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ABSTRACT

Comparison of Two Methods for Developing Aggregate Population-Based Models

by

Oyebola Oyero

Aggregate models incorporate the variation between individual parameters of individual-

based models to construct a population-based model. This thesis focuses on the com-

parison of two different methods for creating these population-based models. The

first method, the individual parameter distribution technique (IPD) focuses on the

similarities and variation of parameters in an individual-based model as calculated

using individual data sets [4]. The second method we consider is the nonlinear mixed

effect method (NLME), which is primarily used in modeling repeated measurement

data. In the NLME approach, both the fixed effects and random effects of the pa-

rameter values are estimated in the model by assuming a normal distribution for the

parameter values across individuals[1]. Using the variation in parameters estimated

using the two different approaches, a population model was generated and then com-

pared to the dynamics seen in the individual data sets. We compare three features of

the concentration data to the simulated population models. The values for all three

features were captured by both methods; however, the biggest difference observed is

that there is a longer tail in the distribution for the population model developed using

NLME than observed in the dynamics in the original data.
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1 INTRODUCTION

Mathematical modelers are faced with the challenges of modeling systems such

as pharmacokinetics, ecology, dairy science, etc. in which the underlying procedure

involves the collection of individualized data which must then be used to design a

model which can capture the dynamics of the population[1]. For example, subjects

in pharmacokinetic experiments usually give a series of blood samples after being

administered a test agent; this is what we refer to as individualized data. For each

individual, one may formulate a mathematical model describing the concentration

of the test agent within the individual across time. Aggregate models introduce an

approach which is built on either using these individual-based models or simply the

individual data to develop a model for the population as a whole. In this thesis,

we compare the results of two different methods for formulating an aggregate model:

individual parameter distribution technique (IPD)[4] and the nonlinear mixed ef-

fect method (NLME)[1]. The two methods both use contributions from individuals

to build a population model, but they use the individual attributes differently. In

the IPD approach, it is assumed that there is an underlying unknown probability

distribution across the model parameter values for each individual which must be

estimated. Furthermore, this method assumes correlation may exist between param-

eter values which must be taken into account. The NLME method, also known as

a hierarchical model, is the second method we considered. Unlike the IPD method,

the NLME method assumes the parameter values have a normal distribution across

the population and measures both the fixed and random effects. In both approaches,

the assumption of the two methods we consider is based on the fact that individuals

8



behave differently and hence are modeled using different parameter values. We im-

plement both methods on a pharmacokinetic model to determine the differences in

the resulting population model.

Pharmacokinetic models require the body to be represented as a system of com-

partments. In pharmacokinetics, a compartment is defined as a group of tissues

that have a similar blood flow and drug affinity [6]. Hence in compartment phar-

macokinetic modeling, we assume that the rate of transfer between compartments

is in the form of a first-order differential equation[7]. The solution of these differ-

ential equations gives a formal mathematical description of the concentration in the

compartments at any time as a function of the parameter values.

In this thesis, we consider the simplest compartment model, a single compartment

model, for the concentration of a drug in the body. In Section 2, we introduce the

specific mathematical model and data we will use throughout this thesis. In Section

3, we will examine the implementation of both methods on the concentration model.

In Section 4, we compare the results of each population model by considering three

aspects of the individual data: the area under the curve (AUC), peak concentration

and final concentration. We conclude with some final remarks and comments about

future work in Section 5.
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2 MODEL AND DESCRIPTION

In this section we will describe the basic model and the type of data used in this

thesis. Moreover, we shall a give brief illustration of an individual-based (IBM) and

a population model.

2.1 Individual and a Population Based Model

We can define both an individual and population based model according to their

dynamics.

Definition 2.1 Individual based models are simulations based on the global conse-

quence of local interaction of members of a population[5].

