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ABSTRACT 

 

 

An Investigation into the Performance Evaluation of Connected Vehicle Applications: 

From Real-World Experiment to Parallel Simulation Paradigm 

 

by 

 

Md Salman Ahmed 

 

 

A novel system was developed that provides drivers lane merge advisories, using vehicle 

trajectories obtained through Dedicated Short Range Communication (DSRC). It was 

successfully tested on a freeway using three vehicles, then targeted for further testing, via 

simulation. The failure of contemporary simulators to effectively model large, complex 

urban transportation networks then motivated further research into distributed and 

parallel traffic simulation. An architecture for a closed-loop, parallel simulator was 

devised, using a new algorithm that accounts for boundary nodes, traffic signals, 

intersections, road lengths, traffic density, and counts of lanes; it partitions a sample, 

Tennessee road network more efficiently than tools like METIS, which increase inter-

process communications (IPC) overhead by partitioning more transportation corridors. 

The simulator uses logarithmic accumulation to synchronize parallel simulations, further 

reducing IPC. Analyses suggest this eliminates up to one-third of IPC overhead incurred 

by a linear accumulation model. 
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CHAPTER 1

INTRODUCTION

Motivation

As automobile usage has increased, so have highway congestion, incidents, fatalities, and

greenhouse gas emissions. In 2012 USA TODAY reported that Americans annually waste 1.9

billion gallons of gasoline in traffic on congested roads and pay more than $100 billion in wasted

fuel and lost time [1]. Road safety has become another concern worldwide. WHO reported that

around 1.25 million people die in over 180 countries per year due to road fatalities and crashes

[2]. These fatalities and crashes cause a huge loss of property, along with injuries, disabilities, and

deaths. The U.S., for example, experienced 32,744 and 35,092 traffic fatalities in 2014 and 2015,

respectively. Fatalities, moreover, increased by 10.4% over the first half of 2016 as compared to

2015 [3].

These adverse effects of automobile usage can potentially be lessened with connected

vehicle (CV) technology. CV technology aims to connect all vehicles in networks of roads using

infrastructure support and wireless communication. Ideally, CV will allow vehicles to exchange

alert, warning, and safety-critical information with other vehicles and communities to collect

real-time traffic data for transportation engineers to plan and design efficient transportation

systems, while improving transportation systems’ overall throughput. CV employs Dedicated

Short Range Communication (DSRC), a newer wireless protocol for inter-vehicle communication

(IVC), developed for the automobile industry. CV applications typically assume the presence of a

DSRC-based Intelligent Transportation System (ITS) that supports the exchange of information

obtained through vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and

vehicle-to-pedestrians (V2P) communications. This exchange of information, collectively known

as V2X communications, is being explored for opportunities to assist drivers in avoiding

congestion, reducing vehicle stops, choosing a best route, and optimizing fuel efficiency.

CV research is being promoted by U.S. Department of Transportation’s Federal Highway

Administration through its Open Source Application Development Portal (OSADP) [4]. The

OSADP initiative divides V2X research into roughly sixteen categories, including Collision

Avoidance, Crash Prevention and Safety, Information Management, Road Weather Management,

9



Transit Management, Driver Assistance, and Freeway Management. The most popular of the

applications that have been uploaded to the OSADP include systems for assisting in lane-changes

[5], changing the signal phase timing for emergency and transit vehicles [6], avoiding collisions

[7], disseminating signal phase and timing information [8], reducing traffic congestion [9], and

preventing crashes [10]. Much of the research into Driver Assistance and Freeway Management

System has focused on automating the freeway merge assistance system [11, 12, 13, 14] to

mitigate fatalities incurred by freeway merge conflicts, reduce overall driving time, and improve

traffic throughput and road safety measures.

Before CV applications can be deployed in real-world settings, they will need to be

validated and perfected in laboratory settings in order to prevent possible damage and loss of

lives. This validation can include the use of realistic simulations of traffic networks. Simulating

ITS and CV systems will require the integration and synchronization of two tightly coupled

domains: transportation and communication. The transportation domain models vehicular

mobility, including traffic routing, lane-changing, vehicle dynamics, and traffic signal controls.

The communication domain models mechanisms for data-traffic-related communications,

including packet routing, end-to-end message delivery, and V2X-related cross-layer protocols.

These two domains directly affect each other’s operation. For example, high speed traffic

networks with high vehicle density may delay V2X communications and degrade communication

quality [15]. On the other hand, communication delay and data loss may degrade the modeling of

vehicular operation. Such degradations, even if minute, could adversely affect the ability of

V2X-based applications to assure their users’ safety.

Statement of the Research Problem

Initially, this research focused on developing and evaluating a novel CV application for

freeway merge assistance. The research was subsequently expanded to the creation of parallel and

distributed simulators, due to the need to stress-test the application in a safe environment before

deploying it in a real-world setting. Efforts to develop a complete feedback loop based

transportation simulator with a wireless network simulator for modeling and evaluating

V2X-based ITS applications have been ongoing for the past decade. Unfortunately, current

state-of-the-art simulators are sequential in nature and require huge amounts of memory and
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execution time to simulate large-scale urban transportation networks. These limitations have

created a need for a parallel and distributed simulation environment to simulate safety-critical ITS

applications.

Accordingly, the work described in this document focused on four related challenges:

1. Modeling and developing a data-driven V2X-based ITS application using drivers’ data and

vehicular mobility traces. This application, a freeway merge assistance system, uses IVC to

exchange mobility traces between vehicles in the form of basic safety messages (BSMs).

These traces, which include vehicles’ positions, directions, speed, acceleration, and

deceleration, provide advisory information to drivers while they are merging into a freeway

from an entrance ramp (see chapter 2). This research was in collaboration with researchers

from The University of Tennessee, Knoxville.

2. Analyzing sequential simulators to identify the critical issues and proposing a parallel

simulation framework. A comprehensive literature review of state-of-the-art sequential

simulators identified the limitations of contemporary simulators (see chapter 3) and

requirements for a parallel simulation platform (see chapter 4). The proposed parallel

simulation framework simulates vehicular mobility using the SUMO traffic simulator [16]

and IVC using OMNET++ [17].

3. Partitioning a large transportation network into smaller components in order to reduce the

cost of modeling events. An effective algorithm for network partitioning— one that yields a

high ratio of computation to communication for a requested number of simulated subnets—

is needed to minimize the time and memory resources needed to simulate a traffic network.

These resources are exponential in the number of vehicles in the network’s roads. For

example, in one experiment involving a sequential simulator [18], the simulation of a 200

node (vehicle) network created 4,600,000 events and required 16 minutes to process the

events. The goal of this work was to improve a simulation’s speed by reducing the cost of

modeling events (see chapter 5). Since finding an optimal partitioning of a network is an

NP-hard problem, practical heuristics are required to ensure an even distribution of a

workload while minimizing communication between the components.
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4. Reducing inter-partition communication overhead. A parallel simulator runs each

partition’s simulation on a different processor and accumulates each processor’s partial

simulation results to produce the final simulation result. As a result, the inter-partition

communication overhead can greatly impact the total execution time of the parallel

simulator. This part of the research involved analyzing the inter-process communication

overhead using two accumulation patterns (see chapter 6).

Results

The research described in this thesis produced four novel results.

1. The first result was a decentralized freeway merge assistance system that provides advisory

information to drivers solely depending on DSRCs to reduce freeway merge conflicts and

increase overall traffic throughput. The system’s performance and accuracy were evaluated

on 8 exits along Interstate I-26 in northeast Tennessee (see chapter 2).

2. The second was a partitioning algorithm for real-world transportation networks based on

real world traffic parameters, including system boundary nodes, traffic signals,

intersections, road lengths, traffic density, and counts of lanes. The partitioning mechanism

proved better than the traditional tools like METIS for reducing the division of

transportation corridors.

3. The third was a logarithmic accumulation algorithm that accumulates partial simulation

results from processors and produces the final simulation result. Since the actual simulation

of transportation networks was beyond the scope of this research, a matrix-matrix

multiplication algorithm was used to evaluate the performance and communication

overhead of the logarithmic communication overhead. Knightrider [19], one of two

high-performance computing clusters at East Tennessee State University’s High

Performance Computing Center, was used to run the distributed matrix-matrix

multiplication algorithm using MPI communications.

4. The fourth was a design for an envisioned Integrated Distributed Connected Vehicle

Simulation platform incorporating hardware-in-the-loop simulation together with the

closed-loop coupling of SUMO and OMNET++. The simulation platform addresses two
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major limitations of current sequential simulators, reducing execution times and resource

usage, using the partitioning and accumulation algorithms described above.

These results, together with other considerations like avenues for future research, are

described in more detail in this thesis’s remaining chapters.
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FREEWAY MERGE ASSISTANCE SYSTEM
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Abstract—With the advent of the connected vehicle (CV)
technology, researchers have started to re-engineer the design
of automated highway systems from different aspects, such as
queuing analysis, ramp metering, and merge control algorithms.
Previous development of freeway merging algorithms were mainly
relied on the infrastructure support requiring ramp metering with
the aid of the inductive loop detectors or transponders mounted
at several reference points on the highway. Recently, with the aid
of CV technology, some researchers have theoretically modeled
the freeway merging algorithms using longitudinal control math-
ematical models. However, those models were simply evaluated
using simulators without any actual implementation of the system.
Our current work presents a complete implementation of a
novel decentralized algorithm for a freeway merging assistance
system using the Dedicated Short Range Communication (DSRC)
technology. The freeway merge assistance system has been tested
on 8 ramps on a real-world freeway. As of now, this is the first
attempt to develop and implement a fully decentralized freeway
merging algorithm that does not require any infrastructure
support.

Keywords—Connected Vehicle, DSRC, Merge Assistance Sys-
tem, Freeway, Ramps, Advisory, Decentralized System, Merge
Control Algorithm.

I. INTRODUCTION

Road safety and congestion have become growing concerns
around the globe over the past few years. WHO reported that
around 1.25 million people die over the 180 countries per
year due to road fatalities and crashes [1]. These fatalities
and crashes cause not only a huge loss of property, but also
injuries and disabilities, or even deaths. The rate of fatalities
is also alarming for developed countries like the United States
and the United Kingdom. For example, the total number of
fatalities in 2014 and 2015 in the U.S. were 32,744 and 35,092
respectively, and the fatality percentage in the first half of 2016
was also 10.4% greater than the first half percentage of 2015
[2]. Also, Americans waste more than 1.9 billion dollars due to
the congestion problem in roads [3]. Among the road networks,
the entrance from ramps to a freeway for merging is one of the
major reasons for accidents, low traffic throughput, and delays.
A study shows that merge conflicts from ramps to freeways
incur 20-30% of truck accidents [4].

Researchers are working vigorously to automate the free-
way merge assistance system from the early ’90s to mitigate
fatalities incurred by the freeway merge conflicts, reduce over-
all driving time, and improve traffic throughput and road safety
measures. However, the automation of the freeway merge
assistance system is neither an easy nor a straightforward task.
An effective freeway merge assistance system must implement

three related applications, such as ramp metering, lane-change
advisory mechanisms, and merge control mechanisms. Two
main reasons for merge conflicts are the lack of an appropriate
gap (between a lead and a lag vehicle) on the freeway, and the
freeway drivers’ unawareness about vehicles in ramps. Many
researchers tried to study the optimal gap requirement for the
merging in early ’80s [5], [6]; however, they relied mostly on
simulation tools.

Recently, researchers and automotive companies have be-
gun working on vehicles that include On-Board Units (OBUs)
to increase road safety and provide assistive services to drivers.
A vehicle communicates and passes information to other
vehicles on the road using the OBU’s Dedicate Short Range
Communication (DSRC) mechanism. Developers around the
world are developing various applications (lane-change as-
sistants [7], signal phase timing for emergency and transit
vehicles [8], collision avoidance systems [9], signal phase
and timing information [10], traffic congestion [11], crash
prevention [12], etc.) for CV environments and uploading the
applications into the Open Source Application Development
Portal (OSADP) [13] of the Federal Highway Administration
of the U.S. Department of Transportation. In this paper, we
utilize the concepts of the current state-of-the-art algorithms
[14]–[17] and the DSRC technology to implement a freeway
merge assistance system that uses a three-way handshaking
communication protocol to provide advisory information to
drivers. The freeway merge assistance system will be released
in the OSAD Portal after a comprehensive testing.

The rest of the paper is organized as follows. Section
II summarizes the stat-of-the-art algorithms for the freeway
merge management; section III discusses the challenges that
one must solve while implementing a freeway merge assistance
system; section IV-B describes the preliminary data collection
procedure; section IV presents our technical approaches for
implementing the freeway merge assistance system; section
VI discusses the results from the field experiments; finally, we
conclude in section VII stating the limitations, alternatives, and
future research plans.

II. RELATED WORK

From the early 80s, researchers have made significant
progress in Automated Highway Systems (AHS) areas. How-
ever, the research has been transformed into a new dimen-
sion when vehicle and infrastructure were enabled to run
Intelligent Transportation System (ITS) applications. Simi-
larly, the automation of the freeway merging research has
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followed a new direction with the introduction of connected-
vehicle environment. Before the introduction of Dedicated
Short Range Communication (DSRC) technology for ITS ap-
plications, researchers used infrastructure supports or Internet-
based vehicles to develop their merge control algorithms ( [17],
[18]). For example, Lu et al. discussed an adaptive closed-loop
merging algorithm that determines the speed requirement for
the merging vehicles using several reference points (indicated
by external hardware like coded magnets or transponders) and
the speed of the main lane vehicles [18]. The main limitation
of such design is that the hardware and infrastructure modifi-
cations take a lot of resources and time. Wang et al. discussed
a cooperative merging control algorithm using inter-vehicle
communication where each vehicle acts as an intelligent agent.
The merging control algorithm uses the existing longitudinal
control mathematical models. The authors used the Internet-
based cars to perform V2V communication; however, no
details were given about the communication protocol. Rather
they focused more on the mathematical models.

With the advent of the DSRC technology, researchers have
begun to rethink the design of the AHSes in different areas
such as the queuing analysis, ramp metering, and merge control
algorithms. For example, authors in [19]–[21] discuss the
queuing analysis for the ramp and freeway using entrance
capacity and entry priority while taking the DSRC technology
into account. To achieve good freeway traffic throughput, a
queue control algorithm must take the capacity of an entrance
ramp into account. Hall et al. analyzed the important and
critical components of exit/entrance ramps (e.g., capacity of an
entrance ramp, distance between two entrance ramps, distance
between vehicles on the ramps, average time vehicles spend
on an entrance ramp, number of lanes of a ramp, etc.) of AH-
Ses [21]. Gap-responsiveness, variable speed, and coordinated
ramp metering techniques were also discussed in [22], [23]. Lu
et.al described a longitudinal control ramp metering algorithm
using different reference points with the help of infrastructure
support [18].

Now, researchers have been working on freeway merge
control algorithms considering different points of view, such
as whether the system is centralized or decentralized, whether
the system is designed for autonomous vehicles, whether
the system provides good advisory information, and whether
the system considers virtual platooning in their mathemati-
cal models. For example, Wang et al. discussed a proactive
and decentralized merging control algorithm that makes the
advisory decisions at some point before the actual merging
point [14]. Based on the advisory decisions, vehicles on ramps
and freeways can adjust their speed. However, they assumed
that their algorithm knows the decision points and merging
points beforehand. Some researchers focused on providing
advisory information for changing lanes in freeways using
the vehicular dynamics. For example, Park et al. improved
their previous fixed length safe gap lane changing advisory
algorithm to variable length safe gap with respect to the speeds
and vehicle dynamics to improve the freeway traffic and reduce
merge conflicts [15]. They collected the vehicle data for a
length of 2500ft near the merging point, starting a length of
1500ft before the merging point and 1000ft after the merging
point, and provided the lane changing advisory messages. For
calculating the safety gap, they considered the vehicle type,
vehicle length, acceleration, deceleration, and constant speed.

Another important factor of designing the freeway merge
assistance system is the analysis of driver response to the
advisory messages. Hayat et al. described the driver reactions
to the advisory messages in different roadway scenarios and
traffic conditions and presented a survey about the factors that
the drivers consider while responding the advisory messages
[16].

Almost all the merge control algorithms in [14], [22], [24]–
[29] were based on the position, speed, acceleration, and time
to reach the merging point (the time to reach the merging
point is also known as time to crash or ttc). However, Davis
presented a merge control algorithm using an adaptive cruise
control technique to improve the traffic throughput in [30].
Some researchers also discussed the impact of cooperative
driving to the merge control algorithms in [31] and [32].

Most of the researchers evaluated the performance of their
algorithms using simulation tools due to the unavailability
of DSRC enabled OBU in the market. Very few researchers
attempted to use roads in a very controlled environment (typi-
cally inside a test bed facility). No one has attempted to use the
actual freeway to evaluate merge assistance systems or merge
control algorithms. Thus, the systems or the algorithms lack
proper evaluation and overlook some unanticipated challenges.

III. PROBLEM DESCRIPTION AND CHALLENGES

In this section, we summarize the research challenges
to implement the freeway merge assistance system. We also
discuss some unanticipated challenges while collecting the
preliminary data (data collection procedure is discussed in
section IV-B) in actual freeways.

