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ABSTRACT

A Distribution of the First Order Statistic when the Sample Size is Random

by

Vincent Forgo

Statistical distributions also known as probability distributions are used to model

a random experiment. Probability distributions consist of probability density func-

tions (pdf) and cumulative density functions (cdf). Probability distributions are

widely used in the area of engineering, actuarial science, computer science, biological

science, physics, and other applicable areas of study. Statistics are used to draw con-

clusions about the population through probability models. Sample statistics such as

the minimum, first quartile, median, third quartile, and maximum, referred to as the

five-number summary, are examples of order statistics. The minimum and maximum

observations are important in extreme value theory. This paper will focus on the

probability distribution of the minimum observation, also known as the first order

statistic, when the sample size is random.
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1 INTRODUCTION

The concept of order statistics is familiar in areas of finance and insurance (Risk

assessment). The order statistics of a random sample X1, X2, ...Xn are defined as

X(1) ≤ X(2) ≤ .... ≤ X(n). A situation can occur in actuarial science with a joint

life insurance. The policy pays out when one of the spouse’s dies. In this problem,

we want to know the distribution of the minimum payment, which is the random

variable of the two life spans. Another form of application of order statistics is about

a machine, which may run on 15 batteries and shuts off when the seventh battery

dies. We may want to know the distribution of X(7). Thus, the distribution of the

random variable of the seventh longest lasting battery.

In order statistics the variables are considered as independent and identically

distributed, iid. The cumulative distribution function of the nth order statistic is

given as

Fn(x) = P {allXi ≤ x} = [P (X ≤ x)]n = [Fn(x)]n.

This implies the cumulative distribution is Fn(x) for this random variable. The

cumulative distribution function (cdf) of the first order statistic or the minimum is

(1− P [(Xi > x)])n.

The general formula of the cumulative distribution for the k(th) order statistic is given

as
n∑
j=k

(
n

j

)
F (x)j(1− F (x))n−j.
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Order statistics is among the most essential functions of a set of random variables that

are studied in probability and statistics. There is natural interest in studying the highs

and lows of a sequence, and the order statistics help in understanding concentration of

probability in a distribution[4]. It is important to note that the variables in the sample

are independent and identically distributed but because of the the sequential order

associated with order statistics, the order statistics is not distributed identically and

independently. Since the variables in the sample appear in order, there is a minimum

and maximum order statistics. Therefore, the nth(maximum) order statistic has a

pdf of

fx(n) = n[F (x)]n−1f(x)

and the first order statistic(minimum) will have a pdf of

fx(1) = n[1− F (x)]n−1.
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2 FIXED SAMPLE SIZE

Now let us consider Xi to be iid continuous random variables i.e. all the random

variables have equal probability distribution and mutually independent of each other

such that the random variables follow a uniform distribution, Xi ∼ unif(0, 1) and

Z = min(X1, ...., Xn). If n is fixed then

P (Z ≤ z) = 1− P (Z > z) = 1− [1− FX(z)]n = 1− [1− z]n, 0 ≤ z ≤ 1.

where Fx(z) is the cdf of the uniform distribution. The idea, of starting with 1 −

P (Z > z) is because we can say that if the first order statistics is the smallest,

then automatically z is less than Z. Hence we can find P (Z ≤ z) by starting with

1 − P (Z > z). The pdf is generated by taking the derivative of the cdf which gives

f(z) = n[1 − z]n−1. The cdf and pdf is graphically shown in figure 1 and becomes

steeper as n gets large.
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Figure 1: The cdf and pdf of the smallest order statistic when the underlying distri-

bution is uniform.
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3 TRUNCATED POISSON MIXTURE

The Poisson distribution is a discrete probability distribution. The Poisson distri-

bution is some times truncated, i.e. the random variables are assigned numbers that

are greater than zero. The Poisson distribution is a discrete distribution used for the

interval counts of events that randomly occur in given interval (or space)[3]. The

probability mass function (pmf) is

P (N = n) =
λne−λ

n!
, n = 0, 1, 2, 3...;λ > 0.

with expectation E(N) = λ and variance V (N) = λ. The probability generating

function of the Poisson distribution is G(t) = eλ(t−1) and the moomemt generating

function (mgf) is M(t) = eλ(e
t−1), where the events occur on a given time t.

