAGTGCAGGATCCGCGG 

Shinorhizobium meliloti reverse TTACCACTTCTTGCTGAGCTTCAGCG 

 

After amplification of fhuA, the primers used for sequencing, RT-PCR, cloning, and SOEing are 

listed as follows. 

Table 4: Primers used for sequencing, RT-PCR, cloning and SOEing of fhuA (Primers made by IDT) 

PRIMERS 

Name Sequence (5’- 3’) 

Rhizobium leguminosarum p1 forward GACAGATATACTGAGATCTTTCGCTCAGC 

Rhizobium leguminosarum p1 reverse GGATGATCAGCGATCAACGTCGCGG 

R. Leg P2 Forward CAAGTGAGGGCGATGGTCTTTTGC 

R. Leg P2 Reverse TTCTTCGAGGTATTGGCGGTATCC 

Primer Forward: P3F AACTGCCTCTGTTTGGCAGCC 

Primer Reverse: P3R TTCTTGTCGATCGCGCCGAAATCA 

P3IIF TCGTCTCGGTGCGCGCTT 

Primer Forward: P4F ACGTCCGTTGCCGCTAAGAA 
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Table 4 (continued) 

Primer Reverse: P4R GACGTCTTCCGAGTCGTTCAAC 

P5F CCAGAACCTGCGCTATTCGCA 

P5R AACGTCAGGCCGTTGTCG 

P6F CGAGGGTGAACAGTACGAACT 

P6R TTGATCACCTCGACGCGTTGC 

P7F ATTGCACCCTTCGTCTCCTATGCG 

P7R GATTTTGGTCGCCGCCGAGC 

P8F GTCGAGCTTCTATGTCGATGCATCT 

P8R ACGATCCCGTATTTGCTGCTG 

P8IIR TGGCCAACCTGCCGGTCTTGAC 

P9F ATGCCAATGTCGGCGCGATCAC 

P9R_rt TTGTAGGTGTAGGCCGCAATGATGTCGAG 

P10F ACTCGGAAGACGTCAACAAGAACGC 

RT – P1 ATGTTGACAAGGCCAATTTCGCTCCATAGG

TTCCG 

Rstr1F AGCTTGGTACCGATGTTGACAAGGCCAATT

TCGCTCC 

Rstr1R ATCGGGATCCTTACCACCGATACTTCAGGG

TCGC 

Forward primer (fhuA1F) GTGCGCGGTACCAGCTCTGCAAACGACAAT

CG 

Reverse primer (fhuA1R) ACTGGGATCCATCGGAGCGGCCCTTCTCG 
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Table 4 (continued) 

Forward primer  (fhuSOEF) GTGACTAAAATAATCATCTTATGTAATAGA

TGGCGCCGGAGACGAC 

Reverse primer (fhuSOER) GTCGTCTCCGGCGCCATCTATTACATAAGAT

GATTATTTTAGTCAC 

Forward primer (fhuIntF) ATGGGAGTGGCAGTTGCTCAAGTGAGGGC 

Reverse primer (fhuIntR) CTTCGACAAGGGCGGGCTCGTGAC 

6KB far primers (RL.F6K) CGATGGCGAATGAAGGCATC 

6KB far primers (RL.R6K) ACTTTCCCGCATCGCCAATAAGATGG 

 

The primers used for amplification of heme uptake genes are listed as follows. 

Table 5: Primers for hemoglobin transport genes from different species (Primers made by IDT) 

HM1F R. leguminosarum bv. trifolii WSM 2304 

- TonB dependent hemoglobin/ 

transferrin/lactoferrin receptor (2.3 kb 

gene) 

ATGATCGTCCGGTATTGGCG 

HM1R TCAGAACGTCTTGGTGAGCGA 

SmH1F S. melioti 1021 – Sinorhizobium heme 

receptor- shmR  (2.7 kb gene) 

CAC46967.1 

  

ATTCGTCTCGCTCCGTAAAA 

SmH1R CAAATTGTGCTGAAACTGAGG 

ECHm1F E. coli IAI39- outer membrane hemin 

receptor CAR20113.1 (2.0 kb gene) 

TCGAAGCGCCTATGATGGTC 

ECHm1R CGGGTACGGTTATAGGCCAC 
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Table 5 (continued) 

HM2F R. leguminosarum bv. trifolii WSM 2304 

(TonB dependent hemoglobin/ 

transferrin/lactoferrin receptor) 

(2.3 kb gene) 

GCGACAATATGGGCGACAAC 

HM2R TGAACTCCGTGAAGCCTGTC 

Hm3F R. leguminosarum bv. trifolii WSM 2304 

(TonB dependent hemoglobin/ 

transferrin/lactoferrin receptor) 

(2.3 kb gene) 

CCAGCTGGAGCCAGTATAGC 

Hm3R AGAACGTCTTGGTGAGCGAG 

Hm5F R. leguminosarum bv. trifolii, CB782- 

hemin ABC transporter substrate protein 

AHG46540.1 (0.711 kb gene) 

AAGAAAACCGCCTGATTGCG 

Hm5R AAATCGCGGTGTTCAGTTCG 

Hm6F R. leguminosarum bv. viciae 3841- heme 

uptake protein ANP88820.1, HmuP. 

(0.183 kb gene) 

ATGATGGTTGAAAAGCCAGATA

GC 

Hm6R GAATGAGCTTGCCCTGACGG 

Hm7F R. leguminosarum bv. viciae 3841- 

putative haem iron transport component , 

HmuS. CAKO9186.1 (1.05 kb gene) 

ATGACCGAACAGACAAGACCG 

Hm7R GCAGGTTTTCCATGATCTCGC 

Hm8F R. leguminosarum bv. viciae 3841- hemin 

binding component of ABC transporter, 

HmuT. CAK09187.1 (0.930 kb gene) 

GACGATGCGTAACAATCTGCG 

Hm8R GGTAGACGCCATCCATTCGG 

HmuX1F 

tonB from R. leguminosarum bv. viciae 8401 

TTGGCAAGGAGGTGAAGTTTCT

CC 
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Table 5 (continued) 

HmuX1R 

tonB from R. leguminosarum bv. viciae 8401 

AGCGGCACGTGCTTAAAGCTAT

C 

 

After amplification, the hmuPST genes were sequenced by using the primers as listed below.  

Some of the primers from Table 5 were also used for sequencing the hmuPST genes. Sequencing 

was carried out at ETSU core molecular facility. 

Table 6: Primers for sequencing hmuPST genes (Primers made by IDT) 

Primers 5’-3’ 

Forward primer (HM9F) AGGCGGCCTCATATCAGCAATC 

Reverse primer ( HM9R ) GATATCACGCTCGCGCATTTTCG 

Forward primer (HM10F) AAGGAAGGCTCCGACG 

Reverse primer ( HM10R ) CTTGCGCTCGGCCTCC 

Forward primer (HM11F) CGACACGACGAGCATGTATCC 

Reverse primer ( HM11R ) TGCCTGATTTCGCGGATGTC 

Forward primer (HM12F) AGACATGACGGCTTGGTC 

Reverse primer ( HM12R ) GGATCCGGCGCAGATTG 

Forward Central (Hm12Cen) AATGTCGAGGCCTATCACGC 

  

Miscellaneous primers used in this study are as follows. These primers were used to confirm the 

successful cloning of the respective gene fragment in the respective plasmid used. These primers 

were also used for sequencing and confirming the cloning. 
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Table 7: Miscellaneous primers (Primers made by IDT) 

PEX18FWD TCTGGAAGGCAGTACACCTTGATAGG 

PEX18REV AAAGCGGGCAGTGAGCGCAAC 

RCO12 CGGATATAGTTCCTCCTTTCAGCA 

RCO13 TAACCAGTAAGGCAACCCCG 

RCpet17bR ATGGCTAGCATGACTGGT 

RCpet17bF GCTAGTTATTGCTCAGCGG 

 

Polymerase Chain Reaction (PCR) 

 

Polymerase chain reaction (PCR) was used for amplifying the required gene fragment 

using specific primers. Desired gene fragments are amplified to millions of copies, based on the 

primers used. This helps in producing enough DNA for further analysis and other experiments. 

During PCR reaction, a cyclic process of denaturation, annealing, and extension is carried 

out for the amplification of the desired gene. If the gene of interest has not been sequenced, the 

sets of primers were designed based on the known sequence of the similar gene from related 

species. A master mix was made using the PCR protocol described in a manual from Promega, 

and the thermal cycler conditions were also followed as described (Promega 2017). 

PCR Amplification of fhuA 

 

For identification and amplification of fhuA, primers were designed based on the 

published fhuA sequence from S. melioti, E.coli, and R. leguminosarum bv. viciae from more 

than one part within the gene, so as to test the presence or absence of fhuA in R. leguminosarum 

ATCC (Ferguson et al. 1998; Stevens et al. 1999; Cuív et al. 2008). Also, every pair of primers 



41 

 

that did not amplify was used in more than 5 PCR reactions with different PCR conditions to 

confirm the absence of the genes. 

PCR Amplification of Hemoglobin Receptors and Heme Bound Iron Transport Genes 

 

Hemoglobin transport genes from R. leguminosarum ATCC were amplified using 

primers based on known nucleotide sequences of different heme-bound iron uptake genes from 

different species such as R. leguminosarum bv. trifolii WSM 2304, R. leguminosarum bv. viciae 

3841, R. leguminosarum bv. trifolii CB782, S. melioti 1021 and E. coli IAI39. Different genes 

that were reported and known to carry out heme/hemin/hemoglobin/lactoferrin transport (See 

Table 5) were used to design the primers; CAK09187.1, CAR20113.1, CAC46967.1, 

AHG46540.1, ANP88820.1, CAK09186.1 and others from rhizobase and NCBI online database 

(NCBI 2016; Rhizobase 2016). The primers were designed from different parts within the gene 

fragment to confirm the presence or absence of the gene. 

Colony PCR 

 

Colony PCR was performed for screening the inserts directly from the bacterial colony. 

To remove excessive polysaccharides produced by Rhizobia, the colonies were heat treated 

before PCR. The colony was picked and suspended in 100 μL of sterile distilled water in 1.5 mL 

microcentrifuge tubes and then was placed in a heat block or water for 10 min. at 95
o
C. Two μL 

of the resuspended and heat treated colony was used as a template for the PCR reaction. A 

master mix for colony PCR reaction included following components. 

 

 

 



42 

 

Table 8: Master mix for colony PCR 

33 µL sterile distilled water 

10 µL 5X PCR buffer 

3 µL 25 mM MgCl2 

1 µL 10 mM dNTPs 

0.5 µL 10 µM forward primer 

0.5 µL 10 µM reverse primer 

0.25 µL Taq polymerase 

48.25 µL total volume 

 

When heat treatment was not necessary, colonies were picked directly for the PCR 

reaction using sterile pipette tips. The pipette was set to 20 μL, and the colony was pulled out 

with just a gentle touch and was then pipetted up and down into the mix directly. The cells were 

used in smallest quantity possible. For keeping the amount of the bacterial cells minimal, a 

gentle touch in the colony was sufficient for the PCR reaction. Sufficient mixing and a minimal 

amount of cells are important to get complete cell lysis and high yields of DNA. The PCR 

conditions used for colony PCR without the heat treatment/boil prep was as follows. 

Table 9: Colony PCR setting 

1 cycle 

 

5 min at 95°C ( Initial denaturation) 

1 min at 95°C (Denaturation) 

30-40 cycles 

1.5 min at 54°C (Annealing) 

X min at 72°C ( 1 min/kb ) (Extension) 

1 cycle 5 min at 72°C (Final Extension) 
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Bioinformatics Tools 

 

NCBI/BLAST was used to analyze and align the gene sequence and protein sequence. 

The sequencing data obtained after SOEing, cloning, sequencing of hmuPST and fhuA were 

aligned with the respective known sequences. ClustalW Muscle from EBI-UK was used to align 

multiple sequences. Chromas software was used to export the sequence data from the sequencer 

developed file format into Microsoft Word format and to analyze the bases. Chromas software 

was also used to analyze the peaks of different bases while confirming the sequencing data. ORF 

finder from NCBI and online promoter analyzer “genome2d” were used to analyze hmuPST and 

fhuA sequences to determine the promoter region and the possible ORFs in the region.  

EXPASY translation tool was used to convert the DNA sequence into a protein sequence. 

The protein homology modeling was done independently by using SwissProt 3D modeling tool. 

After the protein models were obtained, molecular docking was performed by using online 

modeling tool Swissdock. For viewing the docking files, Swissdock and Chimera software 

version 1.11.2 from the University of California in San Francisco was used. 

