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ABSTRACT
Application of Symplectic Integration on a Dynamical System

by

William Ty Frazier

Molecular Dynamics (MD) is the numerical simulation of a large system of interacting
molecules, and one of the key components of a MD simulation is the numerical esti-
mation of the solutions to a system of nonlinear differential equations. Such systems
are very sensitive to discretization and round-off error, and correspondingly, stan-
dard techniques such as Runge-Kutta methods can lead to poor results. However,
MD systems are conservative, which means that we can use Hamiltonian mechanics
and symplectic transformations (also known as canonical transformations) in analyz-
ing and approximating solutions. This is standard in MD applications, leading to
numerical techniques known as symplectic integrators, and often, these techniques
are developed for well-understood Hamiltonian systems such as Hills lunar equation.
In this presentation, we explore how well symplectic techniques developed for well-
understood systems (specifically, Hills Lunar equation) address discretization errors

in MD systems which fail for one or more reasons.



Copyright by William Ty Frazier 2017

“All Rights Reserved”



DEDICATION

Dedicated to my friend, Tiara Charde Johnson (1991-2013), a friend who was

always there and taken away from us too soon.



ACKNOWLEDGMENTS

My sincere gratitude goes to my committee chair Dr. Jeff Knisley for his guidance
and professional mentorship during this project. He fostered an environment in which
creativity and originality could flourish. Working together with him the past few
years has been a very rewarding and enjoyable experience. I would also like to thank
my committee, Dr. Robert Gardner and Dr. Michele Joyner, for taking the time to
review what has become a lengthy manuscript and for providing helpful suggestions

and feedback.



TABLE OF CONTENTS

ABSTRACT . . . . o e 2
DEDICATION . . . . . o 4
ACKNOWLEDGMENTS . . . . . . . .. . 5
LIST OF TABLES . . . . . . . . . o 9
LIST OF FIGURES . . . . . . . .. . 10
1 INTRODUCTION . . . . .o 11
1.1 Motivation . . . . . . . . ..o 11

1.2 Numerical Error . . . . .. .. ..o 12

1.2.1 Round-off Exror. . . . . . ... ... 12

1.2.2 Iterative Error . . . . . . ... .o 13

2 DISCRETIZATION ERROR . . . . ... ... ... ... .. .... 14
2.1 Methods for Managing Discretization Error . . . . . . . . . .. 15
2.1.1 Richardson Extrapolation Method . . . . . . .. .. 15

2.1.2 Method of Nearby Problems . . . . . . . ... .. .. 15

2.2 Simulations, Dynamics, and Errors . . . . .. .. .. ... .. 16
2.2.1 Newtonian Mechanics . . . . . . ... .. ... ... 16

2.2.2 Error in Molecular Dynamics . . . . . .. ... ... 17

3  MOLECULAR DYNAMICS . . . . ... ... ... . ... .. .... 19
3.1 Origins . . . . . . .. . 19

3.2 Lennard-Jones Potential . . . . . ... ... ... ... .. .. 19

3.3 Newtonian Model for Molecular Dynamics . . . . . . . . . .. 21

3.4 Protein Structure . . . . . . .. ... oL 22



3.4.1 The Protein Data Bank . . . . . . .. .. ... ... 23

3.4.2 Molecular Topology . . . . . . . . .. .. ... ... 24

3.5 GROMACS . . . . 25

3.6 Process of Simulation . . . . . .. ... ... 0L 25
3.6.1 Hamiltonian Systems . . . . . . . ... .. ... ... 26

4 LIE ALGEBRAS AND LIE GROUPS . ... . ... ... ... .. 30
4.1 Lie Algebras . . . . . . . . ... 30
4.1.1 Examples of Lie Algebras . . . . . . ... ... ... 31

4.1.2 Vector Fields . . . . ... ... ... ... ..., 37

4.2 Lie Groups . . . . . . .. 38
4.2.1 Examples of Lie Groups . . . . . ... .. ... ... 40

4.2.2 Baker-Campbell-Hausdorff . . . . . . . ... ... .. 41

4.2.3 Example of Splitting and Composition . . . . . . .. 42

5  SYMPLECTIC INTEGRATION . . ... ... .. .. ........ 47
5.1 Splitting of a Simple Hamiltonian System . . .. .. ... .. 48

5.2 Hill’s Lunar Equation . . . . . . ... .. ... ... ...... o1

6  RESULTS . . . . . 59
7 CONCLUSION . . . . . s 69
BIBLIOGRAPHY . . . . . . 70
APPENDICES . . . . . . . 77
Appendices . . . .. L 7
A Definition, Theorems, and Equations . . . . . .. ... .. ... ... 7
A.1  Dynamic Equilibrium . . . . . .. .. ..o 000 7



A2 Protein. . . . . . . 79

A3 Graph Theory . . . . . . . . . . ... ... .. 81
A4 Modern Algebra . . . . . ... 85
A5 Complex Analysis . . . . . . ... ... L 87



LIST OF TABLES

Exact x and pvalues . . . . . .. ... 66
Exact valuesof H . . . . . . . . .. . . 66
Symplectic x and p values . . . . . .. ..o 67
Symplectic Values . . . . . . . ..o 67
Absolute difference between x and p values . . . . . . . . . ... ... 68
Absolute difference between H values . . . . . . . .. ... ... ... 68



10

11

LIST OF FIGURES

T=2 . . 60
=10 . . . . 61
=20 . . . 61
=30 . . . 62
=40 . . . 62
=00 . . . 63
x=060 . . . 63
x=T0 . . 64
x=80 . . . 64
=90 . . . 65
=100 . . . . 65

10



1 INTRODUCTION

In the scientific world today — given the advancements made to computer pro-
cessing power, memory storage, and data retrieval — many scientific experiments are
performed on a computer. The experiments performed in computers are designed to
be simulations of the real world scientific experiments. Numerical error plagues every
algorithm, simulation, or otherwise when working with computers. Computers use
floating point arithmetic, which means every simulation will have round-off error [17].

However, numerical error can be managed and that is the focus of this research.

1.1 Motivation

The motivation for this thesis originates from a research project in Spring 2014
in which we simulated the dynamics of a folded hen egg white lysozyme protein. We
had a goal of destabilizing the protein. We were able to achieve our goal by removing
certain disulfide bonds in the protein. This resulted in the protein losing its tertiary
structure. We ran several simulations in attempts to replicate the results. However,
we noticed during these simulations that the destabilization was due to the dynamics
no longer being a Hamiltonian system. This is important because the molecular
dynamics simulation package GROMACS [4] uses loss of Hamiltonicity to determine
when a destabilization takes place. Specificallyy GROMACS terminates a simulation
when it detects exponential phase volume changes at a thermodynamic equilibrium

(blow-up error). Typically, such destabilizations occur because of discretization error.
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1.2 Numerical Error

The quantification of numerical error in a simulation indicates how much un-
certainty exists in the results of the computer experiment [38]. If the amount of
numerical error is substantial, then the amount of uncertainty is substantial. With
a large amount of uncertainty the numerical simulation can start to produce “false-
positives” [38], which can invalidate the results from the computational experiment.
If the numerical error is significant enough during an update step of the algorithm
for the simulation, then that error propagates into the model of the simulation [38].
These inaccuracies invalidate the numerical experiment; because it is no longer a
representation of a real world experiment. The different types of error that can oc-
cur during a numerical experiment fall into three main categories: round-off error,

iterative error, and discretization error [35, 38].

1.2.1 Round-off Error

The real numbers are a continuum [39]. Computers use floating-point arithmetic
where numbers have a floating-point representation [17, 27, 44]. The complication
with floating-point arithmetic is that the cardinality of the set of numbers accounted
for by floating-point representation is a finite subset of the real numbers. Computers
round numbers to give them a floating-point representation. Round-off error is the
difference between the floating-point representation and the exact mathematical value
(17, 27, 44]. There are a couple of ways to measure how much error is associated to

round-off. Those measurements are called absolute error and relative error. For the
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purposes of this thesis let z,,,,;,q denote be a float-pointing representation of x and

x be the exact value. We know by [17, 27] the absolute error is measured by

‘xround - x‘ :

We know by [17, 27] the relative error is

|$r0und - x‘

|z]
The relative error tells us how big the inaccuracy of the approximate value is as

a percentage of the exact value. The best solution to reduce round-off error is to

increase the number of significant digits in the floating point representation[38].