The truncated Poisson is a discrete probability distribution which is used to de-

scribe events that occur per unit time and can not be a zero event. In this case,

the starting point will not be zero but 1. This process is termed as the truncated

Poisson distribution or the zero truncated Poisson distribution. The pmf of the zero

truncated Poisson is given below as

P (N = n) =
λne−λ

(1− e−λ)n!
, n = 1, 2 . . . .

with an expectation of E(N) = λ
1−e−λ and a variance of V (N) = λ

(1−e−λ)2 .

If the random variable Xi follows a continuous probability distribution and Z|N =

min(X1, ...., Xn), then we can find a distribution for the first other statistic X(1) when

the sample size is fixed or random. In the next section, the paper will focus more on a

general formula for finding the cdf and pdf of a random variable with any continuous

probability distribution like uniform, exponential, etc. and a random sample size(N).
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If N is a random sample size and follows a truncated Poisson distribution then

for any continuous distribution of Xi, we can find the cdf of the distribution by using

the generalised formula for P (Z > z), i.e,

P (Z > z) =
∑
n

[1− Fx(z)]n
e−λλn

(1− e−λ)n!
=

e−λ

(1− e−λ)
[e(1−Fx(z))λ − 1].

The general cdf will be

F (z) = 1− e−λ

(1− e−λ)
[e(1−Fx(z))λ − 1]

with a pdf

f(z) =
λe−λ

1− e−λ
fx(z)[e(1−Fx(z)λ], λ > 0,

where Fx(z) and fx(z) are the cdf and pdf of the continuous random variable Xi,

respectively. If Xi follows a continuous distribution which is not closed like the

normal distribution, then we can use R functions like the pnorm and dnorm to find

the cdf and pdf respectively, i.e., Fx(z) = pnorm(x) and fx(z) = dnorm(x).

3.1 Uniform - Truncated Poisson Mixture Distribution

If the random variable Xi follows a continuous probability distribution and Z =

min(X1, ...., XN) , then we can find a distribution for the first other statistic X(1).

In this section we are focused on a distribution of the first order statistics with

an underlying uniform distribution and a random sample which follows a truncated

Poisson distribution. If N is random then

P (Z > z) =
∑
n

P (Z > z|N = n)P (N = n), 0 < z < 1

10



where P (Z > z|N) is the conditional distribution and P (N = n) is the marginal

distribution. The idea of N being random will be widely explored in this paper. Our

new distribution is mainly based on the idea of first order statistics and N following

truncated Poisson. Let us considerXi ∼ Unif(0, 1) and Z|N = min {X1, X2, ...., XN}

where N is sample size and is random with distribution

P (N = n) =
e−λλn

(1− e−λ)n!
, n = 1, 2, 3, . . . .

Then

P (Z > z) =
∞∑
n=1

(1− z)n
e−λλn

(1− e−λ)n!

=
∞∑
n=0

(1− z)n
e−λλn

(1− e−λ)n!
− (1− z)0

e−λλ0

(1− e−λ)0!

=
e−λ

(1− e−λ)

∑∞
n=0((1− z)λ)n

n!
− e−λ

(1− e−λ)
.

Using the definition of
∑∞

n=0
λn

n!
= eλ we can simplify the above equation as

e−λ

(1− e−λ)
[e(1−z)λ − 1].

Hence the cumulative distribution function (cdf) is given as F (z) = 1− e−λ

(1−e−λ) [e
(1−z)λ − 1].

where 0 < z < 1, λ > 0.

The probability density function (pdf) can be derived by taking the derivative of

the cdf with respect to z. The pdf of a first order statistic when the underlying

distribution is uniform with a random sample that is a truncated Poisson is

f(z) =
λe−λ

1− e−λ
[e(1−z)λ], 0 < z < 1, λ > 0.