Cloning of fhuA 

Restriction, Digestion and Ligation of fhuA in pET17b and Its Transformation 

Restriction enzyme sites for the BamHI and KpnI were inserted in 5’ regions of the 

primers (Rstr1F and Rstr1R). The restriction sites were part of the multiple cloning site (MCS) 

and were not present in the putative fhuA gene. The primers were designed to amplify the ORF 

of the putative fhuA. 

The fhuA gene was amplified via PCR. The PCR product was analyzed in 1% agarose 

gel. The right sized band at 2.3 Kb was gel extracted using the mol-bio gel extraction kit. The 

pET17b plasmid and the gel extracted product were digested using 2.1 NEB buffer and the 
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enzymes BamHI and KpnI. Quiagen plasmid extraction kit was used for plasmid extraction. The 

digested plasmid and the gene were separated and analyzed using 1% agarose gel 

electrophoresis. Gel extraction was performed after gel electrophoresis as described earlier. For 

ligation of the digested and gel extracted products, 10X T4 DNA ligase buffer was used with T4 

DNA ligase enzyme and was allowed to ligate at 4°C overnight. The mixture was then heat 

inactivated for 10 min. at 65°C and was stored at 4°C.  Transformation of the newly constructed 

plasmid was carried out via heat shock method for 30 seconds at 42°C in E. coli BL21/DE3 

competent cells prepared in the lab. The transformed cells were screened and picked from the 

ampicillin containing LB plates and were confirmed via colony PCR and sequencing. 

These cells could be used for future complementation assays and to check the gene 

expression in the transformed E. coli BL21/DE3 cells. The pET-17b is an expression vector from 

Novagen, which contains a pBR322 origin of replication with an ampicillin resistant marker and 

an N-terminal 11aa T7 Tag sequence which is followed by a multiple cloning site (MCS). (Fig. 

7) 
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Figure 7: pET17b vector from Novagen, EMD millipore 

 

Competent Cells Using Rubidium Chloride 

 

Competent cells were made by using rubidium chloride salt and bacteria in exponential 

phase or log growth phase. This helps in making a permeable cell membrane which allows 

foreign material such as DNA to get in. The E. coli strain BL21/DE3 was grown in SOC media 

for overnight. It was centrifuged, pelleted and washed with TFB1 buffer. The cells were 

resuspended in TBF2 buffer and incubated on ice. Fifty microliters aliquots were prepared by 

pipetting in sterile microcentrifuge tubes and were snap frozen using liquid nitrogen and were 

stored at -80°C for future use. 
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Growth of the Expression Cells and IPTG Induction  

 

The pET17b::fhuA cloned E. coli DE3/BL21 cells were grown on a rotary shaker at 250 

rpm at 37°C for 5-6 hours in LBamp100 until the O.D600 reached 0.6-0.8. The cells were induced 

with IPTG and were allowed to grow for another 3 hours. IPTG mimics a lactose metabolite 

known as allolactose that triggers transcription of the lac operon. Hence IPTG induction is 

carried out where the gene is under the control of the lac operator (Marbach et al. 2012). This 

was done to overexpress the cloned fhuA gene under lac operon. The protein extraction was 

carried out after sonication and expression was analyzed as described. 

Expression of the Putative Protein and Gene 

Protein Extraction 

 

The bacterial cells grown in different iron concentrations were centrifuged and the pellets 

were washed with 0.85% NaCl. The pellets were suspended and vortexed in 20 ml of 0.85% 

NaCl. Outer membrane fragments were isolated after sonication of cells (1 minute pulse and 1 

minute pause) using Branson digital sonicator. The sample was placed on ice while performing 

sonication. The sonicated sample was centrifuged for 10 min. at 10,000 rpm (5000 xg), and the 

supernatant was collected, discarding the pellet. The supernatant was further ultra centrifuged for 

90 min. at 30,000 rpm (30,000 xg) to pellet the outer membrane fragments. The outer membrane 

pellets were analyzed for protein expression using SDS-PAGE. 

SDS-PAGE 

 

The protein expression was checked by using Sodium Dodecyl Sulfate-Polyacrylamide 

Gel Electrophoresis (SDS-PAGE) (Laemmli 1970). Samples were mixed with 2X loading dye 
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and were kept at 95°C for 5 min. for the proteins to denature. Eight percent resolving 

polyacrylamide gel was made, with 4% stacking gel, and the heat-treated samples were loaded 

on the SDS-PAGE gel. The gel was allowed to run for 75 min. on 35mA and 120V for one gel 

and 70mA and 180V for two gels. The gel was stained with Comassie Brilliant Blue and was de-

stained with de-staining solutions. The samples used were different cell fractions. Whole cell 

extracts were also analyzed using SDS-PAGE depending on the experiment. 

RT-PCR 

 

Gene expression at the transcript level can be detected by Reverse Transcriptase-PCR 

technique (Freeman et al. 1999). Creation of cDNA (complementary DNA) from the RNA of 

interest was done by using gene-specific primers and the enzyme reverse transcriptase 

(superscript III reverse transcriptase, from Thermo Scientific). This synthesizes the first strand 

cDNA from the RNA of interest that is present in the total RNA extract. Total RNA extraction 

was done by using Direct-zol RNA miniprep kit by using Trizol reagent from Zymo Research. 

RNase zap, new sterile tips, and separate sterile work station was used for RNA extraction and 

the whole process was carried out with extreme precaution by keeping samples on ice all the 

time (except required by the protocol) to prevent RNA degradation, also by turning of the air 

vent so that there is very less movement of air in the room and cleaning hands and the work 

station between every 5-10 minutes using RNase zap to avoid RNase contamination). 

Complementary DNA (cDNA) was made using the RNA samples. After making the cDNA 

sample it was treated with enzyme RNase H, this degrades the remaining RNA in the sample. 

The newly synthesized cDNA was then used as a template for PCR reaction which was 

quantified based on the band intensity. Multiple cycles of PCR ranging from 15 to 40X were 
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used to see if the band intensity changes with the increase/decrease of the number of PCR cycles. 

This experiment was repeated thrice to confirm the results. 

Gene Knockout 

Splicing by Overlap Extension (SOEing) 

 

The site-directed mutagenesis/in-frame deletion of fhuA was carried out using a PCR 

based technique known as splicing by overlap extension (SOE). It is a process in which multiple 

PCR reactions are used to engineer a product that contains the fused together 1Kb upstream and 

the 1Kb downstream regions of the target gene yet eliminating the targeted gene (Horton et al. 

1990). 

Two sets of primers were designed based on the sequenced data of the putative fhuA gene 

from 1Kb upstream and 1Kb downstream (Fig. 8). The first set of primers designed was SOEF 

and SOER (Fig. 8). The second set of primer was fhuA1F and fhuA1R. While designing the 

primers, restriction enzyme sites for enzymes BamHI and KpnI were also inserted in fhuA1F and 

fhuA1R, respectively. The first set of PCR reactions was carried out using fhuA1F and SOER 

and the second set of PCR reactions was carried out using SOEF and fhu1R and was used to 

amplify the 1Kb upstream flanking regions of putative fhuA and 1Kb downstream of the putative 

fhuA respectively. The primers SOEF and SOER are complementary of each other, and they are 

about 40-50 bases long, containing 50:50 regions from the flanking part of the start codon 

‘AUG’ and the stop codon ‘TAA’ of the putative fhuA gene. This leaves an overhang when the 

flanking regions were amplified using SOEF/fhuA1R and SOER/fhuA1F in separately on both of 

the PCR reaction.  
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Both of these PCR products were then loaded in 1% Agarose gel and were allowed to run 

for 1 hour in 120V and 110mA. After an hour the DNA was extracted from the Agarose gel 

using Mol-bio gel extraction kit excising the band at 1Kb. The extracted DNA was then used as a 

template for another set of PCR reaction to generate a 2Kb in-frame deleted SOEΔfhuA fragment 

with restriction enzymes at two ends. The product produced the desired SOE construct with a 

deleted fhuA fragment which was subsequently ligated into pEX18Gm and sent for sequencing.  

The constructed plasmid (pEXFHU) was then transformed into E.coli sm10λpir 

electrocompetent cells which were made in the lab and was confirmed via gentamycin screening 

and colony PCR and sequencing. The E.coli with the construct (pEXFHU in E.coli) was then 

allowed to conjugate with wild-type R. leguminosarum ATCC cells to carry out homologous 

recombination between the plasmid and the WT chromosome. 
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Figure 8: The process of SOEing for site-directed mutagenesis of putative fhuA 

 

E. coli SM10λpir Electrocompetent Cells 

 

E. coli SM10λpir contains tra gene that allows it to form a pilus to successfully carry out 

a conjugation process (Simon et al. 1983). The pilus works as a bridge to transfer the plasmid. A 

5 mL overnight culture of E.coli SM10λpir was grown in LB medium as a starter culture; it was 

used as inoculum for the 250 mL flask with LBkan50 which was grown until the O.D600 reached 

0.6. Five milliliters of the broth was distributed in each centrifuge tube.  Cells were pelleted by 
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centrifugation for 5 minutes in 6,000 rpm (1500 xg) at 4°C; the supernatant was poured off. The 

pellet was washed by adding chilled 10% glycerol. The tubes were vortexed vigorously to 

resuspend the pellet and were centrifuged for 3.5 minutes in 6,000 rpm (1500 xg) at 4°C. The 

washing step with 10% glycerol was repeated for 4-5 times. Then the cells were resuspended in 

100 µL of 10% glycerol. The final mixture was transferred into sterile centrifuge tubes making 

30-50 µL aliquots. After the aliquotes were made, they were snap frozen by using liquid nitrogen 

or directly used for electroporation. 

pEXFHU Plasmid and Cloning 

pEX18 vectors were used for facilitating homologous recombination between the 

construct and the chromosome to produce site-directed mutagenesis (Hoang et al. 1998). This 

series of vectors contain a sacB counter selectable marker, pUC polylinker, ori-T origin of 

replication and one of the antibiotic resistance markers: tetracycline (Tet), gentamicin (Gm), or 

ampicillin (Amp) (Hoang et al. 1998). pEXFHU was made in the lab in this work by the 

integration of the SOE product (which had the deleted fhuA with the flanking regions) into 

pEX18Gm and was then transformed into E.coli SM10λpir via electroporation at 2.5kV/cm. The 

electroporation cuvette with a width of 1-2 mm was loaded with the electrocompetent cells and 

the constructed plasmid. The cuvette was then inserted inside the electroporation device using a 

cuvette holder and was exposed to the high voltage. Electroporation is a technique where cell 

membrane permeability is increased by applying high electric field or high electricity to the cells 

for a shorter period of time within which, there will be a transfer of DNA, chemicals, drugs,etc. 

inside the electrocompetent cells (Neumann et al. 1982). When bacteria and plasmid are 
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combined in a mixture and are electroporated, the plasmid can be transferred inside the bacterial 

cell.  

The electroporated cells were serially diluted onto LBGm15 plates and grown for 24 hrs at 

37°C and the colonies were screened via colony PCR. The identification of plasmid DNA 

isolated from these cells was confirmed via sequencing and restriction digestion using the same 

enzymes used for cloning (BamHI and KpnI). One of the colonies that contained pEXFHU was 

used for biparental conjugation with R. leguminosarum ATCC. 

Biparental Conjugation 

 

Conjugation is the transfer of the bacterial genetic material horizontally via a direct cell 

to cell contact between two bacterial cells (Baron et al. 1996). In simple words, it can be 

considered as mating between two bacterial cells to transfer the genetic material; however, there 

is no exchange of gametes. Transfer of plasmid occurs in this process from a donor cell to the 

recipient cell. The newly transferred genetic material should be in most cases beneficial for the 

recipient cell for it to accept it, e.g. antibiotic resistance (Baron et al. 1996).  

A pilus is produced by the donor cell because of the F-factor (F-plasmid, F positive or F-

pilus) that attaches to the recipient cell to bring them together. This bridge formation leads to the 

transfer of nicked plasmid that gets transferred as a single-stranded DNA, and both of the cells 

can synthesize the complementary strand and form a new circular plasmid again (Baron et al. 

1996). The plasmid then delivers the gene of interest to the WT strain via biparental conjugation. 