1) Gap length: Prediction or generation of the safe gaps
on the rightmost lane in a freeway is a crucial factor for
providing good advisory suggestions by a freeway merge assis-
tance application. Depending on the traffic, a merge assistance
system can detect or generate the safe gaps in several ways.
For example, if a vehicle is traveling on the rightmost lane, the
assistance system can suggest the vehicle to change the lane
(if possible) to create a gap. However, the application should
advise such well in advance. On the other hand, during heavy
traffic when there is no room for lane changes, the application
should advise multiple vehicles traveling in the rightmost lane
to form platoon and drive cooperatively (the group vehicle
can either slow down or speed up) to create a safe gap for
cooperative merging. This estimation of the gap must be very
precise and accurate.

2) Time to merge: It is necessary to calculate the time to
reach the merging point by measuring the distance between
the merging point and a vehicle. However, the linear distance
approximation methods may not work for some entrance
ramps, such as the cloverleaf interchanges (Fig. 1), due to the
complex geometrical shape.

3) Advisory start time: The freeway merge assistance
system should disseminate the advisory information to all
participating vehicles so that the vehicles in the entrance ramp
and freeway can merge smoothly. Typically, a vehicle in the
ramp needs around 20-35 seconds to merge completely onto
the freeway. Hence, there should be a finely tuned time line for
displaying the advisory information to the drivers. Displaying
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Fig. 1: Circular entrance ramps in cloverleaf interchanges

advisories too early may lead to confusion regarding merging
decision. On the other hand, showing the advisory information
too late will leave insufficient response time for the drivers.

4) Driver response time and behavior: The effectiveness
of any highway advisory application depends on the drivers’
response time and willingness to cooperate with the suggested
advisory messages. Since there has been no DSRC application
implemented and tested for freeway merging, driver behavior
is still an open research issue.

5) Vehicle lane detection: Only vehicles on the rightmost
lane in a freeway will conflict with those merging from
entrance ramps. Hence, the merging assistance system needs
a mechanism to identify vehicles on the rightmost lane, and
to discard non-conflicting vehicles on other lanes to reduce
the computational complexity the system. Vehicles in the
opposite direction, vehicles that cross the merging point, and
the vehicles in opposite entrance or exit ramps are the non-
conflicting vehicles.

6) Fog computing: DSRC enabled On-Board Units spend
most of the computational resources for disseminating various
kinds of safety packets. Additional computations might be
burdensome for the OBUs. Hence, it might be efficient to
offload some of the complex computations to a connected
smart device using the concept of fog computing. However, the
communication latency between the OBU and a smart device
should be studied to find out how much computation can be
offloaded without hampering the real-time execution of the
system.

7) Distorted signals: DSRC signals can be distorted or
lost because of nearby buildings, bridges, steep highways,
differences of altitude, etc. We experienced distortions when
collecting preliminary data in Fig. 2. It might be necessary
to continue extrapolating the trajectory until further signal is
received or discarding the distortions.

Fig. 2: Distortions in the DSRC signals

IV. SYSTEM DEVELOPMENT

In this section, we describe the step by step technical
approaches used to develop the algorithms for implementing
the assistance system. The system uses the DSRC enabled
OBUs to communicate between vehicles and an Android
device to display the advisory alerts and information to the
drivers. The communication between an OBU and an Android
device is established using the Bluetooth connectivity.

A. Assumptions

For the initial version of the freeway merge assistance
system to work properly, we assume the following criteria.

1) The system assumes that all the vehicles are running
in the connected-vehicle environment.

2) Since the communication delay is in the third order
of a second, the DSRC communication delay is
negligible.

3) Similarly, the system’s computation cost is negligible.
4) The assistance system knows when a vehicle enters

on the entrance ramp.
5) The system orders the vehicles based on the time to

reach the merging point. The system also determines
the safe gaps in the freeway based on the speeds and
the differences of the freeway vehicles’ time to reach
the merging point.

6) The entrance ramps are not circular and not signifi-
cantly bended.

7) Only the ramp vehicles observe the mobility traces
of other vehicles including themselves and make
the advisory decisions. The freeway vehicles only
transmit the BSM and replies to the control messages
using synchronization messages (more details about
the control and synchronization messages appear in
section IV-C).

8) The freeway merge assistant system provides the
advisory messages; however, the compliance of the
advisory messages is sole depended on the drivers.

B. Preliminary Data Collection

To analyze the many parameters of the merge assistance
system, we collected preliminary data. We designed and
developed the assistance system based on the analysis of
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Fig. 3: Primary location of the preliminary field-test (Interstate
26 exit 27)

Fig. 4: Secondary location of the preliminary field-test (en-
trance ramp to US 321)

the preliminary data. Detailed steps of the preliminary data
collection procedure include the following:

1) Location of the field-test experiments: To collect the
preliminary data, we conducted our pilot experiment on the
interstate I-26 (Fig. 3) and US Highway-321 (Fig. 4). We used
two vehicles equipped with DSRC aftermarket On-Board Units
(Arada Locomate Classic OBU [33]) to collect the preliminary
data. One driver drove the first car in the ramp and another
driver drove the second car in the freeway. Since timing was a
crucial factor to collecting appropriate data, we synchronized
our timings by phone. We took a total of six samples in three
exits (Exit 27 on I-26 West bound, Exit 27 on I-26 East bound,
and an Exit on US-321 North bound). We discarded three
samples because of the poor timings of the two drivers.

2) Data storage and format: Our live trajectory data
collected during the preliminary field tests were stored real-
time on a USB drive as space separated values in text files.
The USB drive was attached to the OBU. The data elements
comprised of the transmitting device ID, GPS positions (lat-
itude, longitude, altitude), GPS time, speed, and direction of
vehicle heading. The in-built GPS unit attached with the DSRC
device calculated the speed in m/s, which was converted to
mph by our communication protocol before transmitting.

3) Preliminary data analysis: The table in Fig. 5 shows a
sample of our collected data and the data format. We plotted
the positions of the two vehicles (one in the ramp and another
in the freeway) on Google Maps (Fig. 6) with the interval of
every fifth of a second. We can determine from the preliminary
data that the speed of the vehicles in the freeway is almost
constant; however, the speed fluctuates when a driver sees
any vehicles on the entrance ramp. The fluctuation in the
speed potentially leads the merge conflicts. Fig. 7 and Fig. 8

Fig. 5: Sample data

Fig. 6: Positions of the two vehicles on exit 27 of I-26 west
bound

Fig. 7: Speeds of the freeway vehicle and the ramp vehicle on
exit 27 of I-26 west bound

Fig. 8: Speeds of the freeway vehicle and the ramp vehicle on
exit 27 of I-26 east bound

show the speed fluctuation. We can also determine the average
acceleration time, average distance covered by a vehicle on
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Fig. 9: Merging of the ramp vehicle into the freeway

the entrance while accelerating, average merging time, and
average merging distance. The average acceleration time and
the merging time for the vehicle merging into the freeway
from the ramp on exit 27 of I-26 west bound were 15 seconds
and 3.6 (average 4) seconds respectively. To calculate the
average merging time, we sampled the timestamps when the
vehicle on ramp achieves the desired speed to merge into
the freeway (1483727093.8) and completely merges into the
freeway (1483727097.4), shown in Fig. 9. The ramp vehicle
on the exit 27 of I-26 west bound covered 285 meters for
achieving 60 mph speed and 96 meters for merging into the
freeways. This data indicates that any freeway merge assistance
system must start its operations 15-20 seconds before reaching
the merging point (or 300-400 meters from the merging point).

C. Communication Protocol

The merge assistance system uses a single hop commu-
nication protocol. The step-by-step details of this protocol is
described in one of our prior works [34]. The system also uses
a 3-way handshaking protocol (Fig. 10) for synchronizing the
timings of the connected vehicles. In the 3-way handshaking
protocol, a vehicle can make a synchronization request to
other vehicles by transmitting a control message (the format
of the control message is given in Table. I). The other vehicles
can reply to the control message using a synchronization
message (the format of the control message is given in Table.
II). The recipient of the synchronization messages can also
acknowledge the synchronization message by transmitting an
acknowledge message. We describe more on how and when
to use the 3-way handshaking protocol in the making advisory
decisions step described in section V-C.

TABLE I: Format of a control message

MAC TTC TDM
MAC = Address of the OBU
TTC = Time to reach the crash/merging point
TDM = Timestamp of making advisory decisions

TABLE II: Format of a synchronization message

IER RT IDM TTC
IER = Is the vehicle on the entrance ramp?
RT = Amount of time spent by a vehicle on the ramp
IDM = Is the advisory decision made?
TTC = Time to reach the crash/merging point

Fig. 10: 3-way handshaking protocol

We also implemented Bluetooth communication between
OBU and Android device. For the preliminary data, each OBU
transmitted its identifier, position, speed, and direction in every
fifth of a second through a transmitter program. The OBU also
received and logged the mobility traces of the vehicles within
its range. Since the GPS timestamp was updated every fifth of
a second, the transmitter program transmitted data five times
in a second.

V. WORK-FLOW OF THE SYSTEM

The freeway merge assistance system goes through several
steps before providing advisory messages to drivers. Algorithm
1 describes the pseudo code of the core algorithm. Addition
details are described in the following subsections.

A. Transmission and reception of BSM packets

The freeway merge assistance system transmits and re-
ceives the BSM packets with the customized payload fields
described in the Table III. The system only receives the BSM
packets from vehicles within its range. The system then sends
data to the connected smart phone to plot each vehicle on a
map (Fig. 11 & line 14 in the algorithm). If no vehicle is
within the DSRC range of the current vehicle (current vehicle
means the vehicle where the assistance system is running), then
the merging assistance system plots only the current vehicle
on the map and provides no advisory messages. The merging
system marks the current vehicle with the blue color and all
the connected/neighbor vehicles with the red color. The system
also has a ramp tracker system that repeatedly tracks if vehicles
are entering in the entrance ramp.

TABLE III: Payload fields of a BSM packet

MAC TS Lat Lon Alt S Lat Dir Lon Dir
MAC = Address of the OBU
TS = Timestamp
Lat = Latitude
Lon = Longitude
Alt = Altitude
S = Speed
Lat Dir = Latitude Direction
Lon Dir = Longitude Direction
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Algorithm 1: CalculationTTC
Data: ramps←− list of ramps with start positions
Result: ttc←− time to reach the merging point for each vehicle

1 begin
2 while true do
3 packet = receiveDSRCPacket()
4 if packet == CTRL then
5 m←− unwrap(packet)
6 if m.getMAC() == MY MAC ADDRESS then
7 transmitSYNCMessage(ttc)

8 else if packet == SYNC then
9 m←− unwrap(packet)

10 ttc.add(m.getTTC())
11 else
12 myData←− getMyData() /* data of the vehicle that runs the algo */
13 vehicleData←− unwrap(packet)
14 NeighborTracker.track(vehicleData)/* track neighbors on the map */
15 isEnteredRamp = RampTracker.track(ramps, myData.getPosition())
16 if !isEnteredRamp then /* Only ramp vehicle observes the dynamics */
17 continue
18 if isDecisionMade then /* One time decision only */
19 continue
20 constAccel←− CalculateRampVehicleConstAcceleration()
21 if constAccel < APP THRESOLD ACCEL then
22 continue
23 Map.insert(vehicleData.macaddress)
24 vehicleNo ←− Map.find(vehicleData.macaddress)
25 DataQueue[vehicleNo].push(vehicleData)
26 observedT ime ←− getObservationTime()
27 if observedT ime <APP OBS TIME then
28 continue
29 for each freeway vehicle do
30 sampledData ←− sampleVehicleData(DataQueue, numOfSamples)
31 for each sample in sampledData do
32 mergPoint = calcuateMergePoint(sample)
33 mergePoints.add(mergePoint)
34 speeds.add(sample.speed)
35 avgSpeed ←− calculateAvgSpeed(speeds)
36 avgSpeeds.add(avgSpeed)
37 finalMergePoint ←− calculateAvgMergePoint(mergePoints)
38 for each freeway vehicle do
39 d ←− calculateDistance(sampleData.getLastSample().getPosition(), finalMergePoint)
40 t ←− d/avgSpeeds.getSpeed()
41 ttc.add(t)
42 rampV ehicleAvgAccel ←− calculateAvgAcceleration(DataQueue)
43 d ←− calculateDistance(DataQueue.getLast().getPosition(), finalMergePoint)
44 t ←− solveQuadraticEqn(rampV ehicleAvgAccel, DataQueue.getLast().getSpeed(), d)
45 ttc.add(t)
46 for each freeway vehicle do
47 m ←− generateCTRLMessage(ttc)
48 transmitCTRLMessage(m)
49 isDecisionMade ←− true
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Fig. 11: Three connected vehicles on the map indicated by the
markers

TABLE IV: Advisory and alert messages of the system

Advisory and Alert Messages Description
Entered the ramp This alert message is sent to all the connected

vehicles in both in the ramp and freeway when a
vehicle entered in an entrance ramp.

Keep the speed This advisory message is sent to that vehicle
which takes the lowest time to reach and cross
the merging point.

Merge behind This advisory message is sent to a vehicle which
should merge behind another vehicle.

Slow down This advisory message is sent to a vehicle that
should slow down to make a longer gap and let
another vehicle to merge in front of it.

B. Observation of vehicular trajectories

If the merging assistance system detects any vehicle en-
tering in an entrance ramp, the system notifies the presence
of the ramp vehicle to all the connected vehicles using the
“Entered the ramp” alert message as described and depicted
in Table IV and Fig. 12 respectively. This alert message alerts
drivers for an oncoming merging and helps them to know the
presence of vehicles on the entrance ramp without bending
their necks (or in the cases when their vision is blocked by
bushes or altitude differences). Once the ramp vehicle achieve
a constant acceleration, the merge assistance system of the
ramp vehicle triggers the core algorithm and starts keeping
tracks the mobility traces of the connected vehicles including
its own trajectory for t1 seconds. From the tracked traces,
the system calculates t1 crash/merging points. The reason for
calculating t1 merging points is to reduce the error incurred
by the approximation of the merging point. The system then
calculates the final merging point by averaging the t1 merging
points. The distance of a merging point greater than 400m
from the current position of the ramp vehicle is discarded
while calculating the average. The detailed techniques of the
approximation of a merging point is discussed in section V-E.

C. Generation of advisory messages

Once the merge assistance system finds the final merging
point, the ramp vehicle determines the required time to reach
the merging point (which is also known as the time to crash)
for each vehicle. Then the system requests for synchronization
from other vehicles by transmitting a CTRL message to each
vehicle. The CTRL message contains the timing information of

vehicle for whom the CTRL message transmitted. Each vehicle
replies to the CTRL message by transmitting a SYNC message
to every vehicle. The ramp vehicle then acknowledges the
SYNC messages by sending an ACK message to each vehicle.
The ACK message contains the timing information of the ramp
vehicle. Once all vehicles receive the ACK messages from the
ramp vehicle, that means all vehicles are synchronized and
each vehicle has the timing information of all other vehicles,
including itself. Then the assistance system of each vehicle
generates the appropriate advisory message for itself using
the timing information. For example, if a vehicle requires the
least time to reach the merging point than other vehicles, the
assistance system generates an advisory message called “Keep
the speed”. If the time of a freeway vehicle to reach the
merging point is longer than a ramp vehicle, then the assistance
system generates an advisory message called “Slow down”.
If the time of a ramp vehicle to reach the merging point is
longer than a freeway vehicle, the assistance system generates
an advisory message called “Merge behind”. However, the
freeway merge assistance system does not consider a safe
gap before providing the “Merge behind” advisory message
because the determination of safe gaps is out of the scope of
this study. But the freeway assistance system makes a reason-
able assumption based on the speed and time differences of
freeway vehicles. For example, if the time difference between
two freeway vehicles to reach the merging point is 3 seconds
and their average speed is 60mph, then the gap length would
be around 80 meters. However, no minimum gap requirement
was enforced in this study.

Fig. 12: A vehicle entered on the ramp
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D. Visualization of advisory message

Once the merge assistance system generates the advisory
message, the system sends the information to the map applica-
tion on an Android device using Bluetooth connectivity. The
application displays the advisory message over the marker as
a text message. The application also highlights the reference
marker. For example, a freeway vehicle may need to slow down
for a ramp vehicle; in this case, the application displays the
“Slow down” message to the freeway vehicle and highlights the
ramp vehicle. Several scenarios on the advisory visualization
are depicted in the Fig. 13. For example, Scenario 2 showed
that a ramp vehicle is being advised to merge behind the
freeway lead vehicle using the “Merge behind” advisory
message over the ramp vehicle marker and the marker of the
freeway lead vehicle was highlighted.

E. Calculating the Time to Crash

To calculate the time to crash,

1) First, we calculate the bearing of the trajectories for
both freeway and ramp.

2) Then, we find the intersection of the two extrapolated
great circles using the most recent lat-lon coordinates
and the associated bearings. This gives us the approx-
imate merging point.

3) From the merging point, we calculate the distances
from both the approaching vehicles along the ramp
and on the freeway.

4) Once the distance is known, we find the time to
crash for both freeway and ramp vehicles using the
kinematic equations.

Below we describe the mathematical equations involved in
each of the aforementioned steps.