11



It can be proven that f(z) satisfies the conditions of a pdf i.e.
∫ 1

0
f(z)dz = 1∫ 1

0

f(z)dz =

∫ 1

0

λe−λ

1− e−λ
[e(1−z)λ]dz =

λe−λ

1− e−λ

∫ 1

0

[e(1−z)λ]

1

eλ − 1
[eλ − 1] = 1.

From the distribution generated, the expectation is given as

E(Z) =

∫ 1

0

λe−λ

1− e−λ
z[e(1−z)λ]dz =

eλ − λ− 1

λ(eλ − 1)
.

The moment generating function (mgf) can be used to estimate both the

expectation and variance. The mgf of the distribution is given as

M(t) = E(etz) =

∫ 1

0

etzf(z)dz =

∫ 1

0

etz
e−λ

1− e−λ

(
e(1−z)λ

)
dz

=
λe−λ

1− e−λ

(
eλ − et

λ− t

)
.
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Figure 2: The cdf and pdf of the smallest order statistic when the underlying distri-

bution is uniform and random sample size which follows a truncated Poisson where

rate (λ) = 5.

From Figure 3, it is clear that the cdf in both the random and fixed cases tend to be

the same as λ and n increases. The behaviour of the cdf as λ and n increases shows

a steep and sharp turn closer to 1. This implies that the larger n and λ gets, the

more steeper the curve becomes and the fixed sample size (n) and the random

sample size (N) all tend to have the same cdf.
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Figure 3: A cumulative distribution function plots of different samples (n) and differ-

ent rates (λ) when the underlying distribution is uniform for fixed sample and random

sample which follows a truncated Poisson.
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The percentile function is relevant in statistics because it can be used to indicate

the value below a certain percentage. The percentile function can also be used to

calculate the lower quartile(Q1), median(Q2) and the upper quartile(Q3). The

percentile function of the first order statistic when the underlying distribution is

uniform and a random sample size that follows a truncated Poisson is

P = F (µ) =

∫ µ

−∞
f(y)dy.

where f(y) is the probability density function(pdf). From the uniform truncated

Poisson distribution, the probability distribution function pdf is

λe−λ

1−e−λ [e(1−z)λ − 1], λ > 0. The percentile function is generated by∫ µ

0

λe−λ

1− e−λ
[e(1−z)λ]dz =

λe−λ

1− e−λ

∫ µ

0

[e(1−z)λ]dz

=
e−λ

1− e−λ
(eλ − eλ(1−µ))

P =
e−λ

1− e−λ
(eλ − eλ(1−µ)), λ > 0, µ > 0

From the above percentile equation, the 50th percentile(median) is calculated in terms

of λ as

0.5 =
eλ − eλ(1−µ)

eλ − 1
⇒ µ =

λ− log(1− eλ)
(

0.5 + eλ

1−eλ

)
λ

.
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3.2 Exponential - Truncated Poisson Mixture Distribution

In this section, we are focused on a distribution of the first order statistics with an

underlying exponential distribution and a random sample which follows a truncated

Poisson. If Z|N = min {X1, ...., XN}, where N is the sample size which is random

with a distribution

P (N = n) =
e−λλn

(1− e−λ)n!
.

We have

P (Z > z) =
∞∑
n=1

(e−zµ)n
e−λλn

(1− e−λ)n!

P (Z > z) =
∞∑
n=1

e−λ−znµλn

(1− e−λ)n!
=
∞∑
n=0

e−λ−znµλn

(1− e−λ)n!
− e−λ

1− e−λ

=
e−λ

1− e−λ

[ ∞∑
n=0

e−znµλn

n!
− 1

]

=
e−λ

(1− e−λ)
[eλe

−zµ − 1].