1.2.2 TIterative Error

Iterative error is generated by iterative methods for solving linear and nonlinear
problems. Iterative methods are successive refinements of an approximate solution
[43]. In Subsection 1.2.2 let x be the exact solution and z* be the approximate

solution for some problem. We know from [23] that the error is
e=x—a"

In addition, [1, 23] tells us that iterative methods are commonly used on systems of

linear equations that take the form
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2 DISCRETIZATION ERROR

Discretization error is the hardest type of numerical error to manage [17, 35, 36,
37, 38, 44]. Discretization error is produced in an attempt to estimate solutions to
integral or differential equations using a partition or mesh of a geometric domain.
Also, from those sources we know discretization error to be the difference between
the exact solution to the discretized equations and the exact solution to the original
ordinary differential or integral equations. Let fgiscretizeq P€ the solution to the
discretized equation and fopg be the exact solution to the ordinary differential

equations. According to [17, 38, 35, 44, 37, 36], discretization error is

fError = fdiscretized — JODE
where fpop 18 the amount of discretization error.
Let h be the width of an interval in a regular partition of [a,b]. If a method

produces a discretization error that satisfies

HfErrorH < Ch"

for some norm |||, for some C' € R, and for some n € Z* then the method has an
order of n, denoted by O (k™) with respect to that norm [17, 27, 44]. A numerical
approximation with a order of n is called an n-th order (numerical) solution.
Managing discretization error can be very complicated, so methods are developed
to better manage it. Some methods like Richardson extrapolation focus on getting
very high orders of accuracy, but not preserving the manifold structure of the dif-
ferential equations. Other methods like symplectic integration achieve high orders of

accuracy while preserving the manifold structure of the differential equations.
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2.1 Methods for Managing Discretization Error

2.1.1 Richardson Extrapolation Method

Richardson extrapolation, is the most prevalent and dependable method for man-
aging error produced in the mesh grid in relation to the numerical solution of the
differential equations [36, 37]. According to [33] and [34], Richardson extrapolation
was developed by L.F. Richardson in the early 1900’s in order to obtain a higher accu-
racy Taylor-Series derived approximations of solutions. Richardson started by taking
two discrete second-order solutions and extrapolated them by means of algebraic op-
erations, to achieve a solution with fourth-order accuracy. Richardson extrapolation
comes from the realization that different discrete orders of accuracy solutions can be
combined differently using algebraic expressions in order to extrapolate the original
solutions to a higher order of accuracy solution than was previously attained. In ad-
dition, this method requires the refinement of each mesh to be uniform. According
to [36, 37, 38], this method is a demanding process due to the number of grid points
and strain on the computation tool that generates the meshes and does the systemic

refinement of the meshes.

2.1.2 Method of Nearby Problems

The method that Roy et. al. [37] focuses on is the method of nearby problems,
(MNP). MNP eliminates certain problems associated with the Richardson extrapo-
lation. MNP requires two numerical solutions on the same grid. In addition MNP

is a 6 step algorithm that is easy to follow. According to [37], the effectiveness of
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MNP is due to the curve fit generated during the method. The curve fit is the exact
solution to the nearby problem. The source terms of the curve fit indicate how close
the nearby problem is to the original problem. If the source terms are small, then
the nearby problem is close to the original problem, and if the source terms are large,
then the nearby problem is far from the original problem. From [37] we know that
the MNP works on the steady and unsteady Burgers’ equations, the Euler equations,

and the incompressible Navier-Stokes equations.

2.2 Simulations, Dynamics, and Errors

2.2.1 Newtonian Mechanics

From [32] we know that the theoretical basis comes from some of the greatest
mathematical and physics minds in all of history: Newton, Euler, Lagrange, and
Hamilton. When MD simulations are based on point particles, the dynamics are ba-

sically governed by Newton’s second law [32]. Newton’s second law is mathematically

2
FZ?TL&ZTTL(%)

where y is a distance function of time ¢ [17]. According to [32] the force of an

expressed as

individual atom is

f=~u(r)

where u (1) is the potential. By [32] the equations of motion corresponding to force
are
Nm
mri = f; = Zfij
j=1

J#i
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where the sum is over all N,, atoms, m is the atomic mass, and the equations are
based upon Newton’s second law. Newton’s third law, which is for every action
there is an equal and opposite reaction, implies that f; = —f;; [32]. This saves
computation time and power as only half the interaction forces need to be calculated.
Newtonian mechanics leads to systems of ordinary differential equations that often
cannot be solved in closed form. Consequently, solutions must be approximated, and
such approximations are often due to discretization of the time interval into a finite

sequence of time steps.

2.2.2  Error in Molecular Dynamics

There are a few types of errors that can occur during a molecular dynamics sim-
ulation. A boundary error is when the protein in the simulation collides with the
boundaries of the simulation. A time and space error is when at least two atoms
have the same spatial and temporal coordinates. A time and space error can cause a
blow up error, which is when the atoms of the protein splatter over the boundaries.
This is a result of having at least two repelling atoms sitting on top of each other.
This results in those atoms’ velocities increasing exponentially. The last two errors
are often due to discretization error. All of these types of errors are classified as
mathematical errors.

The other types of errors are called physical errors. These types of errors are
similar to the behavior a protein would depict in the real world. These errors include
behaviors like the protein unfolding or unraveling, which in general is know as desta-

bilization. Such errors are due to alterations to a protein’s topology, where topology

17



refers to the geometry of the protein due to the connectivity within and between the
amino acids that form the protein.

In this thesis we develop a novel numerical method that can be applied to any
Newtonian system. The method will address the management of discretization error.
The method will address this by using group theoretic splitting and composition
methods for differential equations in general to develop novel symplectic integrators,
which are numerical methods designed to preserve properties of Newtonian systems

— properties like conservation of energy and conservation of momentum.
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3 MOLECULAR DYNAMICS

Molecular Dynamics, (MD), is a computational tool designed to simulate inter-
actions between molecules on an atomic scale. MD serves the purpose of allowing
scientists to track the interactions and movements of the molecules [32]. MD models
are systems of ordinary differential equations. Moreover MD is a dynamic simulation,
which means it incorporates the laws of physics, chemistry, and biology in its models
[17]. In the following subsections we will go over MD’s origins, some of its internal
structures, what it needs to simulate the dynamics of a protein, and the process of a

simulation of the dynamics of a protein.

3.1 Origins

The theoretical mathematics and physics core of MD is constructed upon little
more than Newton’s Laws of motion. According to [32] it was not long after the
invention of the first digital computer that MD came into existence. From [32] one
of the biggest problems MD tries to address and solve numerically is the N-body

problem. MD uses many different potentials in its models for those problems.

3.2 Lennard-Jones Potential

MD models become Newtonian models when the system is equilibrated and the
energy is minimized. Newtonian models are defined by their potential energy. Poten-
tials for MD are combinations of Coulomb potentials (inverse square law), Lennard-

Jones potentials, and others as required by the MD model. From [32, 24, 50] the
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Lennard-Jones potential, (LJ), is

b ke | () (2

7“1']' rij
S

n—m\m

where n and m are parameters whose values determine the strength and range of the

with

forces. In the model o is the finite distance at which the inter-particle potential is
0, r;; is the distance between atoms ¢ and j, and € is the strength of the interaction
between atoms 7 and j. The model is constructed to be able to account for short range,
repulsive overlap forces and longer range, attractive dispersion forces [24, 32]. This
model is convenient for soft-sphere pair potentials, in which MD atoms are treated
as soft-spheres and molecules are pairs of atoms bonded together. Furthermore, [24]
tells us that n and m are used to determine the range and strength of those forces,
where m is normally chosen to be 6 and n to be 2m = 12. With the values of m and

n chosen from [24, 32, 50|, LJ is

12 6
UZ%‘J =4¢ g B
Tij Tij

In MD simulations an assumption is made that if two atoms are more than a
certain distance apart, then their potential is 0. From [24] this is done to shorten

computer processing time. Consequently, LJ becomes a piecewise-defined function as

12 6
o))"~ ()] s
UZI;J: J J

0 Tij > Te
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where 7. is normally chosen to be 2.5¢. This implies that U = —0.0163¢, and when

Tij = T, the potential between atoms ¢ and j is small [24].

3.3 Newtonian Model for Molecular Dynamics

From [32] MD mimics nature by basing its equations of motion on Newtonian
mechanics. Even if Lagrange’s equations of motion are being used, Newton’s second
law is incorporated into those equations. We will see this as we go through how MD
uses Lagrange’s equations of motion to control and vary temperature. From [32] a
few new variables are introduced. A dynamical variable s is used as an equivalent to
rescaling the unit of time ¢’, the variable for real time, and ¢, the variable for scaled

time. The relation between the variables is
dt =s(t')dt'.
According to [32] the Lagrangian for an extended system is written as

L= 1ms2 Z 7'“? — Z u (ry) + %MSEQ —nsT log (s)

2 —
1<7

where T' is the required temperature,
ny = 3Nm + 1

is the number of degrees of freedom, M, is the mass needed to assemble an equation
of motion for coordinate s, and dots represent a derivative with respect to t. The
Lagrangian is defined in terms of rescaled time ¢. The standard procedure for getting

Lagrange’s equations of motion are



and

. .2 T
Mgs :TTLSZT~ — nf—

i

Since the relationship between ¢ and ¢’ is

t= /s (') dt'.

[32] it’s easier if the equations are altered to use real time ¢. The altered equations

are
1 S
ry = _fi__rz
m
and
2
. s Gis
s = —
s M,
where

2
G, = eri —ngT
and dots represent the derivative with respect to ¢’ [32]. As [32], states the first of

these equations of motion looks like the conventional Newtonian equation with an

extra term.

3.4 Protein Structure

The structure of a protein is mostly made up of a type of macromolecule called
polypeptides [22]. Polypeptides are made of a-amino acids. Each a-amino acid is
made of certain elements or atoms. Simulating the dynamics of a protein usually

entails inputting a protein data bank file and a molecular topology file. A protein
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data bank file places all of the atoms of a protein on a grid system and gives the bonds
and angle bonds between the atoms. A molecular topology file adds charges of the
atoms and the nature of the interactions between all of the atoms in the simulation.
The way MD interprets and combines the protein data bank and molecular topology
files is by using a mathematical structure from graph theory called a network. In the
network the vertices are the atoms, the edges are the bonds between atoms, and the
cost functions are the strengths of the bonds. However, this cannot be thought of
as a theoretical graph theory network because a sense of positions and angles needs
to be incorporated. When a protein is folded in its tertiary structure [28, 48] the
stabilization of the tertiary structure comes primarily from hydrophobic interactions
between the nonpolar side chains, hydrogen bonds between polar side chains, and
peptide bonds (28, 48]. A particular type of bond that helps stabilize the tertiary
structure is disulfide bonds [28, 48]. For more information about proteins see the

appendices.

