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ABSTRACT

Graph Analytics Methods In Feature Engineering.

by

Theophilus Siameh

High-dimensional data sets can be difficult to visualize and analyze, while data in

low-dimensional space tend to be more accessible. In order to aid visualization of

the underlying structure of a dataset, the dimension of the dataset is reduced. The

simplest approach to accomplish this task of dimensionality reduction is by a random

projection of the data. Even though this approach allows some degree of visualiza-

tion of the underlying structure, it is possible to lose more interesting underlying

structure within the data. In order to address this concern, various supervised and

unsupervised linear dimensionality reduction algorithms have been designed, such as

Principal Component Analysis and Linear Discriminant Analysis. These methods can

be powerful, but often miss important non-linear structure in the data. In this the-

sis, manifold learning approaches to dimensionality reduction are developed. These

approaches combine both linear and non-linear methods of dimension reduction.
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1 MANIFOLD LEARNING

1.1 Introduction

Of the several, non-linear dimensionality reduction techniques known, manifold

learning is one of the most effective techniques [1]. A technique that is widely used

and one that cuts across various fields of learning including computation, statistics,

data mining, data science and geometry, manifold learning has been quite a success.

The technique uses manifold algorithms that are based on the idea of several data

sets being artificially high [60]. The technique is also applicable in the recovery

of low dimensional manifold fixed in a high dimensional area [7]. These manifolds

commonly found in high dimensional places can be both non-linear and linear and

can be recovered using spectral embedding. Spectral embedding methods involves a

set of tools; eigenvectors related to the few eigenvalues located at either the top or

bottom of an appropriate matrix [60].

Other than the non-linear methods, there are also linear methods that are equally

popular in dimensionality reduction. Two commonly used linear methods include

Multi-dimensional scaling as well as the Principal Component Analysis. Of the two

the latter is the most popular linear method and even in the linear category as a

whole. Other linear methods used include Independent Component Analysis and

Project Pursuit. For the former, Non-Gaussianity is maximized in order to identify

the data’s linear projections. The latter on the other hand works by engaging in linear

projections bound on high dimensional data that are able to put to light specific Non-

Gaussian features [60].
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The Principal Component Analysis has been used in different fields. In the field

of Bioinformatics, the method has been used in a number of ways including gene-

expressions experiments that are done on several tissue sources. Also applied in

Bioinformatics is multidimensional scaling known as geometry and originally applied

in the field of psychology. In the representation of protein structure, multidimensional

scaling has been applied [60]. This is done by a combination of accuracy and preci-

sion. Much needed information on the function and shape of the protein is gathered

from points that are closely positioned [17]. Alternatively in the field of astronomy,

supernova remnant images have been analyzed as well as the analysis of galaxies.

Additionally, the method is also used in solving problems that involve visualization,

compression, data interpolation and denoising [60]. For such problems, approxima-

tions are derived and advanced to nonlinear subspaces that are more complicated.

As earlier mentioned nonlinear learning methods are of different categories and

can be used in different ways. These nonlinear methods are often considered as local

methods whose sole purpose is to maintain the manifold’s local structure found in

tiny neighborhoods. Some of the non-linear manifold learning algorithms include but

are not limited to Diffusion maps, Locally Linear Embedding, Hessian eigenmaps,

Laplacian eigenmaps and Isomap. On the other hand, linear manifold learning works

by preserving the manifold’s global structure. In the event that the linear manifold

learning does not lead to proper representation of high dimensional data it is then

assumed that the data is found along or on the non-linear manifold. In this case non-

linear manifold method is brought into play [7]. Finding real data that accurately lie

on a non-linear manifold is not an easy task. For this reason, a comparison is made of

11



non-linear manifold learning algorithms through the use of simulated data. Simulated

data in this case is data that has been drawn from manifolds that contain specific

quirks designed in a way possible to reveal the weaknesses of several algorithms [60].