The cdf of an underlying exponential distribution with a random sample size which

follows a truncated Poisson is

F (z) = 1− e−λ

1− e−λ
[eλe

−zµ − 1], λ > 0, z > 0, µ > 0.

and a pdf of

f(z) =
d

dz

(
1− e−λ

1− e−λ
[eλe

−zµ − 1]

)
=

λµ

eλ − 1
[eλe

−zµ−zµ], λ > 0, z > 0, µ > 0.
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Figure 4: A figure representing the cdf and pdf with an underlying exponential dis-

tribution and a random sample size which follows a truncated Poisson when rate

(λ) = 0.5 and µ = 1.
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4 TRUNCATED BINOMIAL MIXTURE

The truncated binomial distribution is a discrete probability distribution with a

probability mass function

P (N = n) =

(
k

n

)
pn(1− p)k−n

1− (1− p)k

for n = 1, 2, ...k. Where k is the number of success and p is the probability of success

with an expectation

E(N) =
kp

1− (1− p)k

and a variance

V (N) =
kp(1− p− (1− p+ kp))(1− p)k

(1− (1− p)k)2
.

The binomial distribution is often used to model the number of success(k) among a

sample of size(n).

In this section of the paper, we will focus on finding a general cdf and pdf when

the random sample size follows a truncated binomial distribution and the random

variable Xi follows a continuous distribution that can be exponential, uniform, etc.

The general formula for P (Z > z) will be

P (Z > z) =

∑
n[1− Fx(z)]n

(
k

n

)
pn(1− p)k−n

1− (1− p)k
=

1

1− (1− p)k

[
(1−Fx(z)p)k−(1−p)k

]
.

The general cdf will be

F (z) = 1− 1

1− (1− p)k

[
(1− Fx(z)p)k − (1− p)k

]
18



and a pdf of

f(z) =
kp(1− Fx(z)p)k−1fx(z)

1− (1− p)k
, 0 ≤ p ≤ 1,

where Fx(z) and fx(z) are the cdf and pdf of the continuous random variable Xi

respectively.

4.1 Uniform-Truncated Binomial Mixture Distribution

In this section, we are focused on finding a distribution of the first order statistics

with an underlying uniform distribution and a random sample which follows a trun-

cated binomial distribution. If Z|N = min {X1, ...., XN} where N is the sample size

which is random with a distribution

P (N = n) =

(
k

n

)
pn(1− p)k−n

1− (1− p)k

for n=1, 2, ...k. This implies that

P (Z>z)=

∑k
n=1(1− z)n

(
k

n

)
pn(1− p)k−n

1− (1− p)k
=

1

1− (1− p)k

[ k∑
n=1

(1− z)n
(
k

n

)
pn(1− p)k−n

]

=
1

1− (1− p)k

[ k∑
n=0

(1− z)n
(
k

n

)
pn(1− p)k−n − (1− p)k

]

=
1

1− (1− p)k

[ k∑
n=0

(
k

n

)
((1− z)p)n(1− p)k−n − (1− p)k

]
=

1

1− (1− p)k

[
((1− z)p+ (1− p))k − (1− p)k

]
=

1

1− (1− p)k

[
(1− zp)k − (1− p)k

]
.

Thus the cdf of an underlying uniform distribution with a random sample which

follows a truncated binomial distribution is

F (z)=1− 1

1− (1− p)k

[
(1− zp)k − (1− p)k

]
19
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(a) Cumulative distribution function plot with k=

5 and p=0.8.
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(b) Probability density function plot with k=5 and

p=0.8.

Figure 5: A figure representing the cdf and pdf with an underlying uniform distribu-

tion and random sample size which follows truncated binomial.

with a probability density function

f(z)=
kp(1− zp)k−1

1− (1− p)k

and

E(Z)=

∫ 1

0

z
kp(1− zp)k−1

1− (1− p)k
dz=

1− (1− p)k(kp+ 1)

p(k + 1)
.

Figure 5a shows the cdf of an underlying uniform distribution and a random

sample size that follows truncated binomial distribution. Figure 5b is the pdf of an

underlying uniform distribution and a random sample size which follows a truncated

binomial distribution.
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Figure 6: A cumulative distribution function plots of different samples (n) and differ-

ent p and k when the underlying distribution is uniform for fixed sample and random

sample that follows a truncated binomial.