1) Finding the Bearing: The bearings for both the ramp
and freeway vehicles were calculated using two subsequent
recent GPS coordinates from respective trajectories. The fol-
lowing equation was used for this purpose:

θ = atan2(sin ∆λ cosφ2, (cosφ1 sinφ2−sinφ1 cosφ2 cos ∆λ))
(1)

where,

φ1, λ1 : latitude and longitude of first reference point
φ2, λ2 : latitude and longitude of second reference point
∆λ : the difference in longitude between the two points

2) Finding the intersection point: This was calculated
from Edward Williams’ aviation formulary [35] using series
of GIS equations as follows:

δ12 = 2 arcsin(

√
(sin2(

∆φ

2
) + cosφ1 cosφ2 sin2(

∆λ

2
)))

θa = arccos(sinφ2 −
sinφ1 cos δ12
sin δ12 cosφ1

)

θb = arccos(sinφ1 −
sinφ2 cos δ12
sin δ12 cosφ2

)

if sin(λ2 − λ1) > 0

θ12 = θa
θ21 = 2π − θb

else

θ12 = 2π − θa
θ21 = θb

α1 = (θ13 − θ12 + π)%2π − π
α2 = (θ21 − θ23 + π)%2π − π
α3 = arccos(− cosα1 cosα2 + sinα1 sinα2 cos δ12)

δ13 = atan2(sin δ12 sinα1 sinα2, cosα2 + cosα1 cosα3)

φ3 = arcsin(sinφ1 cos δ13 + cosφ1 sin δ13 cos θ13)

∆λ13 = atan2(sin θ13 sin δ13 cosφ1, cos δ13 − sinφ1 sinφ3)

λ3 = (λ1 + ∆λ13 + π)%2π − π
where,

φ1, λ1, θ1 : 1st starting point & bearing
φ2, λ2, θ2 : 2nd starting point & bearing

φ3, λ3 : intersection point
% : (floating point) modulo

3) Calculation of the distance: For calculating the
distance, we can use the Haversine Formula.

a = sin2(
∆φ

2
) + cosφ1 cosφ2 sin2(

∆λ

2
)

c = 2 atan2(
√
a,
√

1− a)

d = Rc

where, φ is latitude, λ is longitude, R is earth’s radius (mean
radius = 6,371km);

4) Using Kinematic equations to calculate the time:
Once the system finds the distances to the final merging
point, it calculates the time required to reach that point using
two kinematic equations: (i) d = u ∗ t + 1

2a ∗ t2 and (ii)
d = vt. We need the first equation to calculate the time
for the vehicles in the ramps and the second equation for
the vehicles in the freeways. We calculated the acceleration
for the freeway vehicles from our preliminary data and found
that the acceleration is on average 0.15m/s2. Since 0.15m/s2

acceleration is negligible enough to consider the freeway speed
as constant, we consider the second equation for the freeway
vehicles to calculate the time required to reach the merging
point.

VI. RESULTS

To evaluate our model, we conducted our pilot experiment
on interstate I-26 for exits 27, 32, 34, and 36 in both East and
West bound lanes. Three drivers participated in the experiment
who have valid US driver licenses and are accustomed to
driving in interstates. Before the experiment in the interstate,
we trained the drivers about how the system works and how
to interpret the alert and advisory messages. Among the three
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drivers, two drove in the freeway and one drove in the ramp.
The driver who drove in the ramp synchronized his timing by
phone with the lead driver in the freeway to merge at relatively
the same time so the merge assistance system could detect
a potential merge conflict. The second driver in the freeway
followed the first driver, keeping a distance of around 50-
100 meters. These drivers drove to generate three scenarios as
described in Table V. Fig. 13 illustrates the visual represen-
tations of the advisory messages that drivers receive through
the Android device. The distance covered by a vehicle from
the decision point to the merging point (Distance), average
acceleration of the ramp vehicle (Avg Accel), average speed of
the freeway vehicles (Avg Speed), time to crash (TTC) values,
and associated merge advisory messages of the three vehicles
are described in Table VI . The associated merge advisory
messages are also shown in the table. For example, the ramp
vehicle in the exit 27 (EB) covered 166.208 meters from the
decision point to reach the merging point. The freeway merge
assistance system couldn’t generate merge advisories for exit
34 (both East bound and West bound) due to the error in
merging point approximation. The significant bend in the two
ramps resulted the approximation error.

Fig. 13: Advisory visualization on the map

TABLE V: Advisory scenarios

Scenario 1 In this scenario, the assistance system suggests the ramp vehicle to
merge in front of the freeway lead vehicle.

Scenario 2 In this scenario, the assistance system suggests the ramp vehicle merge
behind the freeway lead vehicle.

Scenario 3 In this scenario, the assistance system suggests the ramp vehicle merge
behind the freeway lag vehicle.

VII. CONCLUSIONS AND FUTURE PLANS

Progress in CV technology has created opportunities for
researchers and automakers to develop applications that pro-
vide vehicles with new safety, alert, and assistive features. This
paper described the necessity of connected vehicle technology
for detecting and avoiding merge conflicts on the freeways.
The research described a novel decentralized freeway merge
assistance system. To the best of our knowledge, this is the first

TABLE VI: Distance traveled and time passed to reach the
merging point from the decision point with the associated
merging advisory messages

Entrance

Ramp

No of

I-26

Ramp vehicle Freeway vehicle 1 Freeway vehicle 2

Distance

(m)

TTC

(sec)

Avg Accel

(m/s2)

Distance

(m)

TTC

(sec)

Avg

Speed

(mph)

Distance

(m)

TTC

(sec)

Avg

Speed

(mph)

27 (WB)
136.328 3.603 3.519 132.006 2.789 47.334 107.377 2.317 46.342

Merge behind (Freeway vehicle 1) Advisory not generated Keep the speed

32 (WB)
279.746 6.958 3.543 304.243 5.741 52.994 406.324 8.140 49.915

Merge behind (Freeway vehicle 1) Keep the speed Slow down for (Ramp vehicle)

34 (WB)
-1 -1 3.688 -1 -1 44.702 -1 -1 44.966

Merge advisory not generated

(details reason in section VI)
Advisory not generated Advisory not generated

36 (WB)
249.177 5.525 3.670 265.440 4.279 62.024 324.747 5.449 59.593

Merge behind (Freeway vehicle 2) Keep the speed Advisory not generated

36 (EB)
272.701 6.336 4.779 252.588 4.525 55.819 349.361 6.674 52.343

Merge behind (Freeway vehicle 1) Keep the speed Slow down for (Ramp vehicle)

34 (EB)
-1 -1 2.842 -1 -1 64.283 -1 -1 64.757

Merge advisory not generated

(details reason in section VI)
Advisory not generated Advisory not generated

32 (EB)
268.663 7.179 3.080 318.373 4.968 64.081 301.152 4.386 68.647

Merge behind (Freeway vehicle 1) Advisory not generated Keep the speed

27 (EB)
166.208 5.599 2.073 168.284 2.987 56.321 193.347 3.319 58.239

Merge behind (Freeway vehicle 2) Keep the speed Advisory not generated

attempt to develop and evaluate a freeway merge assistance
system using real-world vehicular mobility traces and an actual
interstate. We described the step-by-step technical approaches
of a freeway merge assistance system. We also evaluated
the merge assistance system for eight exits along interstate
I-26. Experiments demonstrate that the system can provide
accurate advisory information for straight ramps. However,
the initial version of the merge assistance system has some
limitations, such as detection of the conflicting vehicles in
the right most lane in freeways, detection of non-conflicting
vehicles, and incorporation of circular ramps. In the next
version of the merge assistance system, we will try to address
the limitations and minimize their impacts. In our algorithm,
we have used the Haversine formula which is more precise
than the Equirectangular approximation. However, to increase
the scalability, we may use the Equirectangular approximation
since it is computationally less expensive.

Another important issue of the freeway merge assistance
system is the driver compliance. Driver compliances signif-
icantly impact the overall accuracy and performance of the
merge assistance system. However, good driver compliances
depend on the visual system of the advisory information. How-
ever, providing good visualization of advisory information that
makes less distraction to the drivers is challenging. Therefore,
in the future, we plan to incorporate the cruise control feature
in our merge assistance system so every vehicle can act as a
level one semi-autonomous vehicle. More specifically, every
vehicle will trigger the cruise control at the decision point
and maintain its current speed until it crosses the merging
point. This way, we can minimize the impacts of the driver
compliance issue. Finally, we will upload the source code of
our merge assistance system to the Open Source Application
Development Portal after rigorous testing.
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Abstract—Contemporary studies of Intelligent Transportation
Systems (ITS) use simulations of vehicular and communications
traffic, due to the ethical and practical infeasibility of conducting
experiments on real transportation networks. Different simulators
have been developed for modeling real-time vehicular mobility
and inter-vehicular communication under varying traffic and
roadway conditions. While most model the effect of mobility
on communications, only a few simulate the impact of inter-
vehicular communication on vehicular mobility. None, moreover,
are implemented as parallel or distributed frameworks: an
essential requirement for the study of ITS applications in large-
scale urban environments. As a starting point for developing
such a framework, one contemporary simulator, VNetInetSim,
was tested to determine its behavior under large loads. Testing
determined that VNetInetSim’s memory usage and execution time
increase exponentially in the number of simulated vehicles while
remaining relatively constant under increased communication
traffic.

Keywords—Intelligent Transportation System (ITS), Inter-
vehicle Communication, Simulator, Vehicle dynamics, Vehicular Ad
Hoc Network.

I. INTRODUCTION

Over the past few decades, a substantial increase in au-
tomobile usage has led to increases in highway congestion,
incidents, fatalities and greenhouse gas emissions. In 2012
USA TODAY reported that Americans annually waste 1.9
billion gallons of gasoline in traffic on congested roads and pay
more than $100 billion in wasted fuel and lost time [1]. These
adverse effects of automobile usage impact peoples’ lives and
degrade the quality of the Earth’s environment.

Currently, automakers and technology developers like
Google, Ford, and General Motors are making concerted
efforts to improve surface transportation through Automated
Vehicle (AV) technology [2], [3]. While AV can potentially
reduce the stress of navigating traffic, its focus in most of
cases is limited to the operation of vehicles in isolation
from one another. This limitation is addressed by Connected
Vehicle (CV) technology, which seeks to apply inter-vehicular
communication to the development of safe, driver-friendly, and
energy efficient assistive technologies for vehicle operation.
One of the primary goals of CV research is the optimization of
traffic flow across an entire transportation network through the
exchange of information obtained through vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communications.
This exchanging of information, collectively known as V2X
communications, could assist drivers in avoiding congestion,
reducing vehicle stops, choosing a best route, and optimizing
fuel efficiency.

The large scale deployment of CV technologies faces
several challenges, particularly for urban environments. Eval-
uating the performance of CV-based safety-critical real-time
applications in large-scale urban environments under varying
traffic and roadway conditions is difficult, since these con-
ditions can’t be generated in practice. Additionally, failures
of CV-based applications may result in loss of lives. These
issues can be addressed by using simulations to study and test
ITS applications. Simulating ITS and CV systems, however,
requires the integration and synchronization of two tightly
coupled domains. The one, the transportation domain, models
vehicular mobility, including traffic routing, car-following,
lane-changing, vehicle dynamics, driver behavior, and traffic
signal controls. The other, the communication domain, models
mechanisms for data-traffic-related communications, including
packet routing, end-to-end message delivery, and V2X-related
cross-layer protocols. These two domains directly affect each
other’s operation. For example, high speed traffic networks
with high vehicle density may delay V2X communications
and degrade communication quality [4]. On the other hand,
communication delay and data loss may degrade the modeling
of vehicular operation. Such degradations, even if minute,
could adversely affect the ability of V2X-based applications
to assure their users’ safety.

Efforts to develop a complete transportation simulator with
a wireless network simulator for modeling and evaluating
V2X-based ITS applications have been ongoing for the past
decade. Older simulators fed fixed mobility trajectories to
a communication network simulator. Many researchers [5]–
[8] have studied the various mobility models developed for
state-of-the-art simulators. However, a comparative modular
analysis of different simulator components has yet to be
written. Our current research, which focuses on the capabilities
and limitations of existing sequential simulators in terms of
their modular organization and architecture, has identified the
need for a parallel simulation platform to support large-scale
simulations of urban surface transportation systems [9].

The rest of the paper is organized as follows. Section
II surveys the state of the art in CV simulators. Section III
summarizes this survey’s findings in tabular form. Section IV
presents the results of preliminary load tests of VNetInetSim,
a contemporary ITS simulator, and what they reveal about the
simulator’s scalability. Section V concludes with considera-
tions related to the implementation of parallel simulators for
evaluating large scale urban vehicular networks.

II. STATE OF THE ART VANET SIMULATORS

Current Vehicular Ad Hoc Network (VANET) simulators
can simulate the impact of vehicular communication on trans-
portation systems. Some simulators can also create dynamic978-1-5090-2246-5/16/$31.00 c©2016 IEEE
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mobility trajectory traces and mobility models. Examples of
these simulators include ASH, STRAW, Veins, VnetIntSim,
TraNS, iTETRIS, GrooveSim, and Automesh.

A. ASH

Application-aware SWANS with Highway mobility (ASH)
[10] provides an application-aware mobility model using two-
way communication between a vehicular mobility model
and a network simulator. Ibrahim and Weigle use the term
“application-aware” to emphasize ASH’s simulation of safety
considerations such as alert information and lane-changing
through two-way communication.

ASH extends work by various authors. Its supporting mod-
ules include the Scalable Wireless Ad hoc Network Simulator
(SWANS) [11], which ASH uses as its network model; the
Intelligent Driver Model (IDM) [12] module, which models
how cars follow other cars; the Minimizing Overall Braking
decelerations Induced by Lane changes (MOBIL) [13] module,
which uses an incentive criterion for lane attractiveness and a
safety criterion to model lane changes; and a node model for
its mobility model. ASH also uses the Inter-Vehicle Geocast
(IVG) [14] and probabilistic IVG (p-IVG) [15] protocols to
broadcast messages.

ASH extensions to SWANS include the following:

• Modeling two-way communication between the mo-
bility and networking models. ASH implements two-
way communication by using its application layer
to override IDM/MOBIL’s normal behavior through
acceleration, deceleration, and lane-change mobility
control primitives.

• Modeling highway topology. ASH’s configuration file
specifies road segment characteristics such as segment
length, number of directions, number of lanes, and the
number and locations of exits and entries.

• Modeling mobility states. ASH’s node model repre-
sents a participating vehicle as a mobile communi-
cating node, a non-participating vehicle as a mobile
silent node, a roadside unit as a static communicating
node, and a road obstacle as a static silent node.
Participating vehicles run user-defined applications at
simulation time whereas non-participating vehicles run
a null application.

• Intelligent broadcast. In place of flooding-based
broadcasting, ASH uses the IVG algorithm with a
timer for node broadcast. IVG reduces network traffic
by using a timer to expire broadcast messages.

• Logging and statistical facilities. ASH supports log-
ging utilities at different levels including the sim-
ulation, lane, vehicle, and message type levels. It
also maintains the statistical simulation data of every
vehicle in order to answer statistical queries.

B. OVNIS

Pigne et al. describe OVNIS as a realistic vehicular net-
work management platform that can adjust node mobility and
generate vehicular traces at runtime [16]. OVNIS manages

an interconnection between the Simulation of Urban Mobility
(SUMO) traffic simulator [17], a vehicular mobility simulator
that supports programmed interaction through Application Pro-
gram Interfaces (APIs), and network simulator 3 (ns-3) [18],
a wireless network simulator that can simulate about 20000
nodes in a network. OVNIS also embeds a tool that generates
vehicular traces based on real traffic data.

OVNIS’s Traffic Aware Network Manager, the net-
work management platform’s main component, maintains a
feedback-based interconnection with its traffic simulator and
nodes applications modules. The Traffic Aware Network Man-
ager module does the following during simulation:

• Starts, initializes and operates the network simulator.

• Starts the traffic simulator.

• Allows the nodes applications module to query the
traffic simulator about every node’s speed, position,
speed limit, and lane number.

• Iteratively pulls mobility information from the traffic
simulator.

• Manages node mobility according to the pulled mo-
bility information.

Pigne et al. evaluated OVNIS using two experiments. The
first tested OVNIS’s overall computation performance based
on its radio signal ranges. The experimental data shows that
“the smaller the range, the faster the computation.” The second
experiment evaluated OVNIS’s correctness, based on the extent
to which simulated vehicles changed routes as the volume of
vehicles increased. Their experiments showed that the vehicles’
average speed decreases and inter-vehicular communication
increases with an increase in the volume of vehicles. Then
the vehicles start finding alternative routes and managing their
routes.

C. STRAW

Choffnes and Bustamante’s STreet RAndom Waypoint
(STRAW) [19] application supports the modeling of vehicular
motion in urban roads. STRAW can model road segments,
intersections, traffic control mechanisms, and individual vehi-
cles, including high speed vehicles and inter-vehicular commu-
nication. STRAW’s support for modeling individual vehicles,
according to its authors, distinguishes it from earlier VANET
simulators.

STRAW treats a vehicle as a node with a set of properties,
including maximum speed, reaction time and acceleration rate.
Road segments, or portions of roads between two intersections,
are modeled according to their shape, length, width, name,
speed limit, class and address attributes. Traffic control mech-
anisms provide deterministic admission control protocols for
vehicles at each intersection.

STRAW is architected as a system of three interacting com-
ponent models. They include an intra-segment mobility model,
an inter-segment mobility model, and a route management and
execution model.

The intra-segment mobility model simulates vehicle motion
within individual road segments. Motion is simulated using a
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car-following mechanism that accounts for the speed of the
vehicle that a simulated vehicle is following and the distance
to that vehicle. Vehicles use this model to accelerate to a
maximum limit and decelerate on encountering speed limits,
stop signs and stoplights.

The inter-segment mobility model determines how vehicles
behave at intersections. The model applies a deterministic ad-
mission control protocol to determine how vehicles accelerate
and decelerate. It also determines a vehicle’s waiting time at
stop signs and stop lights.

