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ABSTRACT

Performance of Imputation Algorithms on Artificially Produced Missing at Random

Data

by

Tobias Oketch

Missing data is one of the challenges we are facing today in modeling valid statistical

models. It reduces the representativeness of the data samples. Hence, population

estimates, and model parameters estimated from such data are likely to be biased.

However, the missing data problem is an area under study, and alternative better

statistical procedures have been presented to mitigate its shortcomings. In this pa-

per, we review causes of missing data, and various methods of handling missing data.

Our main focus is evaluating various multiple imputation (MI) methods from the

multiple imputation of chained equation (MICE) package in the statistical software

R. We assess how these MI methods perform with different percentages of missing

data. A multiple regression model was fit on the imputed data sets and the complete

data set. Statistical comparisons of the regression coefficients are made between the

models using the imputed data and the complete data.
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1 INTRODUCTION

Missing data occur in many studies, when questions may be partially answered or

be completely unanswered. This may frustrate researchers efforts to achieve objectives

of their studies because the information they intended to collect for analysis would

be incomplete or missing.

The impact of missing data is always negative, and the extent may be quite severe

even with small amount missing data. This is because; it usually leads to loss of sam-

ples representativeness, unbiased estimates, and exaggerated variances and standard

error of the estimates of the true values. Missing data also reduces the researcher’s

ability to make correct decisions regarding the subject matter. Limitations of miss-

ing data are further worsened by the fact that, most of the analytical software and

researchers assume that the data are always complete even when they are actually

missing [1]. Therefore, handling of missing data is very critical for good results and

understanding the reasons or mechanisms that causes missing data is helpful in ad-

dressing the problem.

There are several methods out there that have been put forward to tackle the

missing data problems. In this project our focus will be on multiple imputations

by chained equations (MICE) also known as fully conditional specification (FCS)

methods.
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1.1 Objectives

The objective of this study is to evaluate the performance of the latest methods

of imputing data for different percents of missing data. These methods are trusted to

yield plausible results, imputed values that are as good as observed. In this project

there are two specific objectives:

• To evaluate the performance of multiple imputation by chained equation (MICE)

methods using a statistical software, the MICE package in R

• To compare data analysis results on complete and imputed data sets.

MICE package offers different imputation models that we employ, separately, on

varying percentages of missing values. We are using the percentage deviation of the

estimated regression coefficients using imputed values to determined the plausibility

of the results. We also compare the mean and variances of the estimated parameters

to evaluate the reliability of each of the imputation models in MICE package.

1.2 Limitations

MICE methods assume that the missing data are missing at random, (MAR).

Suggesting that one can completely account for the missing values using available

data. This assumption might not perfectly fit a true situation. This is because,

missing data could be due to other personal reasons that are only known to the

respondent, and could not be specified in the context of the study.

Secondly, missing data analysis is a developing area under study with limited

conventional breakthroughs. For example, the basic idea of imputing missing data

14



is based on statistically untestable assumption of data MAR. Currently, there is no

known ad hoc methods to test this assumption. However, we are using ProdNA

function in R software to introduce missing values by deleting at random different

amounts of complete data. Therefore, simulating and satisfying the assumption of

data MAR.

1.3 Significance of the Study

With missing values, one is likely to lose very important information on variables.

For example, incomplete list of telephone contacts of respondents my hinder data

collection if the only way to reach them is through telephone. Therefore, suppose

the study was about product development, then incomplete telephone contacts for

customers can cause researchers to miss the required opinion on the product, that

could have help in improving the product for customer retention and increased profits.

Also, it reduces sample size, which in turn affects the representativeness of data

collected. Proceeding with analysis as though there was no missing values would

then distort the results and mislead on inferences drawn from such. It is therefore

good practise to reconstruct the missing values using methods that would reliably

replace the “ missingness ” with values that are as good as observed. Secondly, in

some situation, there could be very little information on important variables of study

with no alternative means of collecting the information again, perhaps due to limited

allocation of resources, yet we still have to proceed with the study. So, imputing the

missing values would be the best option to pursue.

So, embarking on studying about missing data helped us mitigate it’s problems
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and offered solutions that were specific to the severity of the amount of missing data.

1.4 Outline of Thesis

The thesis is arranged as follows. Chapter 2 describes the causes of missing data

and both traditional and modern methods of handling missing data. Various advan-

tages and disadvantages of these methods of handling missing data are also presented.

Chapter 3 describes our proposed method. Section 3.1 provides the descriptions and

sources of data, and Section 3.2 describes the procedures that are used in collecting

our samples. Section 3.3 gives details of the analytical software that are employed

in the project. Section 3.4 discusses in details our analysis procedures and models.

Section 3.5 presents the assumptions on which the analyses are based. Chapter 4 pro-

vides the results of the analyses. Chapter 5 discusses the imputation models, namely;

PMM, Bayesian linear regression, and linear regression non Bayesian in relation to

the analyses. Chapter 6 concludes this thesis.
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2 MISSING DATA AND METHODS OF HANDLING MISSING DATA

Missing data (MD) is defined as incomplete observations on variables that occurs

when partial or no information is captured for variable(s). MD is likely to introduce

more error in data analysis and results [2].

2.1 Types of Missing Data

Missing data can be classified into three main categories based on their causes.

These include: missing completely at random (MCAR), missing at random (MAR),

and missing not at random (MNAR).

Missing completely at random (MCAR) implies that the cause of the missing

data is independent of both observed and unobserved data, and the MD just occurs

completely at random. With this kind of missingness, data is still likely to be rep-

resentative of the population and we may proceed with analysis and get favorable

unbiased results. However, it is always hard to find this type of MD. For example,

when a respondent drops out from the study due to relocation, this would be a rear

cause of this type of missing data. On the other hand, missing at random (MAR)

is where the missing data is due to other observed variables in the study and not

the missing value itself. So, one can completely account for the missing data with

observed variables. For example, when respondents from a particular race skip a

question on their political believes. One can accurately predict what would have

been the answer for the missing values by using answers that have been provided

by this section of the respondent. Finally, missing not at random, also known as

non-ignorable nonresponse, is where the cause of such missing data depends on the
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unobserved data. That is to say, the missing value has a relationship with the reason

why it is missing. For example, when an individual fails to answer a survey questions

on depression because of their level of depression [3].

2.2 Imputation of Missing Data

In anticipation of missing data, plans should be put in place ahead of time to avoid

missing data. These could include but not limited to; use of online data collection

tools that would not allow skipping of questions, staying in communication with

participants throughout the study period when possible, use of incentives such as

gift cards to motivate participation, and study campaigns to highlight usefulness,

purpose and ethical standards (of privacy and confidentiality) of the study amongst

participants [3]. These steps may only reduce but not eliminate the menace of missing

data. Thus, MD will still always occur, and imputing them is currently the only

remedy.

Imputation is defined as a process where missing data are replaced with estimated

values based on the available information. This can be done for just one specific

missing value, (unit imputation), or for a whole part of data points, (item imputation).

Data imputation usually helps retain the affected cases, which would have otherwise

be deleted from analysis by most of the analytical software [4].
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2.3 Methods of Imputations

Methods of imputing missing data can be broadly classified into two groups; tra-

ditional and modern methods.

2.3.1 Traditional Methods of Imputation

Traditional methods consists of complete case analysis, pairwise deletion, cold and

hot deck methods, mean imputations, regression imputation, and stochastic regression

imputation methods.