3.4.1 The Protein Data Bank

X-ray crystallography is a technique used to determine the structure of proteins
and biological marcomolecules [42]. X-ray crystallography was designed with the
purpose of obtaining a three dimensional molecular structure from a crystal [42].
The Protein Data Bank, PDB, is a computer-based archival file for macromolecular
structures [5]. PBD was established in 1971 with the purpose to gather, systematize,
and distribute atomic coordinates and other data from crystallographic studies [5]. A

PDB file has a uniform format of atomic coordinates and partial bond connectivities,
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as derived from crystallographic studies [5]. In addition to these, each PBD file stores

the structure factors and phases of a protein [5].

3.4.2 Molecular Topology

Molecular topology is the application of the mathematical field of graph theory
applied to the study of molecular structures [14]. It is also referred to as chemical
graph theory [14]. In addition to graph theory, molecular topology includes molecular
descriptors that identity structural properties of the molecule, such as the character-
istics of the bonds, interactive properties an atom has with the other atoms in the
environment, and the overall charge of the molecule [14]. A root graph specifies het-
eroatoms or carbons with unshared electron(s) [14]. Heteroatoms are heavy atoms
that are not carbon. The existence of a homeomoprh of graph is used to determine

if a graph is planar or not. The following definitions are from [14].

Definition 3.4.2.1 Chemical Graph is a model of a chemical system, used to
characterize the interactions among its components: atoms, bonds, groups of atoms

or molecules.

Definition 3.4.2.2 Molecular Graph is a graph that represents a structural for-
mula of a chemical compound, where the vertices are atoms and edges are the covalent

bonds.

Definition 3.4.2.3 A hydrogen depleted molecular graph is a graph where the hydro-

gen atoms are not depicted.
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Definition 3.4.2.4 A reaction graph is a graph of a transformation of a molecule,

chemical reaction, where vertices are chemical species and edges are reaction pathways.

MD interprets these graphs computationally by using the adjacency matrices of the

above graphs. For additional information about graph theory see the appendices.

3.5 GROMACS

GROMACS is a parallel message-passing execution software package for MD sim-
ulations [4]. GROMACS stands for GROningen MAchine for Chemcial Simulation
[4]. GROMACS is made up of a preprocessor, procedures that simulate thermo-
dynamic equilibration, and a MD runtime that can use one or multiple processors,
an optional monitor, and tools analysis operations [4]. The MD runtime is imple-
mented within GROMACS with the GROMOS package, which stands for GROningen
MOlecular Simulation, as its basis [4]. The GROMOS package is useful for simulating

bio(macro)molecules in solution [4].

3.6 Process of Simulation

There are five scripts and a tutorial from [25] that allows newcomers to molecular
dynamics to be able to simulate the dynamics of a folded protein. Given a PBD file
and molecular topology file the first script sets up the environment of a protein for the

Y

simulation. The first script also creates the “box” or boundaries of the environment
for the protein [25]. In the first script, the user get to choose the force field, based on

a combination of potentials, and the solvent, which is typically either water or saline

[25]. After the first script runs, the molecular topology file has an overall net charge.
25



If the overall net charge is not 0, then Na™ and CI~ atoms need to be added [25].
The second script incorporates the Na®™ and Cl~ atoms into the environment of the
protein making the overall net charge 0. It is possible before the second script to make
other changes to the molecular topology file like breaking bonds or changing weights
of atoms. The third script puts the environment into thermodynamic equilibrium and
minimizes the energy [25]. For additional information on dynamic equilibrium see the
appendices. Once the environment is in thermodynamic equilibrium, the environment
becomes a Newtonian system. The fourth script simulates the dynamics of a protein
[25]. In the fourth script the user gets to determine time of simulation, the size of
time steps, and the type of time step integration to be used. If there were no errors,
the fifth script creates a PBD file [25]. The PBD file produced contains the dynamics

of the protein for each time step.

3.6.1 Hamiltonian Systems

In molecular dynamics when temperature reaches equilibrium, the environment
becomes a Newtonian system, which is a special type of Hamiltonian system. For a
system of m particles each with 3 spatial coordinates, the configuration space is the
n = 3m dimensional vector space R". A Hamiltonian system is itself a special type of
system of differential equations defined on a 2n dimensional phase space, where the
first n components q1,...,q, are the configuration space coordinates and the next
p1,---,Pn components are the conjugate momenta corresponding to the configure
space coordinates, respectively. Let q = (¢1,...,¢,) and p = (p1,...,pn). The

Hamiltonian system itself is derived from a Hamiltonian function. A Hamiltonian
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function is a smooth real-valued function. A Hamiltonian function is usually denoted

either H or H (q,p). The Hamiltonian equations of motion are [2, 41]

E_(‘?pi’ dt__aqz-.

A dynamical system with a phase space and conservation of energy is governed by the
Hamiltonian equations of motion [2]. The following definition of a phase flow comes

from [2].

Definition 3.6.1.1 The phase flow is the one-parameter group of transformations of

phase space
9" (2(0),p(0)) = (a(t),p (1))

where q (t) and p (t) are solutions of Hamilton’s system of equations.

A particular type of phase flow is a Hamiltonian flow. We get the following definition

of a Hamiltonian flow from [2].

Definition 3.6.1.2 Hamiltonian flows are given by a Hamiltonian H (q, p) together
with the Hamilton’s equations of motion with the 2D phase space coordinates (q, p)
split into the configuration space coordinates and the conjugate momenta of a Hamil-

tonian system with D degrees of freedom:

q:(QI7q27"‘7qD)7 p:(p17p27"'7pD)'

In MD, numerical trajectories are approximate solutions to systems of differential
equations [7, 26, 19]. A Hamiltonian flow moves along those trajectories or across

those trajectories.
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Theorem 3.6.1.1 The energy, or the value of the Hamiltonian function at the state
space point (q, p), is constant along the trajectory (q (t),p (t)) So the trajectories lie

on surfaces of constant enerqgy, or level sets of the Hamiltonian {(q,p) t H(q,p) = E}

Proof Let H be a Hamiltonian function at the state space point (q, p). We take the

derivative of H with respect to time, ¢, to get

d _ OHdg(t)  OH dp;(t)
g a®.pt) = 5 =0+ 5=
OHOH O0HOH

0q; Op; a Op; 0g; B

Since £H (q(t),p(t)) = 0, we know H is constant with respect to time. Hence

H (q,p) = E for E some constant.ll

Hamiltonian flows preserve energy along trajectories. Hamiltonian flows are a partic-
ular type of phase flow. The reason phase flows are so important to a conservative

system is due to Liouville’s Theorem. We get the following theorem from [2].

Theorem 3.6.1.2 Liouville’s Theorem: The phase flow preserves volume in phase

space: for any region D we have
volume of g'D = wvolume of D.

Before we give the proof of Liouville’s Theorem, we need to know what a Jacobian

matrix is. We get the following definition of a Jacobian matrix from [16, 49].

Definition 3.6.1.3 Given f : R® — R™ then

on ... oh
J_df_[af af]_ o O
dr |0 Own Ofm ... Ofm
ox1 Oxn
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1s defined as the Jacobian matriz of £, and furthermore if m = n, then its determinant

1s called the Jacobian determinant.

From [12] the Jacobian .J of a Hamiltonian flow satisfies
|det (J)| = 1.
We get the following proof of Liouville’s Theorem from [12].

Proof Let C be a region in phase space and V' (0) its volume. Denoting the flow of
the Hamiltonian system by f*(z), the volume of C' after a time ¢ is V (t) = f*(C)

and using the fact that the determinant of J is equal to 1, we get
t (o
V) = / dm:/ det <8f (:v))
71(©) ¢ Or

= /Cdet(J)da;’—/dx’:V(O),

C

dx’

Hamiltonian flows preserve phase space volumes.ll
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4 LIE ALGEBRAS AND LIE GROUPS

Sophus Lie created Lie algebras and Lie groups in the late 1800’s [18, 30]. He
was inspired to do this after hearing a lecture from Peter Ludwig Mejdell Sylow in
1863 on Galios theory [18]. In the 1900s, mathematicans G. Birkhoff, I. Sedov, and
L.V. Ovsiannikov exploited Lie algebras and Lie groups in applied mathematics and
physics [30]. Lie algebras and Lie groups play a crucial role in the development of

methods involving symplectic integration.

4.1 Lie Algebras

In about 1880 Wilhelm Killing classified all Lie algebras up to isomorphism [18].
He found that there are 9 classes of Lie algebras A,, B,, C,, D,, Fs, FEr, Es, F},
and G5 [18]. However, his proofs were incomplete, but the proofs led to the discovery
of exceptional groups. Elie Cartan managed to complete those proofs [18]. Cartan’s
biggest contributions came in the years after Sophus Lie’s death [18]. As a result of
Cartan’s work, Lie algebras are very important in many fields of mathematics and

physics [18]. We get the following definition of a Lie algebra from [20].

Definition 4.1.0.1 A (real) Lie Algebra is a vector space g with a product [-, -] which

satisfies
1. Mu,v] = Au,v] for allu,v € g, A € R
2. [u+v,w| = [u,w] + [v,w] for allu,v,w € g

3. [u,u] =0 forallu e g
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4. [u,v] = —[v,u] for all u,v € g
5. (Jacobi identity) If u; € g,j =1,2,3, then
[ur, [us, us]] + [us, [ur, wo]] + [us, [us, u1]] =0
A Lie algebra need not be associative and often is not, in which case the Jacobi
identity is in place of associativity.