Examples of such data with specific quirks include open box, Swiss roll manifold,

fishbowl, sphere and torus. Comparing all the aforementioned methods, there is no

single method that can be pointed out to be entirely effective trouncing on all the

other methods. However, it has been proven that depending on the situation, some

methods come out as better and more effective. With this in mind, the question of the

benefit of underlying knowledge on manifold comes up especially when dealing with

supervised and unsupervised machine learning algorithms [60]. Should it be based on

its closeness to a nonlinear manifold or where the data lies?

1.2 Spaces and Manifolds

Understanding manifolds and the concept of manifold learning can require look-

ing at things from a different angle. To start with, is to visualize the concept of

manifold. “A human looking around at the immediate area would not see the curva-

ture of the earth” [8]. This visual representation can act as a perfect guide towards

describing what a manifold is. However, we first need to understand that it is from

differential geometry as well as topology where the concept of manifold learning is

derived from [61]. Curves and figures existing in two and three dimensions are gen-

eralized to higher dimension through manifold learning. A manifold can therefore be

thought of as topological space with it appearing to be locally flat and also lacking

features [61].
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1.3 Topological Space

A topological space is nonempty and at the same time a collection of subsets

X that contains arbitrary unions, the space itself, finite intersections of the sets and

empty sets [61]. This is what defines topological space. To express it, Topological

space takes up the form of (χ, τ), where τ is the representation of the topology that

is associated with χ. It is also possible for topological space to be defined in the

form of a neighborhood. If a point x is present in a topological space χ then the

neighborhood will be in the form of a set with an open set χ [61].

1.4 Topological Manifold

When put to higher levels of dimension, where there is a curved surface that

is of three dimensions then it is referred to as manifold learning [62]. A topological

space M becomes a topological manifold of dimension d. The Hausdorff ensures that

differences present in the manifold can be isolated. On the other hand, existence

of small local regions at every point means that the manifold will enjoy current

conditions of Euclidean space. A 2d+1 space is needed so as to install a d-dimensional

manifold [62]. In the form of a topological space it therefore becomes possible for a

manifold to take up a topological structure given its in a topological space.
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1.5 Riemannian Manifolds

During usual application of a manifold is where calculus can come in and take

the form of a smooth manifold M [63]. This smooth appearance is also known as Rie-

mannian Manifolds that is on most occasions defined as a sub manifold. It is deemed

to be encompassing Euclidean space, where the ideas of length, bend, and point are

safeguarded, also additionally is where smoothness identifies with differentiability. In

definition, a topological manifold M can be referred to as a smooth manifold only in

the event that M is continually differentiable to any order [63]. All smooth manifolds

are topological manifolds, but the reverse is not necessarily true [8].

1.6 Curves and Geodesics

Connection to an actuated topology means that the Riemannian manifold be-

comes a metric space. Additionally, a function dM can be defined as along as the

distance points found on M can be determined using its structure. A curve in M is

defined as a smooth mapping from an open interval Ω in R into M [17]. The point

λ ∈ Ω forms a parametrization of the curve [17]
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2 DATA ON MANIFOLDS

Among the whole manifold learning calculations that will be talked about, the

calculations will assume various finitely many data points, {zi} are arbitrarily chosen

from a smooth t-dimensional manifold M that has a metric of geodesic separation

dM [17]. For this situation, data points are mapped into a higher dimensional space,

possibly implicitly.

The purpose of this is to find M as well as identifying an explicit picture of

the map ψ given the presence of the available input data xi ∈ X. The application

of these algorithms means that it is possible to have estimates that show us the

manifold data reconstructions. Sometimes there exists the problem of impractical

visualization purposes. In order to avoid this, only the first two or three points of the

coordinate vectors of the reconstructions are taken up and then plotted on a two or

three dimensional space [8].
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3 LINEAR MANIFOLD LEARNING

A large portion of the factual applications that deals with the issue of dimen-

sionality diminishment are chiefly centered on linear dimensionality lessening and are

to some extent referred to as direct complex learning [8]. It is possible to picture a

linear manifold as a line, a plane, or a hyper plane. In this case, data is projected into

a lower dimensional manifold. Linear manifold learning can be thought of in several

ways. The first position is to accept that the information is near a direct manifold,

and that the distance from the manifold is dictated by an irregular error [7].