Complete case analysis, also known as list-wise deletion methods is an imputation

method in which, analysis is only done on cases with complete data. Cases with

missing data are omitted from the analysis. Since this method only uses part of the

data, it may results into biased estimates of population parameters, and there is also

loss of power in statistical tests of parameters. However, if small number of cases are

lost, less than 5%, due to their omission from the analysis, then biases and loss of

statistical power is likely to be inconsequential [1].

19



Table 1 shows a data set with cases with missing values represented by “.”. Sup-

pose logistic regression analysis is conducted to predict health status based on age and

religion, under complete case analysis, all cases with missing values will be ignored.

Therefore, only cases with Ids 00007 to 00010 will be included in the analysis.

Table 1: An illustration of complete case analysis and pairwise deletion methods of

handling missing data.

Id Age Gender Health Religion
00001 . Female Good Christianity
00002 40 Female Bad .
00003 20 Male Good .
00004 . Male Good Judaism
00005 . Female Bad Islam
00006 . Male Bad Buddhism
00007 19 . Bad Christianity
00008 21 . Good Islam
00009 35 . Bad Christianity
00010 49 . Good Christianity

Pairwise deletion method, also referred to as available case analysis, is where cases

are only deleted whenever there is missing information for the variable that is needed

for a particular analysis. Otherwise such cases would be included for variables in

which they have the complete information. For example, suppose gender and health

status were used to predict age, then all cases are considered for analysis except

for those with Ids 00007 to 00010 (see Table 1). This method is usually used in

exploratory data analysis such as correlation analysis. Therefore, it is very difficult

to asses its performance as the analysis does not provide the error variance of the

parameters [1].
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Hot deck method is where the missing value is replaced by similar measured value

from the same data set. Cold deck method is similar to hot deck method except that

the measured value used for imputation is obtained from another source, data set

other than the one with the missing value.

Mean imputation method imputes the missing values with the mean of the com-

plete cases of the variable involved. This method preserves the univariate sample

mean, but reduces correlations between the imputed variables [4].

Regression imputation method is one that imputes the missing values by fitting

the usual regression model based on the available information from other variables.

The predict values are then used to imputing the missing cases. This method has its

shortcomings as it may over overstate the missing values because imputed values are

based on predicted values that always fall right on the regression line. As a result,

imputed values do not reveal the uncertainty around the missing values [4].

Stochastic regression imputation method is an improvement of regression imputa-

tion. It works the same way as the regression imputation except that it accounts for

the variance of the predicted incomplete values. This method adds an error term to

the predicted value. The error term is randomly generated and follows a normal dis-

tribution with a mean of zero and a variance equal to the previous regression model.

As a result, the parameter estimates from this model are unbiased. However, it is

very difficult to adjust for the standard errors of the values generated by this method

to compensate for the fact that the imputed values are just predictions about the

true values. Therefore, the standard errors are quite small, and significance tests will

have high rates of Type I error [5].
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2.3.2 Modern Methods of Imputation

It is a great challenge to deal with missing values in multivariate data sets where

data would be missing in a number of variables. Therefore, we need more advanced

approaches to deal with such missing data because the single imputation methods are

no longer sufficient.

Modern methods of imputing multivariate data can be categorised into two groups;

joint modelling (JM) and fully conditional specification (FCS).

Joint modelling method assumes that the data set is multivariate normal, and

the multivariate distribution of the missing data is known. Imputations are then se-

lected from the conditional distributions of the missing values by Markov chain Monte

Carlo (MCMC) techniques. MCMC simulates the entire joint posterior distribution of

missing values to obtain simulated posterior true estimates [6]. Maximum likelihood

estimation (MLE) falls is an example of a JM method.

Fully conditional specification (FCS), also referred to as multivariate imputation

by chained equations (MICE), is a method that imputes missing data by specifying the

multivariate imputation model on a variable-by-variable basis [6]. It is an alternative

to JM whenever the multivariate distribution assumption is violated. An example

include, multiple imputation (MI).

These modern methods of imputations are extremely superior to the traditional

methods in that they produce unbiased estimates for data that are both MCAR and

MAR. These methods also preserve all cases for analysis. Meaning, all cases are used

in the analysis upon imputation of missing values.

Multiple imputation is an iterative imputation procedure that reproduces m com-
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plete copies of the original data set, each imputed with different values. The difference

in the imputed values accounts for the variability around the true values [7]. The m

imputed data sets are then analyzed separately and their results combined for appro-

priate decision.

Multiple imputation is carried out in three stages. The first stage is called the im-

putation (fill-in) phase. In this stage, the missing data are substituted with estimated

values to create a complete data set. The process is then repeated m times; therefore

producing m data sets that are different from each other. The second stage is called

the analysis phase. In this stage, each of the m complete data sets are analyzed

separately using statistical methods of interest. The pooling phase is the final stage

of the process. Here, the results obtained from the analysis stage are then combined

together for inference. These three stages are illustrated in Figure 1.

Figure 1: Steps for multiple imputation.

The multiple imputation procedure can be implemented in R using the MICE
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package. R is a free software for statistical computing and graphics. It compiles on a

variety of computer operating systems such as windows and UNIX.

This MICE package has built-in univariate imputation models that takes in com-

plete predictors and returns a single imputation value for the incomplete targeted

variable. The package can recognize three types of variables, namely: numeric, bi-

nary (factors with 2 levels), and categorical (factors with more than 2 levels) variables.

Each variable type has a default imputation model. This package is able to check the

choice of models specified versus the variable type for any mismatch. Some of the

available models in the MICE package are shown in Table 2.

Table 2: Examples of imputation models in MICE R package.

Name of the Model Model Supported Variable Type
Predictive mean matching PMM Numeric
Bayesian linear regression norm Numeric
Two-level normal imputation 2l.norm Numeric
Classification and regression trees cart Any
Linear regression non Bayesian norm.nob Numeric
Random forest imputations rf Any
Logistic regression logreg Factors with 2 levels

Predictive mean matching (PMM) is an imputation model, in the MICE R pack-

age, that is partially parametric and combines the ordinary linear regression method

and the nearest neighbor imputation approaches. This method imputes missing val-

ues from the observed data preserving the distribution of the observed data in the

missing data. It is a robust method in comparison to the completely parametric linear

regression approach. However, it may not work well with small samples because it

does not emphasize on between imputation variability with few predictors [6].
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PMM imputes missing values by regressing incomplete variables on co-variates,

producing a set of coefficients (β). The procedure then draws at random, a set of

coefficients (β∗) from the distribution of β. These β∗ are used as new coefficients to

generate predicted values for all cases in incomplete variables. In this case, predicted

values are treated as metrics to identify complete cases with observed values that are

close to the predicted values of each missing case of the target incomplete variable.

Observed values of such complete cases are then used to impute the missing values.

Those close cases are picked at random. By default, each missing case is matched to

k = 5 completed cases with close predicted values [8].

Norm (Bayesian approach) model fills in the missing values using Bayesian lin-

ear regression, assuming that the data follows a multivariate normal distribution

with a mean µ and covariance, Σ. It also assumes that the data are MAR. The

method employs the data augmentation (DA) algorithm to simulate random draws

from the population. For example, if data is represented as D = {Dobs, Dmis} for

observed and missing data, respectively, DA produces MI’s for for Dmis in two steps

for each iteration. (1) I - Step (Imputation Step) simulates missing data based on

the current parameter estimate. Initial parameters are estimated using EM (expected

maximum likelihood estimate) of completed cases. Suppose we have current param-

eter values and imputed data as (µ(i), Σ(i), D(i)) at iterations (i = 0, 1, 2, ...)

and (dJ (obs), dj (mis)) as observed and missing of the jth case of the data respec-

tively. The missing values are imputed independently (in each case) by simulating

d
(i+1)
j (mis) ∼ p(dj (mis)|dj (obs), µ

(t), Σ(t)). (2) P -Step (Posterior Step) simulates parame-

ter estimates based on the current imputed data. Parameters ( µ(i+1), Σ(i+1) ) are
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drawn from the corresponding conditional posterior distributions P (µ,Σ |D(i+1)).