The route management and execution model determines
the road segment that a vehicle will enter when it crosses
an intersection. The model can choose this segment using
a deterministic or a stochastic strategy. The deterministic
strategy selects the next segment based on the fastest time and
shortest distance to a preassigned destination, as calculated
by the A* search algorithm. The stochastic strategy assigns
probable road choices to a vehicle based on its trajectory. It
then uses a probability value at each intersection to select the
next segment.

STRAW supports two strategies for modeling driver re-
sponse to vehicular collisions. In the particle system approach,
a vehicle detects and reacts to collision events. In the vehicular
approach, a vehicle detects collisions and avoids them when it
can.

According to Choffnes and Bustamante, STRAW’s mobil-
ity model is general enough to integrate into any wireless
network simulator. The model performs well in terms of
memory usage, but the computation cost is high for large
numbers of vehicles. The model also fails to support the
dynamic allocation and deallocation of vehicle nodes and lane
changing.

D. Veins

The Vehicles in Network Simulation (Veins) [20] is a
hybrid framework for evaluating the impact of inter-vehicular
communication (IVC) protocols on road traffic mobility. Veins
consists of a network simulator, a road traffic simulator, and
a communication channel that supports the active exchange of
control and data between the two simulators.

Veins’ network simulator, OMNeT++ [21], is an event
based simulator that simulates VANET protocols with the help
of Veins’ INET Framework extension. OMNeT++ represents
VANET scenarios as hierarchical modules and stores the
relationship and communication links between modules in
network description files. Connectivity protocols such as TCP,
UDP, IPv4, and ARP are added to OMNeT++ as extensions
by the INET Framework.

Veins’ road traffic simulator extends SUMO with Krauß’s
(1998) car-following mobility model. According to Sommer et
al. [22], combining SUMO with the IVC protocols provides
better simulation results than SUMO alone.

Veins uses dedicated modules to support bidirectional com-
munications between OMNeT++ and SUMO. These modules
use a TCP connection to exchange simulation commands
and mobility traces. Each simulator buffers commands as it
receives them and processes commands in the order received.

Commands are processed in rounds, as follows. At each
time step, OMNeT++ sends all buffered commands to SUMO.
SUMO simulates a round of traffic, then replies with a series
of commands and generated mobility traces. OMNeT++ uses
the traces to reconfigure the movement of nodes (vehicles).
OMNeT++ allows nodes to alter their speeds and routes
according to IVC, if all commands are processed and nodes
reconfigured before next scheduled time step.

Sommer et al. used Veins to evaluate the impact of two
IVC protocols on VANET scenarios. In the one protocol, ve-
hicles communicate directly to a dedicated centralized Traffic
Information System (TIS) using TCP connections and stan-
dard MANET (Mobile Ad Hoc Network) protocols. Vehicles
exchange incident warnings with the TIS at intervals of 60s
or 180s depending on road traffic. The TIS also maintains
connections with roadside units in order to improve IVC. In the
other protocol, vehicles maintain inter-vehicle communications
by distributed or self-organized TIS using UDP broadcast com-
munication. Incident warnings are flooded through VANET by
UDP broadcast. When a vehicle gets a warning message, it
queries the originating vehicle to determine if the warning is
current.

The authors evaluated the protocols’ impacts on vehicular
mobility using a Manhattan grid and a real street map. In both
cases, the authors ran four sets of simulations:

• One where vehicles were free to move without any
interruption, with no IVC.

• One where the leading vehicle was stopped for a short
duration with no IVC.

• Two where the vehicles’ average speeds were calcu-
lated based on small and large scale simulations with
the support of IVC. The small scale and large scale
simulations used 5 hops and 25 hops to disseminate
information, respectively.

Stationary vehicles in these experiments reported incidents
using timestamped warning messages. Upon identifying these
incidents, the network simulator stored the incident infor-
mation and adjusted travel time for the stationary vehicles.
The simulation then used Dijkstra’s shortest path algorithm
to compute new routes that bypassed the incident for the
segment’s other vehicles.

In both sets of experiments, the average speed of the first,
third and fourth runs was greater than the second run. This
indicates that stopping the leading vehicle in the second set of
simulations caused congestion that increases other vehicles’
travel time. During the third and fourth runs, those vehicles
used inter-vehicle communication to get congestion informa-
tion, then change their routes and increase their average speed.

E. VNetIntSim

Vehicular Network Integrated Simulator (VNetIntSim) [23]
provides a modeling and simulation framework for VANETs
and Intelligent Transportation System (ITS) applications. Vnet-
IntSim consists of linker modules that integrate the INTE-
GRATION traffic simulator [24] with the OPNET communi-
cation network simulator [25]. These modules provide a two-
way communication channel between INTEGRATION and
OPNET.
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Four modules drive VnetIntSim’s operation. VnetIntSim’s
configuration reader module specifies an XML topology
file containing vehicle specifications for configuring OPNET.
VnetIntSim’s communication module creates a shared memory
region for the INTEGRATION and OPNET simulators, which
then exchange information through shared memory. INTE-
GRATION’s location module calculates vehicular locations
and sends them to OPNET’s driver module. Finally, its driver
module checks simulation time from the received information,
identifies simulation time mismatches, fixes inconsistencies
and updates the vehicles’ information.

When VnetIntSim starts execution, it establishes a commu-
nication channel between INTEGRATION and OPNET. First,
the two simulators exchange hello messages to create the
connection. The simulators then synchronize their simulation
attributes, interval, and duration; the number of vehicles; and
network size.

After successful synchronization, VnetIntSim enters its
simulation loop. The VnetIntSim simulator primarily does
movement-based simulation. It provides updates on the number
of moving vehicles in a network, their locations, and traffic
density. Though the simulator can simulate simple vehicle-to-
vehicle and vehicle-to-infrastructure scenarios consistently, it
fails to simulate large-scale scenarios.

F. TraNS

The Traffic and Network Simulation Environment (TraNS)
simulator [26] simulates VANETs, accounting for vehicular
mobility. TraNS supports two modes of simulation. In network-
centric simulation, TraNS simulates statically determined traf-
fic flows (e.g. music or travel information) [27]. The traffic
simulator generates a simulation trace and the network simu-
lator simulates the trace file. In application-centric simulation,
TraNS allows dynamically generated exceptional events (e.g.
abrupt braking and collision avoidance) to alter traffic [28].
Since the traffic and network simulators can run concurrently
in application-centric simulation, no trace file is generated. As
a result, this approach reduces the memory consumption for
large-scale simulation.

G. iTETRIS

The Integrated Wireless and Traffic Platform for Real-Time
Road Traffic Management Solutions (iTETRIS) [29] simulates
ITS applications on large-scale vehicular networks. iTETRIS
supports WiMAX, UMTS, and DVB-H wireless and radio
access technologies. iTETRIS is the first simulator to support
the European Telecommunications Standard Institute (ETSI)
ITS G5A standard.

According to Rondinone et al., iTETRIS achieves accurate
simulations for realistic and complex traffic scenarios. Its mod-
ular architecture supports the integration of external modules.
iTETRIS proper is a front-end for ns-3 and SUMO. It accepts
input on roads and traffic in a SUMO-compatible format. The
iTETRIS Controlling System interacts with SUMO and ns-3
and synchronizes simulation data with ITS applications using
push-pull command mechanisms.

iTETRIS’s accuracy for simulations of low- and mid-
density traffic is better than its simulations of high-density

traffic. Its features include providing information on fuel con-
sumption and traffic congestion along with suggesting speed
and route changes accordingly.

H. GrooveSim

GrooveSim [30] simulates inter-vehicular communication
and vehicular mobility in a road traffic network using the au-
thors’ communication and mobility model and the GrooveNet
routing protocol. GrooveNet, a hop-based communication pro-
tocol, uses a dedicated short range communication based
transceiver, a global positioning system, a cellular modem, and
audio/video devices to broadcast data and information over
multiple hops.

GrooveSim represents a vehicular network as a planar
graph whose edges represent road segments and whose vertices
represent intersections. Road segments are modeled using
Topologically Integrated Geographic Encoding and Referenc-
ing (TIGER) [31] records that contain the segments’ names,
types, locations (latitude and longitude), addresses, and speed
limits. The graph abstraction is used for the shortest path
calculation and region partitioning.

GrooveSim supports an on-road driving mode, a virtual
traffic network simulation mode, a playback mode, a hybrid
simulation mode, and a test scenario generation mode. In its
driving mode, a real vehicle sends warning messages to other
real vehicles using the GrooveNet portable networking kit
and sends warning messages. In simulation mode, GrooveSim
simulates a virtual road traffic network based on vehicular
mobility and communication models. In playback mode, it
replays simulations of vehicular movement and communication
using drive and simulation mode logs. In hybrid simulation
mode, it simulates real and virtual vehicles on a road traffic
network. In test generation mode, it generates parameterized
simulation scenarios using models that include vehicles’ IDs,
speed models, origins, destinations, routes, and waypoints
along the route.

GrooveSim defines its own mobility and communication
models. The mobility model determines vehicular mobility
based on a minimum and maximum speed, the number of
vehicles on road segments, road segment speed limits, and a
four-state Markov-based probabilistic model. The probabilistic
model uses two states for city roads and two for highway
roads. The communication model uses a two-state Gilbert-
Elliot Markov model, a collision model, and a channel model
to guarantee concurrent inter-vehicular communications.

GrooveNet’s communication protocol uses a message dif-
fusion mode to periodically exchange non-critical data such
as congestion information. It uses a message directed mode
to immediately exchange time-critical data such as alert mes-
sages. The protocol uses region based multi-hop routing in
order to speed the communication and reduce message flooding
overhead.

GrooveSim provides on-road crash warnings, sudden brak-
ing alerts, congestion information, traffic updates, and location
based commercial services.

I. Automesh

The Automesh [32] simulation framework for ITS appli-
cations integrates five modules with three plug-in modules, as
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follows:

• Driving simulator module. Automesh generates a dy-
namic mobility model for individual vehicles using an
environmental model that supports speed limits and
traffic signals. Automesh also accounts for vehicle
dynamics including rates of acceleration and decel-
eration. This ability to dynamically generate mobility
models distinguishes Automesh from other network
and traffic simulators.

• Network simulator module. Automesh’s network simu-
lator simulates inter-vehicle communication by using
received data from the driving simulator’s dynamic
mobility models to change driving behavior.

• Propagation simulator module. To evaluate the cor-
rectness and performance of communication protocols,
Automesh provides a propagation simulator that sim-
ulates propagation calculation algorithms.

• Geographic database server module. This module
provides geographic information such as road network
information, a digital elevation model, and real 3D
building information.

• Automesh graphical user interface module. This mod-
ule provides a graphical user interface for configuring
simulations and playing simulations’ animations.

• Vehicle control plug-ins. This module allows the
driving simulator to attach custom driving behavior
algorithms and custom mobility models to itself.

• Propagation plug-ins. This module allows custom
wireless propagation models to interface to the net-
work simulator.

• Communication protocol plug-ins. This module allows
customized communication protocol stacks to inter-
face to with network simulator.

III. COMPARATIVE SUMMARY

All of these simulators are implemented as sequen-
tial programs, though some could be modified to run in
distributed and parallel computing environments. OVNIS,
TranNS, GrooveSim, and Automesh model vehicular mobil-
ity dynamically using vehicle trajectory traces whereas ASH
and STRAW use the car-following model. VnetIntSim and
iTETRIS use linker modules to communicate between trans-
portation and network modules whereas ASH, Veins and OV-
NIS use two-way communication. GrooveSim and Automesh
also support the modeling of communication protocols. Table
I summarizes these simulators’ names, their mobility models
and their communication models.

IV. NEED FOR PARALLEL SIMULATION PLATFORM

Scalability is the most important limitation for all current
platforms. VANETs and ITS simulation require high lev-
els of scalability. Sequential simulations lack the processing
resources to simulate urban transportation networks in real
time. For example, in one experiment involving a sequential
simulator [33], the simulation of a 200-node network created
4,600,000 events and required 16 minutes to process the events.

TABLE I: Summary of the above mentioned simulators

Simulators
Two simulation models of a simulator

Mobility model Network model
ASH IDM/MOBIL, IVG SWANS

OVNIS SUMO NS-3

STRAW Developed their own model SWANS

Veins SUMO, IVC OMNET++

VnetIntSim INTEGRATION OPNET

TraNS SUMO NS-2

iTETRIS SUMO NS-3

GrooveSim Developed their own model Their own network model

Automesh Customizable to add any mobility model NS-2 or Qualnet

Fig. 1: The memory usage (GB) vs the number of nodes

Fig. 2: The execution time (sec) vs the number of nodes

These levels of simulated traffic flow impose time, resource,
and scalability constraints on sequential simulations of large-
scale urban environments.

These observations motivated us to use VNetInetSim to
analyze those factors that had the greatest impact on VANET
scalability. We found that the number of wireless nodes (ve-
hicles) and the data traffic rate per node were the primary
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Fig. 3: The execution time (sec) vs traffic rate per vehicle

impediments to scalability. Our preliminary results show that
memory usage and execution time increase exponentially with
the number of vehicles in the system (Fig. 1 and 2). As shown
in Fig. 1, increasing the data traffic rate for a given number
of nodes has no significant effect on the memory usage.
This is because OPNET, VNetInetSim’s network simulator,
discards packets when they reach their destinations, releasing
their memory. These increases, however, do produce significant
increases in simulation execution time (Fig. 2). This is to be
expected. Fig. 3 shows a log-increase in the simulation time
with respect to the traffic rate. These results were obtained
on a machine of Intel Core-i7 Quad-core processor, 4 GB of
memory, and running windows 7 Ultimate.

V. CONCLUSIONS

Most of the VANET simulators we surveyed can effec-
tively simulate small-scale transportation networks. However,
the simulation of large-scale urban environments will require
parallel and distributed simulation. A parallel and distributed
simulation platform must address the issues of optimal network
partitioning, accurate parallel architecture, and synchronization
between simulators. Graph-theoretical approaches and sparse
matrix-based techniques could be used to achieve the necessary
partitioning [34], while a parallel architecture that synchronizes
separate communication and simulation modules could be used
to structure this platform. We plan to investigate the challenges
and issues pertaining to implementing parallel simulation
platforms for the large-scale evaluation of CV-based urban
transportation network.
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Abstract— The augmented scale and complexity of urban 

transportation networks have drastically increased the execution 

time and resource requirements of vehicular network simulations, 

exceeding the capabilities of sequential simulators. The need for a 

parallel and distributed simulation environment is inevitable from 

a smart city perspective, especially when the entire city-wide 

information system is expected to be integrated with numerous 

services and ITS applications. In this paper, we present a 

conceptual model of an Integrated Distributed Connected Vehicle 

Simulator (IDCVS), which can emulate real-time traffic in a large 

metro area by incorporating hardware-in-the-loop simulation 

together with closed-loop coupling of SUMO and OMNET++. We 

also discuss the challenges, issues, and solution approaches for 

implementing such a parallel closed-loop transportation network 

simulator addressing partitioning problems, synchronization, and 

scalability issues. One unique feature of the envisioned integrated 

simulation tool is that, it utilizes vehicle traces collected through 

multiple roadway sensors—DSRC on-board unit, magnetometer, 

loop detector, and video detector. Another major feature of the 

proposed model is the incorporation of hybrid parallelism in both 

transportation and communication simulation platforms. We 

identify the challenges and issues involved in IDCVS to 

incorporate this multi-level parallelism. We also discuss the 

approaches to integrate hardware-in-the-loop simulation, 

addressing the steps involved in preprocessing sensor data, 

filtering and extrapolating missing data, managing large real-time 

traffic data, and handling different data formats. 

 
Keywords—Connected Vehicle, Parallel Simulation, Network 

Partitioning, Scalability, Communication Overhead, Dedicated 

Short Range Communication, hardware-in-the-loop simulation. 

I. INTRODUCTION 

ith the advent of big data and connected vehicle (CV) 

technologies, the parameters and requirements for 

simulating metro-scale urban transportation networks 

with heterogeneous vehicles have evolved substantially. 

Today’s transportation engineers at the Traffic Management 

Centers (TMCs) feel the necessity of a parallel CV simulation 

tool that would allow them to visualize the immediate system-

wide effect of any change in traffic parameters—signal timing, 

detour, lane closure—before making the decisions. 

Unfortunately, current state-of-the-art traffic simulators 

(VISSIM [1], CORSIM [2], SUMO [3] etc.) are not capable of 

modeling future transportation scenarios involving connected 

vehicles since traffic simulators only model vehicular traffic. 

Simulation of a transportation network with CV requires a bi-

directional coupling mechanism between a transportation 

simulator and a communication simulator. This mechanism has 

led to the concept of the closed-loop CV simulator, which has 

recently drawn a significant amount of research interests within 

the community.  However, the computational capacity of such 

a bi-directionally coupled (closed-loop) simulator is 

significantly limited by the number of CVs equipped with on-

board units (OBUs) and the number of roadside units (RSUs) 

deployed within the metro-wide transportation network, since 

these DSRC devices transmit millions of basic safety messages 

(BSMs) packets every minute requiring massive computational 

resources. Existing sequential closed-loop simulators can 

barely handle one thousand vehicles simulated on a scenario 

involving no more than a few intersections. Thus, incorporating 

parallelism in both transportation and communication 

simulation platforms will enable efficient management of large-

scale transportation network and control of traffic parameters 

involving connected vehicles. In addition, integrating roadway 

sensor data through hardware-in-the-loop simulation with the 

closed-loop software simulator will enable the traffic engineers 

to make informed decisions by evaluating the system-wide 

impact of changing traffic parameters in real-time. 