According to [20] two Lie algebras, g and g/, are isomorphic over a given field,
F, if there exists a vector space isomorphism ¢ : g — ¢ satisfying ¢ ([x,y]) =
[¢(2),¢(y)]. The mapping ¢ is called an isomorphism of Lie algebras. From [20] a
Lie subalgebra of g is a subspace K of g if [x,y] € K for all z,y € K. In particular,
K is a Lie algebra in its own right relative to the inherited operations. For additional

information about modern algebra see the appendices.

4.1.1 Examples of Lie Algebras

In this section, we consider 3 examples of Lie Algebras. The examples illustrate
the use of a Lie bracket and of the properties of a Lie algebra. A tangible example of

a Lie algebra is R? under the cross product operation.

Example For R3 let the cross product be the Lie bracket. Let’s consider the vector

space R? with z,y, 2 € R3. For the first property let A € R. So,

Az,y] = Az xuy.

31



We apply distributive properties of the cross product to get

Az,y] = Az xy)

= Alz,y].

For the second property consider

[z +y,w = (x+y)xw.

The distributive properties of the cross product give us

[t+yw = xXxwtyxw

= [z,w]+ [y,w].

For the third property consider

[r,2] = =X

From properties of the cross product we get

[z,2] = 0.

For the fourth property consider

[z,y] = zxuy.

The properties of the cross product give us

[,y = —(yxux)



For the fifth property consider

[z, [y, 2]] + [z [y, 2]] + [y[z.2]] = zx(vxw)+vx(wxu)+wx (uxv)
= (v-wov—(u-vV)w+@-uv)w—(v-w)u

+(w-v)u—(w-u)v.
We get the above from properties of the cross product and it gives us
[z, [y, 2]] + |2 [y, 2]] + [y[z,2]] = 0.

The space R™*™ with the ring commutator as the Lie bracket satisfies the first
four properties of a Lie Algebra. For elements x and y the ring commutator is defined

as [x,y] = xy —yx. Let A, B,C, D € R™". For the first property let A € R. So,
(M, B] = MAB — BMA.
From the distributive properties of matrices we get
M,B] = M(AB)—X(BA).
From the distributive properties of subtraction we get

M, B] = A\(AB— BA)

= M[A, B].
For the second property consider
[A+B,C] = (A+B)C—-C(A+DB).
We use the distributive properties of matrices to get

[A+B,C] = AC+BC - CA—CB.
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From the commutative of addition of matrices we get

[A+B,C] = AC—CA+BC—CB

= [A,C]+([B,C].
For the third property consider

[A,4] = AA—AA

For the fourth property consider
[A,B] = AB-— BA.
From the distributive properties of matrices we get
[A,B] = —(—AB+ BA).
From the commutative of addition of matrices we get

[A,B] = —(BA— AB)

= —[B,4].
For elements of R"*" we need to only check the Jacobi Identity.

Example Consider o(3) = span{Lj, Lo, L3} where

1 0
0, Ls=|-1
0 0

L, =

o O O
o O O

0 0
0 —1|, La= |0
1 0 —1

1
0
0

o O O



We just need to show the Jacobi identity. Notice the following relations.

(0 o0 1]fo 1 0 0o 10/]o o1
Lo,ls] = [0 00| |-1 00/ -|-100[|0 00
“100/]l0 0o 0 00| |=10 0
0 0 0]
0 -1 0
0o o]lo o1]lo o1]foo o
Li,Ls) = [0 0 —1] |0 o o[|lo o0ofl|oo0 -1
01 0| |-100l|=100]]01 0
0 —1 0]
= |1 0 o] =-L,
0 0 0
(0 10|00 o o0 olfo 10
(Ls,L1] = |[-1 00| oo —1]—|o o 1] |-1 0 0
0 00|01 o o1 0o|lo oo
0 0 —1]
—loo o|=-1L,
10 0

Thus, we have that [L;, Ly] = —L;. Combining properties 1 and 3 we get that

|:L17[L27L3” + |:L37[L17L2H + [L27[L37L1H = 0+0+0
= 0.
We note that the Lie algebras R?® under cross product and o (3) are isomorphic.

—10;
2

0 —i 1o
i ol BT o —1|
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Example Consider su(2) = span{FEj, Ey, E3} where E; =

01
01 = 1 0l° 09 =




We just need to show the Jacobi identity. So,

—1i0 —109 —10
[El, [E27E3H + |:E37 [E17E2H + [E27 [E37E1H = [ 7 -, [ 5 = 5 3H
—iUg —Z'O'l —7:0'2 ]
+ 2 { 2 72 }
—iUQ —?:O'3 —ial ]
+ 2 { 2 72 }

Applying the first property, which we proved for all n by n real matrix spaces, we get

% ([01, (09, 03] + [03, [0, 03] + [0, [03’01]]> '

Thus, we just need to show the Jacobi identity holds for

(01, [02,05]] + [03, [01, 02]] + [02, [03,01]] -

Notice the following relations

[ ]__0—@_10_10 0 —i
9270 = 1y o] lo -1 0 —1|li o0
0 2]
= |2 o = %%
[00]__0104_0—@'01
LE2E7 01 0l ld 0 i 0|1 0
2% 0] .
= o -2 T
[ ]_'10"01 0 1][1 o
7910 = 1o —1| |1 0 1 0/lo =1
[0 2] .
= |9 ¢ = 2105.
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Thus, we have that [ai, Uj] = 2i0,. Applying the first and third properties, which we

proved for all n by n real matrix spaces, we get

(01, [02,05]] + [03, [01,02]] + [02,[03,01]] = 04040

4.1.2 Vector Fields

Lie algebras are vector fields [20]. We get the following definition of a vector field

from [15, 40].

Definition 4.1.2.1 A vector field v may be identified with a linear partial differential

operator of the form

- 0
V:;Uiaxi.

Here (x1,...,x,) are local coordinates on a manifold M. Each coefficient v; is a

smooth function on M.

If V is a vector space, then a V-vector field on a manifold assigns a vector in V' to
each point on the manifold. Each point of the manifold is a vector space [40, 15]. We

get the following theorem from [15, 40].

Definition 4.1.2.2 If z is a smooth function on M, then the directional derivative

of z along the vector v is
0
i=1 ‘
The directional derivative of z along the vector field v is the differential operator v

acting on z [15, 40]. Vector fields and systems of ordinary differential equations are

related to each other [15, 40].
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4.2 Lie Groups

According to [30] Sophus Lie created symmetry analysis of differential equations.
His theory makes it possible to derive solutions to differential equations algorithmi-
cally [30]. In order to do this he created Lie groups. The following definition of a Lie

group comes from [45].

Definition 4.2.0.1 Let G be a topological group. Suppose there is an analytic struc-
ture on the set G, compatible with its topology, which converts it into an analytic

manifold and for which the maps

(z,y) =y (z,y €G)
z ! (x € @)

of G x G into G and of G into G, respectively, are both analytic. Then G together

with this analytic structure, is called a Lie group.

In order to show how Lie groups allow a symmetry analysis of differential equa-

tions, we need a few definitions and theorems [30].

Definition 4.2.0.2 Groups of transformations: Let us consider a domain D C

RY and a subset S C R. The set of transformations
2*=Z(z;a), Z:DxS—D

depending on the parameter a, forms a one-parameter group of transformations on D
if:
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1. For each value of the parameter a € S the transformations are one-to-one

from D onto D;

2. S with the law of composition p 1s a group with identity e;
3. Z(z;e)=2,Vz€D;

4. Z(Z(z;a);b) = Z(z;,u(a,b)), VzeD,VabeSsS.

Definition 4.2.0.3 Lie group of transformations: The group of transforma-
tions defines a one-parameter Lie group of transformations if in addition to satisfying

the axioms of the previous definition:
1. a is a continuous parameter, i.e., S is an interval in R;
2. 7 is C* with respect to z in D and an analytic function of a in S.

3. n(a,b) is an analytic function of a and b, ¥V a,b € S.

Theorem 4.2.0.1 First Fundamental Theorem of Lie: Solutions of the initial

value problem for the system of first order differential equations

dz*
da

=((z"), 2°(0)=z
defines a 1 parameter Lie group of transformations.

Just like Sophus Lie, the Lie groups we are most concerned with are those involving
differential equations. In general the Lie group of a differential equation or the sys-
tem of differential equations, is the group that contains all mappings that map from

solutions to solutions [8, 29, 30].
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The tangent space to the identity of a Lie group is a Lie algebra [3, 52]. The
elements of a Lie algebra are the generators for a Lie group. The elements of a
Lie subalgebra are also generators for a Lie group. The Lie group generated by the
elements of the Lie subalgebra is a subgroup of the Lie group generated the elements of
the Lie algebra. In a section below, we will introduce the Baker-Campbell-Hausdorft
formula. It is used to compose the solved parts of differential equations. Since the
Baker-Campbell-Hausdorff formula is not well understand methods are used to take
advantage of it. In this thesis a particular type of Verlet method, Strang method, is

used.

4.2.1 Examples of Lie Groups

A particular type of Lie group that is useful in physics is the matrix Lie group,
which can be defined using the general linear group, GL (n;R) [52]. The following

definitions come from [52].

Definition 4.2.1.1 The general linear group over the real numbers, denoted by
GL (n;R) is the group of all n x n invertible matrices with real number entries. We

can similarly define it over the complex numbers, C denoted by GL (n;C).