These two steps are then repeated until convergence. Hence producing a Markov

chain of imputed values and parameter estimates [9].

Linear regression, non-Bayesian approach, uses parametric linear regression anal-

ysis to impute the missing data. First, it fits a regression model given the observed

data, by regressing target incomplete variables on covariate complete set. Then it

uses the spread around the fitted line to predict values for the missing data points.

This method does not emphasize on the variability of the predicted missing values

because it does not randomize the regression coefficients. However, it is well suited

for large sample sizes where variability is not a big concern and on data that follow

a normal distribution.

Most of the imputation models in the MICE package of R are based on joint

modeling approach [6], assuming that all variables follows a specific joint distribution,

multivariate normal distribution. Basically, these methods are meant for imputing

item nonresponse in surveys. However, most data from surveys exhibit grouping

structures such as characteristics of individuals within regions, student performance

within schools and so on, and these grouping characteristics should be accounted for

in imputation and analysis of results [10]. As a result, two level linear model (2l.norm

method) of the MICE package was developed to support and impute nonresponse in

multilevel, clustered data. Multilevel imputation is still an area under study though,

and it presents many challenges. Generally, the assumption of standard multivariate

distribution of data is limiting since most of the studies involves variables of different

types that may not necessarily follow the assumed distribution. Some studies involves
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variables that take all manner of forms; continuous, categorical, logical and skip

patterns thus making it extremely difficult to model. The 2l.norm method only

works with continuous variables, and it allows a maximum of two levels and one

class variable. The method requires that fixed effects, random effects, and the class

variable be specified, and random effect and class variable be coded as a “2”, and

“-2”, respectively in the predictor matrix. The method uses Gibbs sampler for the

linear multilevel model, allowing for the within class error variance that is necessary

for imputation of the multilevel data [6].

In a general perspective, Gibbs sampler method basically uses elementary proper-

ties of Markov chains to generate random variables from their marginal distributions

without actually computing their densities. Therefore, it avoids complicated calcu-

lations. Consider a simple case, a pair of random variables (X, Y ). In the Gibbs

sampler method, samples are drawn from the distribution of f(x) by sampling from

the known distributions of f(x|y) and f(y|x). To achieve this, a sequence is generated

for the pairs:

(X ′0, Y
′
0), (X ′1, Y

′
1), (X ′2, Y

′
2), . . . . . . . . . (X ′n, Y

′
n) (1)

Once the initial values, Y ′0 = y′0, are specified the following values are generated

by computing the conditionals

X ′i ∼ f(x|Y ′i = y′i) & Y ′i+1 ∼ f(y|X ′i = x′i) (2)

For large values of n, the distribution of X ′i converges to f(x), the true marginal

distribution of X [11].
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3 METHODOLOGY

Two different complete data sets are used in this project, namely; commercial

properties data, and 2013− 2014 body measures (BMXH) data. The latter is consid-

ered as the primary data set, and commercial properties data is for verification and

contrasting the results from BMXH data.

3.1 Data Source and Description

Commercial properties data is one of the learning tools (data sets) that come with

the book, “Applied Linear Statistical Models”, fifth edition, by Michael H. Kutner,

Christopher J. Nachtsheim, John Neter and William Li. The data is collected by a

commercial real estate company in order to evaluate vacancy rates, square footage,

rental rates, and operating expenses for commercial properties in a large metropolitan

area in order to provide her clients with quantitative information that can be used to

make rental decisions. The data is collected from 81 suburban commercial properties.

These properties are in prime locations: the newest, most attractive, and expensive

[12]. There are five variables in this data. These include; age of property (X1),

operating expenses and taxes (X2), vacancy rates (X3), total square footage (X4),

and rental rates (Y ).

On the other hand, data on the 2013− 2014 Body Measures (BMXH) is obtained

from the National Health and Nutrition Examination Survey (NHANES). These data

are collected from observational studies conducted by the Centers for Disease Con-

trol and Prevention of the National Center for Health Statistics (NCHS). NCHS is

a branch of the U.S. Public Health Service in the U.S. Department of Health and
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Human Services. The original data set consisted of 26 variables and 9,813 cases and

targeted the entire U.S population. That is, it included all children, adolescents and

adults aged between 0 years to 150 years old. This data can be accessed from the link

https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Examination.

To obtain the data set used in the study, we first considered complete cases only,

of the original data set. This gave us a data set of eight (8) variables and 7,157

complete cases of all children, adolescents, and adults aged between 8 years and 150

years old. Next, we employed systematic sampling to select every 15th case of the

7157 complete cases to be included in the final data set for analysis. As a result, the

final data set consisted of (8) variables and 477 complete cases. Systematic sampling

is chosen over simple random sampling (SRS) because it is easier to work with, and

it converges to the latter for large samples.

These variables included; BMI (Body Mass Index, KgM−2, Weight (Kgs), Stand-

Height (Standing Height in Cm), UpLegLength (Upper Leg Length in Cm), UpArm-

Length (Upper Arm Length in Cm), ArmCirc (Arm Circumference in Cm), WaistCirc

(Waist Circumference in Cm), and AvSAD (Average Sagittal Abdominal Diameter

in Cm).

3.2 Sample Suitability and Procedures

Body measures data are obtained from all respondents except for sagittal abdom-

inal diameter for pregnant women and individuals who weighed 600 pounds or more

that was not measured due to their conditions. Appropriate care was taken to obtain

measurements from individuals in wheelchairs. Trained health technicians were em-
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ployed to collect and record body measures data at the Mobile Examination Centers

(MEC). Arm and leg measurements were made on the right side of the body. Respon-

dents who could not be measured this way due to amputation, medical conditions or

appliance (cast) were measured from the left hand side. Due to disclosure concern,

the data does not identify persons with amputations and measurements for weight

do not include those individuals with limb amputation. There are no other groups of

the respondents that were excluded from all other measurements [13]

We defined anthropometrics as measurements related to human body which in-

clude; actual stature, weight, and body measurements including skinfolds, girths,

and breadths. These measurements are good indicators of human growth and the

distribution of body fat.

In this project, body measures data (BMI, Weight, Standing Height, Upper Leg

Length, Upper Arm Length, Arm Circumference, Waist Circumference, and Average

Sagittal Abdominal Diameter) are used to evaluate the size, shape and composition

of the human body.

Conventionally speaking, the main key measures for evaluating ones weight and

health risks include; BMI, waist circumference, and risk factors for diseases and con-

ditions associated with obesity. BMI is a measure of ones weight in kilograms divided

by the square of height in meters. BMI itself is not a measure of someones health or

fatness, it is an indicator of ones weight levels that is likely to cause health problems

[14].