The second option is to consider it a straight manifold really a simple linear ap-

proximation to a more complicated type of nonlinear manifold that would probably

be a better fit to the data [17]. In both circumstances, the inmate dimensional-

ity of the immediate manifold is thought to be a great extent littler than the data

dimensionality [8].

The way toward having the capacity to distinguish a direct manifold embed-

ded in a higher dimensional space is nearly identifiable capable with the customary

estimations issue of direct dimensionality reducing. With different strategies accessi-

ble, the recommended strategy for accomplishing direct dimensionality diminishing is

to concoct a decreased arrangement of straight changes of the information elements.

With direct manifold learning and in addition straight dimensionality lessening, there

are various strategies that be used [7]. However In this section, we only portray two

linear techniques, specifically, Principal Component Analysis and Multidimensional

Scaling. The PCA is considered the most popular dimensionality reduction method,

on the other side, multidimensional scaling works by presenting the core element of
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the Isomap algorithm for non-linear manifold learning [7].

3.1 Principal Component Analysis

Principal Component Analysis( PCA) is one in a group of methods for taking

high-dimensional information, and utilizing the conditions between the factors to have

it in a more tractable, lower-dimensional frame, without losing excessive information.

The general purpose of PCA are data reduction and interpretation [7].

It is possible to measure the quantity of information found in a random variable

through the use of variance also known as the second order property. The Principal

Component Analysis therefore becomes the most simple and effective way of reducing

the dimensions [8].

As a strategy for dimensionality reduction, PCA has been utilized as a part of

lossy information compression, design acknowledgment, and picture analysis [7]. In

the field of chemometrics, PCA is utilized as a preparatory stride for building deter-

mined factors. This then leads to principal component compression. Additionally,

PCA can be used to unearth unusual facets located in a set of data. This can be made

possible by plotting the main few sets of key part scores in a scatter plot. With the

scatter plot, it then becomes possible to distinguish whether X really is present on

a low-dimensional linear manifold of Rr and additionally give assistance recognizing

multivariate anomalies, distributional characteristics, and groups of points [8]. In the

event that the base arrangement of key segments have variances of close to zero, then

this infers those key segments are essentially consistent [7].
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Mathematically, PCA are linear combinations of the p random variables

X = (X1, . . . , Xp) (1)

These linear combinations represent the selection of a new coordinate system result-

ing from the rotation of the original system with X1, X2 . . . , Xp as the coordinate

axes. Principal Components depends on the covariance matrix Σ or the correlation

matrix ρ of X1, X2 . . . , Xp. The Principal Components are those uncorrelated linear

combinations whose variances are as large as possible. Note that the first PCA is

the linear combination with the maximum variance. The figure below is not easy to

understand and interpret. Figure 1. Shows Principal Component Analysis applied to

San Francisco Crime data.

Figure 1: Principal Component Analysis of San Francisco Dataset
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3.2 Multidimensional Scaling

Multi-Dimensional Scaling (MDS) is as well a traditional approach that maps

the first high dimensional space to a lower dimensional space but in a different way

[8]. This is done by trying to protect pairwise distances [19]. A helpful inspiration

for Multi-Dimensional Scaling can be seen using the following approach. Envision a

map of a specific topographical locale, which incorporates a few urban communities

and towns. It is normal for such a map to be joined by a two-path table of distances

between the chosen pair sets of those towns and cities [18].

However, a big issue with MDS is that it switches that connection between the

guide and table that shows the cities proximities. With the method, one is given

just the table of vicinities, and the task is to reproduce the map to near likeness [8].

Generally, this is a technique best applied to analyze data similarity or the lack of it.

It is important to understand that MDS endeavors to model data similarity or lack

of it as separations in geometric spaces. The data can be of different nature.