Definition 4.2.1.2 A matriz Lie group is any subgroup H of GL (n;C) with the
following property: if A, is any sequence of matrices in H, and A, converges to some
matrix A, then either A € H, or A is not invertible. The condition on H amounts
to saying that H is a closed subset of GL (n;C). Thus, one can think of a matriz Lie

group as simply a closed subgroup of GL (n;C).
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Thus, the general linear groups are matrix Lie Groups as GL (n;R) is a non-proper
subgroup of itself. From [52] the special linear groups, SL (n;R), are the groups of
n xn invertible matrices having determinant 1. According to [52] special linear groups
are an example of a matrix Lie group. From [52] the special orthogonal group, SO (n),
and the special unitary group, SU (n), are examples of matrix Lie groups. According
to [52] the solution space of a differential equation with dimension n and rotational
symmetry, can be represented by SO (n). For additional information about complex

analysis see the appendices.

4.2.2 Baker-Campbell-Hausdorff

The splitting method for differential equations can be thought of as a two step
process [6]. The first step is choosing the functions, f;, for a differential equation,

4 — f (), such that [6]

F=>_1
=1

The second step is solving either exactly or approximately each equation [6]

The composition is composing the 1 parameter Lie groups of those solutions to con-
struct an approximate solution of f [6].

The composition methods used for symplectic integration are constructed to take
advantage of the Baker-Campbell-Hausdorff formula, (BCH). We need some addi-

tional information before getting to the BCH. We need to know about an exponen-

tial map, which connects a Lie algebra, g, to a Lie group, G. The homomorphism
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¢x : R — G is called the one-parameter subgroup associated to X € g. We get the

following definition of an exponential map from [45, 13, 31].

Definition 4.2.2.1 The exponential map, exp : g — G, is defined by exp(X) =
ex (1).

The BCH formula takes two elements of a Lie algebra and combines the exponential
mappings of each element. The combining of the exponential mappings equals an

exponential mapping of another element of the same Lie algebra. We get the following

formula from [13, 31, 45].

Theorem 4.2.2.1 Baker-Campbell-Hausdorff: Let A, B,C € g. The BCH for-

mula is
eXp €XPp = eXPc
where
C’:A+B+1[A B]+i<[A [A,B]] - [B,[A B]]) + -
2 ) 12 b b ) )

There are a few types of composition methods designed to algebraically eliminate
terms from BCH. The Verlet methods are a particular class of these methods. For
this thesis we will be using a type of Verlet method called the Strang method. The

Strang method is

z(t+dt) = exp, (%) expy (dt) exp 4 (%) z(t).

4.2.3 Example of Splitting and Composition

For an illustration of how splitting and composition works, we will work with a

simple nonlinear ordinary differential equation.
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Example Consider the following nonlinear ordinary differential equation.

dx

E:x—i—m? (1)

First we will solve (1) the traditional way first by doing separation of variables.

dz

— = dt.
z(l+x)

From this point forward we will solve it using an integration factor. This is a very

algorithmic process. First we algebraically rearrange the left side of our equation to

1 1
<—— )d:c = dt.
zr 14z

Next, we integrate both sides and get

get

In(z)—(1+2z) = t+ec.

We apply a logarithmic property to get

T
ln( ) = t+e.
1+z

After taking the exponential function of both sides we get

T t
1+z

Let D represent the constant e®. We substitute D into the equation and we get

We solve for x to get



To make a simplification for us we multiple the numerator and deminotar by % to

get

Let K represent the constant % = e~ ¢ Substituting K into the equation gives us

t

z(t) = K ot

We want to z (t) = zo when t = 0. So, first we calculate x (t) when ¢ = 0 to get

1
0) = ——
z (0) 1
Since we want z (0) = xg we get that
K-1 = —
Ty
We solve for K to get
1
K = 1+ —.
To

z(t) =

2o+ 1 — zoet
This gives us a 1 parameter group, or flow, where for t = 0 we recovery our initial
condition of = (0) = .

Thus we have solved (1) using traditional techniques, where = (0) = xy. Now we

are going to illustrate splitting and composition. Let A(x) = x and B (z) = 22,
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where A and B are vector fields. First we solve

dz
— = A(x).
After putting in what A is equal to gives us

dx
dt

= X.

We integrate both sides giving us the solution of A to be

r = e
Second we solve
dx
— = B .
g (z)

We substitute what B is equal to into the equation we get

dz 9
a—l’.

Doing a separation of variables on the equation results in

r7%dr = dt.
We integrate both sides to get

—z! = t+e
We solve for x to give us

1

- = —t—c

x

Lo
r = )
1-— Qlot
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From here we use a composition method to solve the original equation. Let G (t) =

e'rg and H (t) = 2. Then

1—xzot”

t

G(t)H(G1) =

xo+ 1 — zpet

As we can see solving (1) using symplectic integration gives us the same answer as

solving (1) the traditional way.
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5 SYMPLECTIC INTEGRATION

According to [9] the best techniques for studying Hamiltonian dynamical systems,
are those that take advantage of the flow being symplectic. From [9] symplectic means
the motion of the phase-space points from time 0 to time t preserves the geometric

structure. We get the following definition of a symplectic transformation from [9].

Definition 5.0.0.1 A symplectic transformation is one that satisfies

F(ap)J fap)=J

where f' is the Jacobian matriz of derivatives of the flow, f(q,p), of phase space, q

and p are vectors of canonically conjugate coordinates, and J is the matrix
0 I

A symplectic integration algorithm, (SIA), works with a Hamiltonian function,

with I the identity matriz.

H, preserving the geometric structure of a Hamiltonian system. The first step is
splitting H into easy to solve parts. If H cannot be split into easier to solve parts,
then new coordinates are substituted into H for the original coordinates. The new
coordinates have some sort of relation with the original coordinates that get rid of
certain complications in H.

Once H is split into parts, the equivalences given by the Hamiltonian flow trans-
form the parts into linear vector fields. Then each part is solved as a system of
differential equations. Next, we compose the solutions together. Now a geometric

preserving solution has been calculated.
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5.1 Splitting of a Simple Hamiltonian System

Let H (z,p) = & (#* + p?) — = be our overall Hamiltonian. The split will be

Al(x,p) :%(:BQ—I—pQ), B (z,p) = —x.

To solve the full model with Hamiltonian H, we suppose z (0) = u, p(0) = v and

note that the Hamiltonian system is

dx dp
e U dt

The solution is

x(t) = Acos(t)+ Bsin(t) + 1

and z(0) =A+1=us0 A=u—1or
z(t) = (u—1)cos(t)+vsin(t) + 1,
and
p(t) = —(u—1)sin(t) +vcos(t).

We use a projective representation to allow this in matrix form as

x (t) cos(t) sin(t) 1| |u—1
p(t)| = |—sin(t) cos(t) 0 v
1 0 0 1 1
Continuing projectively, we see that
x (t) cos(t) sin(t) 1| |1 0 —1| |u
p(t)| = |—sin(t) cos(t) 0| |0 1 0] |v
1 0 0 1110 0 1 1

48



With z () = [z (t).p (t)}T, rotation matrix

R(t) = [ cos(t) sin (t)]

—sin () cos(t)

and 0, 6; = [1, O]T € R?, the solution is written in block form as

e

uﬂ R(t) &

1 or 1
(R RS+, zm1
-l oT 1 1

Thus, the phase space flow for the overall problem is

€XPy (t) = oT 1

R(t) (1_3@)51]_

The first split A (z,p) = 3 (2?4 p?) leads to the harmonic oscillator z + 2 = 0,

whose solution (projectively) is

x (t) cos(t) sin(t) 0| |u
p(t)| = |—sin(t) cos(t) 0| |v
1 0 0 1] |1

and in block form implies the 1 parameter flow

R(t) 0O
The second split B (x,p) = —z leads to
dx dp
—_— —_— 1
i~

49



or z(t) = u, p(t) =t + v. Projectively, this is

x (t) 1 0 0f |u
pt)[ =10 1 ¢t| |v
1 0 0 1 1
whose flow in block form is
I to
o= [3

where &, = [0,1]".
The reason this is a good sandbox for studying discretization error is that exp 4 (¢),

expp (t), and expy (t) = expy, 5 (t) are all subgroups of the 3 parameter group

cos(f) sin(f) «
G(0,a,p) = |—sin(f) cos(d) S
0 0 1

If we let t = [a, 8]", then in block form this is

G(0,t) = Ro(f) i]

Notice that

G (0,t) = lofT i]

and correspondingly,

R(0) t
0" 1

R(0) t
o 1

R() s+t

G (0,8) G (0,t) = o o7

=G (0,s+1t).

However, this sandbox is only useful for developing approaches to discretization
error in linear Hamiltonian systems. Molecular dynamics is based on highly non-
linear Hamiltonian systems with a varitey of potentials. Thus, we ultimately need
a sandbox with exact solutions and group-theoretic properties similar to those here
but for nonlinear systems similar to the n-body types of systems found in molecular

dynamics.
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5.2 Hill’s Lunar Equation

The Hill’'s Lunar Equations are [46]

T—2y—3r+ar? = 0 (2)

y+2rx+yr > = 0 (3)

where x is the position coordinate, y is the momentum coordinate, dots denote deriva-
tive with respect to time, and r = /22 + y2. From (2) and (3) we know the Jacobi

integral exists and equals [46]
1 /.2 .2 3 1
—<x —|—y)——x2——:h. (4)

Where h is the Jacobi constant. We are going to do a Levi-Civita regularization,
which is a three step process [47]. The first step is to introduce a time substitute

value 7 according to the differential relation [46]
dt:f'dT, r=|x|.
c

The second step is to do a conformal squaring [47]. The third and final step is to fix
the energy [47]. After doing a Levi-Civita’s regularization procedure for removing the
collision singularity at x = y = 0 and using the following coordinates and conjugated
momenta

GO =T,0=Y D1 =q— D= q+q,

we start to expand upon (4) in order to make it equivalent to the constant energy
in a Hamiltonian system [46]. In order to do this we need to first add terms to the

right side of the equation where terms cancel each other out. This process is similar
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to completing the square, except the terms we are adding are being done to express
the original coordinates of (3) in terms of the new coordinates that correspond to
the Hamilton equation that represents the Hill’s Lunar equations. Again the Jacobi

integral is

—t -t oyt —
1.. .+y2+1..+, +I2
= —Ixr—x e T+ —
2 YTy g
) . 1 1
+xy—y2—ya:—x2—w2+§y2—;.