Similarly, waist circumference also predicts weight levels that would be associated

with health risks. Much concentration of body fat around the waist rather than hips
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would put someone at risk for heart disease and type 2 diabetes. Waist size greater

than 35 inches or greater than 40 inches would raise an alarm for women and men,

respectively. In addition, the following health risk factors have been associated with

obesity, and are likely to pose greater risk for heart disease and other health condition

for someone who is overweight or obese; high blood pressure (hypertension), high

LDL cholesterol (“bad” cholesterol), low HDL cholesterol (“good” cholesterol), high

triglycerides, high blood glucose (sugar), family history of premature heart disease,

physical inactivity and cigarette smoking. Individuals who are overweight or obese

and suffers from at least two of the risk factors, are always advised to embark on

losing weight because even small weight loss (5 -10%) of the current weight would

lessen their likelihood of suffering from excessive weight (obesity) related disease [14].

3.3 Software Implementation

SAS software was used to fit the regression model. However, R was used for the

main part of the analysis, evaluating the various imputation models. The MICE

package for R was used to implement FCS Approach. This package imputes incom-

plete multivariate data by chained equations. The R function prodNA was used to

randomly delete specified percentage of values in a data set.

3.4 Analysis of Interest and Imputations

Once we obtained the final complete data set, we reproduced five copies of the

data set. Using the R function, prodNA, 10%, 20%, 30%, 40% and 50% of the values

in the five copies of the data set were randomly removed, respectively. As a result,
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five data sets with different amount of missing values were created in addition to one

complete data set.

In this project, we believed that anthropometrics and body measures data ex-

plains BMI. Therefore, our interest is to establish if there exists any relationship

between BMI and anthropometrics and body measures. We treated BMI as the re-

sponse variable and Weight, StandHeight, UpLegLength, UpArmLength, ArmCirc,

WaistCirc and AvSAD as predictors. Using the original complete data set for the

body measures, we embarked on a model building process to establish the best model

that defines the relationship between BMI and other anthropometric measurements

of the U.S. population. Forward stepwise regression method on all the potential seven

predictor variables identified a model of BMI against the predictors weight; standing

height; arm circumference, and waist circumference as the best model. Therefore,

dropping other variables, namely; average sagittal abdominal diameter; upper arm

length, and upper leg length. The forward stepwise model selection method was

done with alpha to enter value of 0.10 and alpha-to remove of 0.05. The model was

checked for multicollinearity, and variable “Weight” was dropped due to its strong

multicollinearity with other variables in the model. Box-Cox transformation proce-

dure is also used to transform the response variable (BMI) to improve the performance

of the model, and to obtain a more random pattern of the residual plots, possibly for

a more constant variance of the residuals. Therefore, the final regression model was

found to be; √
Ŷ = 3.394− 0.012X1 + 0.0616X2 + 0.0196X3 (3)

Where X1 (standing height) in cm, X2 (Arm circumference in cm) and X3 (waist
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circumference) in cm.

From the model, we estimate that for every unit increase in ones standing height,

the square-root of the mean BMI decreases by 0.012 KgM−2 while holding arm

circumference and waist circumference of the individual constant. Similarly, for every

unit increase in ones arm circumference, we estimate that the square-root of the mean

of the individuals BMI increases by 0.0616 KgM−2 while holding standing height

and waist circumference constant. Finally, for every unit increase in ones Waist

circumference, we estimate that the square-root of the mean BMI of the individuals

will increase by 0.0196 KgM−2 while holding standing height and arm circumference

constant.

Statistical F- test for the significance of the model concludes that the there is a

regression relationship between
√
Ŷ (square root of the estimated BMI) and the three

predictors. The selected variables X1 (standing height) in cm; X2 (Arm circumference

in cm) and X3 (waist circumference) are also significant predictors in the presence of

other predictors.

The estimate model parameters are stable and do not have problems with mul-

ticollinearity. The model is also reasonable with a good predictive ability. This is

because, the predicted residual sum of squares (PRESS) and the error sum of squares

of the model are very close and comparable as shown in Table 3.

Table 3: BMI model validation.

Sum of Residuals 0
Sum of Squared Residuals 8.21126
Predicted Residual SS (PRESS) 8.37773
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The model performs well. Since 95.68% of the sample variation of the square

root of the mean BMI is explained by the model, adjusting for the number of model

parameters indicating the model fits the data well.

The MI models in the MICE package of R software is used to impute the missing

values in the five incomplete data sets. There are different MI models in the MICE

package for imputing missing values. However, three of them that support continu-

ous data type were employed, namely; predictive mean matching (PMM), Bayesian

linear regression (norm), and linear regression non Bayesian (norm.nob). The incom-

plete data sets, with different fractions of missing information (FMI), were imputed

separately using the three imputation models to obtain fifty multiple imputed sets.

Regression analysis, assuming the functional form of Equation (3), was fit and model

parameters estimated for each of the fifty completed sets.

MI models are then evaluated how they perform with the different FMI. This done

by comparing the regression coefficients obtained from the originally complete data set

by those obtained from data imputed by MI models. By fitting a regression model as

mentioned above, on each of the fifty imputed data sets for each of the three MI models

(PMM, norm, and norm.nob), we generate a sampling distribution of fifty estimated

regression coefficients at each FMI. So, treating estimated parameters as variables and

each of the estimated regression coefficient as a data point for each of the variables,

we can obtain the mean and the variance of those estimated regression coefficients

as classified by FMI and MI models. The best performing model is presented as one

that imputed data from which we obtained the least values for; variances, range, and

percent deviation index (PDI).
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The Equation for the PDI is given by

PDI =

(
Original reg coef −Mean of estimated reg coef

Original reg coef

)
∗ 100 (4)

where “Original reg coef” is the value of the regression coefficient obtained from

the original complete data set and “Mean of estimated reg coef” is the mean of the

distribution of regression coefficients estimated from the imputed sets that are now

complete due to the imputed values.

One sample t−tests are used to make statistical comparison between the mean of

the estimated parameters and the corresponding original parameter values.

Using the commercial properties data, similar procedure was followed to develop a

model for rental rates as the response variable and the other variables (age, operating,

vacancy and total) as predictor variables.

The final model was established to be

Ŷ = 12.243− 0.126X1 + 0.401X2 (5)

where X1 is age of property and X2 operating expenses and taxes.

Furthermore, similar analysis was performed on the commercial properties data,

where additional five data sets were created by removing varying amounts of values

(10%, 20%, 30%, 40% and 50%) from the original data set. The three MI models

(PMM, norm, and norm.nob) are then used to complete fifty multiple imputed sets

that are now complete due to the imputed values. Finally, the MI models were

evaluated by comparing the original regression coefficients in Equation (5) with those

estimated by fitting the same regression Equation (5) on the imputed data sets.
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3.4.1 Relative Efficiency and Imputations

Relative efficiency (RE) of an imputation is defined as how best the true pop-

ulation parameters are estimated by an imputation model. It depends on both the

amount of missing information and the number (m) of imputations performed.

The equation for RE is given by

RE =
1

1 + λ
m

(6)

where λ is the fraction of missing information and m the number of imputations [15].

For very small FMI then five imputations would be enough for a good RE. How-

ever, several imputations would be required for large FMI, in order to achieve ad-

equate RE. In our case, same imputation power is desired for our models so as

to provide a good basis for comparing the accuracy with which each of models can

estimate the missing values. Therefore, same relative efficiency (RE) of 99% was es-

tablished by producing fifty multiple imputations for all the imputation models across

the five FMI. We see from Table 4 that the RE increases across the FMI as the num-

ber of imputations increases, and fifty multiple imputations produces adequate RE

that minimizes the biasness of the imputed values. Fifty multiple imputations also

produces sets of regression coefficients that are large enough and follows a normal

distribution by central limit theorem (CLT).