Data algorithm exists in two forms that are metric and non-metric. In the scikit-

learn, both are taken into account [48]. In the non-metric form, the calculations will

aim at preserving the order of the separations, and therefore look for a monotonic

connection between the distances in the implanted space and the dissimilarities. In

metric MDS, the info similitude lattice emerges from a metric; the separations between

two output points are then set to be as close to the likeness or difference of data.

Presence of a monotonic relationship in terms of closeness of two entities as well

as the corresponding value similarity and lack of it is the most important thing in

Multi-Dimensional Scaling. Despite the fact that there are a few different forms
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of Multi-Dimensional Scaling, we depict here just the traditional scaling strategy.

Therefore, given p points X1, . . . , Xp ∈ Rp from which we compute an (n×n)- matrix

∇ = (∇ij) of dissimilarities, where

∇ij =

√√√√ p∑
k=1

(
Xik −Xjk

)2
(2)

is the dissimilarity between Xi = (Xi1, . . . , Xip) and Xj = (Xj1, . . . , Xjr), for i, j =

1, 2, . . . , p; Squaring and expansion of (2) yields

∇2
ij = ||Xi||2 + ||Xj||2 − 2XiXj (3)

where ||Xi||2 is the squared distance from the point Xi to the origin. The figure

below shows, MDS was successful in unearthing the underlying structure. This in

comparison with the Principal Component Analysis shows that MDA does a better

job. Even in terms of time, MDA is better with it taking 3.7 seconds for execution

while PCA took 36 seconds. Figure 2. Shows Multidimensional Scaling applied to

the San Francisco Crime data.

Figure 2: Multidimensional Scaling
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4 NONLINEAR MANIFOLD LEARNING

In this section, we discuss algorithms that have turned out to be exceptionally

important in the investigation of non-linear manifold learning [8]. These algorithms

includes Diffusion Maps, Local Linear Embedding (LLE), Isomap, Hessian Eigen-

maps, Laplacian Eigenmaps and the different forms of Non-Linear PCA. The main

objective of nonlinear manifold learning is to recover low dimensional manifold from

a high dimensional manifold where most of the linear manifold learning algorithms

fails to recover the undelying structure of the manifold [8].

The nonlinear manifold learning embraces simplicity and stays away from opti-

mization issues that could create nearby minima. The vast majority of the nonlinear

manifold learning algorithms based upon different philosophies regarding how one

should recover unknown nonlinear manifolds. However, all algorithms comprise of a

three-stage approach with the exception of nonlinear PCA [8].

For the first and third steps, are common to all algorithms [7]. The first step

works by step incorporating neighborhood information at each data point to build a

weighted diagram that has all the information points as vertices [8]. As for the third

step, it is an otherworldly installing venture that includes a (n × n)-eigen equation

calculation.
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4.1 Isomap

When it comes to Isomap(isometric feature mapping) algorithm, an assumption

is made. This assumption is that the smooth manifold M be a convex region of Rs

(s << r) and also that the rooted φ : M → X is an isometry [8]. The concept of

convexity and isometry guides the assumption.

1. Isometry: For any pair of points on the manifold, k, k1 ∈ M , the geodesic

distance between those points equals the Euclidean distance between their cor-

responding coordinates [8], r, r1 ∈ X which is

∇k,k1 = ||r − r1||θ (4)

2. Convexity: Under this concept , it is believed that the manifold M is a convex

subset of Rs.

Isomap sees M as an angled area possibly contorted in any number of courses.

Notwithstanding, Isomap does not perform well if gaps exist, since this would damage

the assumption of convexity [8]. On one hand the isometry assumption gives an im-

pression of being sensible under certain circumstance. The presumptions of convexity

and isometry are used to come up with a non-linear speculation of multidimensional

scaling. Safeguarding geometric properties of the fundamental non-linear manifold

is very important. To do so, an approximation is made of the geodesic separations

found on the manifold. In this sense, Isomap gives a worldwide approach to complex

learning [8]. Isomap algorithm is made up of three stages which are:

1. Nearest-neighbor search : In this case, neighbors are identified for each data

points in a high dimensional data space.
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2. Compute graph distances : At this stage, the geodesic pairwise differences be-

tween all points are calculated.