With (4) expanded we start pairing like terms

1/.. . .. .
h = §<xx—2xy+y2+yy+2y:c+x2>

1 1
R S
r

+iy—y2—yx—x 5

We group the original coordinates by means of factoring
1 . 2 . 2 ,
= 3 )+ G

. 1 1
—<y+x>x—x2+—y2—;.

2
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We substitute in the new coordinates to get
1 . 2 . 2 .
h = §(<Q1—Q2> +<CJ2+Q1> >+(Q1—QQ)Q2

. , 1, 1
—<CI2+CJ1>Q1—Q1+§QQ—;

and we put in the equivalence from above, to get a Hamiltonian that represents (2)

and (3). The Hamiltonian is [46]

1 1

1
H(q,p) = §||p||2 + piga — P2i — @ + 5@15 - (5)

where r = ||q||, p is the momentum vector, and q is the position vector. What we
want to do from here is make some kind of substitution that gets rid of the  in (5)
and thus making the linear vector fields produced during the symplectic integration
easier to solve. Before we get to the substitution we must notice that during the first
step of the Levi-Civita’s regularization procedure a new independent variable, s, is

introduced for the time variable, ¢ [46]. The relation between s and ¢ is [46]
dt =rds

This relation also gives us a new Hamiltonian, K, based upon H and h. The new
Hamiltonian is [46]

K=r(H-h).

The type of substitution we get from [46] on H is consistent with H’s symplectic
transformation. The substitution introduces two new vectors u and v with coordi-

nates uq, us, v1, and vy with respect to the corresponding vectors and uses a complex
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notation. The canonical transformation of the original coordinates are [46]

Q1‘|—iQQ = (u1+iu2)2

2 2,
= uj — u; + 12ujug,

and

V1 + i’Ug

P11+ 1p2 m

Applying the reflection property to the above equations gives us

@ —igy = (w1 —iun)’,
and
. V1 — V2
— 1 = —
P1 P2 2 (u1 + ZUQ)

Now we use a property of complex numbers that says if two complex numbers are
equal then their corresponding real and imaginary parts must also be equal. Using

this knowledge we get that

and
G2 = 2U1U2 .

From here we are going to apply the modulus, or absolute value, to ¢; + igs to find

what p; and py must equal. After we apply the modulus we get the result below:

. 2 .
g1+ i = ¢ + @5 = (u] +uj)” = luy + dus|
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After applying the modulus again we get that
luy + dup|* = w2+ ud = ||qf + q§|| =r

Now, we have that ¢; and ¢, are expressed in terms of the new coordinates u; and us.
In order to figure out what p; and p, are equal to, we need to simplify p; + ip,. We
cannot divide by complex numbers, so, we multiply the numerator and denominator
by the conjugate of the denominator. As seen below this allows us to separate the

fraction into real and imaginary parts:

(v1 + 1vg) (ug + dug) _ (v1uy — vausg) + i (viug + vouy)
2 (u% + u%) 2 (u% + u%) '

p1t+ips =

At this point we can apply the same property we did in order to find ¢; and ¢, to get

that:
. V1U1 — V2U2
b 2 (u% + u%)
and
VU + VU
P2 =

2 (u% + u%) '
With the coordinates of H represented by vy, v, uy, and ug, we start to trans-

forming parts of H. First let us look at

(pi+p2) = % ((p1 — ip2) (p1 + ip2)) -

DN | —

After substitution we get

(p2+p2) _ 1 V] — V2 V1 + Vg ‘
! 2\ 2 (uy + iug) 2 (uy — duy)

N | —
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We multiply everything out to give us

1, v} + v3
s Wi +Dp2) = —F—F—-
2 ( ! ) 4 (u% + u%)
Next, we look at
P12 —p2qu = Im ((p1 +ip2) (@1 — iC]Q)) .

We substitute p; — ips and q; + igs to get

pige —p2qi = Im M(u — up)?
142 241 2<U1—7/U2) 1 2 .

We proceed by cancelling and multiplying everything out to get

P12 — p2q1 = Im ((U1 + ivg) (ug — zuz))

N =N =

Im (vlul + voug + i (ugvy — Ugvl)) )

We take the imaginary part to get

1

P142 — P21 = 5 (U102 - U2?11) .
The next term we look at is
1 o 1

After substituting what ¢; and ¢ are equal to. We multiply everything out to get

1
—G 5% = Ul 2uius = up o+ 2uug

_ 4 2.2 4
= —uj +4uju; — uy.

We have transformed the individual parts of H to get

2 2
vy + U3 1 4 2 2 4 1
= —— = + — (vyug — Vouy) — Uy +4uius — Uy — ————=.
4("&%4—’1]/%) 2( 1w2 2 1) 1 1%2 2 u%_'_u%
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We substitute this in K to get

K = (uj+u3) M—l—l(vu—vu)—u4+4u2u2—u4—;—h
1 2 4(u%+u%) 2 142 21 1 1%2 2 u%—l—u% :
After mulitply everyting out and reducing we get [46]
Lo v Lo o 2 2
K (u,v) = 3 (v +v3) + 3 (uf +u3) (viug — vour) — (uf +u3) h — 1

+ (u% + ug) (—u‘ll + duus — u%) .

We split K (u,v) into mixed and non-mixed terms equations K (u,v) and K (u)

such that K (u,v) = K; (u,v) + K3 (u) [46].

1
Ki(u,v) = = (vf+v3) — (uj+ u%)2 (§ (u1v9 — ugvy) + h) -1,

ol

and
Ko (u) = (u]+u3) (—uj+4ujuj — uj) .

A substitution we made for the ¢; and p; coordinates for the Hamilitonian for

Hill’s Lunar equations are as follows:

Us;

G = —

' [ul|
pi = wvillul.

Just like above we introduce new coordinates u; and v; and plugging those into H we
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get

(o) (o 4 0 g -
K(U,U) = 5 ((U1 +U2) (U1 +U2)) + v1Ug + VU + W +1
u
= 5 (3 +43) (0F4)) v FEILE P
u
1 2 2 2 9 1 —%u%
= 3 ((U1 +Uz) (u1+u2)> +UW2+U2u1+§+_2_|_1
[[ull
L 3 u? 3
= 5((7]%""03) (u%-%u%)) +’U1u2—|—v2u1_§ 12 5
[[ull
Now, if we let u be an unit vector, or ||ul| = 1, we get rid of the % dilemma, from

earlier as desired and get:

1 3 3
K (u,0) = 5 (03 +08) (13 +13) ) + vyus + vper — Sl + 2.

This works really well for us because we get rid of the % term and we can split the

Hamiltonian into mixed terms and non-mixed terms. Specifically we make a split of

A = 1 ((Uf +03) (uf + u%)) + viug + Vot

2
3 3
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6 RESULTS

Our hypothesis is that when solving systems with geometric properties, like a
Hamiltonian system, it is better to use a method involving symplectic integration
as opposed to Taylor polynomial based approaches when attempting to manage dis-
cretization error. We base this hypothesis on the fact that symplectic integration
algorithms preserve geometric properties of conservative dynamical systems. For
example over time, discretization error in solutions using Taylor polynomial based
approaches grow to the point the numerical simulation is no longer valid. Whereas
with symplectic integration, because it takes advantage of the geometric bound of
constant energy in a Hamiltonian system, discretization error is far more manageable
over longer periods of time.

In Section 5.1, we obtained the exact solution to the Hamiltonian system with
Hamiltonian

H= (x2+p2)—x.

N —

We compare the exact solution to the approximated solutions from symplectic inte-
gration, Euler, and Rung-Kutt methods. For the symplectic integration method we
use a Strang method. We do 11,000 cases of different initials values. Our initial
values for x are 2, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Our initial values for
p are 1,000 evenly space numbers from 1 to 100. We combine each initial value of x
with every initial value of p. We do 500 time steps with each method with the step
equal to 0.1. We take the last 100 H values of each method and take the absolute

difference between those values and the exact values. The difference in the values is
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the error each method has for a given time step. Then we take the ¢ norm of the
error values and compare methods to each other in plots. The plots consist of one
initial x value with every initial p value.