A vast amount of research effort has been recently directed 

towards improving surface transportation through self-driving 

autonomous vehicles as well as connected vehicles (CVs) using 

the 5.9 GHz Dedicated Short Range Communication (DSRC) 

technology. Automakers and technology developers like 

Google, Ford, and General Motors etc. are working to improve 

the controllability features of autonomous or semi-autonomous 

vehicles. While self-driving cars can potentially reduce the 

stress of navigating through congested traffic, CVs can 

optimize the traffic flow across an entire transportation network 

through the exchange of information among vehicles and 

infrastructure. CV applications use information obtained 

through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 

(V2I) communications—collectively known as V2X 

communications—to assist drivers in avoiding congestion, 

reducing vehicle stops, choosing the best route, and optimizing 

fuel efficiency. Hence, CV-based emerging Intelligent 

Transportation Systems (ITS) applications can result in 

transformative changes to the overall surface transportation 

system.  

To accurately simulate ITS applications on a scenario involving 

connected vehicles, it is necessary to integrate a full-fledged 

transportation simulator with a wireless network simulator, 

resulting in the need for a closed-loop simulator. This kind of 

closed-loop simulator requires a tight synchronization between 
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two stand-alone simulation modules: a transportation module 

and a communication module. The transportation module is 

responsible for the modeling of vehicle mobility applications 

including traffic routing, car-following, lane-changing, vehicle 

dynamics, driver behavior modeling, and traffic signal control 

modeling etc. On the other hand, the communication module 

accounts for data traffic network modeling including packet 

routing, end-to-end delivery of messages using V2X 

communication, wireless media access, cross-layer protocols, 

information security, and authentication mechanisms.  

In a CV simulation environment, the two simulation modules 

operate as a real-time feedback control loop with tight 

synchronization requirements. These two modules highly 

influence the operation of one another. For example, vehicle 

dynamics, mobility, speed, and density affect the 

communication links between vehicles as well as the data 

packet routing; hence, they also affect the communication 

quality, i.e., reliability, throughput, and delay. Conversely, the 

data communication parameters—for example, the number of 

packet losses between vehicles and the end-to-end delivery 

delay—can adversely affect the mobility decisions made by the 

transportation simulator, particularly when a V2X message 

carries detour information due to an accident. For a V2X-based 

safety application, it is important to realize that the slightest 

delay in communication, even about a fraction of a second, can 

have serious consequences and may even be fatal. Considering 

the complexity of each system (transportation and 

communication) in addition to the high level of 

interdependency between them, it is easy to perceive how 

challenging the simulation of an integrated CV system can be. 

II. RELATED WORK 

Most of the previous efforts to simulate vehicular networks 

were based on fixed mobility trajectories that were fed to the 

network simulator. Several mobility generator frameworks 

(VANETMOBISIM [7], SUMO [3], MOVE [8], STRAW [9], 

FREESIM [10], CITYMOB [11]) have been developed to 

produce the vehicular trajectories that are fed into various 

network simulators (NS2 [12], NS3 [13], OMNET++ [14], 

OPNET [15], JIST/SWANS [16], QualNET [17], etc.) without 

incorporating the effect of ITS applications on the mobility of 

the vehicles. Lee and Park [18] used the NCTUns 

communications simulator to examine the effects of 

communications using VISSIM trajectory data offline with no 

feedback loop for traffic simulation. GrooveSim [19] simulates 

inter-vehicular communication and vehicular mobility in a road 

traffic network using a customized mobility model and the 

GrooveNet [20] routing protocol. MobiREAL [21] incorporates 

mobility support on the Georgia Tech Network Simulator 

(GTNetS [22]). The capabilities of these type of open-loop 

simulators are limited to studying only unidirectional effects 

between the two domains. For example, studying the effect of 

various mobility models on the performance of end-to-end data 

communication using these simulators could characterize the 

dependency of the communication module on the transportation 

module, but it would be impossible to study the impact of data 

communication on the transportation system by incorporating 

changes in vehicle route, speed, signal timings, and mobility 

patterns based on newly received messages. Hence, this 

approach cannot be used to study bidirectional effects between 

the two tightly coupled domains.  

Recently, there has been a significant amount of interests and 

efforts to design closed-loop CV simulators by coupling two 

types of simulators. Traffic and Network Simulation 

Environment (TraNS [23]) links the traffic simulator SUMO 

and the network simulator ns-2. Multiple Simulator Interlinking 

Environment for IVC (MSIE [24]) integrates ns-2, VISSIM 

traffic simulation, and application simulation (MATLAB) into 

a simulation environment for vehicular ad hoc networks 

(VANETs). Veins [4] is a tool that provides a closed-loop 

integration using SUMO and OMNeT++ as traffic and 

communications simulator respectively. Integrated Wireless 

and Traffic Platform for Real-Time Road Traffic Management 

Solutions (iTETRIS [25]) integrates SUMO with ns-3 through 

IP-based sockets and allows implementation of several ITS 

applications in various programming languages. VNetIntSim 

[6] couples OPNET and INTEGRATION. None of these 

closed-loop simulators integrate with hardware-in-the-loop 

simulation technique. Very recently, Songchitruksa et. al. 

developed a closed-loop CV simulator (CONVAS [5]) by 

coupling VISSIM and ns-3 with the support for hardware-in-

the-loop simulation technique, which is the first closed-loop 

simulator incorporating roadway sensor data. However, these 

tools lack in providing support for simulating large-scale 

transportation scenario using parallel and distributed 

computing. Another major limitation is that there is no 

mechanism available for collecting roadway sensor data from 

individual intersections and feeding them to the simulation 

environment to facilitate real-time traffic decision support at the 

TMCs. 

III. PARALLEL SIMULATION OF CONNECTED VEHICLE 

APPLICATIONS 

Unfortunately, none of the simulation tools described in the 

previous section provide any mechanism for parallel or 

distributed simulation of connected vehicle applications for 

large-scale management of transportation network. The 

augmented scale and complexity of urban transportation 

networks have drastically increased the execution time and 

resource requirements of vehicular network simulations, 

exceeding the capabilities of sequential simulators. The need 

for a parallel and distributed CV simulation environment is 

inevitable from a smart city perspective where the entire city-

wide information system will be integrated with numerous 

services and ITS applications, particularly when the metro-wide 

multimodal transportation systems get connected to the smart 

city infrastructure through DSRC. Currently, the New York 

City connected vehicle pilot project sponsored by the United 

States Department of Transportation (USDOT [28]) aims at the 

integration of multimodal transport (including subway, transit 

bus, and taxis) with the smart city infrastructure. One of the use 

cases of our envisioned parallel simulation tool is to provide 

very precise information about the traffic change 

consequences—such as transit bus delays or tentative queue 

length considering the preemptive detour advisory 

disseminated through DSRC—enabling a TMC official to make 

informed decision when a major corridor needs to undergo 

closure of lanes due to maintenance. 
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Figure 1: Bi-layer complex transportation network 

A. Challenges and Issues 

In this section, we identify some of the challenges and issues 

associated with implementing a parallel closed loop simulator 

for large-scale transportation network management. Later we 

provide insights to the solution approaches that can address 

these problems. 

 

1) Partitioning of Bi-layer Complex Transportation Network 

The fundamental research problem involved in this parallel 

simulator design is to determine a near-optimal partitioning 

heuristic using a bi-layer network model—a static road network 

overlaid with a dynamic vehicular network—connected by the 

CV technology which spans across both the networks (Figure 

1).  Earlier research mainly focused on partitioning static road 

networks for distributed simulation without considering the 

data traffic generated by DSRC communications. The bi-layer 

model will address partition issues in both the dynamic 

vehicular network involving CVs (OBUs) as well as the static 

infrastructure (RSUs) and the interactions between the two 

levels. The solution approaches in section IV will provide a 

guideline to incorporate real-world roadway traffic parameters 

with the data traffic parameters within the partitioning heuristic 

for connected vehicle environments. 

The biggest challenge in partitioning vehicular networks is that 

the partitions cannot be fully separated. In fact, due to the 

communication and high mobility, partitions have a high level 

of interdependency and interactivity (i.e., a message or a 

vehicle moves from one partition to another) that necessitates 

communication between partitions to achieve consistency and 

accuracy. Inefficient partitioning of such networks can produce 

high communication volume between the different partitions 

and high processing overhead in each partition, consequently 

resulting in low simulation speeds. So, it is necessary to create 

partitions in such a way that reduces the interactivity and 

interdependence between them. Another proven NP-hard 

problem is the load-balancing problem. Due to the 

interdependency between events in different partitions, the 

simulation must be synchronized between the partitions; i.e., 

low-load (high-speed) partitions must wait for high-load (low-

speed) ones to finish. This means that the maximum overall 

simulation speed is limited to the minimum speed among all the 

partitions.  

 

2) Reducing Inter-Simulator Communication Overhead  

A major problem for parallelizing a closed-loop CV simulator 

is that it not only requires decomposing the two standalone 

simulators (the transportation and communication simulators) 

and synchronizing the components within each simulator, but it 

also requires tight synchronization between the two simulators. 

DSRC technology requires that the vehicles broadcast their 

current locations every 0.1 seconds, meaning that the two 

simulators must synchronize ten times per second. This 

synchronization process adds extra overhead if the two 

simulators are running on separate computing nodes in a 

distributed computing environment requiring them to 

communicate over MPI. With a shared memory interface 

between the two simulators running in the same partition, this 

Inter-Simulator Communication overhead is expected to be 

reduced. However, using shared memory also creates a race 

condition between multiple processes running on the same 

computing node. Hence, there is always a trade-off between 

contention (shared memory) and latency (distributed memory), 

which is a major research problem. In addition, in a CV 

environment, the closed-loop interactions between 

communication and transportation systems must be executed in 

real-time to accurately model the impact of one system on its 

counterpart. For instance, the real-time interactions between 

SUMO and OMNET++ should facilitate dynamic speed control 

for the vehicles in the vicinity of traffic signals, where vehicles 

and signal controllers can exchange information to compute the 

optimal signal timing and vehicle trajectory. 

  

3) Existence of heterogeneous vehicles 

Another challenging aspect of simulating transportation 

network involving CVs is due to the slow market penetration 

rate of connected vehicles, which implies that during the 

transition period there will always be two types of vehicles on 

the road—one that is connected through DSRC (CV) and the 

other that is not connected (non-CV). It is expected that CV 

technologies will penetrate the market slowly over the next few 

years. Hence, until the time comes when all the cars on the road 

are equipped with factory-built or after-market DSRC devices, 

there will always be two types of vehicles on the road: one that 

has DSRC on-board unit (OBU) and the other that does not have 

OBU. CVs broadcast their actual GPS positions and speed 

every 0.1 seconds through the basic safety messages (BSMs) 

while the non-CVs can only be detected through roadway 

sensors and traffic light cameras. At present, there is no closed 
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loop simulator that supports heterogeneous types of vehicles for 

simulation of CV applications. The only closed-loop simulator 

(CONVAS) that incorporates hardware-in-the-loop simulation 

allows the connected vehicles to communicate with the 

simulator through RSU and does not account for the non-

connected vehicles.  

Using the state-of-the-art closed-loop simulator with the 

support for hardware-in-the-loop simulation technique, only the 

vehicles with OBU will be able to participate in the network-

wide communication, while the vehicles without OBU will not 

be able to be detected in the simulator. Incorporating non-CVs 

in the hardware-in-the-loop simulation mechanism is quite 

challenging because the closed-loop CV simulator needs to be 

fed from several different sources of sensor data—CV traces 

through BSM messages and non-CV traces from roadway 

sensors (loop detectors and video detectors). Taking input from 

these sources, the simulator needs to be able to generate realistic 

mobility traces for the non-CVs, in addition to mapping the 

actual positions of the CVs where the simulator should 

graphically represent the CVs and non-CVs differently to 

distinguish between the actual position and speed vs. projected 

position and speed.  

4) Synchronization problem  

Simulation of data traffic is computationally more resource 

intensive than simulating vehicular traffic [6]. This makes the 

closed-loop simulation of CVs more challenging because of the 

imbalance of computation resource requirement causing 

synchronization problem between the transportation simulator 

and communication simulator. This is because of the huge 

amount of DSRC basic safety messages (BSM) disseminated 

from each vehicle every 0.1 seconds, where each BSM message 

needs to go through several layers of encapsulation and de-

capsulation steps within the wireless network protocol stack at 

both ends. Some of the services in the data communication 

protocols, e.g. error detection, routing, and connection 

establishment, are computationally more expensive compared 

to the services from the vehicular traffic simulator that do not 

require passing through multiple layers of protocols.  In fact, 

simulation of vehicular traffic only involves trace generation 

using microscopic mobility models. Hence, the data traffic 

simulator primarily causes the bottleneck. Typically, the data 

traffic is simulated using network simulators such as OPNET, 

OMNET++, Qualnet, NS-2, or NS-3. One experiment [29] 

demonstrated that the simulation of a 200-node network for 

only one minute generated more than 4,600,000 events and 

required 16 minutes of CPU time. The increasing complexity of 

the protocol stacks in communication end systems further 

aggravates this problem and has spurred efforts to develop 

parallel network simulators.  

5) Scalability of Parallel Simulation 

The scalability of parallel systems depends on the ratio of time 

spent in computation vs. communication. For any parallel 

system, the fraction of time spent in inter-process 

communication increases with the number of processors while 

the fraction of time spent in actual computation decreases. 

Initially, for the lower number of processors, the computational 

time is much greater than the communication time. With the 

increase of the number of processors, the computational time 

decreases with respect to communication time. At some point, 

for a specific number of processors (p), the communication time 

starts dominating over computation time. This value of p 

essentially determines how better the system is scalable. The 

higher the value of p the better the scalability. Therefore, 

scalability is one the most important problems in any parallel 

system, especially when it involves both distributed and shared 

memory architecture. Hence the architecture of such hybrid 

parallel system needs to be designed in such a way that reduces 

the inter-process communication overhead and increases the 

scalability. It is noteworthy to mention that this inter-process 

communication could take place between the transportation 

simulator and network simulator using shared memory (using 

OpenMP) or between the instances of the same simulator 

running different partitions on distributed cluster nodes 

(through MPI). Without achieving a certain level of scalability, 

the system will not be able to simulate a city-wide scenario with 

several hundred thousand vehicles and millions of BSM 

messages every minute. To study the scalability requirements 

for parallel implementation, we have evaluated the performance 

of a sequential CV simulator, VNetIntSim [33, 34], in terms of 

memory usage and execution time. The preliminary results 

showed that the number of wireless nodes (vehicles) and the 

data traffic rate per vehicle are the primary reasons behind the 

scalability issue. Figure 2 shows that both the memory usage 

and execution time increase exponentially with the number of 

vehicles in the system.

 
(a) 

 
(b) 

Figure 2. (a) Memory usage and (b) execution time vs. number of vehicles
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Figure 3: Conceptual Model of Integrated Distributed CV Simulator (IDCVS) 

IV. CONCEPTUAL MODEL 

In this section, we present a conceptual model of an Integrated 

Distributed Connected Vehicle Simulator (IDCVS) and in 

section V we discuss the technical approaches for implementing 

such a robust simulation tool. Figure-3 below shows our 

hypothetical model of IDCVS system that includes hardware-

in-the-loop simulation techniques for both CVs and non-CVs. 

IDCVS will incorporate two basic modules—a CLOsed-loop 

Parallel Simulator (CLOPS) and a Hardware-In-the-Loop 

Simulation (HILS) module. 

 

A. Hardware-In-the-Loop Simulation (HILS)  

HILS will have an interface to receive the sensor data from both 

CVs and non-CVs through multiple sources. For non-CVs, the 

approximate location and speed can be detected through video 

detectors and inductive loop detectors, and this information will 

be passed as input to the HILS module. We can use the video 

detection software from ITERIS and the loop detector software 

from SIEMENS that can supply the sensor data to the HILS 

receiver component. On the other hand, the CV’s can be 

detected more easily through the BSM messages received by 

the RSUs. Once the sensor data is received, additional data-

preprocessing, filtering and extrapolation will be needed before 

the data can be used by CLOPS. This will require developing 

filtering algorithms for loop-detection and video-detection data 

to isolate the CV traces from the non-CV traces. 

B. CLOsed-loop Parallel Simulator (CLOPS) 

A CLOsed-loop Parallel Simulator (CLOPS) can be developed 

through coupling between SUMO and OMNET++, both of 

which are open source simulators. An efficient partitioning 

heuristic will decompose the complex transportation network 

into two separate sets of partitions—where each set of the 

partition will be sent to the individual simulator (SUMO and 

OMNET++). It might appear that CLOPS could be developed 

as a parallel and distributed framework on top of Veins since 

Veins also utilizes a coupling between SUMO and OMNET++. 

However, since Veins does not support heterogeneous vehicles, 

it is not possible to extend Veins for the simulation scenarios 

involving both CVs and non-CVs. In addition, CLOPS may 

have the capability to vary the ratio of CVs to the non-CVs as 

per the market penetration rate. This requires a non-uniform 

partitioning between SUMO and OMNET++.  