We used E. coli SM10λpir as a donor cell and wild-type R. leguminosarum ATCC as a recipient 

cell in this work. 
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Five mL of YMBPg50Nal10 was inoculated with R. leguminosarum ATCC and placed onto 

a rotary shaker at 30°C for 48 hours at 250 rpm. Five mL of LBGm15 broth was inoculated with a 

SM10λpir colony which had pEXFHU. It was grown overnight at 37°C on a rotary shaker at 250 

rpm.  Both of these cultures mentioned above were centrifuged in microcentrifuge tubes at 8000 

rpm for 5 min (2500 xg). and pellets were washed three times with sterile saline (0.85% NaCl) to 

remove residual antibiotics and media in the tube. This also helps to reduce the 

exopolysaccharides produced by R. leguminosarum ATCC. These cells were then resuspended in 

200 μL sterile saline. Two hundred μL of R. leguminosarum was combined with 100 μL of E. 

coli SM10λpir containing pEXFHU in a sterile microcentrifuge tube. The mixture was then 

vortexed. The cells were pelleted via centrifugation in 10,000 rpm (5000 xg) at room 

temperature, and the supernatant was discarded. The pellet was resuspended in 30 μL of 10 mM 

MgCl2. 

The mixture was pipetted onto sterile 0.22 μm nitrocellulose membrane that was placed 

on the surface of warmed CR plate. While placing the membrane, the hydrophilic part was facing 

the agar, and the hydrophobic surface was facing up. This helps in continuous absorbance of 

nutrients from the media. The CR plates with the nitrocellulose membrane were incubated for 24 

hours at 30°C. 

After incubation, the nitrocellulose membrane was taken out using sterile forceps, and the 

colonies were washed off by submerging the membrane in 1 mL of sterile saline (0.85% NaCl) 

in a 1.5 mL sterile microcentrifuge tube. The tube was then vortexed vigorously so that the cells 

would get washed off into the solution from the surface of the membrane. The solution with the 

cells was then serial diluted and plated on CRGm10Nal10 plates and was allowed to incubate for 

almost 5 days until the colonies were formed. The colonies which successfully carried out the 
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biparental conjugation can survive, and the rest are killed. Wild-type R. leguminosarum ATCC is 

resistant to nalidixic acid, and the E. coli Sm10λpir with pEXFHU is gentamycin resistant. Use 

of both gentamycin and nalidixic acid allowed the screening of the conjugants which were 

resistant to both the antibiotics unlike recipient and donor strains. Colonies were further screened 

via colony PCR to identify the merodiploids. 

The fhuA Mutant 

 

The PCR identified merodiploid colonies that were able to grow on the CRGm10Nal10 

containing plate were picked. Merodiploid is the state in which the bacterial chromosome 

contains its wild-type region and also the inserted region (Horton et al.1990)). This happens 

because of homologous recombination. The homologous recombination occurs because the 

“fhuA SOE insert” in the plasmid have a segment which is homologous to the WT chromosome. 

These merodiploid colonies are the ones with integrated pEXFHU into their genome and thus 

contained both, fhuA from WT and also the fhuA SOE product with Gm and sacB cassette with 

the flanking regions. Once merodiploids were identified, they were transferred to 5 mL YMB. 

The inoculated YMB broth was incubated at 30°C on a rotary shaker for 6 hours at 250 rpm, so 

that the cells would pass through a recovery process. After incubation, 1 mL YMB broth was 

transferred in sterile 1.5 mL centrifuge tubes and was centrifuged. The supernatant was 

discarded, and the pellet was resuspended in sterile normal saline (0.85% NaCl). It was serially 

diluted before plating on CR media containing 50μg/mL penicillin G and 5% sucrose 

(CRPen50Suc5). It was done to counter select the mutants against merodiploids that have carried out 

the homologous recombination and have knocked off the remaining part of pEXFHU keeping the 

inserted fhuA SOE fragment. The colonies were grown at 30°C for 72 hours. The sacB cassette 

in the plasmid produces levan sucrose in the presence of sucrose in the media. Levan sucrose 
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kills the bacteria by degrading its outer membrane. Hence, the colonies that survive should either 

have the WT chromosome or the SOE fragment that has “dropped out” the parts from the pEX 

plasmid and only contains the region flanking the putative fhuA. These individual colonies 

growing on sucrose were then picked and screened via colony PCR to identify the possible 

mutants which were without pEX fragments but contained the SOE fragment with the flanking 

regions of putative fhuA. A genomic extraction via the CTAB method as described above was 

performed on each identified potential mutant. The chromosomal DNA of each possible mutant 

was used as a template for PCR reactions using the primer set fhuIntF and fhuIntR (Table 4). The 

PCR amplicon with the right sized band at 1 Kb with deleted fhuA was sent for sequencing using 

the fhuIntF and fhuIntR primers. Colonies were confirmed as fhuA
- 
via sequencing with an in-

frame deletion of fhuA and were called R. leguminosarum ATCC fhuA mutant (RLΔFhuA). 

Vicibactin Isolation and Purification 

Atkin’s Assay for Vicibactin Detection 

 

Atkin’s assay or iron perchlorate assay is a colorimetric assay done to detect the presence 

of hydroxamate type siderophores in a solution (Atkin’s et al. 1970). As mentioned earlier, R. 

leguminosarum produces a hydroxamate type siderophore, vicibactin. Atkin’s reagent was 

prepared by mixing 5mM Fe(ClO4)3 in 0.1 M HClO4. Two and half mL of reagent was mixed 

with 0.5 mL of culture supernatant. The mixture is then allowed to incubate for approx. 5 min. at 

room temperature. A positive reaction forms wine color in the mixture. The intensity of the wine 

color depends on the amount of siderophore present in the supernatant. Absorbance was 

measured using a spectrophotometer at 450nm. The spectrophotometric analysis allows the 
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determination of vicibactin concentration in the samples based on its molar absorbance. The 

molar absorbance coefficient of vicibactin at 450nm is 1510 M
-1 

cm
-1

 (Carson et al. 1994).  

R. leguminosarum ATCC::pBIO1187 and Vicibactin Isolation/Purification 

 

Wild-type R. leguminosarum ATCC with cosmid pBIO1187 was used for vicibactin 

production. The cosmid pBIO1187 is a LAFR-1 based cosmid which contains the whole operon 

for vicibactin synthesis (Carter et al. 2002). Vicibactin isolation and purification was carried out 

following a protocol designed and confirmed previously (Wright et al. 2013). Cosmid pBIO1187 

was transferred into the wild-type R. leguminosarum ATCC by using a helper plasmid pRK2013. 

A triparental conjugation was carried out for the transfer process. 

The tetracycline and nalidixic acid resistant isolated colonies on CRNal10Tet10, were picked 

and used to make stock and starter cultures. The starter culture was used to inoculate larger 

batches of MMW media with Nal10 and Tet10. Two flasks with 1 liter of MMW were used for 

inoculation. These flasks were grown on a rotary shaker at 30°C at 250 rpm for 6-7 days until the 

O.D600 reached 1.00. Cells were then pelleted by centrifuging at 14000 rpm (8000 x g) at 4°C for 

30 minutes. A longer centrifugation at high speed was needed to reduce the amount of 

exopolysaccharides produced by the bacteria. The supernatant was collected in 1L bottles. The 

bottles were acid washed and sterile. The supernatant was acidified to pH of 2.0 by using 6M 

HCl.  

The supernatant was loaded on Amberlite XAD-2 column with bed volume of 5cm X 

7.5cm (160 gm) in the column with 5 cm diameter and 30 cm length. The bed volume was 

calculated, and the column was prepared using methanol. Before loading the sample the column 

was equilibrated with 3-5 bed volume of deionized distilled water. The column bound vicibactin 

was washed with at least two bed volume of DDW before eluting. Methanol was used for the 
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elution process. The elution was done in 5 fractions of 50 mL each. The presence of vicibactin in 

these fractions was confirmed using Atkin’s and Chrome Azurol S (CAS) assay. The eluted 

fractions with vicibactin were frozen using dry ice and liquid nitrogen and were lyophilized until 

dry using Freeze Dryer Virtis Freezemobile at ETSU Quillen College of Medicine. The dried 

samples were resuspended in 5 mL of methanol and were further purified using Sephadex LH-20 

columns. 

Approx. 45 cm of the Sephadex LH-20 column was packed with 25 g of the beads. The 

length of the column was 50 cm, and diameter was 1.5 cm. Methanol was used for elution, and 

total 50 fractions were collected in 1 mL aliquots using a Bio-Rad Model 2110 fraction collector. 

Five microliters of each fraction was used for Atkin’s assay, to confirm the presence of 

vicibactin. The fractions with vicibactin were combined and poured into a round bottom flask 

which was further used to evaporate the methanol present using a Buchi R-200 Rotovap. The 

evaporation was carried out in a water bath at 40°C at the pressure of approx. 300 mm of Hg 

with a rotation of the flask at maximum rpm. The evaporation was carried out until the entire 

methanol evaporated. The samples were stored at -20°C until further use. 

High Performance Liquid Chromatography (HPLC) 

 

BioRad Biological Duoflow HPLC system was used for further purification of the 

siderophore. The mobile phases used were filtered 100% methanol and filtered deaerated 

deionized water. The concentrated sample was suspended using sterile deaerated deionized water 

and enough methanol to dissolve the sample. The wavelength of the UV detector was set at 240 

nm and the column used was Waters 7.8mm x 300mm Novapak HR C18 hydrophobic column. 

The bed volume was calculated, and 3-5 bed volumes of sterile deaerated deionized water were 

allowed to pass through the column for equilibration. Five hundred microlitres of the sample was 
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injected into the column. The siderophore was eluted using the gradient of methanol and 

occurred at 48% methanol. As soon as the methanol was introduced in the column, the elution of 

the molecules was noted by the UV detector. The molecules eluted were showing peaks similar 

to the previous results (Wright et al. 2011). The peaks and the fractions were analyzed using 

Atkin’s assay to confirm the purity of the sample. 
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                                                                    CHAPTER 3 

RESULTS 

Growth of R. leguminosarum ATCC Dependent on Iron Concentration 

 

R. leguminosarum ATCC was grown in minimal media supplemented with different iron 

concentrations (0 μM, 0.05 μM, 0.1 μM, 0.5 μM, 2.5 μM, 50 μM, and 100 μM) to determine its 

influence on growth. The minimal media MMW contained every other nutrients required for 

growth, but not just the iron. As a negative control, 0.25 mM 2’2’ dipyridyl (DIPI) was used to 

chelate the contaminating iron in the media and to achieve a perfect zero iron concentration 

(Wright et al.2013). As predicted, the growth of the bacteria in DIPI was almost negligible with 

O.D.600 less than 0.2, whereas the growth of bacteria in high iron was much higher (O.D.600 over 

1.6 after 72 hrs). The effect of higher iron concentrations 50 μM and 100 μM on bacterial growth 

after 36 hrs was similar as shown in Fig. 9. This suggests there is no need of such high iron 

concentration for a proper bacterial growth. The bacteria were observed to grow differently in 

different iron concentrations, despite equal amount of bacteria (inoculum) introduced in each 

flask (Fig. 9). This reveals the effect and necessity of iron in proper bacterial growth and 

development.  
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Figure 9: Growth of R. leguminosarum ATCC in different iron concentration. The growth of the bacteria is affected 

by the amount of iron present in the media. DIPI is the absolute zero iron concentration. 

 

Identification of Putative fhuA and In-Silico Analysis 

 

Presence of fhuA Like Genes 

 

Polymerase Chain Reaction (PCR) and agarose gel electrophoresis were used to detect 

the presence of fhuA like genes in R. leguminosarum ATCC. PCR primers were designed based 

on the known gene sequence of fhuA from S. melioti, E.coli and R. leguminosarum viciae (Table 

4). Successful amplification was observed only with the primers from R. leguminosarum bv. 

viciae 8401. The primers that were based on the gene sequence of E. coli and S. melioti did not 

show amplification (Fig. 10). The primers from E. coli and S. melioti were from within the 

known open reading frame (ORF) of the fhuA gene. The primers based on R. leguminosarum 

viciae 8401were located outside the known fhuA sequence. Also, different sets of primers from 

within the ORF of the respective known fhuA sequences showed a similar result to Fig. 10, with 
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the only amplification from the primers from R. leguminosarum viciae 8401. This amplification 

result suggests that the putative fhuA from R. leguminosarum ATCC is similar in size to the fhuA 

gene from R. leguminosarum viciae 8401.  

The PCR amplicon was sequenced further using primer walking technique, designing 

primers based on the sequenced data and performing PCR and sequencing further forward until 

the whole sequence was obtained. 1Kb upstream and 1Kb downstream of the putative fhuA was 

also sequenced for future experimental purposes. Sequencing was necessary as the whole 

genome sequence of the R. leguminosarum ATCC has not been performed yet. 

 

Figure 10: Amplification of the putative fhuA in R. leguminosarum ATCC. The gel shows amplification of the 

putative fhuA  in lanes 6 and 7 only from the primers designed from R. leguminosarum viciae 8401 and no 

amplification from other primers. 