In Figure 1 we see the initial value of x being 2 with every initial value of p. We see
that both the Strang and Runge-Kutta methods are far more accurate than the Euler
method. We can see that the Strang and Runge-Kutta methods are comparable in
accuracy to each other, but Runge-Kutta is more accurate at first. Even though the
Runge-Kutta method is more accurate than the Strang method at first, the Runge-
Kutta method has stability issues. Looking through the figures 1 — 11 we see this
trend continue. In those figures we see the Strang method is stable far longer than
the Runge-Kutta method. When the Runge-Kutta method starts to become unstable
its error grows exponentially. It is instability similar to that which causes blow-up
errors in molecular dynamics. When a method becomes unstable in its error values,

it is no longer a Hamiltonian system.
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Table 1 contains values for x and p from the exact solution with initial conditions

of x(0) =2 and p(0) = 1, a time step size of ¢ = 0.1, and for 500 time steps.
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Table 1: Exact x and p values
x| »
2.000000 | 1.000000
2.094838 | 0.895171
2.178736 | 0.781397

2.250857 | 0.659816
2.310479 | 0.531643

RN = O

496 | 1.169180 | 1.404058
497 | 1.308507 | 1.380153
498 | 1.444751 | 1.342459
499 | 1.576552 | 1.291351
500 | 1.702591 | 1.227341

We substitute those values into H and get

Table 2: Exact values of H
‘ H Values

0 | 0.500000000000000
1 | 0.500000000000000
2 1 0.499999999999999
3 | 0.500000000000000
4

0.499999999999999

496 | 0.499999999999939
497 | 0.499999999999939
498 | 0.499999999999939
499 | 0.499999999999938
500 | 0.499999999999939

We use our splitting and composition derived symplectic integration to the esti-

mates of of x and p in Table 3.
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Table 3: Symplectic x and p values
x| v
2.000000 | 1.000000
2.094840 | 0.895212
2.178744 | 0.781480

2.250875 | 0.659939
2.310512 | 0.531805

RN = O

496 | 1.169269 | 1.403800
497 | 1.308572 | 1.379930
498 | 1.444795 | 1.342272
499 | 1.576579 | 1.291202
200 | 1.702606 | 1.227232

After we substitute those values into H we get

Table 4: Symplectic Values
| H Values

0.500000000000000
0.500039528055413
0.500074498485053
0.500104561875947
0.500129417844628

RN O

496 | 0.499653761186814
497 | 0.499711820881950
498 | 0.499768597293063
499 | 0.499823523129022
500 | 0.499876049589031

In table 4, the reason all of the exact values are not 0.5 is due to round-off error.
We take the absolute difference between the exact and symplectic x and p values to

get
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Table 5: Absolute difference between x and p values
x| v

0.000000 | 0.000000

0.000002 | 0.000042

0.000008 | 0.000083

0.000019 | 0.000123
0.000033 | 0.000162

RN = O

496 | 0.000089 | 0.000257
497 | 0.000065 | 0.000223
498 | 0.000044 | 0.000187
499 | 0.000028 | 0.000149
200 | 0.000015 | 0.000109

The mean of the differences in the x values is 0.000418 and the standard deviation
is 0.000295. The mean of the differences in the p values is 0.000266 and the standard
deviation is 0.000128. We take the absolute difference between the exact and sym-
plectic values of H to get the values in Table 6. The mean difference of the H values

is 0.000475 and the standard deviation is 0.000351.

Table 6:_Absolute difference between H values
‘ H Values

0
3.95280554137400e-5
7.44984850538088e-5

0.000104561875946985
0.000129417844629387

kRN = O

496 | 0.000346238813124566
497 | 0.000288179117989396
498 | 0.000231402706875938
499 | 0.000176476870916042
500 | 0.000123950410907403
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7 CONCLUSION

We have shown that for a conservative dynamical system that symplectic integra-
tion methods are more accuracte and stable than Euler methods. We showed that
symplectic integration methods are comparable to Runge-Kutta methods in accuracy,
but symplectic integration methods are far more stable. We have shown for a sim-
ple Hamiltonian that can be solved exactly, the differences between the exact and
symplectic solutions are minimal at best. Thus, any Hamiltonian that can be solved
exactly can be used as a sandbox for testing symplectic integration techniques. Since
Hill’s lunar equations can be solved exactly it can be used to test those techniques.
Some alterations need to be made to K; from Section 5.2 to make it solvable. First
symplectic techniques would be developed specifically for the H from Section 5.2. The
goal however, is to determine symplectic techniques that are problem independent and

increase the order of accuracy.
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APPENDICES

A Definition, Theorems, and Equations

A.1 Dynamic Equilibrium

Below we have chemistry and physics definitions and equations listed to under-
stand the material in this thesis. The following definitions and equations are from

22].

Definition A.1.0.1 Thermodynamics (Chemical Thermodynamics): The
study of the role of engery in chemical change an din determining the behavior of

material.

Definition A.1.0.2 Dynamaic Equilibrium: a condition in which two opposing

processes are occurring at equal rates.

Definition A.1.0.3 Enthalpy (H): is the heat content of a system.

Definition A.1.0.4 Entropy (S): s a thermodynamic quantity related to the num-
ber of equivalent ways the energy of a system can be distributed. The greater this

number, the more probable is the state and the higher is the entropy.

Definition A.1.0.5 Gibbs Free Energy (G): A thermodynamic quantity that re-

lates enthalpy (H), entropy (S), and temperature (T') by the equation:

G=H-TS
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Definition A.1.0.6 Enthalpy Change (AH): The difference in enthalpy between

the initial state and the final state for some change.

Definition A.1.0.7 Entropy Change (AS): The difference in entropy between

the initial state and the final state for some change.

Definition A.1.0.8 Gibbs Free Energy Change (AG): The difference given by:

AG = AH —TAS.

Definition A.1.0.9 Standard Heat of Reaction (AH®): The enthalpy change
of a reaction when determined with reactants and products at 25 °C and 1 atm and

on the scale of the mole quantities given by the coefficients of the balanced equation.

Definition A.1.0.10 Standard Entropy Change (AS°): The entropy change of
a reaction when determined with reactants and products at 25 °C' and 1 atm and on

the scale of the mole quantities given by the coefficients of the balanced equation.

Definition A.1.0.11 Standard Free Energy Change (AG°):

AG® = AH® —TAS®.

Definition A.1.0.12 Gas Constant, Universal (R): R = 0.0821 liter atm mol™*

K=' or R=28.314J mol " K.

Mathematically a system is in a state of dynamic equilibrium if

G Greactants and AG = 0.

products —
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where Gproducts and Greactants are the Gibbs free energy of the products and
reactants. The position of equilibrium in a reaction is determined by the sign and

magnitude of AG°. A mathematical way of relating AG and AG®° is
AG = AG° + RT'In (Q)

where () is the reaction quotient. In terms of thermodynamics, a state is in dynamic
equilibrium when AG = 0 and Q = K, where K is the thermodynamic equilibrium

constant. With AG =0 and Q) = K we get

AG® = —RTIn (K).

A.2 Protein

Below we have chemistry and biological definitions listed to understand to material

in this thesis. The following definitions come from [22].

Definition A.2.0.1 Compound: A substance consisting of chemically combined

atoms from two or more elements and present in a definite ratio.

Definition A.2.0.2 Organic Compound: Any compound of carbon other than a

carbonate, bicarbonate, cyanide, cyanate, carbide, or gaseous oxide.

Definition A.2.0.3 Atomic Mass: The average mass (in u) of the atoms of the

isotopes of a given element as they occur naturally.

Definition A.2.0.4 Chemical Formula: A formula written using chemical sym-
bols and subscripts that describes the composition of a chemical compound or element.
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Definition A.2.0.5 Formula Mass: The sum of the atomic mass (in u) of all of
the atoms represented in a chemical formula. Often used with units of g mol™! to

represent masses of ionic substances.

Definition A.2.0.6 Monomer: A substance of relatively low formula mass that is

used to make a polymer.

Definition A.2.0.7 Macromolecule: A molecule whose molecular mass is very

large.
Definition A.2.0.8 a-Amino Acid: One of about 20 monomers of polypeptides.

Definition A.2.0.9 Polymer: A substance consisting of macromolecules that have

repeating structural units.

Definition A.2.0.10 Amaide: An organic compound whose molecules have any one
of the following groups:
I I I
—CNHy; —CNHR —CNRj

Definition A.2.0.11 Peptide Bond: The amide linkage in molecules of polypep-

tides.

Definition A.2.0.12 Polypeptide: A polymer of a-amino acids that makes up all

or most of a protein.

Definition A.2.0.13 Protein: A macromolecular substance found in cells that con-
sists wholly or mostly of one or more polypeptides that often are combined with an

organic molecule or a metal ion.
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The following definition comes from [28].

Definition A.2.0.14 D:isulfide Bond: is a covalent type of bond derived from two

thiol groups, takes either of the following groups:

S S SH+HS ——

Definition A.2.0.15 Tertiary Structure: refers to the overall conformation of a
polypeptide chain — that is, the three-dimensional arrangement of all its amino acid

resides.

A.3  Graph Theory

Below we have mathematical definitions listed to understand material in this the-

sis. Each of the following definitions come from [10].

Definition A.3.0.1 A graph G is a finite nonempty set V' of objects called vertices
(the singular is vertex) together with a possibly empty set E of 2-element subsets of
V' called edges. Vertices are sometimes referred to as points or nodes, while edges are

sometimes called lines or links.

Definition A.3.0.2 Let G be a graph and u,v € V (G). If uv is an edge of G, then

u and v are adjacent vertices.

Definition A.3.0.3 The degree of a vertex v in a graph G is the number of vertices

in G that are adjacent to v.
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Definition A.3.0.4 The adjacency matriz of G is the n xn zero-one matriz A (G) =
[aij} , or simply A = [aij] , where

1 ’Lf VU5 ek (G)

aij =
0 Zf VU5 g E (G)
Definition A.3.0.5 For an integer n > 3, the cycle C, is a graph of order n and
size n. whose vertices can be labeled by vy, vq, ..., v, and whose edges are viv, and

ViV fori=1,2,... ,n—1.

Definition A.3.0.6 Two vertices u and v in a graph G are connected if G contains

u — v path. The graph G itself is connected if every two vertices of G are connected.

Definition A.3.0.7 An acyclic graph has no cycles. A tree is a connected acyclic

graph.