Definition 2.2 A population model is a model that allows a better understanding of

complex interactions among individual models.[2]

In the former, the characteristics of each individual are typically measured as

time varies. The latter relays a better understanding of variations possible among

individuals. The first-order one compartment model that we shall describe shortly

is a typical example of an IBM. In this example, the concentration of the blood is

measured at various times throughout the time period for multiple subjects given

some oral dose of a test agent. A population based model would not mimic the

concentration levels in a specific individual as in IBM; instead, the population model

determines the trend possible across an entire population.
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2.2 Example Model

In this thesis, we applied the IPD technique and NLME modeling to a pharmacoki-

netic process where the concentration of drugs is measured according to a specific oral

dose administered to different subjects. The one-compartment and two-compartment

models are the most common compartment models in pharmacokinetic modeling [7].

In our case the one-compartment model was considered where the body is represented

as single body compartment.

In the one-compartment model, an orally administered drug will usually flow

through the compartment just as shown in Figure 1. Let t be the time following

the drug administration. At the initial time t = 0, an oral dose D is immediately

delivered into the blood stream from an arbitrary absorption location, e.g the stomach,

resulting in a drug concentration Ca(t) measured at time t [7]. It is assumed that

drugs enter the compartment at absorption rate ka and leave at elimination rate

given by ke = Cl/V . Cl is the clearance rate and V is the volume of the blood that

is diluted by the dose at the absorption location.

Figure 1: One-compartment model with first-order absorption and elimination.

Assuming first-order linear kinetics, the drug concentrations at the absorption lo-
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cation and in the blood are denoted as [Ca(t), C(t)]T respectively and can be described

by the following linear system of differential equations[7]:

dCa(t)

dt
= −kaCa(t), Ca(0) =

D

V

dCa(t)

dt
= −kaCa(t)− keC(t), C(0) = 0. (1)

The solution of the above linear system of differential equations is given by Equation

(2),

C(t) =
Dka

V (ka − Cl/V )

{
exp (−kat)− exp

(
−Cl
V

t

)}
. (2)

2.3 Data Description

Individual-based models usually involves getting repeated-measure data on a num-

ber of subjects over a given time range. The data considered in this work was ob-

tained from the repeated measurement of blood concentration carried out after an

anti-asthmatic drug (theophylline) was administered orally to 12 subjects[3]. The

data can be found with the name Theoph using the R package nlme[7]. The data

sets contains 5 columns as follows: the subjects, the time since the administration of

the drug, the concentration of the drug administered to the subjects, the doses ad-

ministered to each subject and the weight of each subject. As can been seen in Figure

2, the concentration-time profiles follow the same trend for all the 12 subjects: the

concentrations rise gradually before reaching a maximum (peak) concentration and

then decaying gradually. However, the concentration profiles vary for the 12 subjects

because of the random effects across individuals as well as the difference in dosage

which is given in Table 1 below. The fit of the IPD model is shown with the data,
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Table 1: Values of doses for the 12 patients

Patient Dose,D(mg/kg)
1 4.02
2 4.40
3 4.53
4 4.40
5 5.86
6 4.00
7 4.95
8 4.53
9 3.10
10 5.50
11 4.92
12 5.30

Figure 2: Concentration-time profiles for 12 subjects with the original dose.

but details on obtaining this fit will be given in Section 3.
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3 AGGREGATE MODELS

In an aggregate model, a population model is formed from individual-specific

models. In the following sections we give the detailed description of the techniques

we used on the pharmacokinetic model described in Section 2 as fitted to the data

shown in Figure 2.

3.1 Individual Parameter Distribution Technique (IPD)

The individual parameter distribution technique or IPD for short was first de-

veloped by Quijano et. al[4] to study the predation movement of a certain species

of spiders. The approach in this method is based on the assumption that individu-

als within a population exhibit different behaviors and hence are modeled according

to different parameter values that specifies these differences. For instance, the one-

compartment model we described in Equation (2) would contain individual-specific

parameter values for the rate of absorption ka, the clearance Cl and the volume V .

The model resulting from fitting Equation (2) to individual data shown in Figure 2

would be considered the individual based model (IBM).