1               2               3              4                5              6               7              8 

Lane 1 HindIII/λ DNA marker 

Lane 2 & 3 (E.coli primers) 

Lane 4 & 5 (S. melioti primers) 

Lane 6 & 7 (R. leguminosarum viciae 8401 primers) 
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Gene Sequencing and Alignment 

 

The putative fhuA gene that was amplified in R. leguminosarum ATCC was sequenced 

for further analysis. Sequencing of 3746 bases was performed to obtain the sequence from 1kb 

upstream, and 1Kb downstream of fhuA in order to perform a gene knockout experiment in 

future. Sequencing was important because a whole genome sequence is not yet available for R. 

leguminosarum ATCC. The sequence data was obtained in parts and hence was put together in a 

consensus sequence for analyzing the whole 3746 bases. The alignment is shown in parts with 

two strains of R. leguminosarum (see appendix). The genome of relative species R. 

leguminosarum J251 or R. leguminosarum viciae 8401 has also not been sequenced yet. Hence, 

the alignment data is shown in fragments which aligned with different gene fragments of fhuA 

and the flanking regions belonging to R. leguminosarum J251 or R. leguminosarum viciae 8401. 

Nucleotide BLAST (NIH-NCBI) was carried out for the analysis using the sequenced 

data. Putative fhuA shared more than 95% nucleotide identity with R. leguminosarum viciae 

8401 and R. leguminosarum J251. Putative fhuA was 70% identical with R. tropici and R. 

phaseoli fhuA sequences. Changes in nucleotides at 13 different places were observed within the 

predicted ORF of 2244 nucleotide bases when aligned with R. leguminosarum viciae 8401 

(alignment data in appendix). However these changes were not affecting the putative coding 

region.  

In-Silico Analysis 

 

Analysis of the putative sequence was necessary to determine the correct open reading 

frame (ORF) and to use it for further structural analysis. The prediction was required for cloning 

and other experiments as well. ORF finder (NCBI) was used to predict the possible ORF from 
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the putative gene sequence (Fig. 11). The longest ORF2 predicted was 95% identical to the ORF 

of the published sequence of R. leguminosarum 8401 and was 2244 base pairs in length. The 

online software “genome2d” was used to predict the promoter region (Fig. 12). The promoter 

region found approx. 10 bases upstream of predicted ORF2 (Fig. 12) also suggested that the 

predicted ORF2 is the correct ORF. Putative promotor upstream of ORF2 had the highest score 

(Fig. 12). 

The independently generated 3D structure of ORF2 demonstrated a possible barrel 

shaped model of the putative FhuA using the 3D structural homolog tool SWISS-MODEL 3D 

(Fig 15). The presence of Pribnow box in front of the ORF2 and observing the consensus -10 

sequence and -35 sequence, ORF2 was found to be the best match for the putative FhuA protein.  

 

 
 

Figure 11: Predicted ORF’s using NCBI-ORF prediction tool. The possible ORF are shown in the picture. ORF2 is 

an ORF similar to known and published data. 
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Figure 12: The putative promoter site of the predicted ORF. The site with the highest score upstream of the 

predicted ORF was considered as a promoter site for the putative ORF. The promoter site p_3 query was upstream 

of the putative ORF2 with the highest score and a length of 30 nucleotide bases. 

 

The protein sequence was generated by using the translation tool from EXPASY, Swiss 

Institute of Bioinformatics (SIB) (EXPASY/SIB 2016). The putative protein sequence from R. 

leguminosarum ATCC was aligned with known (crystal structured) amino acid sequences from 

E.coli FhuA (Fig. 13), and known but not crystallized R. leguminosarum viciae FhuA (Fig. 14). 

The alignment showed the similarity of the amino acids with the E. coli FhuA with an identity of 

32% and similarity of 52% (Fig. 13). The amino acid similarity was interesting because as stated 

before, the E. coli fhuA gene primers did not amplify the putative fhuA. The nucleotide sequences 

between the putative fhuA and the E. coli fhuA did not align with each other. This similarity 

between the proteins points out the possibility of these proteins transporting similar types of 

ligand. As mentioned in earlier sections, the siderophores vicibactin and ferrichrome are both 

hydroxamate type siderophores. No identity between the gene sequences illustrates that two 

different genes can code for proteins of similar function. Structural analysis of these proteins was 

necessary to understand more about them.  
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Figure 13: Protein sequence alignment of putative FhuA with E.coli FhuA. Putative FhuA is the query sequence and 

E.coli FhuA is the subject. Some of many similarities and dissimilarities between these two sequences are shown in 

the boxes. The sequence was 32% identical and 52% similar. 
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Figure 14:  Protein sequence alignment of putative FhuA with R. leguminosarum viciae 8401FhuA . Putative FhuA 

is the query sequence and R. leguminosarum viciae 8401FhuA is the subject. The sequence was 99% identical. The 

only differences were observed in 4 amino acids as shown in the boxes.  
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SIB-3D SWISS-MODEL tool was used to model the protein structures independently 

(Fig.15, 16). The putative FhuA protein structure was modelled and was compared with 

published (solved crystal structure) FhuA model of E.coli K12 (Fig. 15, 16) (Ferguson et al. 

1998). Both putative FhuA and the E. coli K12-FhuA had a 22 β-stranded barrel-shaped structure 

with a plug domain inside the barrel (Fig. 15, 16, 17, 18). The similarities and differences are 

shown using the arrows (Fig. 15, 16, 17, and 18). One difference was the N-terminal extension in 

the putative FhuA for R. leguminosarum ATCC, which was not present in E.coli FhuA. This 

extension is seen in the outer membrane transporters such as PupA (Ps. aeruginosa) and FecA 

(E.coli) for transduction of energy during the process of siderophore transport (Bitter et al. 1991, 

Yue et al. 2003). The extension is necessary for interaction with the TonB energy transducing 

protein (Bitter et al. 1991, Yue et al. 2003). The loop orientation and number of loops was 

similar with E.coli FhuA. Nevertheless, the gene sequence of the crystallized transporter protein 

from E.coli K12 had no sequence alignment with the newly sequenced putative fhuA gene (0% 

alignment). 
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Figure 15: Putative R. leguminosarum ATCC FhuA. The similarities and dissimilarities with E. coli FhuA are 

indicated using arrows. Presence of N-terminal extension can be observed in the putative FhuA. 

 

Figure 16: E. coli FhuA 
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Figure 17: E. coli FhuA plug domain 

                                                                         

Figure 18: Putative FhuA plug domain. The similarities and dissimilarities with E. coli FhuA are indicated using 

arrows. Presence of N-terminal extension can be observed in the putative plug domain.  
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Cloning of Putative fhuA 

 

Cloning of putative fhuA from R. leguminosarum ATCC in an expression vector was 

necessary for future complementation assays. This was also necessary for protein expression and 

purification for future experiments. The cloning of fhuA in the pET17b plasmid was carried out 

as previously described. The transformation of the pET17b::fhuA plasmid into E.coli BL21/DE3 

was carried out and confirmed via antibiotic selection. Colony PCR and sequencing was done to 

confirm the cloned insert. The restriction/digestion of the extracted plasmid DNA further 

confirmed the size as there was a drop out of the same size of the insert (2.3 Kb) and the pET17b 

vector (3.3 Kb) (Fig.19). 

 

Figure 19: Restriction digestion of pET17b::fhuA plasmid and pET17b vector. The drop off of the insert is observed 

which is absent in lane 6 (Vector only). 

The sequencing data confirmed putative fhuA was in frame with the T7 epitope. The 

methionine site in the first line, highlighted yellow in Fig. 20 is the start codon of T7-tag. The 

The restricted/digested pET17b::fhuA 

plasmid were loaded in lanes 3, 4 and 5.  

 

Lane 6 was loaded with restricted/digested 

pET17b vector only 



71 

 

methionine site in the second line, higlighted green, is the start codon for putative fhuA. The 

restriction enzyme site (GGTACC) is highlighted in red. 

 

Figure 20: Sequence of the start site of the T7-tag and putative fhuA. The in-frame insertion of the putative ORF is 

confirmed  

 

The same thing as above was done for the stop codon or towards the end of the putative 

fhuA gene. Fig. 21 shows the stop site in purple and the enzyme (GGATCC) right after the stop 

codon highlighted in red. The inframe insertion is important for protein expression and 

purification purposes.  

 

Figure 21: The stop codon of the putative fhuA in pET17b. The stop codon in purple (TAA) is the stop site of 

putative fhuA. The in frame insertion of the putative fhuA in pET17b:: fhuA is confirmed. 

Location of fhuA and rosR and fhuF 

 

A fragment of the transcriptional regulatory gene rosR was found upstream of the 

putative fhuA gene. There is a possibility of the whole gene being present if further sequenced. 

The whole rosR gene is 573 bp and controls various cellular functions as described earlier. It 

belongs to the TetR family of transcriptional regulators (Rachwal et al. 2015). The alignment of 

the rosR gene from strain R. leguminosarum Rt 24.2 showed 95% identity with the putative rosR 

from R. leguminosarum ATCC (see appendix). The whole rosR gene has not been sequenced yet 

and it was discovered while sequencing fhuA (see appendix). 
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Downstream of fhuA, the fhuF gene was present which aligned with the known sequence 

of fhuF from R. leguminosarum viciae 3841 and R. leguminosarum trifolii 24.2 (see. appendix). 

The fhuF is a 789 bp siderophore reductase gene. As mentioned before, the reduction of 

siderophore and the ferric-iron complex is carried out by the protein FhuF (Miethke et al. 2011). 

To know the location of fhuA was necessary as there has been a previous report of a 

pseudogene fhuA in an operon fhuDCBA in R. leguminosarum viciae 8401 (Yeoman et al. 2000). 

The pseudogene was present in the operon fhuDCBA and was in opposite orientation than 

fhuDCB. The location of putative fhuA in R. leguminosarum ATCC was analyzed and found to 

be present between rosR and fhuF. The study of expression was done after its location was 

analyzed and confirmed which revealed that it was not present in an operon fhuDCBA. 

 

Wild-Type Putative fhuA Expression 

 

Expression of Putative FhuA Protein 

 

A 7.5% SDS-PAGE was performed to determine if there are proteins with different level 

of expression present in the outer membrane fragments of cells grown at low and high iron 

concentrations (Fig. 22). Any proteins in the outer membrane fragments that are controlled by 

iron concentration with a size ranging about 70-90 kDa are likely candidates for OM receptors in 

bacteria for iron transport (Morton and Williams 1989). Two such bands were found in SDS-

PAGE gel analysis. The molecular weight of the putative FhuA protein was calculated to be 82 

Kilo Daltons (kDa) using EXPASY molecular weight calculator. There was one such band 

present in the polyacrylamide gel which was similar to 82 kDa. This band was a band of interest 

also because the E.coli FhuA is approximately the same size (78 kDa) (Fig. 22). The experiment 
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was repeated more than three times to confirm the under expression of this protein in the outer 

membrane at higher iron concentration. The expression of proteins involved in siderophore 

biosynthesis and transport are known to be repressed at higher concentration (Morton and 

Williams 1989). This suggests that the protein of size 82 kDa in the gel is more likely to be the 

putative FhuA or another protein regulated by iron concentration which is more likely to be 

required for siderophore transport. A second band in the gel at approximately 70 kDa was not a 

possible candidate for putative FhuA because as stated earlier, the calculated molecular weight 

based on the sequence data was 82 kDa and not 70 kDa. 

 

 

Figure 22: Expression of outer membrane protein fragments controlled by FeS04.7H2O. The outer membrane 

fragments from bacteria grown in 0µM iron is loaded in 3
rd

 lane, dipiridyl in 4
th

 lane, 0.05µM in 5
th

, 0.1 µM in 6
th

, 

0.5 µM in 7
th

, 2.5 µM in 8
th

, 50 µM in 9
th

 and 100 µM in 10
th
 lane. The bands shown by the arrow resemble sizes 70-

90 kDa and are being under-expressed in high iron. The putative FhuA is most likely to be the band resembling the 

mol. wt. size of approximately 82 kDa since the calculated mol. wt. was 82 kDa. 

Precision plus ladder     0 µM         DIPI       0.05 µM   0.1 µM   0.5 µM      2.5µM       50µM       100µM 
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Expression of Putative fhuA Gene 

 

RT-PCR was performed to determine if the putative fhuA mRNA transcript was being 

produced (Fig. 23). The RNA extraction was done when the O.D600 was 0.6 to 0.8 and the 

amount of total RNA loaded for synthesis of the cDNA was exactly same for all the samples 

grown at different iron concentrations. The expression of putative fhuA was seen to be high in 

low iron concentrations and very low/almost undetectable in higher iron concentrations. This 

expression was very similar to that of the 82 kDa protein in the SDS-PAGE gel (Fig. 22). 