3.5 Assumptions

We assumed that the missing data were MAR. We could account for the missing

data using other observed variables. For the regression model, we assumed that
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Table 4: Relative efficiency of the imputation models.

m/ FMI 10% 20% 30% 40% 50%
5 0.9804 0.9615 0.9434 0.9259 0.9091
10 0.9901 0.9804 0.9709 0.9615 0.9524
20 0.9950 0.9901 0.9852 0.9804 0.9756
30 0.9967 0.9934 0.9901 0.9868 0.9836
40 0.9975 0.9950 0.9926 0.9901 0.9877
50 0.99800 0.9960 0.9940 0.9921 0.9901

the residuals were normally distributed with a mean of zero and constant variance.

Consequently, responses for BMI and rentals rates followed a normal distribution.

We also assumed that the samples of the estimated model parameters from each

imputation model, were independent, large enough, and followed a distribution that

is normal. Measurements of the parameters were also on a continuous scale.
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4 RESULTS

The multiple imputed data sets for body measures data, and commercial prop-

erties data are analysed separately using regression models of the functional forms

established in Equations (3) and (5), respectively. Results obtained from the regres-

sion analysis are used to evaluate the performance of the three imputations models,

namely; PMM, Bayesian linear regression, and linear regression non Bayesian.

4.1 Analysis of the Body Measures Data

The mean and variance of the sampling distribution of the estimated regression

coefficients are obtained by performing regression analysis on the imputed data sets.

One sample t−test are also performed on the sample distribution of the estimated

regression coefficients. Results are then observed and compared to corresponding

coefficients from the original data.

4.1.1 Evaluation and Indexing of Imputation Models

Following the regression analysis on the complete body measures data, the model

parameters were established as shown below in Table 5. These are considered as the

unbiased parameter estimates, and forms the benchmark against which we evaluate

our imputation models of the MICE package.

Table 5: Parameters values of BMI model .

PARAMETERS β0 β1 β2 β3
ACTUAL VALUES 3.394 -0.012 0.0616 0.0196
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The mean of the estimated regression coefficients using the imputed data tends

to be larger for data with large amount of imputed values while variances of these

regression coefficients increases as the amount of imputed data increases. This is

evident across the three imputation models; pmm, norm and norm.nob models as

shown in Tables 6 to 11. Data with the smallest amount (10%) of the imputed values

has smaller variance of the estimated model parameters compared to those with the

largest amount (50%) of imputed values. There are cases when the mean of the

regression coefficients are smaller for large amount of imputed values, such cases are

bolded in Tables 6, 8 and 10. β̂2 has a negative relationship with the response variable

(BMI) and its corresponding value from the imputed data decreases as the amount

of imputed values increases. This is clear in all our imputation models.
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Table 6: Estimated mean of the regression coefficient with PMM model. Values that

are in bold, represent the mean of the regression coefficients that are smaller for large

amount of imputed values using PMM model.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10% 3.4368 −0.0123 0.0630 0.0193
20 % 3.5126 −. 0.0604 0.0199
30% 3.5154 −. 0.0612 0.0202
40 % 3.8332 −. 0.0617 .
50% . −. . .

ACT. PARAM 3.3937 −0.0120 0.0616 0.0196

Table 7: Estimated variance of the regression coefficient with PMM model.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10% 0.0012 0.0000001 0.0000014 0.0000001
20 % 0.0025 0.0000001 0.0000027 0.0000003
30% 0.0109 0.0000005 0.0000082 0.0000005
40 % 0.0154 0.0000009 0.0000079 0.0000007
50% 0.0184 0.0000009 0.0000133 0.0000014
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Table 8: Estimated mean of the regression coefficient with norm model. Values that

are in bold, represent the mean of the regression coefficients that are smaller for large

amount of imputed values using norm model.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10% 3.368 -0.0120 0.0627 0.0194
20 % 3.4466 −. . 0.0199
30% 3.4488 −. 0.0612 0.0205
40 % 3.5104 −. 0.06171 .
50% . −. . 0.0206

ACT. PARAM 3.3937 -0.0120 0.0616 0.0196

Table 9: Estimated variance of the regression coefficient with norm model.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10% 0.0008 0.0000001 0.0000008 0.0000001
20 % 0.0033 0.0000002 0.0000032 0.0000002
30% 0.0065 0.0000003 0.0000048 0.0000005
40 % 0.0172 0.0000009 0.0000101 0.0000007
50% 0.0266 0.0000012 0.0000089 0.0000012
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Table 10: Estimated mean of the regression coefficient with norm.nob model. Values

that are in bold, represent the mean of the regression coefficients that are smaller for

large amount of imputed values using norm.nob model.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10% 3.3713 -0.0112 0.0627 0.0194
20 % 3.4378 −. . 0.0199
30% . −. . 0.0207
40 % 3.4875 −. . .
50% . −. . .

ACT. PARAM 3.3937 -0.0120 0.0616 0.0196

Table 11: Estimated variance of the regression coefficient with norm.nob model.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10% 0.0014 0.0000001 0.000001 0.0000001
20 % 0.0021 0.0000001 0.0000025 0.0000002
30% 0.0065 0.0000003 0.0000044 0.0000004
40 % 0.0093 0.0000005 0.0000075 0.0000007
50% 0.0147 0.0000007 0.0000119 0.000001
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Percentage deviation of the estimated regression coefficients is computed for every

amount of the impute data. Largest overall deviation index of 3.5% is realised for re-

gression coefficients estimated from data imputed by PMM model. Conversely, norm

and norm.nob models produce coefficient estimates with the least overall deviation

index of 0.8%, and 0.6%, respectively as shown in Tables 13, 14, and 15.

The deviation index also varies by the amount of imputed values under each of

the imputation models. Table 13 shows the model that has small mean deviation

index of 1.0% and 2.3% for 10% and 20% imputed values, respectively, and higher

mean deviation index of 6.7% and 4.0% for 40% and 50% imputed data, respectively.

Generally, norm and norm.nob models produces relatively smaller mean devia-

tion index for all the five amounts of imputed data as shown in Tables 14 and 15,

respectively.

PMM tends to produce data with wider range of the estimated regression coef-

ficients cross the variables, compared to those for norm, and norm.nob models as

illustrated in Table 12.

Table 12: Range of the estimated model parameters, body measures data.

% IMPUTED β̂0 β̂1 β̂2 β̂3
PMM 0.3964 0.001848 0.00259 0.001486
norm 0.1424 0.000758 0.003586 0.001842

norm.nob 0.1162 0.000624 0.002986 0.001802
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Table 13: Percent deviation index of PMM imputation model.

% IMPUTED β̂0 β̂1 β̂2 β̂3 MEAN
10 1.3 2.6 2.4 -2.1 1.0
20 3.5 5.7 -1.8 1.8 2.3
30 3.6 8.3 -0.7 3.2 3.6
40 12.9 18.0 0.2 -4.4 6.7
50 7.1 10.7 -0.7 -1.0 4.0

MEAN 5.7 9.0 -0.1 -0.5 3.5

Table 14: Percent deviation index of norm imputation model.

% IMPUTED β̂0 β̂1 β̂2 β̂3 MEAN
10 -0.8 -0.4 1.7 -0.8 -0.1
20 1.6 1.2 -3.0 1.8 0.4
30 1.6 5.9 -0.7 4.5 2.8
40 3.4 1.9 0.2 -4.2 0.3
50 0.4 1.5 -4.2 5.2 0.7

MEAN 1.2 2.0 -1.2 1.3 0.8

Table 15: Percent deviation index of norm.nob imputation model.