From Figure 6, it is clear that the cdf in both the random and fixed cases tend to

be the same as p, k and n increases. The behaviour of the cdf as p, k and n increases
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shows a steep and sharp turn closer to 1. This implies that the larger p, k and n gets,

the steeper the curve becomes.

The percentile function of an underlying uniform distribution with a random sam-

ple size which follows a truncated binomial distribution is given as

P=

∫ µ

0

kp(1− zp)k−1

1− (1− p)k
dz=

(1− µp)k − 1

(1− p)k − 1
.

From the Percentile function, the 50th percentile (µ) or the median is calculated using

the relation

P=
(1− pµ)k − 1

(1− p)k − 1

Hence

µ=
1− (0.5− 1

1−(1−p)k )((1− p)k − 1))

p

0≤p≤1, P=0.5 and 0<z<1.

4.2 Exponential-Truncated Binomial Mixture Distribution

In this section, we are focused on finding a distribution of the first order statistics

with an underlying exponential distribution and a random sample which follows a

truncated binomial distribution. If Z|N=min {X1, ...., XN} where N is the sample

size which is random with a distribution

P (N=n)=

(
k

n

)
pn(1− p)k−n

1− (1− p)k

for n=1, 2, ...k . This implies that

P (Z>z)=

∑k
n=1(e

−zµ)n
(
k

n

)
pn(1− p)k−n

1− (1− p)k
=

1

1− (1− p)k

[ k∑
n=1

(e−zµ)n
(
k

n

)
pn(1− p)k−n

]
22
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(a) Cumulative distribution function plot when p=

0.2, k=5 and µ=1.

0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

1.
5

2.
0

Index

F0

(b) Probability density function plot when p=

0.8, k=5 and µ=1.

Figure 7: The cdf and pdf of the smallest order statistic when the underlying distri-

bution is exponential and random sample size which follows a truncated binomial.

1

1− (1− p)k

[ k∑
n=0

(e−zµ)n
(
k

n

)
pn(1− p)k−n − (1− p)k

]
=

(pe−zµ + 1− p)k − (1− p)k

1− (1− p)k
.

Thus the cdf of an underlying exponential distribution with a random sample which

follows a truncated binomial distribution is

F (z)=1− (pe−zµ + 1− p)k − (1− p)k

1− (1− p)k
, µ>0, 0≤p≤1, z>0

with a probability density function

f(z)=kµp1−ke−zµ(pe−zµ − p+ 1)k−1, µ>0, 0≤p≤1, z>0.
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5 TRUNCATED GEOMETRIC MIXTURE

In this section of the paper, the focus will be finding a distribution of the first

order statistic when Xi is any continuous distribution and the random sample size

follows a geometric distribution. The geometric distribution is a discrete probability

distribution which is used to represent the first outcome of a specific event with a

probability p of the event occurring. The pmf of the geometric distribution is

P (N=n)=p(1− p)n, n=0, 1, 2, . . .

with an expectation

E(N)=
1− p
p

and variance

V (N)=
1− p
p2

0≤p≤1.

The truncated geometric distribution is a modified form of the geometric distribution

with a probability mass function (pmf)

P (N=n)=p(1− p)n−1, n=1, 2, . . .

with an expectation

E(N)=
1

p

and variance

V (N)=
1− p
p2

0≤p≤1.
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If N follows a truncated geometric distribution then for any continuous distribution

of Xi, the generalised formula for P (Z>z) will be

P (Z>z)=
∑
n

P (Z>z|N=n)P (N=n)

=
∞∑
n=1

(1− Fx(z))np(1− p)n−1=p
∞∑
n=0

[
((1− Fx(z))(1− p))n − (1− p)−1

]
.