C. Modes of Operation for IDCVS 

One important feature of this conceptual IDCVS system is that 

it will have the option to simulate in two different modes—

closed-loop simulation (CLSim) mode and HILS-mode. The 

CLSim mode will simulate without sensor data, in which case 

the entire simulation will be run within CLOPS. To incorporate 

both DSRC-equipped and non-equipped vehicles on CLSim 

scenario, we can randomly distribute the vehicles with OBU 
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within the road network based on a user specified technology 

penetration rate.  On the other hand, the HILS-mode will enable 

simulation based on real-time sensor data. 

V. IMPLEMENTATION APPROACHES 

In this section, we discuss the possible technical approaches to 

address the challenges pertaining to implementation of the 

integrated simulator. 

A. Developing Network Partitioning Heuristic 

A crucial challenge for the partitioning problem described in 

section III is that, due to the imbalance of computational 

resource requirements between transportation simulator 

(SUMO) and network simulator (OMNET++), a single 

partitioning scheme may not work for both the simulators. 

Apart from that, the number of vehicles will also vary among 

the two simulators where SUMO needs to simulate the traces 

for all vehicles (both CVs and non-CVs) whereas OMNET++ 

only simulates data traffic generated from the CVs. If a single 

partitioning heuristic is used, the synchronization problem will 

be further aggravated. Hence, it is necessary to have two 

separate partitioning schemes for SUMO and OMNET++. 

In our recent work [30], we have identified the following issues 

and parameters that play vital roles in designing an efficient 

partitioning heuristic:  

1) System boundary nodes of each partition: The total number 

of inter-process communication or messaging depends on the 

number of system boundary nodes of each partition. 

2) The number of partitions: Almost every graph partitioning 

algorithm is based on a pre-specified number of partitions, 

which may not always generate the optimal solution in practice. 

Instead of specifying an exact number of partitions, an upper 

bound and lower bound can be provided as input to the 

algorithm to determine the best partitioning solution within the 

specified range. 

 

3) Intersection cut: If an intersection is considered as a 

boundary node for a partition, then a significant amount of 

vehicle mobility data must be communicated between the 

partitions. In this context, an important factor—whether to 

prioritize signalized intersection over un-signalized intersection 

as a candidate for boundary node—remains open for further 

research, which should be investigated.   

4) Link/Edge cut: When a link or edge is selected to be cut then 

the traffic volume along the cut link is directly proportional to 

the amount of information exchanged between the two 

partitions along the link. In this case, a good strategy would be 

to cut the links with minimum traffic to reduce the 

communication overhead between partitions. 

B. Partitioning Approach for SUMO 

To create the network graph, the OSM file of the experimental 

city can be downloaded from the www.openstreet.org website. 

To avoid unnecessary complexities, residential street, service 

path, footway, cycleway, motorway, and unclassified roads can 

be excluded from the graph. Table 1 shows some suggested 

parameters that can be incorporated to generate the weighted 

graph matrix. It could be easily possible to extend an existing 

graph partitioning software like METIS [37] for this generating 

the partitions of the transportation network. METIS is a very 

stable partitioning package implementing the popular 

Kernighan-Lin heuristic.  METIS performs the partition of a 

graph in three phases: coarsening, partitioning, and 

uncoarsening. In coarsening phase, the heavy edge matching 

scheme can be used, whereas in the uncoarsening phase, the 

Kernighan-Lin graph refinement algorithm can be used. The 

coarsest graph can be bisected using graph growing followed 

by boundary Kernighan-Lin algorithm with graph partitioning 

using recursive bisection technique. The input for METIS can 

be provided using the generated graph matrix and weight 

parameters.

 

Table 1: List of parameters considered for partitioning heuristics 

Parameter  Technique 

Node weight All signalized intersections in the OSM data will be identified. These types of intersections or nodes 

will be assigned a higher weight. Un-signalized intersections will be assigned the sum of the number 

of incoming and outgoing lanes as the weight.   

Link length  The length between two nodes will be calculated using the Haversine formula: 

𝑑 = 2𝑟 sin−1 (√sin2 (
𝜑2−𝜑1

2
) + cos (𝜑1)cos (𝜑2)sin2 (

𝜆2−𝜆1

2
))  

where, d=Distance between two points/nodes 

r=Radius of Earth (6367 km) 

𝜑1,𝜑2=Latitude of point 1 and 2 

λ1, λ2= Longitude of point 1 and 2 

Number of lanes  The number of lanes of a road segment or a link will be extracted from the OSM data. 

Link density The density of a road segment or link will be extracted from the Google Map Application’s newly 

introduced traffic layer [36]. The density is expressed in three categories: low, medium, and high. 

Link priority The road segment will be assigned a priority index based on the weighted summation of link length, 

the number of lanes, and link density. 
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C. Partitioning Approach for OMNET++ 

Some of the key factors concerning partitions for OMNET++ in 

the context of closed-loop parallel simulation for reduced 

interactivity and interdependence include vehicle mobility, 

communication events and external stimuli from the simulated 

transportation applications. These factors directly influence the 

previously mentioned challenges pertaining to network 

partitioning. The application stimuli are the drive for CV 

communications, which can be sporadic or proactive. The 

transportation network information such as the road network 

(road links, road nodes), car density on each link, and car speeds 

and distribution determine the vehicular mobility. This 

information can be further utilized to quantify the number of 

communications events. The approach to optimize partitions is 

to consider the number of discrete events in the communication 

network as the basis for drawing the boundary between the 

connected components.  For example, one way to incorporate 

this approach is to employ the vehicle density and the length of 

each link as link weights in partitioning techniques (such as the 

minimum cut or minimum k-cut algorithms) to partition the 

network and minimize the interactivity between different 

portions. The lower the density and the longer the length of a 

link, the higher the possibility that the link is a cut link in the 

network. The rationale is that the density and length represent 

the continuity of the communication route on this link. 

Therefore, the lower this ratio (density/length), the less 

communication between the ends of the link. In addition, the 

partitions need to be adaptive to the dynamics of the application 

stimuli and the mobility.  To address this issue, we can consider 

the simulation granularity and duration of the current partition 

time. The goal is to develop an intelligent algorithm to schedule 

the partitioning job. 

  

D. Design of Closed-loop Parallel Simulator (CLOPS) 

The closed-loop parallel simulator (CLOPS) integrates SUMO 

and OMNET++ as two standalone simulators. OMNET++ has 

the flexibility to dynamically create and delete nodes; this 

capability is necessary for a parallel simulation environment 

since the wireless vehicular nodes will be distributed in multiple 

network partitions based on geographic location. In addition, 

OMNET++ provides support for both distributed and shared 

memory computing which is needed for this project. The PHY 

and MAC layers of DSRC (IEEE 802.11p and IEEE 1609.4) 

have already been implemented in the OMNET++ platform by 

the open-source research community, which can be utilized in 

our research. This is a big advantage compared with OPNET 

since OPNET does not currently include the DSRC protocol 

stack.  

CLOPS will incorporate hybrid parallelization schemes for both 

the traffic simulator and network simulator that will allow the 

integrated platform to run in parallel on clusters of computers 

within a supercomputing facility. The hybrid inter-process 

communication will be incorporated using both MPI and 

OpenMP. Figure 4 illustrates the envisioned architecture for 

parallelization. Both the transportation and communication 

simulators will have master controllers (the Transportation 

Simulation Controller (TSC) and Network Simulation 

Controller (NSC)) that will coordinate the computational load 

distribution among the parallel sub-processes. Each of these sub-

processes is supposed to simulate a portion of the transportation 

network defined by the network partitioning. The controller will 

communicate with the sub-processes using MPI, while a 

transportation simulator sub-process corresponding to a specific 

partition communicates with its network simulator counterpart 

using OpenMP. 

 
Figure 4. Envisioned distributed simulation architecture incorporating hybrid parallelism 
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It could be beneficial to utilize two levels of parallelization: 

network and event levels. At the network level, the overall 

network can be divided into multiple partitions for both SUMO 

and OMNET++, each of which will run on a different machine. 

The TSC and NSC are responsible for managing the loads and 

synchronizing the partitions within the transportation and 

communication domains, respectively. At the event level, events 

can run in parallel within a pre-calculated look-ahead interval. 

The calculation of the optimum look-ahead interval is crucial in 

the event-level parallelization. In fact, the look-ahead interval 

involves a tradeoff between the simulation speed and output 

accuracy. In the event-level parallelization, utilizing parameters 

such as node locations and number of hops between two nodes 

can increase the scalability of the parallel simulation. For 

instance, nodes that are spatially separated by long distances can 

run events in parallel within longer look-ahead intervals without 

affecting the output. 

The communication between the TSC and NSC can be achieved 

by using shared memory. The vehicles’ locations will be 

calculated and sent to the NSC periodically through the shared 

memory, and any required application information between the 

TSC and NSC will be exchanged through the shared memory. 

Compared to TCP/IP message passing, shared memory has the 

advantages of reliability and the highest possible speed of 

information exchange. In contrast, the message size in TCP/IP 

message passing is limited; thus, in the case of large network 

size, a large number of messages are needed for each location 

update. Consequently, TCP/IP message passing may create a 

communication bottleneck, resulting in the degradation of 

simulation speed.  

E. Incorporating Hardware-In-the-Loop Simulation (HILS) 

To capture the movement of the non-CVs, several types of 

detectors can be used such as the magnetometer, inductive loop 

detection (ILD) and Video detection etc. Loop detection is also 

capable of counting traffic. But it is not 100% reliable for actual 

traffic counts because the loops in the adjacent through lanes 

are often tied together for one output for the movement. To 

solve this problem, the latest video detection technology 

capable of counting actual traffic can act as a complement for 

the loop detector. Figures 5(a) and 5(b) shows how the two 

software detect vehicles at the intersection through software. 

Since the target is to simulate both CVs and non-CVs, it is 

necessary to feed the vehicles’ information to the traffic and 

communication simulators. The RSU can automatically detect 

the CVs from the BSM packets, but the loop detection and video 

detection techniques are necessary for detecting the non-CVs. 

Once the RSU gets the data from all the sources (e.g. BSM 

packets, inductive loop, video, and magnetometer), a filtering 

algorithm separates the non-CVs from the CVs using the BSM 

packets. However, detection of the non-CV is not sufficient for 

the hardware in loop simulation. We need the mobility trace of 

a non-CV vehicle between two intersections. A car-following 

model between one/two CVs and a non-CV can be used to 

extrapolate the missing trace of a non-CV vehicle. For example, 

the missing mobility trace of a non-CV vehicle can be 

extrapolated using two CVs’ mobility traces where one CV 

precedes the non-CV and one CV that follows the non-CV. 

Figure 5c shows the flow of sensor data for hardware-in-the-

loop simulation. 

 

  
(a) Loop detection software (b) Video Detection software 

 
(c) Flow of data between sensors 

Figure 5. Integrating hardware-in-the-loop simulation techniques 
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Some of the challenges associated with integrating hardware-

in-the-loop simulation are described below: 

1) Isolating CV traces from loop-detection and video 

detection data 

The hardware-in-the-loop simulation (HILS) technique can 

capture roadway sensor data from four different sources—

DSRC broadcast messages, inductive loops, video detectors, 

and wireless magnetometers. Unfortunately, the roadway 

sensors at intersections cannot differentiate between a CV and 

non-CV. So, a reliable filtering mechanism is needed to identify 

the CVs among all the traffic by filtering out the CV data from 

other two sensors’ data based on the GPS position and loop 

detection timings.  

2) Missing traces between two intersections  

It is very challenging to emulate non-CVs based on sensor data 

because of the missing traces between two intersections since 

they can only be detected at the intersections. Also, the SUMO 

generated mobility traces between two intersections are the 

only sources to fill up the missing traces. However, this 

approach may give some margin of error since some vehicles 

may arrive at their destination before reaching the next 

intersection while some other vehicles may start from a mid-

point between the two intersections. Since the goal is to 

approximate the expected traffic between two intersections at a 

given time, some established statistical models are necessary to 

validate the simulation results between two intersections.  

3) Inaccurate traffic count by loop detectors  

Loop detection can detect traffic but is less reliable for actual 

traffic counts because the loops in the adjacent through lanes 

are often tied together for one output for the movement.  Also, 

due to the length of the loop (40 to 50 feet) at the stop bar, 

multiple vehicles may be over the same loop or the loops tied 

together at the same time which reduces vehicle count 

accuracy.   

4) Different data formats  

Typically, data loggers’ records include events at an 

intersection, including a light turning green, a light turning 

yellow, a vehicle detector turning on, a vehicle detector turning 

off, and pedestrian walk phase active. While CV data follows 

DSRC beacon format, loop detector, and video detector inputs 

are again in a different format. Thus, different pre-processing 

algorithms are needed. 

CONCLUSION 

In this paper, we have discussed a conceptual model that can 

simulate system-wide changes in traffic parameters on 

roadways involving both connected vehicles and regular 

vehicles. We have identified the major challenges and issues for 

implementing the hardware-in-the-loop simulation and 

incorporating parallelism in the closed-loop simulation. We 

have also discussed the solution approaches for the challenges 

and issues involved in implementing the conceptual model. 

However, only a few solutions have been actually implemented. 

We have discussed possible technical approaches to address the 

challenges and implementation issues. Our ongoing efforts are 

directed towards implementation of this model and evaluation 

of the scalability for emulating metro-wide transportation 

network. 
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Abstract—This paper describes a partitioning algorithm for 

real-world transportation networks incorporating previously 
unaccounted parameters like signalized traffic intersection, road 
segment length, traffic density, number of lanes and inter-
partition communication overhead due to the migration of 
vehicles from one partition to another. We also describe our 
hypothetical framework for distributed simulation of the 
partitioned road network on SUMO, where a master controller is 
currently under development using TraCI APIs and MPI library 
to coordinate the parallel simulation and synchronization 
between the sub-networks generated by our proposed algorithm. 

Keywords—OSM, Network Partition, METIS, SUMO, TraCI, 
MPI, Parallel Simulation 

I. INTRODUCTION  

For parallel network simulation, network partitioning is an 
effective method for speeding up the simulation process as well 
as maintaining the compatibility with machines with low 
resources that can run each partition. Since the simulation time 
and memory usage exponentially increase with the network 
size (number of vehicles and traffic volume), efficient network 
partitioning can greatly improve the scalability of parallel 
simulation. However, network partitioning is proven to be an 
NP-hard problem. Hence, an optimal partitioning may not be 
feasible. Practical partitioning heuristics are required that 
account for road networks and vehicular density and mobility 
to ensure an even division of the workload while minimizing 
communication between the partitioned elements. 

While effective partitioning is crucial for speeding up the 
simulation of large-scale transportation network, this 
partitioning is very challenging due to many reasons. First, 
with connected vehicles emerging on the roads, the partitions 
could not be fully separated. In fact, due to communication and 
high mobility, partitions may have high level of 
interdependency and interactivity (i.e. a message or a vehicle 
moves from one partition to another) that demands 
communication between partitions to achieve consistency and 
accuracy. Second, inefficient partitioning of such networks can 
produce high communication volume between the different 
partitions, and imbalanced computing load in each partition, 
consequently results in low simulation speeds. So, it is 
necessary to create partitions in such a way that reduces the 
interactivity and interdependence between them. Thirdly, the 
synchronization and partitioning equity. Due to the 

interdependency between events in different partitions, 
simulation should be synchronized in all the partitions, i.e. low 
load (high speed) partitions must wait for high load (low 
speed) ones to finish. This means that the maximum overall 
simulation speed is limited to the minimum speed among all 
the partitions. Thus, the best speed is achieved when partitions 
have approximately equal loads. In fact, solutions for these 
three reasons may contradict one another i.e. creating 
independent partitions may result in huge load differences that 
can eventually degrade the speed. It is an optimization problem 
between a set of tradeoffs such as number of partitions, result 
accuracy, simulation speed, memory requirements etc. 

In this context, the transportation network information such 
as road network (road links, road nodes), vehicle density on 
each link, vehicle speeds and distribution can be effectively 
utilized to optimize the partitioning techniques. For example, 
the vehicle density and the length of each links can be 
employed as link weight in partitioning techniques (such as 
minimum cut or minimum k-cut algorithms) to partition the 
network and minimize the interactivity between different 
portions.  The lower the density and the longer length for a 
link, the higher the probability of being a cut link in the 
network. The rationale is that the density and length represents 
the continuity of the communication route on this link. 
Therefore, the lower this ratio (density/length) the lower the 
communication between the ends of the link.  

Our current research contributions include the development 
of a novel partitioning algorithm for large scale urban 
transportation network incorporating previously unaccounted 
parameters like traffic volumes, signalized intersections, 
number of lanes, length of links etc. to balance the load for 
distributed simulation using SUMO. This would allow the 
large-scale evaluation of any innovative connected vehicle 
application or algorithm in a cluster-computing environment.  

The rest of the paper is organized as follows. Section II 
describes the existing work on partitioning of transportation 
network. In section III, we identify the important parameters 
needed for partitioning. Section IV describes the actual steps 
involved in our proposed partitioning scheme with some 
preliminary results followed by a high-level overview of the 
work-in-progress distributed simulation platform on SUMO 
that can simulate individual partitions in parallel. Finally, we 
conclude with our future work leading to the development of 
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distributed simulation platform enabling the simulation of large 
scale urban transportation network with connected vehicles.  