% IMPUTED β̂0 β̂1 β̂2 β̂3 MEAN
10 -0.7 -0.1 1.8 -0.8 0.1
20 1.3 0.7 -2.7 1.5 0.2
30 1.0 5.1 -1.4 5.5 2.6
40 2.8 1.3 0.3 -3.7 0.2
50 -0.6 0.1 -3.0 4.3 0.2

MEAN 0.8 1.4 -1.0 1.4 0.6
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4.1.2 Normality Tests of the Parameters

We verify the assumptions of the one sample t−tests. A set of fifty parameter

estimates are generated by fitting the functional form of the of Equation (3) to the

fifty multiple imputed data in each amount of the missing data. Therefore, by the

central limit theorem, each set of estimated model parameters follows a distribution

that is normal. The data was measured in a continuous scale and are independent

from each other since each data was imputed from different data sets with varying

amounts of missing values.

Q - Q plots for each distribution of the estimated parameters also fitted a straight

line, a further proof that the distributions are normal. As a result all the assumptions

of the one sample t test were satisfied.

There is strong evidence of normal distribution of the estimated regression pa-

rameters across the different amount of data imputed by PMM model see Figures 2,

3, 4 and 5. The normal Q - Q plots fit a straight line against the theoretical normal

quantiles of these model parameters. Some points on the normality plots for β̂1 and

β̂3, from data filled in by PMM, tends to lie off the fitted straight line as shown in

Figures 3 and 5. However, this does not affect the normality of the respective data.

The formal test of normality using the Shapiro-Wilk’s test yields p-values greater

than the significance level of 0.05 as seen in Tables 16, 17 and 18. Figures 6-13 are

Q - Q plots for the regression coefficients estimated from data imputed by the norm

and norm.nob models and one can see the assumption of normality is satisfied.
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Table 16: Shapiro-Wilk tests for normality of the sampling distributions of regression

coefficients estimated from the body measures data sets under PMM model. The

significance level of each of the individual tests is 0.05.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10 0.9836 0.2456 0.7905 0.8786
20 0.4752 0.0909 0.5101 0.1492
30 0.4024 0.9884 0.6309 0.5944
40 0.4688 0.5294 0.5294 0.3972
50 0.6153 0.4379 0.7837 0.6118

Table 17: Shapiro-Wilk tests for normality of the sampling distributions of regression

coefficients estimated from the body measures data sets under norm model. The

significance level of the individual tests is 0.05.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10 0.608 0.1499 0.4318 0.3977
20 0.3073 0.08151 0.5711 0.7267
30 0.5251 0.4138 0.7206 0.1786
40 0.6258 0.3206 0.7085 0.4037
50 0.7402 0.4634 0.5171 0.668
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Table 18: Shapiro-Wilk tests for normality of the sampling distributions of regression

coefficients estimated from the body measures data sets under norm.nob model. The

significance level of each of the individual tests is 0.05.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10 0.7514 0.4728 0.7277 0.473
20 0.3545 0.3564 0.3636 0.40309
30 0.4008 0.7858 0.3699 0.4258
40 0.7194 0.5528 0.9097 0.4959
50 0.7405 0.5097 0.332 0.3665
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Figure 2: Normality plots of β̂0 from BMXH data imputed by PMM model.
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Figure 3: Normality plots of β̂1 from BMXH data imputed by PMM model.
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Figure 4: Normality plots of β̂2 from BMXH data imputed by PMM model.
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Figure 5: Normality plots of β̂3 from BMXH data imputed by PMM model.
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Figure 6: Normality plots of β̂0 from BMXH data imputed by norm model.
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Figure 7: Normality plots of β̂1 from BMXH data imputed by norm model.
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Figure 8: Normality plots of β̂2 from BMXH data imputed by norm model.
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Figure 9: Normality plots of β̂3 from BMXH data imputed by norm model.
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Figure 10: Normality plots of β̂0 from BMXH data imputed by norm.nob model.
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Figure 11: Normality plots of β̂1 from BMXH data imputed by norm.nob model.
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Figure 12: Normality plots of β̂2 from BMXH data imputed by norm.nob model.
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Figure 13: Normality plots of β̂3 from BMXH data imputed by norm.nob model.
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4.1.3 Hypothesis Testing

The main question of interest is, “Are the estimated population parameters the

same as the corresponding true parameters?” In order to do this, we are carrying

out one sample t−tests on each distribution of the estimated parameters, where we

compare the mean value of the estimated parameters and the actual value from the

population. This is a case of multiple testing, where we are conducting a total of

sixty, one sample t−tests, twenty from each of the three imputation models, namely;

PMM, norm and norm.nob models. We are using 0.05 family level of significance,

and the holm method is used to adjust for multiple testing, therefore, controlling

the error rate for the family tests. Our test results show that all the estimated

parameters are different from the true values except for a few estimated values that

are not statistically significant. In most cases, our test is yielding adjusted p -values

that are less than the 0.05 family level of significance. This is leading us to reject our

belief that the estimated and actual values of the parameters are the same. Thus, the

conclusion that the mean of the estimated regression coefficients are different from

the corresponding actual coefficients.

For PMM model, only four of the twenty tests turn out to affirm our null hypothe-

sis, while the remaining sixteen tests are significant at 0.05 family level of significance.

The p-values of the tests that are not significant are bolded as shown in Table 19.
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Table 19: Adjusted p-values under PMM model, BMXH data. The adjusted

p−values that are in bold are for one sample t−tests that are not significant at

α = 0.05 family level of significance.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10% 0.0000000009 0.0000000017 0.000000001 0.00000000047
20% 0.00000000000 0.00000000000 0.00025655 0.00173232
30% 0.0000000034 0.00000000003  0.000007378
40% 0.00000000000 0.00000000000  0.000000158
50% 0.00000000000 0.000000000029  

Similarly, only seven of the twenty tests under norm imputation model are not

significantly different from the actual parameter values. See Table 20 for p-values of

the regression coefficients that are not significant.

Table 20: Adjusted p-values under norm model, BMXH data. The adjusted p−values

that are in bold are for one sample t−tests that are not significant at α = 0.05 family

level of significance.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10% 0.0000017172  0.00000000801 0.00178342
20% 0.0000014689 . 0.00000009922 0.000061451
30% 0.00039832 0.0000000007  0.0000000002
40% 0.0000030192   0.0000003055
50%   0.00000528 0.000001736
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Finally, same parameters estimated from the data imputed by norm model, were

also significantly different under norm.nob imputation model, except for the β2 of the

30% imputed data. This parameter is significant under norm.nob imputation model.

Table 21: Adjusted p-values under norm.nob model, BMXH data. The adjusted

p−values that are in bold are for one sample t−tests that are not significant at

α = 0.05 family level of significance.

% IMPUTED β̂0 β̂1 β̂2 β̂3
10% 0.018975  0.0001318 0.010168
20% 0.0000001  0.000000000 0.0021924
30% 0.029016 0.0000000 0.00178342 0.00000000
40% 0.0000001   0.000004125
50%   0.0006305 0.0000123

4.2 Analysis of the Commercial Data

Commercial properties data is used to compare and contrast results obtained from

the primary data, body measures data. Therefore, we conduct similar analyses as in

the case of body measures data. Regression analysis is performed on the multiple im-

puted commercial properties data sets to obtain sample distribution of the estimated

coefficients. The mean and variances of those distributions are observe and compared

to the corresponding results of the body measures data.

4.2.1 Evaluation and Indexing of Imputation Models

We are using analysis results from commercial data to verify our findings in body

measures data. We are drawing comparison of results in these two data sets. There-
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fore, assuming that the commercial data was a complete enumeration of the targeted

population of the newest suburban commercial properties, the parameters of the fitted

regression model for the rental rates are indicated below in Table 22.