The general cdf of an underlying continuous distribution with a random sample which

follows truncated geometric distribution is

F (z)=1− p

1− p

[(
−1

pFx(z)− p− Fx(z)

)
− 1

]
and a pdf of

f(z)=
p

fx(z)(pFx(z)− p− Fx(z))2
0≤p≤1.

Where Fx(z) and fx(z) are the cdf and pdf of the continuous random variable Xi

respectively.

5.1 Uniform-Truncated Geometric Mixture

The distribution of a first order statistic with an underlying uniform distribution if

Z|N=min {X1, ...., XN} where N is the random sample size which follows a truncated

geometric distribution

P (N=n)=p(1− p)n−1, n=1, 2, . . . .

This implies

P (Z>z)=
∞∑
n=1

(1− z))np(1− p)n−1=p
∞∑
n=0

[
((1− z)(1− p))n − (1− p)−1

]
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(a) Cumulative distribution function plot
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Figure 8: A Figure representing the cdf and pdf with an underlying uniform distri-

bution and a random sample size which follows a truncated geometric distribution

when p=0.01.

=
p

1− p

[(
−1

zp− p− z

)
− 1

]
.

The cdf of a first order statistic with an underlying uniform distribution and a random

sample size which follows a truncated geometric distribution is

F (z)=1− p

1− p

[(
−1

zp− p− z

)
− 1

]
, 0≤p≤1, 0<z<1,

with a pdf of

f(z)=
p

(pz − p− z)2
, 0≤p≤1, 0<z<1.
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Figure 9: A cumulative distribution function plots of different samples (n) and differ-

ent probabilities p when the underlying distribution is uniform for fixed and a random

sample which follows a truncated geometric .

From Figure 9, it is clear that the cdf in both the random and fixed cases tend to

take the similar shape as p decreases and n increases. The behaviour of the cdf as p
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decreases and n increases shows a steep and sharp turn closer to 1. This implies that

the smaller p gets and the larger n gets, both fixed and random sample size tend to

have the same cdf.

5.2 Exponential-Truncated Geometric Mixture

The distribution of a first order statistic with an underlying exponential distribu-

tion if (Z|N)=min {X1, ...., XN} where N is the random sample size which follows a

truncated geometric distribution

P (N=n)=p(1− p)n−1, n=1, 2, . . . .

P (Z>z)=
∞∑
n=1

(e−zµ))np(1− p)n−1=p
∞∑
n=0

[
((e−zµ(1− p))n − (1− p)n−1

]
.

This implies

P (Z>z)=
pe−zµ

(1− (e−zµ))(1− p)
.

Hence, the cdf of a first order statistic with an underlying exponential distribution

and a random sample size which follows a truncated geometric distribution is

F (z)=1− pe−zµ

(1− (e−zµ))(1− p)
, rate(µ)>0, 0≤p≤1, z>0

with a pdf of

f(z)=
pµezµ

(ezµ + p− 1)2
, rate(µ)>0, 0≤p≤1, z>0.
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Figure 10: The cdf and pdf of the smallest order statistic when the underlying dis-

tribution is exponential and random sample size which follows a truncated geometric

with p=0.01 and µ=1.
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6 CONCLUSION

The paper has focused on finding probability distributions of the first-order statis-

tic when the sample size is random. The pivot of these joint distributions is a merge

between the marginal and conditional probability distribution. In some instances,

some properties that include the expectation, variance and percentile are calculated.

The primary objective of this paper is to consider a random sample size and compare

its behaviour to a fixed sample size in terms of their cumulative distribution func-

tions(cdf). A comparison between the cdf when the sample size is fixed and random

sample size is shown in figures 3, 6 and 9. It is clear at the end of the comparison

in figure 3 and 6 that, as the sample size(n) increases in the fixed case, the cdf ap-

proaches one and gets more steep. We see from figures 3 and 6 that as the sample

size increases and λ, p and k increases the cdf in both the fixed and random case

appear the same. In figure 9, as n increases and p decreases, both cdfs in the fixed

and random case take similar shape and becomes more steep and turns sharply close

to one.
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