3. Spectral embedding through multidimensional scaling : In order to preserve the

distances, data is then embedded through multi-dimensional scaling. Figure 3.

Shows Isomap algorithm applied to San Francisco Crime data.

Figure 3: From the figure above, an isometric feature is used in the San Francisco

Crime Dataset and it performs reasonably well to uncover structure with an execution

time approximated to be 2.6 seconds.
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4.2 Locally Linear Embedding

Local Linear Embedding Algorithm(LLE) can be compared to the Isomap al-

gorithm [8]. However, the former’s approach is of a local sense and not worldwide

as is the case with the latter. This is because of how LLE strives to preserve near

neighborhood data located on the manifold. In a similar fashion, LLE also comprises

of three stages which are;

1. Nearest-neighbor search. The execution of LLE depends upon the decision of

K. It is necessary for it to be sufficiently expansive so that the points can be

all around reproduced. In addition, it also needs to be sufficiently little for the

complex to have little curve. Where the points connecting to a graph remains

intact is where LLE is most appropriate. In the event that the connectivity does

not exist, the algorithm is then connected independently using the detached sub

graphs.

2. Constrained least-squares fits. Reconstructed on Xi can be done by using a

linear function of its K closest neighbors, This leads to

xi =
k∑
r=1

λirxr (5)

where λir is a scalar weight for xr with unit sum,
∑

r λir = 1, for translation

invariance.

3. Spectral embedding. For determining the weights λi,j the cost function is min-

imized subject to two constraints. Optimal weights λi,j subject to some con-

straints are found by solving a least-squares problem of embedding coordinates
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so that the objective function will be invariant [8]. Figure 4. Shows the the

execution time of LLE, estimated to be 0.85 seconds which is much faster than

Isomap algorithm.

Figure 4: Locally Linear Embedding
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4.3 Spectral Embedding(Laplacian Eigenmaps)

The Spectral Embedding algorithm consists of three steps. The algorithm has

similarity with the LLE algorithm when it comes to the first and third steps [8]. The

three phases of the algorithm include:

1. Nearest-neighbor search: For ε > 0, Nodes i and j are connected if ||yi−yj||2 < ε,

where the norm is Euclidean norm.

2. Weighted Adjacency Matrix: Choose the weights Λi,j for the weighted adjacency

matrix defined by the heat kernel e−
||xi−yj ||

2

2σ2 , where scale parameter is σ.

3. Spectral Embedding: Assume graph G is connected. Otherwise proceed with

each connected component by computing eigenvalues and eigenvectors for the

generalized eigenvector problem. Let ∇ = (∇ij) be an (n× n) diagonal matrix

and the weight matrix Λ. The (n×n) symmetric matrix Ms = ∇−Λ is known

as the graph Laplacian for the graph G. The Laplacian is symmetric, positive

semidefinite matrix which can be thought of as an operator on functions defined

on vertices of G. Figure 5. Shows Spectral Embedding algorithm applied to the

San Francisco Crime data.
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Figure 5: Spectral Embedding(Laplacian Eigenmaps)

4.4 Diffusion Maps

Diffusion maps works on the idea of the Markov Chain [8]. Diffusion map is a

kernel method for nonlinear embedding and dimensionality reduction. It was based on

the idea of spectral embedding of diffusion affinity kernel, which consists of normalized

Gaussian affinities. Euclidean distance in the embedded space approximate diffusion

distances in the data. These distances are similar in nature to the geodesic distances

used in Isomap, but they are robust to noise. The algorithm just like the previously

discussed ones above has three main phases with some steps being almost similar in

every way. The three steps are:

1. Nearest-Neighbor Search: Similar to Laplacian Eigenmaps, an integer K is fixed

and K-neighborhood is defined. In the same way, Ni denote the neighborhood

of xi.
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2. Pairwise Adjacency Matrix: This is a Gaussian part with width σ; be that

different portions might be utilized. For comfort in composition, we will stifle

the way that the components of the greater part of the frameworks rely on the

estimation e. At that point, Λ = (λi,j) is a pairwise contiguousness network

between n focuses. To make the lattice Λ much more scanty, estimations of

its entrances that are littler than some given limit can be set to zero. The

graph G = G(V,E) with weight Λ gives data on the nearby geometry of the

information.