Table 22: Parameters values of the rental rates model .

PARAMETERS β0 β1 β2
ACTUAL VALUES 12.243 -0.126 0.401

When we introduce different amounts of missing values in the complete commer-

cial data as described in Section 3.4, and impute the missing values using the same

imputation models (PMM, norm, and norm.nob models) used in BMHX data, we

see very similar patterns in the variation and values of the estimated parameters as

established in the case of body measures data, refer to Tables 23-29. The mean of

the estimated regression coefficients using imputed data, tends to be larger for data

with large amount of imputed values. Variance of the estimated parameters increase

with an increase in the amount of imputed values, except for those estimates for 40%

imputed data which are smaller as shown in bolds in Tables 24, 26, and 28. Data with

the smallest amount (10%) of imputed values has smaller variances of the estimated

parameters compared to those with the largest amount of (50%) imputed values.

However, there are instances when the mean of the estimated coefficients are

smaller for large amount of imputed values as shown in bolds in Tables 23, 25 and

27.

Rental rates model obtained from the commercial data has three parameters

(β0, β1 and β2). PMM model imputes data with a wider range of values for all the esti-
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mated parameters when compared to the other models, namely; norm and norm.nob.

This suggests a wider variance of parameters estimated from data imputed by PMM

model compared to other models. β1 estimated from data imputed by norm model

has a wider range than those estimated from norm.nob model. β0 and β2 estimated

from norm.nob model also have a wider range of values than for those estimated from

norm model as shown in Table 29.

Table 23: Estimated mean of the regression coefficients with PMM model, commer-

cial data. Values that are in bold, represent the mean of the regression coefficients

that are smaller for large amount of imputed values using PMM model.

% IMPUTED β̂0 β̂1 β̂2
10% 12.16928 -0.13726 0.422022
20 % . -0.10595 0.403084
30% . -0.06765 .
40 % 13.60998 −. .
50% 14.12138 −. .

Table 24: Estimated variances of the regression coefficients with PMM model, com-

mercial data. Variances that are represented in bolds have shown a decreased for

large amount of imputed values.

% IMPUTED β̂0 β̂1 β̂2
10% 0.021337 0.000111 0.000276
20 % 0.037009 0.000123 0.000442
30% 0.333584 0.000734 0.005503
40 % 0.403421 . .
50% 1.126236 0.001048 0.01553
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Table 25: Estimated mean of the regression coefficients with norm model, commercial

data. Values that are in bold, represent the mean of the regression coefficients that

are smaller for large amount of imputed values using norm model.

% IMPUTED β̂0 β̂1 β̂2
10% 12.216694 -0.143662 0.422894
20 % . -0.105292 .
30% 12.674066 -0.075150 .
40 % 13.754832 −. .
50% 13.449068 −. .

Table 26: Estimated variances of the regression coefficients with norm model, com-

mercial data. Variances that are represented in bolds have shown a decreased for

large amount of imputed values.

% IMPUTED β̂0 β̂1 β̂2
10% 0.066118 0.0001625 0.000892
20 % 0.072752 0.0002167 0.000912
30% 0.511143 0.0011833 0.009680
40 % . . .
50% 1.659539 0.0017837 0.020153
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Table 27: Estimated mean of the regression coefficients with norm.nob model, com-

mercial data. Values that are in bold, represent the mean of the regression coefficients

that are smaller for large amount of imputed values using norm.nob model

% IMPUTED β̂0 β̂1 β̂2
10% 12.147182 -0.144922 0.430788
20 % . -0.109018 .
30% 12.58615 -0.079434 .
40 % 13.860112 −. .
50% . -0.113166 .

Table 28: Estimated variances of the regression coefficients with norm.nob model,

commercial data. Variances that are represented in bolds have shown a decreased for

large amount of imputed values.

% IMPUTED β̂0 β̂1 β̂2
10% 0.034467 0.000076 0.000429
20 % 0.044898 0.000137 0.000718
30% 0.37157 0.000725 0.006184
40 % . . .
50% 1.335885 0.001812 0.018512

Table 29: Range of the estimated model parameters, commercial data.

MI model β̂0 β̂1 β̂2
PMM 2.015154 0.069608 0.25727
Norm 1.756556 0.068512 0.182712

Norm.nob 1.878062 0.065488 0.189318
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The three imputation models; PMM, norm, and norm.nob, underestimated the

missing values introduced in the commercial data by 12.2%, 8.1%, and 6.6%, respec-

tively as shown in Tables 30, 31, and 32. Tables 30 and 31 shows MI models with

smaller deviation from the true values for data with small amounts of (10 -20%)

missing values. Table 30 shows that PMM model has a deviation index of 4.5%, and

-5.5% for data with 10% and 20% imputed values, respectively.

Norm, and norm.nob model have relatively small deviations for data with large

amounts (40 - 50%) missing values. Table 31 shows that norm model has an index

of 11.1%, and 12% for 40% and 50% missing values, respectively. Similarly, Table

32 shows that norm.nob model has an index of 7.2% and 12.5% for 40% and 50%

missing values, respectively.

Table 30: Percent deviation index of PMM imputation model using commercial

data.

% IMPUTED β̂0 β̂1 β̂2 MEAN
10 -0.6 8.9 5.2 4.5
20 -1.1 -15.9 0.5 -5.5
30 6.0 -46.3 -30.7 -23.7
40 11.2 -5.6 -37.4 -10.6
50 15.3 -33.8 -58.9 -25.8

MEAN 6.2 -18.5 -24.2 -12.2
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Table 31: Percent deviation index of norm imputation model using commercial data.

% IMPUTED β̂0 β̂1 β̂2 MEAN
10 -0.2 14.0 5.5 6.4
20 -2.0 -16.4 3.5 -5.0
30 3.5 -40.4 -19.8 -18.9
40 12.3 -5.5 -40.1 -11.1
50 9.9 -9.4 -36.6 -12.0

MEAN 4.7 -11.5 -17.5 -8.1

Table 32: Percent deviation index of norm.nob imputation model using commercial

data.

% IMPUTED β̂0 β̂1 β̂2 MEAN
10 -0.8 15.0 7.4 7.2
20 -2.1 -13.5 4.6 -3.7
30 2.8 -37.0 -16.5 -16.9
40 13.2 5.0 -39.8 -7.2
50 9.3 -10.2 -36.6 -12.5

MEAN 4.5 -8.1 -16.2 -6.6

4.2.2 Normality Tests of the Parameters

We have three parameters for the model of the rental rates of the commercial

data. A set of fifty parameter estimates are generated under each model parameter

for the five different amounts of imputed data. Therefore, by central limit theorem,

the distribution of each set of parameter estimates follows a normal distribution. The

parameter estimates are measured on a continuous scale, and each of the five amounts

of imputed data of 10%, 20%, 30%, 40%, and 50% missing values are independent of

each other. Therefore, our data satisfies the assumptions of one sample t−test.
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We are constructing Q - Q plots to verify the assumptions of normality of each

distribution of the parameter estimates. Figures 14-22 shows the Q-Q plots that fit

a straight line indicating that our data is normal. Some of the Q - Q plots appear

curved. However, the Shapiro Wilk’s tests of normality yields p-values greater than

the significance level of 0.05 as shown in Tables 33, 34 and 35. Therefore, confirming

that in deed those values follow a normal distribution.

Table 33: Shapiro-Wilk tests for normality of the sampling distributions of regression

coefficients estimated from the commercial properties data sets under PMM model.