II. RELATED WORK 

Many researchers have attempted to develop efficient 
partitioning schemes for large-scale transportation networks to 
simulate the scenarios in distributed environments using 
clusters. A well-designed partitioning scheme can greatly 
reduce the number of inter-process communication because 
vehicles frequently move from one partition to another in 
which case all the information corresponding to the mobility of 
those migrating vehicles need to be transferred to the new 
partition. Johnson et. al.  [1] generated partitions using the 
shortest distance domain decomposition algorithm utilizing the 
standard label correcting technique with the objective of 
minimization of system boundary nodes to reduce inter 
partition communication cost. A significant amount of research 
effort has been dedicated for load-balancing among the 
partitions. For example, Meshkat et. al. [2] used genetic 
algorithm to divide a road network into two equally balanced 
partitions and repeated the process recursively to further divide 
the two generated partitions. Hyper-graph based partitioning 
algorithms using hmetis [5] have been discussed in [3] and [4], 
considering two-heuristics based hypothetical partitioning 
techniques. However, all the above partitioning techniques lack 
of the context of real transportation road networks—traffic 
density, number of lanes. 

A complete road map for parallel road traffic simulator is 
discussed in [6] and [7]. In [6], the authors provide their own 
road network partitioning scheme and distributed version of 
SUMO. In [7], the transportation networks are partitioned by 
spatial decomposition [8] and simulated using JUTS, 
TRANSIMS, and AIMUSN. However, the former lacks of the 
parameters of actual road networks that affect the partition 
significantly. The later one considers only grid like road 
network. MOVES [9] also provides a distributed simulation 
platform on top of ARTIS simulation software. MOVES 
focuses on mainly the modularity and integrity of its layered 
software architecture, but does not focus on the real-world 
transportation networks and partitioning techniques. The 
distributed versions of SUMO are also discussed in [10] and 
[11]. The authors discuss about border edge management of a 
partition in [10] whereas in [11], the authors focus on the 
implementation of the distributed version in clusters. In both 
cases, the authors assumed that the network is already 
partitioned. 

III. ISSUES FOR ROAD NETWORK PARTITIONING 

We have identified the following issues and parameters that 
are crucial for consideration while designing a heuristic for the 
partitioning of urban transportation network for parallel 
simulation. 

A.  System boundary nodes of each partition 

System boundary nodes of a partition are responsible for 
communicating with other partitions to transfer and receive 
data and control of vehicles. The system boundary nodes pack 
several transfer requests and transfer the packed request to 
other partitions. So, the minimum number of system boundary 

nodes in a partition ensures the separation of responsibility 
and low communication cost.  

B. The number of partitions 

Deciding the number of partitions in the transportation 
network is a crucial factor for balancing the loads and 
minimizing the communication cost. Almost every graph 
partitioning algorithm determines the partitioning based on a 
pre-specified number of partitions which may not always 
generate the optimal solution in practice. Instead of specifying 
an exact number of partitions, an upper bound and lower 
bound can be provided as input to the algorithm to determine 
the best partitioning solution within the specified range. 

C. Load balancing 

As mentioned before, load balancing issue has been studied 
extensively for network partitioning since this directly impacts 
the overall simulation time. However, the metrics considered 
for load-balancing are not sufficient from the context of real 
transportation networks involving variable traffic densities and 
lane distributions. Hence, the weights for the nodes and links 
should be carefully assigned to address this issue. 

D. Intersection cut 

If an intersection is kept in a partition for the sake of one high 
density road and left all the links incident to the intersection in 
other partitions, it introduces a huge communication overhead. 
In other words, if an intersection is considered as a boundary 
node for a partition, then a significant amount of vehicle 
mobility data must be communicated to and from each 
partition that contains the intersection as a boundary node due 
to large number of vehicles migrating from one partition to 
another. In this context, an important factor—whether to 
prioritize signalized intersection over un-signalized 
intersection as a candidate for boundary node—remains open 
for further research.   

 

Fig. 1: Sample partitioning illustrating link cut minimizing 
inter-partition information exchange 

E. Link/Edge cut 

When a link or edge is selected to be cut then the traffic 
volume along the cut link is directly proportional to the 
amount of information exchanged between the two partitions 
along the link. In this case a good strategy would be to choose 
the links with minimum traffic for cut to reduce the 
communication overhead between partitions. For example, the 
road network in Fig. 1 shows four links with the lengths and 
average car densities. These two partitions have the minimal 
interaction between them due to the lower traffic densities (10 
vehicles/km and 15 vehicles/km), thus their discrete 
simulation events can safely run in parallel.  
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IV. PROPOSED PARTITIONING APPROACH 

Below we describe the steps involved in our partitioning 
scheme along with some preliminary results obtained for the 
road network of Johnson City, TN.   

A. Creating graph 

To create the graph, the OSM file of Johnson City, TN is 
downloaded from the openstreet.org website. A python script 
was written for extracting the intersections, road segments, 
traffic signals, and number of lanes. Since a road segment or a 
road is a combination of two or more nodes in OSM file, the 
degree of all nodes is calculated to find out the intersections. 
To keep the graph clean, many road types such as living street, 
service path, foot way, cycle-way, motorway and unclassified 
roads are excluded from the graph. The nodes that have only 
one degree (e.g. dead end) is also excluded from the graph. 
The Fig. 2 depicts the generated graph of Johnson City, TN 
where Google map API is used to overlay the graph vertices 
and edges. 

 

 

Fig. 2: Graph of Johnson City, TN is generated using OSM 
file and overlaid on the Google Map 

B. Generating graph matrices 

Each node or vertex of the generated graph has the latitude 
and longitude values along with a unique number identifier 
assigned by OSM file data structure. Along with the latitude, 
longitude, and the node identifier—an index ranged from 1 
through |�| , where  |�|  is the number of vertices in the 
graph—is assigned to each vertex. The length of the links 
between nodes are calculated using the Haversine formula that 
takes the latitude and longitude of two nodes and returns the 
distance between them. The following equation was used for 
calculation of link lengths based on Haversine formula. 

� = 2� sin�� ��sin� �
�����

�
� + cos (��)cos (��)sin� �

�����

�
��  

where, 
d=Distance between two points/nodes 
r=Radius of Earth (6367 km) 
��=Latitude of point 1 
��=Latitude of point 2 
λ�= Longitude of point 1 
λ�= Longitude of point 2 

Table 1: List of parameters considered for partitioning  

Parameter 
Name 

Extraction Technique 

Node 
weight 

All signalized and un-signalized intersections in 
the OSM data are identified using the above-
mentioned python program. An un-signalized 
intersection is assigned a weight by multiplying 
its degree with the average of incoming and 
outgoing link densities. A signalized intersection 
is assigned a higher weight than un-signalized 
intersections.   

Link length  The length between two nodes is calculated 
using the Haversine method. 

Number of 
lanes  

The number of lanes of a road segment or link is 
extracted from the OSM data. 

Link 
density 

The density of a road segment or link is 
extracted from the Google Map Application’s 
newly introduced traffic layer [13]. The traffic 
volume is sampled in each of the 24 hours in a 
day and calculated the average density. For 
simplicity, the density is expressed in three 
categories: low, medium, and high. 

Link 
priority 

The road segment is assigned the summation of 
link length, the number of lanes, and link density 
as the priority. 

The above table (Table 1) shows all the parameters that 
have been extracted from the OSM data to generate a 
weighted graph.  

 
Fig. 3: Road network partitioning of Johnson City, TN  
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C. Partitioning the graph by METIS 

Since METIS [5] is the most stable unstructured graph 
partitioning package, we partition the generated graph using 
METIS. The input data for METIS is provided using the 
generated graph and weight parameters. Since METIS only 
supports the node and link weight, a node and link weighted 
graph is generated. METIS performs the partition of a graph in 
three phases: the coarsening, partitioning, and uncoarsening 
phase. In coarsening phase, the heavy edge matching scheme 
is used, whereas in the uncoarsening phase, the Kernighan-Lin 
graph refinement algorithm is used. The coarsest graph is 
bisected using graph growing followed by boundary 
Kernighan-Lin algorithm with graph partitioning using 
recursive bisection technique. 

Fig. 3 shows a sample partitioning of the road network of 
Johnson City, TN considering the parameters as described in 
the previous section. For simplicity, here we have only 
provided the multi-lane signalized corridors as the input road 
network to the METIS-based partitioning algorithm.  

V. DISTRIBUTED SIMULATION USING SUMO 

A distributed simulation platform on SUMO is currently 
under development that simulates each partition of the graph 
in a separate processor node. A master program is responsible 
for starting the simulation in all partitions and synchronizing 
the simulation results. The master program is written in C++ 
using the Traffic Control Interface (TraCI) [12] and Message 
Passing Interface (MPI) libraries. The communication and 
synchronization between processors are done using MPI. Each 
processor node has also the information of the complete graph 
information along with its own partition information. The 
SUMO input and configuration files are generated 
dynamically for each partition. The master program 
communicates and starts the SUMO simulator using TraCI 
which is packaged along with the SUMO source tree.  SUMO 
simulator can be operated as a server. TraCI is performed as a 
middle-ware between the master program and SUMO where 
the TraCI is connected with SUMO as a client. Vehicles and 
routes are dynamically created by the master program and 
added to the SUMO simulator using TraCI. The routes are 
calculated from a source node to a destination node using the 
Dijkstra’s algorithm. When a vehicle leaves a boundary node 
of a partition, the master program determines the next partition 
the vehicle will enter, removes the vehicle from current 
partition, and passes the whole vehicular dynamics of the 
vehicle to the entering partition. The master program also 
tracks the time needed to transfer the vehicle and its dynamics 
to the new partition. 

VI. CONCLUSION 

In this paper, we proposed our network partitioning 
approach for large-scale transportation network considering 
some important parameters like signalized traffic intersection, 
road segment length, traffic density, number of lanes and 

inter-partition communication overhead. Most of these factors 
were not accounted for in earlier work. We also discussed the 
critical issues involved in partitioning of a typical road 
network. Finally, we described our hypothetical framework 
for distributed simulation of the partitioned road network on 
SUMO, where a master controller is being developed using 
TraCI APIs and MPI library to coordinate the parallel 
simulation and synchronization between the partitions 
generated by our current algorithm. OUR FUTURE WORK 

INCLUDES INCORPORATING all the identified weight parameters 
in tHE GRAPH PARTITIONING TECHNIQUE BY MODIFYING THE 

FOUR ALGORITHMS) used in METIS (heavy edge matching, 
Kernighan-Lin graph refinement, graph growing followed by 
boundary Kernighan-Lin, and recursive bisection) to meet the 
needs of real-world transportation network. 
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ABSTRACT 
Parallel sparse matrix-matrix multiplication algorithms (PSpGEMM) spend most of their running 

time on inter-process communication. In the case of distributed matrix-matrix multiplications, 

much of this time is spent on interchanging the partial results that are needed to calculate the 

final product matrix. This overhead can be reduced with a one-dimensional distributed algorithm 

for parallel sparse matrix-matrix multiplication that uses a novel accumulation pattern based on 

the logarithmic complexity of the number of processors (i.e., 𝑂(𝑙𝑜𝑔(𝑝)) where 𝑝 is the number 

of processors). This algorithm’s MPI communication overhead and execution time were 

evaluated on an HPC cluster, using randomly generated sparse matrices with dimensions up to 

one million by one million. The results showed a reduction of inter-process communication 

overhead for matrices with larger dimensions compared to another one dimensional parallel 

algorithm that takes 𝑂(𝑝) run-time complexity for accumulating the results. 

Keywords: MPI communication, communication overhead, parallel computing, performance 

analysis, scalability, sparse matrix-matrix multiplication. 

INTRODUCTION 

The widespread use and importance of matrix applications have created a compelling need for 

efficient algorithms for matrix-matrix multiplication. Matrix representations of real-world 

phenomena have numerous applications in science and technology, in fields that include 

electrical engineering, medical science, physics, quantum chemistry (VandeVondele et al., 

2012), mathematics, and computer science. Matrix-matrix multiplication is indispensable for 

almost every research field that involves scientific computation and numerical methods like 

optimization, linear algebra, algebraic multigrid (Briggs et al., 2000), finite element analysis, and 

tensor contraction (Gilbert et al., 2008). In computer science, areas such as graphics, networking, 

wireless communication, video and audio analysis, image processing, graph theory (Dongen, 

2008), big data analysis and language processing use matrix-matrix multiplication. Networks, for 

example, are commonly modeled with adjacency matrices: two-dimensional matrices whose 

elements represent connections and weights between a network’s nodes. Repetitive 

multiplication of adjacency matrices can determine multi-hop reachability, transitive closure and 

dynamic partitioning within a mobile ad hoc network. 

Researchers have worked for several decades to devise matrix-matrix multiplication algorithms 

that outperform the traditional, 𝑂(𝑛3) algorithm. The need for such algorithms is driven by the 

processing of very large matrices, often with trillions of elements. Currently the fastest matrix-

matrix multiplication algorithm, the Coppersmith-Winograd algorithm, has a run time 

complexity of 𝑂(𝑛2.375477)( Williams, 2012). In computations involving matrices of larger 
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dimensions, the main challenge for the matrix multiplication algorithm is a scarcity of 

computational resources. Increasingly, parallel processing is being used to address this challenge. 

In one important special case, the nature of the data being processed creates particular 

opportunities for fast multiplication. Sparse matrices, or matrices whose elements consist largely 

of zeros, are commonly used to model real-world phenomena. Algorithms for sparse matrix-

matrix multiplication improve on classic algorithms by focusing solely on products of nonzero 

elements. These algorithms’ performance depends on factors that include the number and 

distribution of nonzero elements in the matrices to multiply, the structures used to store the 

matrices, the number of processors allocated to a computation, and the efficiency of inter-

processor coordination. In particular, the use of efficient communication models and data 

structures can greatly speed up parallel multiplication. 

Over the past few decades, researchers have extensively studied the Parallel Sparse Generalized 

Matrix-Matrix multiplication problem, hereafter referred to as PSpGEMM (Buluc et al., 2008). 

Numerous algorithms have been designed that apply a variety of distribution models, storage 

mechanisms, and communication models to PSpGEMM. These approaches have been 

incorporated into standard libraries and tools such as BLAS. Despite all these efforts, however, 

the impact of inter-process communication cost on the overall speedup and scalability has 

received relatively little attention. The scalability of any PSpGEMM algorithm depends largely 

on its strategy for inter-process communication, due to the amount of communication needed to 

exchange partial results between processors during the compilation of the final product matrix. 

This paper describes a comparison of two one-dimensionally distributed PSpGEMM algorithms 

in terms of the impact of inter-process communication cost. The first one, developed previously 

by Hoque et al. (2015), uses an algorithm with 𝑂(𝑝) run-time complexity to accumulate partial 

results. It is hereafter referred to as the Original version of PSpGEMM, the other uses a novel 

𝑂(𝑙𝑜𝑔(𝑝)) algorithm to accumulate results. This comparison focuses on how communication 

overhead, particularly MPI overhead, impacts these algorithms’ performance, relative to 

randomly generated sparse matrices with dimensions up to one million by one million. These 

preliminary results indicate a significant reduction of inter-process communication overhead for 

matrices with larger dimensions compared to the Original PSpGEMM algorithm (Hoque et al., 

2015). Section II reviews published communication models for PSpGEMM. Section III presents 

the algorithms’ method of matrix-matrix multiplication. Section IV presents the details of the 

two algorithms (Original and Logarithmic) in terms of the communication patterns. Section V 

presents the results of performance analysis. Section VI concludes by summarizing these 

findings and discussing avenues for future work. 

RELATER WORK 

The scalability and performance of parallel SpGEMM algorithms are highly depended on inter-

process communication, where most of these algorithms’ execution time is spent. Most 

algorithmic designs, however, focus more on computation techniques rather than optimizing 

communications. Very few classical algorithms describe the communication cost of sparse 

matrix-matrix multiplication. Ballard et al. discussed a unified communication analysis of 

existing and new algorithms that provide an optimal lower bound for communication cost 
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(2013). In this paper, optimal communication costs of three 1D algorithms such as Naive Block 

Row (Buluc et al., 2008), Improved Block Row (Challacombe, 2000) and Outer Product 

(Kruskal et al., 1989) were outlined in terms of bandwidth costs and latency costs. 

Ballard et al. (2012) described CAPS, a parallel, communication-optimal algorithm for matrix 

multiplication. Their algorithm seeks to efficiently balance the load among participating 

processors while minimizing interprocessor communication. It recasts Strassen’s sequential 

algorithm as a recursive tree, dividing the multiplication algorithm into 7 subproblems, based on 

whether the dimensions of the matrices to multiply are large (unlimited memory scheme with 

BFS traversal) or small (limited memory scheme with DFS traversal). 

Ballard et al. (2015) also described a hypergraph partitioning approach for parallel sparse matrix-

matrix multiplication. They modeled SpGEMM using a hypergraph and reduced the 

communication cost by communicating between processors along with a critical path of the 

multiplication algorithm. 

Utrera et al. (2015) discussed SpGEMM-related communication imbalances caused by the 

communication library and the interconnection network. The authors characterized this 

imbalance as a major source of performance degradation for sparse matrix-vector multiplication. 

They also analyzed their characterization using the fork-join and task based implementations and 

MPI protocols. 

Most PSpGEMM algorithms assume that an efficient communication model is a natural 

consequence of an effective computation model. Only a very few papers describe the specific 

overhead due to the distribution and accumulation of partial results between processors: the 

source of most communication overhead. In what follows, the authors attempt to address the 

need for a better understanding of these overheads by providing a theoretical framework for an 

efficient partial results accumulation pattern; an implementation the pattern; and an analysis of 

the implementation’s efficiency. 