Furthermore, the quantification of this data was done by performing the RT-PCR experiment in 

various PCR cycles (15X, 20X, 25X, 28X, 29X, 30X and 40X). The 1% Agarose gel shown 

below (Fig. 23A) is from the PCR run for 30 cycles. The expression of the putative fhuA is 

decreasing when the iron concentration was increased. Lane 6, 7 and 8 have almost no 

amplification showing that the amount of mRNA synthesized were very low which were specific 

to the putative fhuA. Fig 23B, Fig 23C, Fig 23D are the gel from 20X, 25X and 40X, 

respectively. In Fig. 23B, the expression of the putative fhuA is very low when PCR was 

performed for 20 cycles. In Fig. 23C, the expression is visible until lane 4 (0.1 µM iron). 

In Fig 23D, the expression of the putative fhuA is seen in all the lanes. 

There was no amplification at all in PCR runs for 15 or less cycles. The presence of the 

mRNA specific to the putative fhuA caused the amplification in all cases. The high iron lanes 

have the amplification in all the lanes in 40X because, there is definitely going to be very low 

expression of the putative fhuA even if iron concentration is very high as it is required for iron 

transport. The expression would not be halted completely. The abundance of high iron will make 

the expression lower when compared to the cells grown in low iron concentration. That would be 

the reason behind the band in all lanes in Fig. 23D. 
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Figure 23A: 1% agarose gel after RT-PCR of the putative fhuA for 30 cycles 

 

 

 

 

 

 

 
Figure 23B: 1% agarose gel after RT-PCR of the putative fhuA for 20 cycles 

 

 

 

 

 

 

 

 
 

 

Figure 23C: 1% agarose gel after RT-PCR of the putative fhuA for 25 cycles 

 
 

 
 

 

 

 

Figure 23D: 1% agarose gel after RT-PCR of the putative fhuA for 40 cycles 

 

 

 

Figure 23: Expression of putative fhuA gene. Use of 1% Agarose gel to show different levels of expression of the 

putative fhuA in different iron concentrations. The decrease of expression of the putative fhuA in increasing iron 

concentration and vice versa elucidates its possible involvement in iron transport.  
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R. leguminosarum Putative fhuA Mutant 

 

Cloning and Construction of pEXFHU and Its Confirmation 

 

Cloning of pEXFHU and its confirmation was done following the same procedure used 

for cloning fhuA into pET17b as described in the earlier sections. The restriction digested and 

ligated pEXFhu plasmid with the “SOE fragment” was introduced into E.coli SM10λpir 

electrocompetent cells via electroporation. The colonies were screened on gentamycin plates and 

confirmed via colony PCR using the primers specific to the inserted SOE fragment.  The plasmid 

DNA was further digested with the appropriate enzymes to confirm the size of the fragments that 

dropped out which was the similar to the size of the insert in lane 4 (1.6 Kb) (Fig. 24). However 

the digested vector did not show such drop out (Fig. 24). Successful cloning was confirmed via 

sequencing using appropriate primers (Fig. 25).  

 

Figure 24: Restriction digestion of pEX::FHU and pEX18Gm vector. Lane 3: whole plasmid with the SOE 

fragment, Lane 4: restriction digested plasmid DNA, Lane  6: Whole plasmid/vector DNA only, Lane 7: restriction 

digested vector DNA only, Lane 9 : Whole plasmid/vector DNA only, Lane 10: restriction digested vector DNA 

only. 

  3            4 6             7 9          10 
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Figure 25: In-frame deletion of the putative fhuA and the alignment of the flanking region. The box shows the 

putative start codon and the putative stop codon of the putative fhuA with the flanking region (query) in the 

pEX18FHU plasmid aligning with the flanking region of the (Subject) WT putative fhuA. 

Construction of R. leguminosarum ATCC fhuA Mutant (RLΔFhuA) 

 

Biparental conjugation was carried out between wild-type R. leguminosarum ATCC and 

E.coli SM10λpir with pEXFHU. The conjugated cells were selected using gentamycin/nalidixic 

acid. Gentamycin was used to kill the wild type R. leguminosarum ATCC which were unable to 

carry out the conjugation process. Nalidixic acid was used to kill the E.coli strains. The R. 

leguminosarum ATCC colonies with the pEX::FHU (Gm
R
) were the only ones which were able 

to grow in the antibiotic selection process. Colony PCR was done to confirm the successful 

conjugation followed by integration of the SOE fragment. As described before, the colonies were 

counter-selected in 5% sucrose as the cassette sacB, if present, produces levan sucrose in 

presence of sucrose which kills the bacteria by degrading its cell membrane. The colonies that 
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can survive are either WT colonies or the colonies that went through successful recombination 

and have dropped off the fragments from pEX::FHU. 

After performing selection and counter selection of the mutants, colony PCR was done to 

confirm the mutants (Fig. 26). The primers used (Fig. 28) for colony PCR were IntF and IntR 

(Fig.26). Mut1, Mut2, Mut3, Mut4, Mut5 and Mut6 are mutants. The wild type was used as a 

control during colony PCR. The primers used were the primers outside the putative fhuA ORF 

and are approx. 0.5 Kb away from each start and stop site of the putative fhuA (Fig. 28). These 

primers were also used for sequencing the RLΔFhuA mutants. Sequencing data revealed the in-

frame deletion was carried out successfully (Fig. 27). The smaller bands sizes (1.0 Kb and 0.4 

Kb) in both the gels (Fig. 26, Fig. 29 respectively) show that the putative fhuA has been deleted 

in R. leguminosarum ATCC. The WT colony with the putative fhuA is showing the band size 3.5 

Kb and 3 Kb (Fig. 26, Fig. 29 respectively). The sequencing of the mutants also confirmed this 

deletion (Fig. 27, Fig. 30). The in frame deletion of putative fhuA is highlighted in blue showing 

just the start and stop codons (Fig. 27, Fig. 30). 
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Figure 26: The amplification of the fragments flanking putative fhuA in RLΔFhuA. WT is wild type R. 

leguminosarum amplified with putative fhuA. Mut1, Mut2, Mut3, Mut4, Mut5 and Mut6 are the mutants showing 

the smaller band size 1.0 Kb without fhuA. WT, with putative fhuA shows a band at 3.5 Kb. 

 

Figure 27: Sequencing to confirm the in-frame deletion of putative fhuA in RLΔFhuA. The Start codon and stop 

codon are shown in the alignment and hence it is confirmed that the putative fhuA has been deleted in-frame. Query 

is the sequence from the RLΔFhuA. 
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Figure 28: Schematic representation of the primers used for confirming the mutants 

 

 The same mutants were used for Colony PCR and sequencing by using another primer set 

P3F and P1R (Fig. 28 and Fig 29). The mutant colonies showed a band size of 0.5 Kb as the 

primers used were outside the putative ORF. This indicates that a deletion occurred in the 

mutants. The WT showed the bigger band size of 3.0 Kb as there had been no deletion in the WT 

(Fig. 29). The deletion was confirmed via sequencing as well. The sequencing using the same 

primers also showed an in-frame deletion of the putative fhuA (Fig. 30). 

 

 

 
Figure 29: Amplification of the mutants and WT with the primers outside the putative fhuA ORF. Lane A to lane I 

are the mutants that were picked. Lane J and Lane K are the WT chromosomal DNA and colony, respectively.  
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Figure 30: Alignment of the sequenced data from the mutants. The primers used were P3F and P1R, outside the 

putative fhuA operon. The deletion is observed to be in frame and is supported by the flanking regions. Query is the 

sequence obtained from the RLΔFhuA and subject is the sequence of the flanking regions of putative fhuA. 

 

Possibility of a Duplicate fhuA Like Gene 

 

Genomic DNA from RLΔFhuA and isolated colonies was used as a template for PCR 

amplification using primers within the ORF (Fig. 28) of the putative fhuA (Fig. 31). This is the 

part that has been deleted. These were the same primers used for sequencing of the putative fhuA 

(P4F/P2R). The primers amplified the chromosomal DNA showing the exact band size as the 

wild-type (Fig. 31). 
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Figure 31: Amplification in RLΔFhuA using the gene specific primers. Lane A to Lane I: RLΔFhuA mutants created 

via SOEing. Lane J to Lane K: wild type. All mutants and WT still showed the presence of fhuA gene. 

 

The deletion mutants were not expected to have shown this amplification as the putative 

fhuA gene was deleted and confirmed with sequencing data. The deletion was confirmed by 

sequencing the region of deletion using primers outside the putative fhuA. However, the result of 

the colony PCR of the mutants using inner primers indicates the possibility of another fhuA like 

gene in the chromosome. The amplified fragment from the figure above was sequenced, and the 

sequence was more than 97% similar to the nucleotide sequence of the putative fhuA that was 

sequenced in this work (Fig. 32). However, the presence of gaps in the ORF was high and 

random. This possibly points out a fact on this gene being a pseudogene as the ORF was not 

continuous. This might also be possible because of impure DNA sample or other sequencing 

errors. Also, Sanger sequencing tends to give some random results towards the end of the 

sequencing in a longer sequencing data. Further experiments are required to solve/ diagnose this 

problem. 
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Figure 32: Sequencing of possible second fhuA. Amplification was done using the in frame primers P4F/P2R. The 

alignment with the deleted putative fhuA (fhuA1) shows the sequence identity of 97% along with some mismatch. 

This suggests there is a homolog present in the bacterial chromosome and very similar to the putative fhuA1. The 

gaps are shown in boxes. Also, the random gaps and discontinuity might as well indicate that this ORF is a 

pseudogene or perhaps there was a sequencing error. 

Study of the fhuA Mutants 

 

Effect of Iron on the Growth of fhuA
- 
R. leguminosarum ATCC 

  

The putative fhuA mutants were not affected by the amount of iron present in the media. 

The media used was minimal media MMW. The mutants grew similar to wild-type. This 

suggested that iron acquisition was not affected in the mutants and the organism grew normally 
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(Fig. 33). Mutant 9 showed less growth after 72 hours and 96 hours as compared to others. The 

experiment was repeated to check if Mut9 showed less growth and again it did not.  

 

Figure 33: Growth of mutants and wild type in low iron media. The mutants were growing the same as the wild type. 

This shows that the iron transport has not been affected in the mutants.  

 

Vicibactin Synthesis by the RLΔFhuA Muants 

The putative fhuA mutants should generally produce more vicibactin if the iron transport 

has been affected. As described earlier, iron regulation and uptake in R. leguminosarum is 

controlled by the transcriptional regulatory protein RirA that is controlled by iron concentration 

(Rudolph et al. 2006). The iron transport mutants should be vicibactin overproducers. An Atkin’s 

assay was performed to calculate and observe the amount of vicibactin being produced by 

mutants and wild-type. The production of vicibactin was found to be similar to wild-type. Thus, 

the mutants were not found to be overproducers (Fig. 34). This means that the mutants were 
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easily fulfilling their iron scarcity or iron requirement by some other mechanism. The deletion in 

the putative fhuA did not affect the iron transport and hence the growth of the mutant was similar 

to WT.  

 

 

Figure 34: Atkin’s assay for vicibactin produced by mutants and the WT. The effect of the deletion in fhuA was not 

observed in the mutants, thus, no vicibactin overproduction was recorded. 

Analysis of Outer Membrane Proteins From the Mutants  

 

SDS-PAGE was carried out to determine if some proteins are missing in the mutants 

when compared to the WT. If the protein coding ORF has been deleted, there should have been 

no band in a range of 82 kDa which should be just present in the WT. The polyacrylamide gel 

(Fig. 35) however, shows that no such band is absent in the mutants. Both whole cells and OM 

fragments were loaded to check this. The cells were harvested from MMW broth after 48 hours 

and 96 hours. The amount of whole cells were measured via spectrophotometer and the cells 

O.D 600 

nm 
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were diluted accordingly before loading in the polyacrylamide gel. The amount of cells used for 

OM fragments are equal.  

In Fig. 35A, Lanes M1 to M9 are mutants while WT is a wild-type. Lanes were loaded 

with whole cells from 48 hours (M1to M9). Last 3 lanes ; M1 to M3 are whole cells from 96 

hours. There are no missing protein bands in mutants which are present only in WT.  In Fig. 35B, 

Lanes M4 to M9 are whole cells from 96 hours and WT is wild type. Last 6 lanes are outer 

membrane fragments from the WT and mutants (M1 to M5). 
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Figure 35A: SDS-PAGE of whole cells 

 

Figure 35B: SDS-PAGE of whole cells and outer membrane fragments 

Figure 35: SDS-PAGE of whole cells and outer membrane fragments of mutants and WT. They were harvested in 

different growth phases. The comparison of a band ranging 82kDa was done with the WT and the mutant. The 

calculated mol. wt. of the putative FhuA was 82 kDa. There was no such protein present in WT and absent in the 

mutant. 
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Vicibactin Isolation and Purification for Transport Assays 

 

Vicibactin Purification Using Amberlite XAD-2 and Sephadex-LH20 Columns and HPLC 

 

Cosmid pBIO1187 containing R. leguminosarum was used for vicibactin production. 