In the IPD technique, the model parameters ka, Cl and V were first estimated

for each of the twelve individuals using the fminsearch function in MATLAB. This

method uses the Nelder-Mead algorithm to find the parameter values q which min-

imize a given cost function. For our model, fminsearch seeks to return a vector of

estimated parameters q = [kaest, Clest, Vest]
T which minimizes the cost function J(q),
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where

J(q) =
N∑
i=1

| Ĉi − C(ti; q) |2 . (3)

Here, Ĉi is the data at time ti, C(ti; q) is the model at time ti with parameter values

q = [ka, Cl, V ].We specified an initial estimate [ka0 Cl0 V0]
T = [1.3034 0.0405

0.9236]T of initial guesses for the parameter for each of the 12 subjects. Table 1 shows

the estimated parameter values for the 12 subjects. It is obvious that there is varia-

tion in these parameters from individual to individual. Figure 3 shows the individual

fit. There is a good fit for each individual data set. The task now is to develop

an aggregate model in which the three parameters are drawn from an appropriate

probability distribution which properly captures the variation displayed among the

subjects.

Table 2: Estimates of the parameters of the model using IPD approach

Subject kaest Clest Vest
1 1.7774 0.0199 0.3693
2 1.9427 0.0448 0.4403
3 2.4536 0.0396 0.4858
4 1.1714 0.0374 0.4276
5 1.4714 0.0436 0.4931
6 1.1637 0.0511 0.5138
7 0.6797 0.0516 0.5046
8 1.3755 0.0465 0.5053
9 8.8656 0.0327 0.3773
10 0.6955 0.0324 0.4386
11 3.8490 0.0572 0.5834
12 0.8329 0.0420 0.3978

We now seek to specify the underlying probability distribution for each parameter

value ka, Cl and V across the population. Figure 4 shows three histograms for the

15



Figure 3: Individual fits to the model by minimizing Equation (3)

individual optimal parameter values for ka, Cl and V. The three histograms indicate

that none of the parameter values ka, Cl and V follow a normal distribution. The

16



histogram of ka appears to be skewed to the right while those of Cl and V do not

show any skewness. It can also be noticed that the histograms of Cl and V look

similar. We also created the matrix scatter plot for the three parameter values in

Figure 4: Histograms of the parameters of the model in Section 2

Figure 5. The scatter plot shows there is a linear relationship between Cl and V ;

therefore, we need to only specify the distribution for one of these (we chose V ). Also

the parameter ka seemed not to have any association with either the parameter Cl

or V.

Figure 5: Scatter plot for the parameter values

The next task is to determine the appropriate probability distributions which

describe this variation in ka, Cl and V. Here, we tested the type of distribution that

gives the best fit for parameters ka and V . Each set of optimal parameter values for

17



ka and V were fitted with different probability plots in MINITAB.

The outcome of these fits shows that ka was best fitted with the 3-parameter Weibull

distribution giving by

f(t) =
α

η

(
t− γ
η

)α−1

exp−( t−γη )
α

(4)

α, γ > 0, η > 0 and −∞ < γ <∞, where α is the shape parameter, γ is the location

parameter and η is the scale parameter[?]. The 3-parameter Weibull distribution is

the only distribution that gave the best capture for the optimal parameter values of

ka; that is, we had more of the optimal values for ka falling on line in the distribution,

see Figure 6, and this distribution also gave the largest p value. The large p value is

an indication of how well the distribution fits the optimal values, compared to other

distributions that we considered.

Figure 6: Probability plot for ka

We also specified the distribution of V using the approach for ka, but we did not

18



get a good fit to the optimal value of V with any probability distribution. We then

generated 1000 random samples for parameter V using MINITAB and these 1000

random samples fitted a beta distribution with both shape parameters equal to 1.5.

However, we had to rescale the original distribution Beta(1.5,1.5), because the original

distribution of V values did not go from 0 to 1 but instead a shortened interval. The

range of the optimal value for parameter V was (0.37 0.58), so we rescaled using using

the linear function,

y = 0.21x+ 0.37. (5)

Since we will use the distribution of V to find a distribution for Cl, we had to further

rescale the interval to capture the range of Cl values. The final linear rescale is given

by

y = 0.32x+ 0.28. (6)

In Figure 7, we see that the form of association between the parameter values Cl

and V is arguably positive linear due to the trend of the data in the plot. A linear

model of the form

Cl = β0 + β1V (7)

was fitted, where we chose V as the explanatory variable and Cl the response variable.