The significance level of each of the individual tests is 0.05.

% IMPUTED β̂0 β̂1 β̂2
10 0.0935 0.7661 0.06524
20 0.1221 0.07374 0.8352
30 0.5334 0.1585 0.5869
40 0.06991 0.9112 0.633
50 0.1638 0.2136 0.6124

Table 34: Shapiro-Wilk tests for normality of the sampling distributions of regression

coefficients estimated from the commercial properties data sets under norm model.

The significance level of each of the individual tests is 0.05.

% IMPUTED β̂0 β̂1 β̂2
10 0.1129 0.9154 0.2859
20 0.2176 0.1873 0.2692
30 0.4683 0.249 0.5067
40 0.3272 0.7018 0.9535
50 0.9015 0.0805 0.8415
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Table 35: Shapiro-Wilk tests for normality of the sampling distributions of regres-

sion coefficients estimated from the commercial properties data sets under norm.nob

model. The significance level of each of the individual tests is 0.05.

% IMPUTED β̂0 β̂1 β̂2
10 0.6639 0.3037 0.2044
20 0.3867 0.3208 0.08871
30 0.5826 0.6009 0.3268
40 0.1512 0.984 0.5789
50 0.2587 0.1073 0.123

Figure 14: Normality plots for β̂0, commercial data, PMM model.
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Figure 15: Normality plots for β̂1, commercial data, PMM model.

71



Figure 16: Normality plots for β̂2, commercial data, PMM model.
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Figure 17: Normality plots for β̂0, commercial data, Norm model.
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Figure 18: Normality plots for β̂1, commercial data, Norm model.
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Figure 19: Normality plots for β̂2, commercial data, Norm model.
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Figure 20: Normality plots for β̂0, commercial data, Norm.nob model.
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Figure 21: Normality plots for β̂1, commercial data, Norm.nob model.
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Figure 22: Normality plots for β̂2, commercial data, Norm.nob model.
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4.2.3 Hypothesis Testing

Considering the commercial data, we are still interested in establishing if the

mean of the estimated model parameters are the same as the actual parameters. We

proceed by performing one sample t−tests on the distributions of the estimated model

parameters. We have three parameters on the commercial data, namely; β0, β1 and

β2. So, we perform a total of 45 one sample t−tests. The p-values are adjusted

for multiple testing once again using Holm’s method. At the 0.05 family level of

significance, only a handful of tests are not significantly different from the actual

parameters. For example, for data imputed by PMM model, only two tests out of the

fifteen tests on data are not significant as shown in bold in Table 36.

Table 36: Adjusted p-values under PMM model, commercial data. The adjusted

p−values that are in bold are for one sample t−tests that are not significant at

α = 0.05 family level of significance.

% IMPUTED β̂0 β̂1 β̂2
10% 0.0073323 0.00000002 0.0000000
20% 0.00009862 0.00000000 .
30% 0.00000000 0.00000000 0.00000000
40% 0.000000000 . 0.000000000
50% 0.000000000 0.00000000 0.00000000
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We have three tests and two tests for data imputed by norm model and norm.nob

model, respectively, that are not significant at 0.05 family level of significance as

shown in bold in Tables 37 and 38.

Table 37: Adjusted p-values under norm model, commercial data. The adjusted

p−values that are in bold are for one sample t−tests that are not significant at

α = 0.05 family level of significance.

% IMPUTED β̂0 β̂1 β̂2
10% . 0.0000000 0.0000619
20% 0.00000096 0.00000000 0.0133920
30% 0.00109656 0.00000000 0.0000106
40% 0.00000000 . 0.0000000
50% 0.00000049 . 0.0000001

Table 38: Adjusted p-values under norm.nob model, commercial data. The adjusted

p−values that are in bold are for one sample t−tests that are not significant at

α = 0.05 family level of significance.

% IMPUTED β̂0 β̂1 β̂2
10% 0.00637 0.00000000 0.00000000
20% 0.00000000 0.00000000 0.00014248
30% 0.002497 0.00000000 0.00000459
40% 0.00000000 . 0.00000000
50% 0.00000015 . 0.00000002
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5 DISCUSSION

It is observable, in both body measures and commercial properties data, for all

the imputation models, namely; PMM, norm, and norm.nob, that in most cases, the

regression coefficient are estimated with larger mean and variances as the amount of

the imputed data increases. This could be attributed to the fact that data with small

amount of missing values are rich in actual information than those with large amount

of missing values, that are used to accurately predict the missing members. The

problem with data with large amount of missing values is that during the imputation

process, the already imputed values are revisited many times, and used again to

complete the yet to be imputed values. Therefore, many imputed values are used

again to complete the imputation process. This may compromise the accuracy of the

imputation process, especially when the imputed values that are re-introduced in the

imputation process were not accurate.

Predictive mean matching model imputed values that are more way off the true

missing values compared to the other two imputation models, namely; Bayesian lin-

ear regression and linear regression non Bayesian. This is evidence by the higher

overall percentage deviation index of the regression coefficients estimated from the

data imputed by this model. However, PMM impute much more accurate values for

data with small amount (10%) of imputed values than for data with large amount

(> 10%) of imputed values. Therefore, it’s overall percentage deviation index is the

largest due to higher deviation for large amount of imputed values. Overally, PMM

also imputed values with large variances and range.

Performances of the imputation models is also influenced by the nature and di-
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mension of the data sets. All the models were much more stable and imputed values

much more accurately for BMX data than for commercial data. This is due to the

difference in the dimensions of these data sets. BMXH data has a total of 8 variables

each with 477 data points compared to 5 variables and 81 data points for commercial

data. All the models predicted higher values for BMXH data and lower values for

commercial data. This is because BMX data offered much more information than

commercial data.

Norm and norm.nob models produced better estimates for all amounts of imputed

data with BMXH data than commercial data. Regression coefficients estimated from

BMXH data filled in by these two models have smaller percentage deviation index,

variances and range. Following the one sample t−test, norm and norm.nob models

also have more estimated regression coefficients in BMXH data than commercial data,

that are not significantly different from the corresponding true coefficients. Therefore,

these models are much more likely to generate better imputations with larger data

sets than with smaller data set.
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6 CONCLUSION

Appropriateness of an imputation model depends on the nature and dimension

of the data set, and amount of missing information. Bayesian linear regression and

linear regression non Bayesian methods produce better results with larger data sets

for all amounts of missing data of up to 50%. These two models also produces stable

results for for larger amounts of missing value for low dimensional data.

Predictive mean matching model produces better results than the two models

mentioned above for low dimensional data with small amounts of missing values. The

model also had good results for high dimensional data with small amount of missing

values.

As part of our effort to solve the problems of missing data, we look forward to

extending similar analysis to data with different variable types such as binary (factors

with 2 levels), and categorical (factors with more than 2 levels) variables. We also

intend to develop a metric chart that would determine the exact amount of missing

values versus dimensions of data within which each of the MI models in MICE package

produces optimal results. This would guide the choice of appropriate MI models in

MICE package for different amount of missing data.

In addition, there are other packages in R that are used for imputing missing data.

These include; missForest, Hmisc, Amelia, and mi. Therefore, we are interested in

comparing their performance against each other in the future.

By the end of the study, we identified predictive mean matching model of the

in MICE package as most appropriate for imputing small amounts of missing values

in both low and high dimensional data sets. Bayesian linear regression and Linear
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regression models were also identified as most appropriate for large amount of missing

values. We hope these findings will inform future handling of missing data.
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