Vicibactin was purified using multiple chromatographic columns. In all chromatographic 

methods, methanol was used for elution of vicibactin from the columns. The 2
nd

 and 3
rd

 fractions 

eluted highly concentrated vicibactin from Amberlite XAD-2 column (Fig. 36). The presence of 

vicibactin in the fractions was determined by CAS and Atkin’s assay as described in methods 

section (Fig. 36, Fig. 37 and  Table 10, respectively). The change in color in CAS plates from 

blue to orange shows the presence of sideophore in the loaded sample (Fig.36). The changes in 

color of Atkin’s reagent shows that a hydroxamate type siderophore is present in the sample (Fig. 

37) (Atkin et al. 1970). Table 10 shows the optical density of the Atkin’s reagent for the fractions 

from Amberlite XAD-2 column and shows similar result to the CAS assay showing elution of 

siderophore in fractions 2
nd

 and 3
rd

.  These fractions with the siderophore were combined, 

lyophilized and then concentrated as described in methods section. The concentrated sample was 

loaded on to LH-20 column. Methanol was used for elution of vicibatin. Vicibactin was eluted in 

fractions 9-13. It was confirmed via CAS and Atkin’s assay as described. These fractions were 

further concentrated using Buchi R-200 rotavapor. The concentrated fractions were suspended in 

a small volume of methanol until dissolved and was syringe filtered to remove the bigger 

particles if present.  

The filtered vicibactin samples were loaded on HPLC. Approx. 0.5 ml sample was loaded 

during each run. The peaks were observed in HPLC at fractions 4-7, 14-18, 19-23 and 34. 

However, the Atkin’s assay showed the presence of vicibactin in fractions 6-7, 15-19, 20-22 

only. All these fractions showed wine color in Atkin’s assay. The peak at 34
th

 fraction was 
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obtained at elution in 100% methanol, which didn’t show any reaction with Atkin’s. All other 

peaks were obtained at elution with 48% methanol. The highest O.D and the strongest wine color 

was seen in fractions 6, 7 fractions 16, 17, 18 and fraction 21. These early elutions in fractions 

6
th

 and 7
th

 might either be some unbound vicibactin or some other molecules that are being 

eluted. The detection of degraded vicibactin products A and B have been reported previously 

(Wright et al. 2012) in 16
th

 to 21
st
 fractions (Fig. 38) along with the intact cyclic vicibactin 

known as vicibactin C. All these samples were furthure purified using HPLC and were saved 

carefully at -20°C for future use (Fig. 38). 

 

Figure 36: CAS assay for Amberlite XAD-2 fractions. Fractions 2
nd

 and 3
rd

 are showing lot of vicibactin. The 

elution of vicibactin occurred as soon as methanol was introduced in the column eluting the hydrophobic molecule 

in the early fractions. 
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Figure 37: Atkin's assay for Amberlite XAD-2 fractions. The fractions (2
nd

 and 3
rd

) in red arrow are showing the 

wine red color after the elution and were taken for further purification. 

Table 10: Atkin's assay for XAD-2 fractions. The high O.D 2
nd

 and 3
rd

 fraction with the wine red color confirms the 

presence of vicibactin in these fractions. The calculated concentration of vicibactin for 2
nd

 fraction was 0.00145 

moles/litre. 

 Samples O.D at 450nm 
Concentration of vicibactin 

(moles/liter) 

Supernatant 0.223 1.47 x 10
-4 

Flowthrough1 0.047 0.31 x 10
-4

 

Flowthrough2 0.052 0.34 x 10
-4

 

500ml H2O 0.037 0.24 x 10
-4

 

1st fraction 0.026 0.17 x 10
-4

 

2nd fraction 2.198 14.5 x 10
-4

 

3rd fraction 2.593 17.1 x 10
-4

 

4th fraction 2.102 13.92 x 10
-4

 

5th fraction 1.65 10.92 x 10
-4
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Figure 38: HPLC to purify vicibactin and three different vicibactin products. The undegraded vicibactin is 

siderophore C. Others, siderophore A and siderophore B, are degraded products of vicibactin (Wright et al. 2013). 

Fractions 16 to 21 eluted all three products of vicibactin. 

 

                                                          Use of Other Iron Sources 

Growth of R. leguminosarum ATCC with Hemin and Hemoglobin as Iron Source 

 

As described before, to determine if R. leguminosarum ATCC can utilize various other 

sources of iron, R. leguminosarum ATCC was grown in MMW minimal media and growth was 

measured in different concentrations of hemin and hemoglobin (Fig. 39 and Fig. 40). As stated, 
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hemin and hemoglobin were used because of their similarity with leghemoglobin. A significant 

difference in growth was only observed in the minimal media supplemented with different 

concentrations of hemoglobin (Fig. 39). Increasing concentrations of hemin did not significantly 

affect the growth of the bacteria (Fig. 40). The growth of the bacteria was affected by the  

increasing hemoglobin concentration. The hemoglobin concentration higher than 1 µM did not 

show a lot of effect in the growth of the bacteria at 48 hrs. However, hemoglobin concentrations 

from 0.025 µM to 1 µM showed a significant effect in bacterial growth. 

 

 

Figure 39: Growth of R. leguminosarum ATCC in different concentration of hemoglobin in MMW. The growth 

shows that the hemoglobin can be utilized as a sole source of iron by R. leguminosarum ATCC. 
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Figure 40: The growth of R. leguminosarum ATCC in different concentrations of hemin in minimal media MMW. 

The growth of the bacteria was not significantly changed by the increasing concentrations of hemin  

Proteins Responsible for Hemin/Hemoglobin Uptake 

It was our interest to determine the effect of different concentration of hemin and 

hemoglobin on protein expression. Identification of such heme bound iron transport proteins 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

24 Hrs 48Hrs

DIPI

0 µM

0.025 µM

0.050 µM

0.5 µM

1 µM

5 µM

15 µMO
.D

6
0

0
 

Time 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

DIPI 0 µM 0.025
µM

0.050
µM

0.5 µM 1 µM 5 µM 15 µM

48 Hrs 

O
.D

6
0

0
 

 

Hemin 



94 

 

were necessary in R. leguminosarum ATCC. Therefore, the whole cell extract from cells grown 

at different hemin/hemoglobin concentrations were used for analyzing protein expression using 

SDS-PAGE. We observed that many proteins were controlled by different hemin/hemoglobin 

concentrations. It was interesting to note that some of them were downregulated with the 

increasing hemoglobin/hemin concentration and some were upregulated (Fig. 41). The ranges of 

the proteins are from 35 kDa to 100 kDa which are controlled by different hemoglobin 

concentrations.  

 

Figure 41: Effect of hemoglobin in protein expression. Some of the proteins were either up-regulated or down-

regulated by the different concentration of hemoglobin. This guides to a presence of a possible system for heme-

bound iron uptake and the control of expression of the proteins associated with different heme concentration. 

 

Further studies on the effect of hemin as the sole source of iron was suspended due to its 

insignificant effect on the bacterial growth when compared to the effects of hemoglobin. 

However, similar to hemoglobin, protein expression was affected by different concentration of 

hemin in the medium (Fig.42). There were four major proteins downregulated with different 

Hemoglobin Concentration 
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hemin concentration. All of them ranged between 70-90 kDa. These proteins might be involved 

in hemin bound iron uptake. 

 

Figure 42: Effect of hemin on the expression of different proteins. Only four proteins were seen to be down-

regulated with the increasing hemin concentration is shown by the arrow. These are the proteins most likely to be 

involved in hemin transport. 

Heme-Bound Iron Uptake Putative Genes and the Proteins 

 

hmuPSTUV Operon 

Multiple sets of primers were designed based on published sequences of heme uptake 

genes from E.coli and different species of rhizobia (See list of all primers in Table 5). Primers 

were also designed from different heme uptake genes present in the same species. We identified 

three genes using PCR with the primers designed from the bacterial strain of R. leguminosarum 

viciae 3841 (Fig.43). These three genes namely hmuP (hemP), hmuS, hmuT belonged to the same 
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operon hmuPSTUV from the R. leguminosarum viciae 3841. The amplification and identification 

of putative hmuU and hmuV in R. leguminosarum ATCC are in progress in our lab.  

The outer membrane receptor hmuR was also a gene of interest. Heme receptor genes for 

E. coli and S.melioti were also used as a template for designing primers. However, hmuR was not 

present in this strain based on the results of PCR amplification. The primers were not able to 

amplify the possible heme receptor. As stated earlier, different sets of primers for outer 

membrane heme receptor gene from various other strains were also designed and used for PCR. 

We were not able to identify any of those mentioned genes which were coding for the outer 

membrane heme receptor protein (See Table 5 for list of primers and genes). There are chances 

that these particular genes are absent in R. leguminosarum ATCC. However, other techniques 

could be followed to further look after the unknown outer membrane receptor that transports 

heme bound iron. 

                

Figure 43: Amplification of heme receptor genes from hmuPSTUV operon. The only heme transport genes amplified 

were from the primers based on hmuP, hmuS and hmuT. These genes belonged to the operon hmuPSTUV from R. 

leguminosarum viciae 3841. 
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The PCR products which gave amplification from primers based on hmuP, hmuS and 

hmuT were sequenced and studied further using in-silico analysis tools. The primers used for 

sequencing are listed in Table 6. The sequenced genes showed more than 98% identity with the 

published/known gene sequences of different heme uptake genes from different bacteria such as 

R. leguminosarum WSM 2304, R. leguminosarum 3841, R. leguminosarum WSM 1325, R. 

leguminosarum WSM 1689  and various other strains. The sequencing results are presented in 

sections below. 

HmuP 

hmuP is a 183 Bp long gene and is known as heme uptake protein gene and shows 

sequence similarity to the genes from the various rhizobial strains. It is a TonB dependent heme 

uptake protein (Wexler et al. 2002).  In Yersinia sp. there is a similar gene named hemP and 

codes for a small protein of 81 amino acids. When the hmu operon was cloned in E. coli, a Fur 

box regulated protein of size 6.5 kDa, HemP, was expressed (Thompson et al. 1999). It is 

reported/annotated as a heme binding/transport cytoplasmic protein protein (Thompson et al. 

1999). 
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Figure 44: Alignment of putative hmuP with the hmuP gene of R. leguminosarum 3841. The nucleotide identity of 

98% was seen when the two sequences were aligned. The query sequence is the putative hmuP gene. The ORF 

which was identical to known sequence of R. leguminosarum 3841 was used for further study. 

   

 The 3D structure of the putative HmuP protein was generated independently using 

SWISS-MODEL, and molecular docking was performed by using the SWISS-DOCK online 

tool. The 3D Structure and docking are shown below in Fig. 45 and Fig. 46. There was no crystal 

structure in the database for this protein HmuP, hence comparison could not be performed. 
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Figure 45: Putative HmuP  heme binding/transport protein. The structure was generated independently using 

SWISS-3D modeling tool which generated a globular protein.   

                             

 Figure 46: Docking of the heme molecule with putative HmuP. This was done to check if the heme molecule could 

bind with the putative HmuP. The binding of heme and the putative HmuP occurred in docking analysis showing 

that this protein could be involved in heme uptake. 

HmuS 

The gene hmuS also amplified as shown in Fig. 43 and was further sequenced. It is a 

1024 bp long gene coding a  protein of 349 amino acids, with a molecular weight of 39 kDa. It is 

reported/annotated as a periplasmic heme degradation protein, present in many other bacteria 
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(Wexler et al. 2002). It is also a TonB dependent protein (Wexler et al. 2002). The sequence 

alignment showed identity of  99% with more than 10 relative species and also with R. 

leguminosarum viciae 3841 (Fig. 47). A similar protein is also present in Roseobacter and 

Yersinia ( Thompson et al. 1999; Hogle et al. 2017).  

 

Figure 47: NCBI-Blast of putative hmuS with R. leguminosarum 3841. It shows 99% identity with the known 

nucleotide of hmuS from R. leguminosarum viciae 3841(subject). When the alignment was observed, the sequence 

identical to the known ORF was used for further analysis.  
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Figure 48: Putative HmuS from R. leguminosarum ATCC and its docking with heme. The docking showed that the 

heme molecule binds with the putative protein. This suggests that the putative protein is more likely to be involved 

in heme transport. 