The values of the constants where estimated to be β̂0 = −0.02 and β̂1 = 0.14. The

estimated value of β̂0 = 0.00 and it is close zero due to the assumption we have in

Equation (2) (Ke = Cl/V ). The plot in Figure 8 shows the fit together with the

individual V and Cl values.

After the distribution was fitted to the data, we plotted a histogram of random

variables for each of the parameter values ka, Cl and V from the distributions we
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Figure 7: Scatter plot of Cl vs V

Figure 8: Plot of linear regression between Cl and V

determined above along with the parameter values and the distribution appears to

describe the variation in the optimal parameter values.

The histogram for the distribution of parameter values ka is given in Figure 9.

Although all the parameter values are within the distribution, there is a long tail to

20



Figure 9: histogram of the distribution of ka with shift random command

the distribution which is not seen in the original values. Notice that the histograms in

Figures 9 and 10 where obtained after the rescaling of the Beta (1.5, 1.5) distribution.

The red lines in each of the Figures 9-11 represent the actual values of the parameters

for the individual-based models. It is obvious that each of the twelve individual

parameter values fall within the distribution. This only suggests that the parameter

values fall in the correct range. The most important feature of applying the IPD

technique to create the population model is to be able to select a given parameter

from a determined underlying probability distribution for that parameter and then

using these values in the model, the model should capture the variation inherent in

the population. The results of the population based model using these distributions

for parameter values is given in Section 4.
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Figure 10: histogram of the distribution of V after rescaling

Figure 11: histogram of the distribution for Cl after rescaling

3.2 Nonlinear Mixed-Effect Method (NLME)

In NLME method, the population and individual-specific characteristics are taken

into consideration, and these are referred to as fixed-effect parameters and random-
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effect parameters respectively. An effect is anything that influences the value of a

response variable at a specific setting of an explanatory or predictor variables[7].

Fixed effects represent population parameters, assumed to be the same each time

data is collected. Random effects, on the other hand, are sample-dependent ran-

dom variables[7]. In NLME modeling, random effects are seen as additional error

terms that are assumed to be independently distributed with zero mean and constant

variance across all measurements [7].

Let zij denote the jth observed response for individual i measured at time tij =

1, 2, ..N, j = 1, 2, ..., N. In the case of pharmacokinetics tij represents the jth time the

concentration is measured in the ith individual.

In NLME described by Davidan et al[1], the governing equation is given as

zij = f(tij, ui, βi). (8)

For our purpose, the function f in this equation stands for the concentration model

described in Section 2, with ui = Di, the doses given in Table 1. The term βi

represents the parameters of f which is specific to individual i; in our case,

βi = (kai, Cli, Vi)
T .

For each of these parameters, we assume there is a fixed effect as well as random

effects. However, unlike [1], we do not use weight and creatinine clearance as given

in the data. We simply assume that

kai = exp(β1 + b1i),

Vi = exp(β2 + b2i),
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and

Cli = exp(β3 + b3i) (9)

where

βi = [β1i, β2i, β3i]

are the fixed effects and bi = [b1i, b2i, b3i] are the random effects specific to individual

i. We note that we are assuming that log(ka), log(V ) and log(Cl) are normal and bi

is normal with mean 0 and covariance Ψ. In what follows next, we will describe how

we used the nlmefit package in MATLAB to estimate the fixed and random effects

described for the concentration model and data described in Section 2.

The nlmefit attempts to estimate the fixed effects β and the covariance matrix for

the normally distributed random effects Ψ by maximizing the marginal likelihood. We

implemented the nlmefit on our model by estimating the logarithm of the parameter

values. Our initial is given by

β0 = [log(ka0) log(Cl0) log(V0)]
T = [0.2650 − 3.2070 − 0.795]T

for the parameter estimates and dose Di for individual subjects. The results obtained

for the fixed effect and random effects for the logarithm of the parameter values are

given by β1 = [−2.4547 − 3.2272 − 3.6929]T and the random effect covariance

vector

Ψ =

0.000 0 0
0 0.0279 0.0281
0 0.0281 0.4426

 .
The estimated covariance matrix Ψ of the random effects shows that the variance

of the first parameter, log(ka), is essentially zero, suggesting that we can set it as

constant to simplify the model. It also indicated that the estimated random effects of
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the parameters log(ka) is not correlated with either estimated random effect of log(V )

or log(Cl). Whereas, estimated random effects of the parameters log(V ) and log(Cl)

are correlated.