3. Spectral Embedding: The diffusion probabilities and affinities between X data

points can be arranged in (n× n) matrices P and A. P is a stochastic matrix

with all row summing equal to one, and A is symmetric. Let A = Q1/2PQ−1/2,

Q is a diagonal matrix. P and Q have the same eigen values and their eigen

vectors are also related by Q1/2 and Q−1/2. For t = 2, 3, . . . , we have

At = Q1/2P tQ−1/2 (6)

since P t contains t-step transition probabilities of the diffusion process [8].
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4.5 Hessian Eigenmaps

We can remember that, in specific circumstances, the convexity supposition for

Isomap might be excessively prohibitive. In contrast, we may require that the mani-

fold M be locally isometric to an open, connected subset of Rs. Well known cases in-

clude incorporated groups of articulated pictures that are found in a high-dimensional,

digitized picture library [8].

To some degree, finding a fundamental picture complex relies on whether the

pictures are sufficiently scattered around the complex and how great is the nature of

digitization of each picture? Hessian Eigenmaps were proposed for recouping man-

ifolds of high-dimensional libraries of enunciated pictures where the convexity sup-

position is frequently abused. Weaker requirements of convexity and isometry then

come into play. In this case local isometry and connectedness takes shape [8].

1. Local Isometry: ∆ is a locally isometric embedding of ω into Rs. For any point

y′ in a sufficiently small neighborhood around each point y on the manifold M ,

the Euclidean distance between their corresponding parameter points ω, ω′ ∈ Ω;

that is,

ΛM(y, y′) = ||ω − ω′||ω (7)

where y = ∆(ω) and y′ = ∆(ω′).

2. Connectedness : To recover the parameter vector Ω up to a rigid motion the

parameter space is connected to subset Rs.
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Figure 6. Shows the The Hessian Locally Linear Embedding (HLLE) method

applied to the San Francisco Crime dataset which executes 3.4sec much higher

than other algorithms.

Figure 6: Hessian Eigenmaps
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4.6 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE (TSNE) converts affinities of data points to probabilities [45]. The affini-

ties in the original space are represented by Gaussian joint probabilities and the

affinities in the embedded space are represented by Student’s t-distributions [46].

This allows t-SNE to be particularly sensitive to local structure and has a few other

advantages over existing techniques:

1. Revealing the structure at many scales on a single map .

2. Revealing data that lie in multiple, different, manifolds or clusters.

3. Reducing the tendency to crowd points together at the center.

While Isomap and LLE are best suited to unfold a single continuous low dimensional

manifold, t-SNE focuses on the local structure of the data and will tend to extract

clustered local groups of samples. This ability to group samples based on the local

structure might be beneficial to visually disentangle a dataset that comprises several

manifolds at once [45]. The Kullback-Leibler (KL) divergence of the joint probabil-

ities in the original space and the embedded space will be minimized by gradient

descent. Note that the KL divergence is not convex, i.e. multiple restarts with dif-

ferent initializations will end up in local minima of the KL divergence. As a result,

it is sometimes useful to try different seeds and select the embedding with the lowest

KL divergence [23].

The disadvantages to using t-SNE are :

1. t-SNE is computationally expensive, and can take several hours on million-

sample datasets where PCA will finish in seconds or minutes.
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2. t-SNE method is limited to two or three dimensional embeddings.

3. The algorithm is stochastic and multiple restarts with different seeds can yield

different embeddings. However, it is perfectly legitimate to pick the the embed-

ding with the least error.