Definition A.3.0.8 A directed graph or digraph D is a finite nonempty set of objects
called vertices together with a (possibly empty) set of order pairs of distinct vertices
of D called arcs or directed edges. As with graphs, the vertex set of D is denoted by

V(D) and the arc set (or directed edge set) of D is denoted by F (D).

Definition A.3.0.9 A network N is a digraph D with two distinguished vertices u
and v,called the source and the sink, respectively together with a nonnegative real
valued function ¢ on E (D). The digraph D is called the underlying digraph of N and
the function c is called the capacity function of N. The value ¢ (a) = c¢(x,y) of an
arc a = (x,y) of D is called the capacity of a. Any vertex of N distinct from u and

v 18 called an intermediate vertexr of N.
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Definition A.3.0.10 Let D be a digraph and u,v € V (D). If a = (u,v) is an arc
of a digraph D, then a s said to join u and v. The vertex u is said to be adjacent to

v and v is adjacent from u.

Definition A.3.0.11 For a vertex v in a digraph D, the outdegree od v of v is the
number of vertices of D to which v is adjacent, while the indegree id v of v is the

number of vertices of D from which v is adjacent.

Definition A.3.0.12 The adjacency matriz A (D) of a diagraph D with V (D) =
{v1,v9,...,v,} is the n X n matriz [aij} defined by a;; = 1 if (vi,vj) € E(D) and

a;; = 0 otherwise.

The following definitions come from [51].

Definition A.3.0.13 The graph with a single vertez r (and no edges) is a tree with
root r. Let (G,r) denote a tree with root r. Then (G1,r1) @ (Ga,r2) is a tree formed
by taking the disjoint union of Gy and Gy and adding an edge (r1,r2). The root of

this new tree is r = ry.

Definition A.3.0.14 The underlying graph of a directed or partially directed graph
G is the graph that results from removing all the designations of head and tail from

the directed edges of G (i.e., deleting al the edge-directions).
Definition A.3.0.15 A directed tree is a digraph whose underlying graph is a tree.

Definition A.3.0.16 A root tree is a directed tree having a distinguished vertex r,

called the root, such that for every other vertex v, there is a directed r — v path.
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Definition A.3.0.17 A surface is a 2-manifold, often taken in context to be con-

nected.

Definition A.3.0.18 An imbedding of a graph G in an orientable surface S is a
continuous one-to-one function p : G — S from a topological representation of the

graph G into the surface S.

Definition A.3.0.19 The minimum genus ¥, (G) (or simply the genus v (G)) of
a graph F' is the minimum integer g such that there exists an imbedding of G into the

orientable surface S, of genus g.

Definition A.3.0.20 A graph of genus 0 is planar.

Definition A.3.0.21 The mazimum genus Ymaz (G) of a graph G is the mazimum

integer g such that there ezists a (cellular) imbedding of G into the orientable surface

of genus g.

Definition A.3.0.22 Let G be a graph and let v be a degree-2 vertex with two neigh-
bors w and w in G (u and w could be the same vertexr). We say that a graph G’ is
obtained from G by smoothing the vertex v if G' is constructed from G by removing

the vertex v then adding a new edge connecting the vertices u and w.

Definition A.3.0.23 Two graphs Gi and Gy are homeomorphic if they become iso-
morphic after smoothing all degree-2 vertices. It is easy to that two homeomorphic

graphs have the same minimum genus and the same mazimum genus.
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A.4 Modern Algebra

Below we have mathematical definitions listed to understand material in this the-

sis. The following definitions come from [21].

Definition A.4.0.1 A semigroup is a nonempty set G together with a binary opera-

tion on G which is

(1) associative: a (bc) = (ab) ¢ for all a,b,c € G;
a monoid is a semigroup G which contains a

(17) (two-sided) identity element e € G such that ae = ea = a for all a € G.
A group is a monoid G such that

(ii1) for every a € G there exists a (two-sided) inverse element a=' € G such

that a'a = aa™' = e.

A semigroup G is said to be abelian or commutative if its binary operation is
(iv) commutative: ab = ba for all a,b € G.

Definition A.4.0.2 A ring is a nonempty set R together with two binary operations

(usually denoted as addition (+) and multiplication) such that:
(i) (R,+) is an abelian group;
(ii) (ab) c = a(bc) for all a,b,c € R (associative multiplication);

(iii) a (b + ¢) = ab+ ac and (a + b) ¢ = ac + be (left and right distibutive laws).
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If in addition:
(iv) ab = ba for all a,b € R,

then R is said to be a commutative ring. If R contains an element 1 such that
(v) 1ga = alg =a for alla € R,

then R s said to be a ring with identity.

Definition A.4.0.3 A nonzero element a in a ring R is said to be a left [resp. right]
zero divisor if there exists a nonzero b € R such that ab =0 [resp. ba = 0]. A zero

divisor 1s an element of R which is both a left and a right zero divisor.

Definition A.4.0.4 An element a in a ring R with identity is said to be left [resp.
right] invertible if there exists ¢ € R [resp. b € R] such that ca = 1 [resp. ab = 1g].
The element ¢ [resp. b] is called a left [resp. right] inverse of a. An element a € R

that is both left and right invertible is said to be invertible or to be a unit.

Definition A.4.0.5 A commutative ring R wih identity 1gr # 0 and no xero divisors
is called an integral domain. A ring D with identity 1p # 0 in which every every
nonzero element is a unit is called a division ring. A field is a commutative division

ring.

Definition A.4.0.6 Let R be a ring. A (left) R-module is an additive abelian group
A together with a function R x A — A (the image of (r,a) being denoted by ra) such

that for all r;s € R and a,b € A:

(i) 7 (a+b) =ra+rb.
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(ii) (r +s)a =ra+ sa.

(iii) 7 (sa) = (rs) a.

If R has an identity element 1z and

(iv) 1ga = a for all a € A,

then A is said to be a unitary R-module. If R is a division ring, then a unitary

R-module is called a (left) vector space.

Definition A.4.0.7 Let K be a commutative ring with identity. A K-algebra (or

algebra over K) is a ring A such that

(i) (A,4) is a unitary (left) K-module;

(ii) &k (ab) = (ka)b = a (kb) for all k € K and a,b € A.

A.5 Complex Analysis

Below we have mathematical definitions and proposition listed to understand the
material in this thesis. The proof for the proposition is also listed for validity. The

following definitions, proposition, and proof are from [11].

Definition A.5.0.1 A metric space is a pair (X, d) where X is a set and d is function

from X x X into R, called a distance function or metric, which satisfies the following
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conditions for x, y, and z in X:
d(z,y) > 0
d(z,y) = 0
d(z,y) = d(y,z) (symmetry)
d(z,2) < d(x,y)+d(y,z) (triangle ineqaulity)
If v and r > 0 are fized then define
B(z;r) = {yeX:d(zy) <r}
B(x;r) = {y € X :d(z,y) < 7’}.
B (z;7) and B (x;7) are called the open and closed balls, respectively, with center x

and radius r.

Definition A.5.0.2 For a metric space (X,d) a set G C X is open if for each x in

G there is an € > 0 such that B (z;¢) C G.
Definition A.5.0.3 A set F' C X is closed if its complement, X\ F, is open.

Definition A.5.0.4 Let (X,d) and (X, p) be metric spaces and let f : X — Q be a
function. If a € X and w € Q, then ii%f (x) = w if for every e > 0 there is a 6 > 0
such that p (f (z),w) < & whenever 0 < d(z,a) < 6. The function f is continuous
at the point a if alclgclzf () = f(a). If f is continuous at each point of X then f is a

continuous function from X to 2.

Definition A.5.0.5 If G is an open set in C and f : G — C then f is differentiable
at a poin a in G if

lim
h—0

flath) - f(a)
h
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Proposition A.5.0.1 If f : G — C s differentiable at a point a in G then f is

continuous at a.

Proof In fact,

!f(Z)—f(a)\] | {

lim |z — a]}
z—a

lim |f (z) — f(a)| = [hm

z—a z—a |Z—a,|
= |f'(a)]-0
= 0.1

Definition A.5.0.6 A function f : G — C is analytic if f is continuously differen-

tiable on G.

Definition A.5.0.7 A topological space is a pair (X, F) where X is a set and F is

a collection of subsets of X having the following properties:
(a) @€ F and X € F;
(0) if Ur, ..., Uy are in F then (\;_, U; € F;

(c) if {U; : i € I} is any collection of sets in F then |J,.; Ui is in F.

iel
The collection of sets F is called a topology on X, and each member of F is called

an open set.

Definition A.5.0.8 A subset F' of a topological space X is closed if X\F' is open.
A point a in X is a limit point of a set A if for every open set U that contains a thre

is a point x in AU such that x # a.
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Definition A.5.0.9 A topological space (X, F) is said to be a Hausdorff space if for
any two distinct points a and b in X there are disjoint open sets U and V' such that

a€UandbeV.

Definition A.5.0.10 A topological space (X, F) is connected if the only nonempty

subset of X which is both open and closed is the set X utself.

Definition A.5.0.11 Let X be a topological space; a coordinate patch on X is a pair
(U, @) where U is an open subset of X and ¢ is a homeomorphism of U onto an open

subset of the plane. If a € U then the coordinate patch (U, p) is said to contain a.

Definition A.5.0.12 An analytic manifold is a pair (X, ®) where X is a Hausdorff
connected topological space and ® is a collection of coordinate patches on X such that:
(1) each point of X is contained in at least one member of ®, and (i1) if (U, a),
(Us, 1) € ® with U, Uy # @ then ¢, 0, is an analytic function of p, (Ua N Ub)
onto p, (Ua ﬂUb). The set ® of coordinator patches is called an analytic structure

on X. An analytic manifold is also called an analytic surface.
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