The model was refitted using the random effects for log(Cl) and log(V ) only. In

addition, the statistics we obtained from the nlmefit : the log-likelihood, (log(l) =

−177.024) without estimating random effects for log(ka) random effect is identical to

what we had (log(l) = −177.022) when estimating all the random effects. The Akaike

information criterion (AIC), which measures the quality of the model, is reduced from

370.05 to 368.05 and the Bayesian information criterion (BIC), which also determines

the model to be preferred, is reduced from 373.92 to 371.42. The resulting small

values obtained for both the (AIC) and (BIC) shows that the model with the smaller

value from what we initially had should be preferred to refit the model. This led to

a new covariance matrix for random effects while the fixed effect values remained the

same. The new covariance matrix is given

Ψ1 =

[
0.0280 0.0285
0.0285 0.4397

]
.

The result for the combined estimates of the mixed effects from this method for each

of the twelve subjects is given in Table 3, where this includes the estimated fixed

effects plus the exact bi values for each individual data set and parameter.

The model obtained using the individual estimated parameter values from the

NLME approach is plotted in Figure 14 for all the twelve subjects together with the

fits we saw in Figure 3 using the IPD technique. As with the previous aggregate

model approach, the individual based models obtained using the NLME approach is

a good approximation to the individual data sets. The solid colored lines represents

25



Table 3: Estimates of the parameters of the model using NLME approach

Subject kaest Clest Vest
1 0.0859 0.0397 0.0175
2 0.0859 0.0397 0.0252
3 0.0859 0.0397 0.0256
4 0.0859 0.0397 0.0234
5 0.0859 0.0397 0.0268
6 0.0859 0.0397 0.0289
7 0.0859 0.0397 0.0292
8 0.0859 0.0397 0.0277
9 0.0859 0.0397 0.0204
10 0.0859 0.0397 0.0224
11 0.0859 0.0397 0.0319
12 0.0859 0.0397 0.0236

IPD technique and the dashed lines are the NLME model fit. The points in the plots

are the actual data sets for the model. As a side note, Figures 12 and 13 show the

distribution of the optimal parameter values of V and Cl respectively using the nor-

mal distribution with mean and variance as described above. In these figures we see

that we have longer tails which we believe causes the the main difference between the

IPD technique and the NLME method.

Figure 12: histogram of the distribution of V using NLME method
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Figure 13: histogram of the distribution for Cl using NLME method
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Figure 14: Individual fits to the model using the parameter for NLME method
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4 COMPARISON OF THE POPULATION MODEL RESULTS USING THE

TWO METHODS

In the two approaches we have considered in this thesis, we obtained different

individual estimates for the parameter values of the one-compartment concentration

model although both provided good fits to the individual data. In the first approach,

IPD, we estimated the parameters of the model by first using ordinary least squares to

estimate the parameters for the IBM. These estimates were then used to obtained the

correlation between parameters Cl and V together with the underlying probability

distributions for all the individual parameters of the model. In contrast, the NLME

method assumes parameters are normally distributed and then estimated the fixed

and random effects for the parameters in the model.

We further examined the comparison between the two methods by generating

1000 simulations of the model using the two approaches; this simulates the concen-

tration profiles for 1000 random individuals in a population using the two different

approaches for determining the parameters within the model. To generate the pa-

rameters for the model using the IPD technique, we randomly selected 1000 different

draws from a Weibull distribution for parameter ka and 1000 random samples from

a beta distribution with both shape parameters 1.5 for the value of V as explained

in Section 3. Then we calculated Cl using Equation (6). Plugging these values into

Equation (2), we obtain simulated concentration profiles for a population of 1000

individuals as shown in the left hand plot in Figure 15. For this method, the twelve

individual profiles seemed to fit well in the population model; however, there were

several concentration profiles with higher peak concentrations than those represented
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by the individual models. This is most likely due to the tail in the distribution of

parameter values for ka.