 

Figure 49: Putative HmuS from R. leguminosarum ATCC and crystal structure of HmuS from Yersinia sp. The 

arrows point out some of the many differences and similarities between these two proteins.  

 The arrows point out some of the similarities and dissimilarities between these two 

independently generated structures (Fig. 49).  The α-helices look similar to each other and are 

present in the same number. However, the pocket in the putative protein seems to be in opposite 

orientation in Yersinia.  The study of similarities is very interesting because Yersinia is a 

pathogenic strain and R. leguminosarum ATCC is not (Fig.49). 
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HmuT 

This is a 930 bp long gene and codes for protein of length of 310 amino acids which is 

known as hemin ABC transporter substrate binding protein (Wexler et al. 2002). The putative 

gene from R. leguminosarum ATCC shows sequence similarity with the heme uptake gene of 

another rhizobial strain (Wexler et al. 2002) (Fig. 50).  It is also a TonB dependent heme uptake 

protein (Wexler et al. 2002). In Cornybacterium glutamicum there is a similar gene named hmuT 

and codes for a HmuT transport protein (Muraki et. al 2015). However, nucleotide BLAST 

analysis showed there was no sequence similarity between these two genes. The nucleotide 

sequence was 96% identical (Fig. 50) with hmuT from R. leguminosarum 3841 (Wexler et al. 

2002). 
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.  

Figure 50: Putative hmuT alignment. It was present in the same operon of TonB dependent heme transport genes 

from R. leguminosarum 3841. The query is the putative gene sequence and the subject is the gene from R. 

leguminosarum 3841. The putative ORF was 96% identical with the known gene sequence. 
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Figure 51: Putative hmuT from R.leguminosarum ATCC and hmuT from C. glutamicum. Some of many similarities 

and differences are shown using the arrows.  

                                             

Figure 52: Molecular docking of heme with putative HmuT protein. This docking indicates the possible involvement 

of the HmuT protein in heme uptake. 

  

The no. of α-helices are shown using arrows (Fig. 51). The no. of loops is also similar 

between the independently generated structure of pathogenic and non-pathogenic bacteria (Fig. 

51). One of the differences to notice is a loop that is present in the C. glutamicum, HmuT, but is 

absent in the putative protein HmuT. This comparison pointed out the evolutionary aspect of 

non-pathogenic bacteria and pathogenic bacteria and showed how closely the proteins are 

related. 
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TonB Dependent Heme Uptake 

The TonB Dependent Operon hmuPSTUV 

 

The sequence data we obtained matched with a TonB dependent operon hmuPSTUV for 

hemoglobin/heme transport from R. leguminosarum viciae (Fig. 52) (Wexler et al. 2002).  

 

Figure 53: Graphical representation of hmuPSTUV operon 

 

The tonB mutant strain (Hill 2014) was used for hemoglobin uptake assay to determine if the 

hemoglobin transport in R. leguminosarum ATCC is TonB dependent. Fig. 54 below shows that 

the mutant was unable to uptake hemoglobin during first 24 hours. This suggests that the 

hemoglobin uptake is dependent of TonB, energy transducing protein and requires energy. The 

difference in hemoglobin concentration showed difference in growth of WT as mentioned 

previously (Fig. 39). Despite the different hemoglobin concentration no difference in growth was 

seen in the TonB mutant after 48 hrs (Fig. 55). 
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Figure 54: RLΔTonB and WT R. leguminosarum ATCC in hemoglobin transport in 24 hrs. The defect in growth 

was observed for first 24 hrs. 

 

However, after 48 hours the mutant was able to regain its growth. The growth was not 

exactly the same as the wild-type but was growing well at 48 hrs in the presence of hemoglobin 

as the only source of iron. This phenomenon (Fig. 55) was earlier reported in R. leguminosarum 

3841, stating that the hmuPSTUV mutants grew very similar to the WT after a few days (Wexler 

et al. 2002). We used tonB specific primers from R. leguminosarum 3841 and performed PCR. 

We were unable to identify a tonB gene upstream of hmuPSTUV operon in R. leguminosarum 

ATCC as confirmed in R. leguminosarum 3841. 
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Figure 55: RLΔTonB and WT R. leguminosarum ATCC in hemoglobin transport in 48 hrs. The growth in 48 hrs 

was very well when compared to WT. 

 

Role of RLΔExbB-ExbD in Transport of Hemoglobin 

 

The ExbB-ExbD mutant was also tested for its ability to use hemoglobin as a sole source 

of iron. The ExbBD protein is a TonB associated energy transducing protein (Barisic 2015). The 

ExbBD mutants showed similar results to the TonB mutant and were unable to grow properly for 

the first 24 hours (Fig. 56). However, showing similarity to the TonB mutants, they were able to 

regain their growth after 48 hours (Fig. 57). Both TonB and ExbBD mutants were growing very 

similar to the WT after 96 hours (Fig. 58).   
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Figure 56: RLΔExbBD and RLΔTonB growth with hemoglobin as iron source in 24 hrs. WT is growing very well in 

different hemoglobin concentration. The mutants are not able to grow as well as WT. 

 

 
Figure 57: RLΔExbBD and RLΔTonB growth with hemoglobin as iron source it 48 hrs 
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Figure 58: RLΔExbBD and RLΔTonB growth in 96 hrs with hemoglobin as iron source 

 

Hemophores  

 

To determine if this strain can produce hemophores, we used the supernatant and 

performed a 10% SDS-PAGE gel and observed the change in protein expression (Fig. 59). There 

was no such notable change in expression in protein size ranging 18-30 kDa. The size of 

hemophore ranges from 18 kDa to 30 kDa depending on its type (Tong and Guo 2009). 
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Figure 59: Absence of hemophores in heme utilization. The SDS page gel was 10% SDS gel and the supernatant 

was loaded to see if hemophore can be detected. Lane 1 is the ladder, Lane 2 contains supernatant from the cells 

grown at 2.5µM FeSO4 (No hemoglobin), Lane 3; 15 µM hemoglobin, Lane4; 5µM hemoglobin, Lane5; 1µM 

hemoglobin, Lane6;0.5µM hemoglobin, Lane 7; 0.05µM hemoglobin, Lane 8; 5µM hemoglobin + 5µM FeSO4, 

Lane 9; Dipirydil, Lane 10; Control (No dipiridyl, No Iron) 
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CHAPTER 4 

DISCUSSION AND CONCLUSION 

 

Iron is essential for normal bacterial growth and development. Production of siderophores 

in an iron deprived condition is a common way to scavenge iron for many microorganisms. 

Siderophores cannot be transported through porins and require an outer membrane receptor 

because of their larger size (Liu et al. 1993). Uptake and transport of the trihydroxamate type 

siderophore, vicibactin, in R. leguminosarum ATCC requires such an outer membrane receptor 

protein. The receptor protein for vicibactin has not been classified yet. In E.coli, receptor FhuA 

transports a hydroxamate-type siderophore “ferrichrome” (Ferguson et al. 1998). Vicibactin and 

ferrichrome both are hydroxamate type siderophore; this was one of the reasons to look for FhuA 

receptor protein in R. leguminosarum ATCC. Previous studies have reported the presence of 

FhuA and iron-dependent expression of FhuA in R. leguminosarum 8401 viciae (Yeoman et al. 

2000). However, there is also a presence of a pseudogene version of fhuA in R. leguminosarum 

viciae (Stevens et al. 1999). 

The genome sequence of R. leguminosarum ATCC is not available hence primer walking 

technique was used to sequence the fhuA gene based on primers from the relative R. 

leguminosarum species. Primers based on S. melioti and E. coli didn’t amplify the putative fhuA 

in R. leguminosarum ATCC. This means that there is a presence of a putative fhuA in R. 

leguminosarum ATCC. When amplified, the gel extracted PCR product was sent for sequencing. 

Sequencing was necessary to know about the gene and to perform in-silico analysis. Also 

sequencing of the flanking regions of the putative fhuA was necessary for whole gene knockout 

mutation. A regulatory gene rosR was present upstream of the putative fhuA, and a siderophore 
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reductase gene fhuF was present downstream of the putative fhuA. The pseudogene version of 

the fhuA was present after fhuB  in an operon fhuBCDA in R. leguminosarum viciae (Stevens et 

al. 1999).  

The ORF of putative fhuA was predicted using online prediction tools and looking at the -

10 and -35 elements in the putative sequence data. The ORF was further analyzed by using in 

silico softwares. ORF of the putative fhuA was translated into amino acid sequence (ExPasy) that 

was 32% identical and 50% similar to that of E.coli (Ferguson et al.1998), and both nucleotide 

and amino acid sequence was more than 97% identical with the respective sequences from R. 

leguminosarum viciae (Stevens et al. 1999).  When the independently predicted structure was 

compared to the crystal structure of FhuA of E. coli, putative FhuA showed many similarities 

including the shape and the orientation (22 β stranded barrel, the number of α helices, loop 

orientation, and the plug domain). Despite the fact that the nucleotide sequence of the putative 

fhuA was not identical with the nucleotide sequences of E.coli fhuA the structural similarity 

between the two proteins was indeed surprising. This suggests that these proteins are required for 

transport of similar type of ligand. FhuA is an outer membrane receptor in E.coli transporting 

ferrichrome, a hydroxamate type of siderophore produced by the fungi Ustilago tritici. 

Vicibactin is also a hydroxamate type syderophore and hence it is possible for a similar protein 

to transport these hydroxamate type ligands. 

To answer the question if the putative ORF is related to iron transport, the effect of 

different iron concentrations was studied on the expression of putative gene fhuA and the 

putative protein FhuA. The expression of proteins involved in iron transport is regulated by the 

iron concentrations in the medium (Morton and Williams 1989).  
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SDS-PAGE and RT-PCR were carried out for determining the iron dependent putative 

FhuA protein expression and fhuA gene expression, respectively, in R. leguminosarum ATCC. 

The molecular weight of the putative protein coded by the putative ORF was calculated to be 82 

kDa. One such protein, of size 82 kDa, in the SDS-PAGE, showed its dependence on iron 

concentration and was also similar to the size of known FhuA from E.coli (78 kDa). FhuA is an 

outer membrane receptor in E.coli transporting ferrichrome, a hydroxamate type of siderophore 

produced by the fungi Ustilago tritici. The concentration of iron in the media controlled the 

expression of the particular protein of approximately 82 kDa, downregulating it when the iron 

concentration was high. The expression of that 82 kDa band was high when the iron 

concentration was low. The Fe
2+ 

in the media works as a corepressor and regulates the RirA 

transcription regulatory proteins, which regulate the genes associated with iron transport 

(Rudolph et al. 2006). As mentioned earlier, proteins involved in iron transport are known to be 

repressed at higher iron concentration in the media (Morton and Williams 1989). The results 

were further confirmed by RT-PCR assessing the expression of mRNA specific to the putative 

ORF. Equal amounts of total RNA were used and reverse transcribed to synthesize cDNA 

specific to the putative ORF. The cDNA was further amplified using gene specific primers. The 

amplification of the template occurs depending on its quantity. This shows difference in the 

amount of mRNA synthesized. The mRNA transcript showed the results similar to the putative 

band in SDS-PAGE gel. The expression of the 82 kDa protein in SDS-PAGE was repressed by 

iron concentrations of > 2.5μM. A similar result was observed in RT-PCR when the difference in 

the band intensity was observed in a 1% agarose gel. The results supported the possible 

involvement of the putative ORF and the protein of interest in vicibactin mediated iron transport.  
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To determine if the putative FhuA was actually involved in vicibactin transport, an in-

frame deletion/knockout of the gene was performed. As FhuA was known to transport a 

hydroxamate type siderophore, it was reasonable to hypothesize that a putative FhuA would be 

involved in hydroxamate type vicibactin transport. PCR based SOEing technique, cloning, and 

biparental conjugation as described were used to engineer a RLΔFhuA strain.  The mutants were 

identified using colony PCR and antibiotics screening as previously described. 

The primers designed outside the predicted/putative ORF and the sequencing results 

confirmed the in-frame deletion of putative fhuA in the mutant when compared with WT R. 

Leguminosarum ATCC. However, the primers within the ORF (gene-specific primers) showed 

amplification of fhuA gene using chromosomal DNA from the mutant. This suggested the 

presence of a fhuA homolog in the organism. Presence of more than one fhuA has been reported 

earlier in bacterial strains S. melioti (fhuA1 and fhuA2), Azoarcus sp. BH72 (fhuA1 and fhuA2), 

Cupriavidus taiwanensis LMG 19424 ( fhuA1, fhuA2, fhuA3, and fhuA4), (Amadou et al. 2008; 

Po et al. 2008; Moldes et al. 2015). Similar results were obtained during the knockout studies 

involving exbB-exbD genes in R. leguminosarum ATCC, which led to the discovery of a Tol-Pal 

system (Barisic 2015). The presence of a pseudogene fhuA (fhuA homolog) has also been 

reported in previous works in R. leguminosarum 8401 viciae (Yeoman et al. 2000). This led us to 

a conclusion that a whole genome sequencing and southern blotting for the wild-type R. 

leguminosarum ATCC could help to confirm the presence of a homolog of fhuA gene or also 

maybe a pseudogene as the sequencing data obtained contained a lot of gaps in the codon. 