4. t-SNE global structure is not explicitly preserved. This problem is mitigated

by initializing points with PCA [45].

Figure 7. Shows t-Distributed Stochastic Neighbor Embedding applied to the San

Francisco Crime dataset.

Figure 7: t-Distributed Stochastic Neighbor Embedding (t-SNE)
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4.7 Nonlinear PCA (NLPCA)

Nonlinear PCA (NLPCA) is considered as a nonlinear generalization of the di-

mension reduction technique Principal Component Analysis (PCA) [8]. NLPCA tries

to generalize the principal components from lines(linear) to curves(nonlinear). Neu-

ral network with auto-associative architecture is used to achieve this goal. Such

auto-associative neural network applies multi-layer perceptron that performs identity

mapping ( ie. output of the network should be identical to the input). In the middle

of this network, there is a layer which is responsible for the dimension reduction in

the data. The question is, how do we generalize PCA to NLPCA?. There are several

techniques that have been developed such as Polynomial PCA, Principal Curves and

Surfaces, Multilayer Autoassociative Neural Networks, and Kernel PCA [8].

Polynomial PCA: There have been several different attempts made to generalize

PCA to data living on or near nonlinear manifolds of a lower-dimensional space than

the input space. Higher-degree polynomial transformation of the input variables, and

the apply linear PCA, the resulting output is called Polynomial PCA [7].

Principal Curves and Surfaces: A principal curve is a smooth one-dimensional

curve that passes through the “middle” of the data, and a principal surface (or prin-

cipal manifold) is a generalization of a principal curve to a smooth two- or higher-

dimensional manifold [16], and a principal surface (or principal manifold) is a gener-

alization of principal curve to a smooth two, three or higher-dimensional space. We

can therefore visualize principal curves and surfaces as defining a nonlinear manifold

in higher-dimensional input space [8].

Autoassociative Multilayer Neural Networks: It is a multi-layer feed-forward
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whose input layer and output layers are identical and used for nonlinear dimensional-

ity reduction. The goal of this method is to perform input dimensionality reduction

in a nonlinear way. This exceptional kind of artificial neural network comprises of

more than a five-layer model in which the center three hidden layers of nodes are the

mapping layer, the bottleneck layer, and the de-mapping layer, respectively, and each

is characterized by a nonlinear activation functions [8].

Kernel PCA: A technique used to generalize polynomial PCA is called Kernel

PCA. It’s application expands to support vector machines [58]. This method has

2-stage process :

1. Given input data points nonlinearly transformation of input data into a point

in N-dimensional feature space.

2. The second stage solves a linear PCA problem in a feature space which will

have a higher dimensionality than that of the input space [8].
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5 DATA AND RESULTS

This section entails the application of our manifold learning techniques and ma-

chine learning algorithms to the San Francisco Crime Dataset. We applied linear

methods like PCA, MDS to the given dataset and non-linear methods like Isomap,

Spectral embedding to this same dataset. Table 1. Shows the performance accuracy

of each of the machine learning algorithms implemented.

Algorithms Accuracy(Log-Loss)
Random Forest 13.90
Bernoulli Naive Bayes 2.550
Extra Tree 2.497
XGBoosting 2.504

Table 1: Machine Learning Algorithms Performance

Table 2. Shows the performance metrics of each of the manifold learning techniques

implemented.

Linear methods Time(seconds)
Principal Component Analysis(PCA) 36
Multidimensional Scaling(MDS) 3.7

Non-linear methods

Isomap 2.6
Locally linear embedding(LLE) 0.86
Spectral Embedding(SE) 0.62
Hessian Eigenmaps(HE) 3.4
t-Distributed Stochastic Neighbor Embedding (t-SNE) 5.9

Table 2: Manifold Learning Algorithms Performance

We can see from Table 1. Extra Tree was the best algorithm in terms of performance

and the worst was Random Forest with log-loss accuracy of 13.90 sec.