OUTER PRODUCT MATRIX MULTIPLICATION 

Both algorithms studied use outer product matrix multiplication to solve 𝐴𝐵 =  𝐶, where 𝐴 and 

𝐵 are sparse matrices of size 𝑁 × 𝑁. The authors assume that both A and B are symmetric 

matrices. 

Both algorithms parallelize a serial method for matrix multiplication that begins by computing 

the outer product of A and B. This method takes the 𝑖𝑡ℎ column of matrix 𝐴 and multiplies it by 

the 𝑗𝑡ℎ row of matrix 𝐵 to produce a sub matrix 𝐶𝑖 of dimension 𝑁 × 𝑁. This is continued such 

that each column of 𝐴 and each row of 𝐵 is multiplied together, which produces a total of 𝑁 sub 

matrices: 𝐶1, … , 𝐶𝑁 . The resulting sub matrices are summed element-wise to produce the final 

result, matrix 𝐶, as shown in the following equation: 

∑ 𝐶𝑖 =  𝐶
𝑁

𝑖=1
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In the following description of this algorithm’s parallel implementations, the authors let 𝑝 denote 

the total number of processors, 𝑁/𝑝 the number of rows or columns of the input matrix sent to 

each processor 𝑃𝑖 and 𝛼 the average number of nonzero elements in each row or column of an 

input matrix. Initially, the algorithms divide input matrices 𝐴 and 𝐵 into blocks of size 𝑁/𝑝, 

distributing them over 𝑝 processors. Each processor computes the outer product on its part of the 

matrix by multiplying each column in the block with each row in the block to produce a sub 

matrix 𝐶𝑖. The average number of non-zero elements in each row or column of a sub matrix 𝐶𝑖 is 

at most 𝛼2. Figure 1 illustrates the distribution of a matrix over four processors to produce four 

sub matrices. 

 

Once each processor computes the sub-matrix that contains its portion of the results, the partial 

results are merged through the sending and receiving of data to corresponding processors. This 

merging is done based on the patterns outlined in the next section. Because of the resulting 

matrix’s size (on the order of 1012 elements for the largest input size 106), the final matrix 𝐶 is 

left distributed over the processes. 

IMPLEMENTATION OF PSPGEMM ALGORITHM 

The authors present two versions of parallel sparse matrix-matrix multiplication algorithms with 

distinct merging scheme to illustrate a reduction in complexity created by a reduction in 

communication overhead. Both versions use the same storage mechanism and hashing 

techniques as described by Hoque et al. (2015). The algorithms differ only in a number of times 

data is sent and received between nodes during the merging of partial results that follows the 

computation of the sub-matrices. The authors also present the mandatory and auxiliary storage 

mechanism for the two algorithms to exchange data. 

Original Merging Pattern 

The first merging pattern accumulates its partial results as follows. After each sub-matrix is 

calculated, it is repartitioned into 𝑝 column-wise blocks and then redistributed. Each process 

sends the 𝑖𝑡ℎ block of its sub matrix to the corresponding 𝑖𝑡ℎ processor to be merged with the 

partial results being received from the other processes. Figure 2 illustrates processor 𝑃2 merging 

its results with the remaining three processors: processors 𝑃1, 𝑃3, and 𝑃4 send partial results from 

Figure 1: Distribution of an input matrix using outer 

product multiplication on four processors. 
Figure 2: Merging results onto process two using four 

processes in total. 
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their second block to 𝑃2, and processor 𝑃2 sends the partial results in the first, third, and fourth 

block to 𝑃1, 𝑃3, and 𝑃4, respectively. 

Based on the distribution process described in the outer product matrix multiplication section, if 

each processor receives ⌈
𝑁

𝑝
⌉ columns upon the distribution of the input matrices, the total number 

of non-zero elements each process contains after computing its sub matrix 𝐶𝑖 is equal to 𝛼2 ⌈
𝑁

𝑝
⌉. 

Because each process exchanges data with 𝑝 − 1 processes, every process communicates an 

average of  
𝑝−1

𝑝
𝛼2 ⌈

𝑁

𝑝
⌉ elements. Accordingly, the amount of data that a process transfers to other 

processes using this communication pattern has complexity of 𝑂 (
𝛼2𝑁

𝑝
). 

The total communication overhead is determined by the number of processes that send and 

receive data, the amount of data transferred, and delays created by the irregular distribution of 

non-zero elements throughout the input matrices and the resulting variation in the number of 

computations each process needs to calculate its portion of the partial result. Let the largest of 

these delays, the synchronization delay, be denoted by 𝛿. The total communication overhead is 

then given as (𝑝 − 1) (⌈
𝑁

𝑝
⌉ + 𝛿). 

Logarithmic Merging Pattern 

In the proposed Logarithmic merging pattern, each process 𝑃𝑖 sends its partial results to another 

process in 𝑙𝑜𝑔(𝑝) number of stages where 𝑝 is the total number of processes involved in 

calculating the partial results. In each of these stages, the process 𝑃𝑖 divides its total partial result 

matrix into two bins. The first bin contains the elements of the partial matrix whose column 

indexes are less than a mid-value. The second contains the elements whose column indexes are 

greater or equal to this mid-value. The mid-value is calculated in each stage for a particular 

computing process from the number of column-wise blocks per process. This calculation also 

determines a low index (𝑙) and a high index (ℎ), based on the number of processes (𝑝) and a 

process’s rank: a unique number assigned to each processor. These indices determine which bin 

to send and which to receive. 

After dividing the partial result matrices into two bins, process 𝑃𝑖 calculates the rank (𝑟) of 

another process 𝑃𝑗 with which to interchange bins. 𝑃𝑖 then exchanges half of its partial results 

with 𝑃𝑗 by sending one of the two bins and receiving the other. 

Figure 3 illustrates the merging pattern for 8 processes where each process communicates with 

other processes in 3 (i.e., 𝑙𝑜𝑔2(8)) stages. In each stage, a processor 𝑃𝑖 determines another 

processor 𝑃𝑗 to send to, along with the bin to send. For example, in the first stage 𝑃1 sends its 

second bin to 𝑃5, while 𝑃5 sends its first bin to 𝑃1. Each process 𝑃𝑖 distributes half of the partial 

results to 𝑃𝑗 and discards the contents of the bin that was sent while appending the contents that it 

receives to its other bin. For example, 𝑃1 appends the contents received from 𝑃5 to its first bin 

and removes the contents from its second bin. Similarly, 𝑃5 appends the contents received from 

𝑃1 to its second bin and removes the contents from its first bin. The gray areas in Figure 3 

indicate the removed contents. 
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Figure 3: Logarithmic communication between processes. 

Since each process divides its partial results into two bins at each stage, a process creates a total 

of 𝑝 bins after completing the 𝑙𝑜𝑔(𝑝) number of stages. In the final stage, each process contains 

partial results from each of the p processes including itself. For example, 

 In stage 1, results are exchanged between process pairs 𝑃1 and 𝑃5; 𝑃2 and 𝑃6; 𝑃3 and 𝑃7; 

and 𝑃4 and 𝑃8. In this exchange, each process acquires one additional set of partial 

results, generated by the other. Following stage 1, processes pairs 𝑃1 and 𝑃5; 𝑃2 and 𝑃6; 

𝑃3 and 𝑃7; and 𝑃4 and 𝑃8 share each others’ results. 

 In stage 2, results are exchanged between 𝑃1 and 𝑃3; 𝑃2 and 𝑃4; 𝑃5 and 𝑃7; and 𝑃6 and 𝑃8. 

In this exchange, each process acquires two additional sets of partial results: one set 

generated by the exchange’s other process and a second this other process acquired 

during stage 1. Following stage 2, processes 𝑃1, 𝑃3, 𝑃5, and 𝑃7 share results, as do 

processes 𝑃2, 𝑃4, 𝑃6, and 𝑃8. 

 In stage 3, results are exchanged between 𝑃1 and 𝑃2; 𝑃3 and 𝑃4; 𝑃5 and 𝑃6; and 𝑃7 and 𝑃8. 

In this exchange, each process acquires the remaining four sets of partial results. 

Following stage 3, all processes have one another’s partial results. 

At each stage, each process must determine a low value, a high value, the rank of another process 

with which to exchange data, and the bin (one of two) to send to the other process. Let 

𝑟𝑎𝑛𝑘 = the computing process’s rank 

𝑠 = the current stage 

𝑏𝑝𝑝 = number of column-wise blocks per process 

ℎ𝑎𝑙𝑓 = the mid-value for dividing the partial results 
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Each process then uses the algorithm from Figure 4 (left part) to calculate l, the process’s low 

value for this stage; ℎ, the process’s high value for this stage; 𝑏, the index of the bin to send; and 

𝑟, the other process’s rank. 

 

Figure 4: Logarithmic merging algorithm. 

Figure 4 (right part) shows the Logarithmic algorithm’s procedure for managing overall inter-

process communication. In this algorithm, the mid-value is calculated in order to divide the 

partial results into two bins. 

Because the Original and Logarithmic algorithms implement identical methods for computing 

each matrix’s partial results, each process’s computations on each of its submatrices will average 

𝛼2 ⌈
𝑁

𝑝
⌉ operations resulting in 𝑂 (𝛼2 ⌈

𝑁

𝑝
⌉) complexity. Based on the merging schema in the 

proposed communication pattern, the partial results are accumulated in 𝑙𝑜𝑔2(𝑝) stages where 𝑝 

is the number of processes. On each stage, any one process of the 𝑝 processes transfers on 

average (
1

𝑝
) 𝑡ℎ of the total data, i.e., on average the amount is 𝛼2 ⌈

𝑁

𝑝
⌉. Since the accumulation of 

partial results is done in 𝑙𝑜𝑔2(𝑝) stages, the total amount of data transferred between processes is 

𝑙𝑜𝑔2(𝑝)𝛼2 ⌈
𝑁

𝑝
⌉, which results in a complexity of 𝑂 (𝑙𝑜𝑔2(𝑝)𝛼2 ⌈

𝑁

𝑝
⌉). Similarly, to the delay in 

communication caused by varying computation times between nodes, the inclusion of the 

synchronization delay between nodes causes the total overhead communication to have 

complexity of 𝑂 (𝑙𝑜𝑔2(𝑝)𝛼2 ⌈
𝑁

𝑝
⌉ + 𝛿). 

DATA STRUCTURES 

Storing just the non-zero data elements of a sparse matrix greatly reduces the amount of space 

that such matrices consume. The two algorithms use lists (e.g., vectors) to store a matrix’s data 

elements. This list pairs each data element with its row and column index. 

The matrices generated by the outer product computations are stored in a hash table. Each 

element’s hash key is generated from its row and column indices as its hash key. Hash keys are 

uniform over the size of the hash table. Collisions resulting from the hashing of multiple 

elements to the same key are managed using external hashing: i.e., with a key-indexed linked 
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list. Each hash table stores partial results as well as a portion of the final result in the end. In 

order to exchange a block of data with other processors, partial results must be copied from the 

hash table to a contiguous chunk of sequential memory (e.g., an array). 

 

PERFORMANCE ANALYSIS 

The performance of the two PSpGEMM algorithms was analyzed on Knightrider, one of two 

high-performance computing clusters at East Tennessee State University’s High-Performance 

Computing Center (Figure 5). Knightrider, which the university obtained in 2011, consists of 48 

HP ProLiant BL280c G6 compute nodes and 1 HP DL380 G7 master node. The cluster totals 

588 processors with 2.3 terabytes of memory, where each node contains a dual Xeon X5650 2.66 

GHz processor, 12 cores, and 48 gigabytes of memory. The nodes are connected using a 4x QDR 

InfiniBand interconnect and Voltaire 36-port InfiniBand switches. The cluster hosts a total of 30 

terabytes of central storage on its hard drives and 160 gigabytes of local storage on its compute 

nodes (High, 2007). 

 

Figure 5: ETSU HPC Clusters. 

Figure 6: Average communication overhead for N = 1M. Figure 7: Total communication overhead for N = 1M. 

57



Each of the PSpGEMM algorithms was evaluated in terms of its total execution time, total 

distributed computing time, average computation time per process, total MPI communication 

overhead, and average communication overhead per process. The experimental parameters that 

were varied include the input matrix’s dimension (up to one million) and the number of 

computing processes (up to 256). The total number of processes excludes a separate, master 

process, which both algorithms use to load the input file into memory: only the computation 

nodes are included in the calculations. 

 

Figure 8: Total overhead communication for N = 100K, N = 500K, and N = 1M. 

As indicated by Figures 6 and 7, the Logarithmic merging pattern reduces the average 

communication overhead and total communication overhead incurred by the Original merging 

pattern. Figure 8 shows that Original merging algorithm and the Logarithmic merging algorithm 

exhibit almost equal total overhead communication for input file 𝑁 =  100,000. For the larger 

input sizes of 𝑁 =  500,000 and 𝑁 =  1,000,000, the proposed merging algorithm exhibits 
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lower total overhead communication. This may suggest that the greatest benefits from the 

Logarithmic algorithm occur for larger matrices, which is precisely what the algorithm is 

designed for. Likewise, for the smallest input size, the Original merging pattern and the 

Logarithmic pattern achieved almost equal total execution time (Figure 9). 

 

Figure 9: Total execution time for N = 100K, N = 500K, and N = 1M. 

CONCLUSION AND FUTURE WORK 

In this paper, the authors have explored two merging patterns for accumulating the partial results 

of sparse matrix-matrix multiplication in parallel. A theoretical framework and supporting 

implementation have been developed for a merging pattern where each node sends and receives 

half of its data in 𝑙𝑜𝑔2(𝑝) iterations, resulting in total communication overhead of 

𝑂 (𝑙𝑜𝑔2(𝑝)𝛼2 ⌈
𝑁

𝑝
⌉ + 𝛿). Based on the performance on the high-performance computing cluster 

Knightrider, the data collected for three input sizes (100K, 500K, 1M) shows that the proposed 
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Logarithmic pattern, as predicted, incurs lower communication overhead, which in turn reduces 

the total execution time. 

Several issues related to the algorithms’ relative performance still need to be addressed. 

Currently, the Logarithmic merging algorithm assumes that the number of processors in use is an 

exact power of 2. This restriction will be removed in a forthcoming version of this algorithm, 

which will allow it to run on any number of processors. One particular issue of the Logarithmic 

merging pattern is its failure to yield as great of an improvement over the Original linear merging 

pattern as anticipated. Our analysis attributes this failure to the overhead incurred by copying 

data from a processor’s hash table into a contiguous package for transmission. Our future study 

will focus more on the optimization of the data packaging overhead. 

Another topic of particular interest is the Logarithmic algorithm’s scalability. This can be 

assessed by running the algorithm at a more powerful facility like Oak Ridge National Lab (Oak, 

1943) for a larger number of processors. Exploring the performances based on different sizes and 

implementations of the hash table and varying the sparsity and distribution of non-zero elements 

in the input matrices can help obtain additional information concerning the scalability and 

characteristics of the Logarithmic merging algorithm. 
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CHAPTER 7

CONCLUSIONS AND FUTURE PLAN

Progress in CV technology has created opportunities for researchers and automakers to

develop applications that provide vehicles with new safety, alert, and assistive features. Due to the

ethical and practical infeasibility of conducting experiments on real transportation networks, these

applications will need to be validated in laboratory settings before being deployed in real-world

settings. If simulations are to find practical use in validating ITS applications, approaches like

those described in this thesis will need to be devised for creating efficient parallel simulations of

ITS applications in large-scale transportation networks.

To this end, the research described in this thesis developed a novel decentralized freeway

merge assistance system. To the best of my knowledge, this is the first attempt to develop and

evaluate a freeway merge assistance system using real-world vehicular mobility traces and an

actual interstate. Though experiments demonstrate that the system can provide accurate advisory

information for straight ramps, additional work will be needed to support merging on curved

ramps.

Another important research issue of the freeway merge assistance system is driver

compliance. Currently, the freeway merge assistance system assumes that every driver will

comply with its advisories. In real world settings, drivers might ignore these advisories, which

could have a major impact on the system’s accuracy and performance. While a good advisory

visualization could improve driver compliance, designing such a visualization system, will prove

challenging. As an alternative, future versions of the merge assistance system will treat merging

vehicles as semi-autonomous entities, triggering their cruise control mechanisms at the decision

point and maintaining their current speeds until they complete the merge.

The research described a network partitioning strategy that extended METIS with

complex node and edge weighting functions that account for a network’s traffic parameters.

Future research will focus on developing a customized version of METIS that uses customized

versions of its four partitioning algorithms: heavy edge matching, Kernighan-Lin graph

refinement, graph growing followed by boundary Kernighan-Lin, and recursive bisection.

This research explored two merging patterns for accumulating partial results to produce
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the final output using a sparse matrix-matrix multiplication. Though the logarithmic merging

pattern performs better than the linear pattern in most experiments, the merging pattern still needs

to address several issues related to the algorithms’ relative performance. Currently, the

logarithmic merging algorithm assumes that the number of processors in use is an exact power of

2. This restriction will be removed in a forthcoming version of this algorithms. Another topic of

interest is the algorithm’s scalability. This can be assessed by running the algorithm at a more

powerful facility like Oak Ridge National Lab [20] for larger numbers of processors. Exploring

performance based on different matrix sizes and processor numbers should yield better

characterizations of the algorithm’s scalability.

Finally, the research described in thesis represents an initial attempt to develop a complete

feedback-loop based parallel simulator. Future work will include the actual implementation a

parallel simulation framework using TraCI APIs where a master controller will manage the

partitioning of transportation networks, simulating individual partitions, and synchronizing the

partial simulation results.
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