The RLΔFhuA mutant strain was used for phenotypic studies. We wanted to determine if 

there is any phenotypic change or differences in the mutant. The mutant strain was used to test 

whether the deletion of the putative fhuA gene affected the growth under low iron concentration. 
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The mutant strain, however, did not show lower growth as compared to the WT under iron 

restriction. If iron transport had been disturbed, the mutants should have grown poorly as 

compared to the WT. The result clearly indicated that the mutants are acquiring iron similar to 

the WT cells. SDS-PAGE analysis of the whole cell or outer membrane extracts did not reveal 

the absence of a protein band around 82 kDa when compared to the WT. If a protein coding gene 

was deleted, there should have been no protein in the mutants and only present in the WT. This 

suggests that the deleted ORF is most likely not expressed or there is a presence of a protein of 

the similar size or perhaps a FhuA homolog. 

Usually when an iron acquisition pathway is affected in an organism; it produces an 

increased level of siderophores (Takase et al. 2000). However, in this mutant the Atkin’s assay 

confirmed that the cells didn’t overproduce vicibactin, indicating that the mutant strain was still 

able to acquire sufficient iron. The mutant strain was not under iron restriction and was hence not 

overproducing vicibactin.  

To perform a radiolabeled iron-vicibactin transport assay, vicibactin was isolated and 

purified using a series of chromatographic techniques including HPLC (Wright et al. 2012). The 

purified vicibactin can be used in future to perform transport assays using radiolabelled iron. The  

radiolabelled vicibactin transport assay using both the WT and a putative fhuA mutant strain 

could help determine the involvement of putative FhuA in vicibactin transport, if responsible.  

Also, for the future complementation assay and protein purification, the putative fhuA was 

cloned using a pET17b plasmid and transformed in E.coli BL21/DE3 competent cells. The 

complementation assay is required to transfer or repair the putative fhuA in the fhuA
- 
mutants. 

This assay can be done after we confirm the role of putative fhuA in vicibactin transport. The 

expression cells can also be used for purifying the FhuA protein and use the purified protein for 
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crystallization, mass-spectrophotometr, HPLC and many other experiments which require 

concentrated and pure protein samples. 

 According to our second hypothesis, R. leguminosarum ATCC is able to utilize heme-

bound iron. Various pathogenic and non-pathogenic bacteria can utilize heme-bound iron for 

regular growth and development (Yamamoto et al. 1995). Non-pathogenic Rhizobial species can 

also utilize heme-bound iron (Noya et al. 1997). R. leguminosarum ATCC is surrounded with 

leghemoglobin in root nodules, and leghemoglobin contains heme. This may explain R. 

leguminosarum ATCC’s ability to uptake the human lyophilized hemoglobin, that also contains 

heme. R. leguminosarum ATCC was grown in MMW media supplemented with various 

concentrations of hemoglobin and hemin. The only source of iron in the media was hemoglobin 

or hemin. 2’2- dipiridyl was used to eliminate/chelate any trace amount of iron in the media. The 

results showed that R. Leguminosarum ATCC was able to utilize hemoglobin bound iron and the 

growth was dependent on hemoglobin concentration in the media. Different hemin 

concentrations, however, did not significantly affect the bacterial growth as hemoglobin did. 

Thus, hemoglobin was the better source of heme bound iron for R. leguminosarum ATCC. 

 It was necessary to identify the genes and proteins involved in heme bound iron uptake 

system.  The TonB dependent hemoglobin transport system, with various genes associated has 

been reported previously in other rhizobial species (Wexler et al. 2001). The operon hmuPSTUV 

is required for heme-bound iron transport and utilization in R. leguminosarum (Wexler et al. 

2001). Very similar to the siderophore uptake system, expression of the proteins required for 

heme-bound iron transport system is also controlled by the iron concentration in the media (Gao 

et al. 2005). The SDS-PAGE analysis of cell extracts grown at different concentrations of 

hemoglobin revealed that the expression of more than five proteins in size range of 35 kDa – 100 
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kDa, was controlled by the concentration of hemoglobin in the media. PCR amplification using 

primers based on the DNA sequences of the genes hmuP, hmuS and hmuT from a TonB 

dependent operon hmuPSTUV from R. leguminosarum viciae and sequencing revealed the 

presence of these genes in R. leguminosarum ATCC. The putative nucleotide sequence 

alignment with known gene from other species was 98% identical. Various other pathogenic 

strains also contained similar genes for heme-bound iron uptake. Molecular docking and in-silico 

analysis showed how heme could bind to each of these proteins and how their structure is similar 

to other known proteins from various other bacterial strains.  

The heme bound iron uptake system in R. leguminosarum viciae is TonB dependent 

(Wexler et al. 2001), and the transport requires energy. RLΔTonB and RLΔExbB-ExbD were not 

able to utilize heme and showed slower growth as compared to the WT. This showed that 

TonB/ExbBD is required in R. leguminosarum ATCC for hemoglobin transport. The production 

of hemophores was not detected in the supernatant revealing that there could be a heme uptake 

system without any possible requirement of hemophores. The production of hemophores has not 

been reported in nonpathogenic strains of bacteria (Tong and Guo 2009). The tonB gene 

upstream of hmuPSTUV operon was also not present in this strain of R. leguminosarum ATCC. 

The presence of a tonB upstream of hmuPSTUV in R. leguminosarum viciae has been reported 

earlier (Wexler et al. 2001). Therefore, to find out about the energy transduction in heme-bound 

iron uptake, the whole genome sequencing could be used to locate a tonB gene. If present, this 

could be facilitating the heme-uptake in R. leguminosarum ATCC. It would also reveal other 

genes associated with the hemoglobin uptake system.  The presence of hmuV and hmuU genes is 

yet to be confirmed in R. leguminosarum ATCC. We were also not able to detect the presence of 

the outer membrane receptor “ShmR” for hemoglobin transport in R. leguminosarum ATCC. 
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ShmR is an outer membrane receptor involved in hemoglobin transport in S. melioti (Battistoni 

et al. 2002).  

There are many questions that need to be answered in this research for identifying the 

outer membrane receptor for vicibactin transport and understanding the iron transport system as 

a whole. As mentioned before, a southern blot analysis is very important using putative fhuA 

mutants and WT to check if there is more than one fhuA present in the bacterial genome. Another 

experiment that could be done is the transport assay using radiolabeled iron and vicibactin with 

WT and the putative fhuA
- 
mutants. This would reveal the role of the deleted putative fhuA.  

The preliminary work done on the hemoglobin bound iron uptake system will provide 

opportunity to explore the system further. This will help us to better understand the bacteria’s 

ability to use the hemoglobin bound iron. It may also help us to understand the evolutionary 

aspects of the use of heme as a source of iron by non-pathogenic soil bacteria. 
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    APPENDICES 

   Appendix A: Media and Buffers 

 

Luria Broth (LB)  

Tryptone              10.0g  

Yeast Extract         5.0g  

NaCl                    10.0g  

ddH2O to 1L  

Dissolve ingredients and autoclave.  

For LB agar plates:  

Agar                     15.0g  

Dissolve ingredients, pH to 7.0 and autoclave. 

 

Yeast Extract Mannitol Broth (YEM)/Congo Red Agar (CR)  

Mannitol                         l4.0g  

K2HPO4                            0.2g  

MgSO4                             0.08g  

NaCl                                0.04g  

Yeast Extract                   0.4g  

ddH2O to 400 mL  

Dissolve ingredients; adjust pH to 6.8 and autoclave. 
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For Congo Red agar plates, add:  

Agar                             12.0g  

1% Congo red dye 1 mL  

Dissolve ingredients to final volume 500mL; adjust pH to 6.8 and autoclave 

 

Modified Manhart and Wong (MMW) Media 

 

Basal Media                 Gm 

Dextrose 6.0 

Glutamate            1.5 

KH2PO4              1.0 

K2HPO4              0.764 

MgSO4                 0.18 

CaSO4 * 2H2O     0.13 

Final volume of 1 Litre, pH to 6.8 and autoclave 

 

Vitamin Solution (1000x concentrated)               mg 

Na2EDTA*2H2O                                          550 

Na2MoO4*2H2O                                          250 

H3BO3                                                           145 

ZnSO4*7H2O                                               108 

CalciumPanthenate                                     50 
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Inositol                                                      50 

Thiamine HCl                                        40 

Biotin                                               12 

CoCl2*6H2O                                  10 

Riboflavin                                        10 

p-aminobenzoic Acid                          10 

Nicotinic Acid                                    10 

Pyridoxine HCl                                   10 

Vitamin B12                                      10 

CuSO4*5H2O                                   4.37 

MnCl2*4H2O                                       4.3 

 

 

SDS-PAGE Solutions and Buffers 

 

Running Gel Buffer pH = 8.8 

Tris 36.6 g 

ddH2O to 200 mL 

 

Stacking Gel Buffer pH = 6.8 

Tris 3.0 g 

ddH2O to 50 mL 
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2x Loading Buffer 

Stacking Gel Buffer 2.5 mL 

10% SDS                 4.0 mL 

Glycerol                   2.0 mL 

2-mercaptoethanol   1.0 mL 

Bromophenol blue   2.0 mg 

ddH2O                      10 mL 

 

Coomassie Blue Stock 

Coomassie Blue R-250 2.0 g 

ddH2O 200 mL 

 

Tank Buffer (4x) 

Tris           12 g 

Glycine     57.6 g 

SDS          4 g 

ddH2O to 1L 

 

Coomassie Stain 

Coomassie Blue Stock   12.5 mL 

Methanol                         50 mL 

Glacial acetic acid          10 mL 

ddH2O 100 mL 
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Destaining Solution 

Methanol                 500 mL 

Glacial acetic acid   100 mL 

ddH2O 400 mL 

 

10% SDS-PAGE Recipe 

Volume 

Ingredient                                               Stacking Gel         Running Gel 

30% Bis-acrylamide                                1.33 mL               6.66 mL 

Running Buffer                                        0 mL                    5.0 mL 

Stacking Buffer                                        2.50 mL               0 mL 

ddH2O                                                       6.1 mL                 8.0 mL 

10% SDS                                                  100 uL                 200 uL 

TEMED                                                     5 uL                    10 uL 

10% Ammonium Persulfate (APS)           50 uL                  100 uL 

Degas before addition of TEMED and 10% APS 
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Appendix B: Alignments 

 

Alignment of putative fhuA with R. leguminosarum 3841 and R. leguminosarum J251 

 

The query is the putative fhuA from R. leguminosarum ATCC. 

 

Nucleotide 1- Nucleotide 597 aligned with fhuA of R. leguminosarum 8401 only as the sequence of R. 

leguminosarum J251 was not present. The query is the putative fhuA from R. leguminosarum ATCC. 
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Nucleotide 597- Nucleotide 1256 aligned with R. leguminosarum 8401. The box above is the 

putative start codon. The arrows show the differences in the nucleotide sequence. The query is the 

putative fhuA from R. leguminosarum ATCC.  
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Nucleotide 1257- Nucleotide 2096 aligned with R. leguminosarum 8401.  Arrows show the 

changes in the nucleotide sequences. The query is the putative fhuA from R. leguminosarum ATCC. 
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Nucleotide 2097 - Nucleotide 2936 aligned with R. leguminosarum 8401.The box shows the 

putative stop codon. Arrows show the changes in nucleotides. The query is the putative fhuA from 

R. leguminosarum ATCC. 
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Nucleotide 2937- Nucleotide 3746 aligned with R. leguminosarum J251, did not align with 8401 

as the sequence data from 8401 is not available. 
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Alignment with rosR transcriptional regulator gene and fhuF siderophore-iron reductase 

 

The fragment in front of the putative fhuA aligned with rosR. Whole gene has to be yet 

sequenced. Only a small fragment of 288 bp aligned with the known rosR. Query sequence is the 

sequence of the putative rosR. Remaining part of the gene needs to be sequenced further. 
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Alignment of the putative fhuF gene with the fhuF gene from R. leguminosarum trifoli 24.2. The 

complete sequencing yet has to be done. The query is the putative fhuF from R. leguminosarum 

ATCC. 
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