Again, from Table 2. above, with non-linear methods like Spectral Embedding (SE)

35



was the fasted with execution time of 0.62 sec and the slowest was t-Distributed

Stochastic Neighbor Embedding (t-SNE) with execution time of 5.9 sec. However,

with linear methods, Principal Component Analysis (PCA) was the worst and the

slowest with execution time of 36 sec and Multidimensional Scaling (MDS) did per-

form better than PCA with execution time of 3.7 sec. It actually failed to project

the data set into a low-dimensional space. The goal of implementing these manifold

learning algorithms is speed and accuracy.

In conclusion, we cannot do better by choosing a better classifier, We can do

better by choosing a better dimension reduction method. Figure 8. shows a combined

graphs all the manifold learning algorithms implemented.

Figure 8: Diagram shows all manifold learning algorithm graphs.
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6 CONCLUSION AND FUTURE WORK

When high-dimensional data, such as those obtained from images or videos, lie on

or near a manifold of a lower-dimensional space, it is important to learn the structure

of that manifold. Data visualization is an aspect of machine learning and data mining

that is gaining attention since data’s insights cannot be achieved without some type of

visualization. Dimension reduction is also another aspect that has gained attention in

the field of big data ecosystem. We started out applying the usual method of feature

engineering and machine learning techniques to the San Francisco Crime Data which

only yielded a little above average results. We then applied the various manifold

learning techniques to about 878, 000 data points and 105 columns. Among these

techniques Spectral Embedding was the most efficient and optimal whereas Principal

Component Analysis was the worst technique. It failed to uncover the underlying

structure of the dataset. The entire data set was a sparse matrix due to the feature

engineering techniques applied to the original dataset. Again this data set took much

memory and space in terms of computations so there should be way to handle this

problem in the future. We also made sure the same scale is used over all features.

Because manifold learning methods are based on a nearest-neighbor search, the al-

gorithm may perform poorly otherwise. The reconstruction error computed by each

routine can be used to choose the optimal output dimension.

Future work could be done by applying manifold learning on noisy and/or in-

complete data, which is an active area of research.
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APPENDICES

Listing 1: Sample Python code

import numpy as np

import pandas as pd

from time import time

import matp lo t l i b . pyplot as p l t

from s k l e a rn . c r o s s v a l i d a t i o n import t r a i n t e s t s p l i t

from s k l e a rn import c r o s s v a l i d a t i o n

from s k l e a rn . c r o s s v a l i d a t i o n import c r o s s v a l s c o r e

from s k l e a rn . met r i c s import l o g l o s s #e v a l u a t i o n metr ic

from s k l e a rn import manifo ld

from datet ime import datet ime

from matp lo t l i b . c o l o r s import LogNorm

from s k l e a rn . met r i c s import accuracy sco re , c l a s s i f i c a t i o n r e p o r t

from s k l e a rn . decomposit ion import PCA

from m p l t o o l k i t s . mplot3d import Axes3D

from matp lo t l i b . t i c k e r import NullFormatter

# Next l i n e to s i l e n c e p y f l a k e s . This import i s needed .

Axes3D
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f i g = p l t . f i g u r e ( f i g s i z e =(9 , 12) )

t0 = time ( )

pca = PCA( n components=3)

P = pca . f i t t r a n s f o r m (X)

t1 = time ( )

print ( ” P r i n c i p a l Component Ana lys i s :%.2 g sec ”%(t1 − t0 ) )

ax = f i g . add subplot (259)

p l t . s c a t t e r (P [ : , 0 ] , P [ : , 1 ] , c=y , cmap=p l t . cm . Spec t r a l )

p l t . t i t l e ( ” P r i n c i p a l Component Ana lys i s (%.2g sec ) ”%(t1 − t0 ) )

ax . xax i s . s e t ma jo r f o rma t t e r ( NullFormatter ( ) )

ax . yax i s . s e t ma jo r f o rma t t e r ( NullFormatter ( ) )

p l t . a x i s ( ’ t i g h t ’ )

p l t . show ( )
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