Figure 15: Concentration profiles for IPD (left) and NLME (right)

To generate the parameters using NLME method, the parameter ka was assumed

constant across the population. Meanwhile, the other two parameters were assumed

to be normally distributed with mean and variance as defined in Section 3. As in the

case of the IPD technique, once the parameters were obtained, they were substituted

into Equation (2). Those concentration profiles are given in the right hand plot of

Figure 15. There were also outliers in this case, but many of these outliers had both

higher concentrations as well as a shift in the time of the peak concentration. This

variation could also be due to the tail in the distribution. For comparison sake, we

set the value of the doses for the 12 different patients as D = 4.02mg/kg in the

population model. We compared several derived quantities from these concentration

curves, namely the area under the curve (AUC), the peak concentration and final

concentrations for each of the 1000 simulated individuals.

In Figure 16, we examine the histograms for the AUC using the two different

approaches specified. The red lines are computed from the individual based model
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Figure 16: Histograms of AUC for IPD (left) and NLME (right)

for each method with a fixed dose of theophylline sample across all individuals. This

allows us to more accurately compare the effects of the method as opposed to vari-

ations due to the effect of the dosing. The histogram gives the count of the 1000

simulations within a bin. We have that all the individual values of AUC are captured

in the population model for both methods. However, the biggest difference is the tail

of the population distribution for AUC when using the NLME method. This is not

surprising given the concentration curves in Figure 15.

The distribution of the peak concentrations was obtained in a similar way using

1000 simulations of the population model generated from each of the two approaches.

The peak concentration is the maximum concentration of the drug measured. In the

first method, the IPD technique, we had the distribution of the calculated values from

the individual models (indicated by the red lines in the left plot of Figure 17) lying

inside a good portion of the distribution for the population based model given by

the histogram. The NLME method still captures the calculated peak concentrations

from the individual models, but there is a longer tail to the distribution for the peak

concentration as compared to the more refined values for the calculations based on
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the individual models. Again this is not surprising given the concentrations curves in

Figure 15 when using the NLME method.

Figure 17: Histograms of Peak concentrations for IPD (left) and NLME (right)

Figure 18: Histograms of Final concentrations for IPD (left) and NLME (right)

In Figure 18, we have the distributions for the final concentrations for the 1000

simulations we performed using the individual values. It is noticed that we also have

our individual values being captured by a good portion of the population distribution.

In the first graph to the left, the IPD technique has a tail in the distribution; we see

a similar trend in the NLME method as well, although the tail is longer when using

the NLME method as denoted by the values on the x axis.
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5 CONCLUSIONS AND FUTURE WORK

In this thesis, we have explored two methods for creating a population-based model

using individual data implemented on a one-compartment concentration model. The

two methods have been used to obtain estimates for the distributions of parameters

in the model. In the first method, we first estimated the parameters for the individual

based models using the ordinary least squares approach and the twelve individual data

sets. We then estimated whether correlations existed between the parameters; in this

example, the parameters Cl and V were correlated. We then fitted distributions

to ka and V and used the linear relationship between Cl and V to estimate the

distribution of Cl. In the process, we needed to rescale the probability distribution

of the parameter, V so the resulting distribution for Cl captured all the individual

parameter estimates of Cl. In future work, a better means of finding the probability

distribution for such correlated parameters with little or no rescaling needs to be

explored. We performed 1000 simulations of the model using the distributions found;

our results from the population dynamics showed that the trend of the actual data

was captured well by the population model. This allows us to conclude that the first

approach provides a reasonable method for formulating a population model based on

individual data sets.

The second method we implemented, the NLME method, assumes the parameters

are normally distributed and estimates both fixed and random effects for the param-

eters. The NLME method in this thesis was implemented using the nlmefit package

in MATLAB. The results of implementing the NLME method indicated the variance

of one of the parameters ka was zero; therefore, this parameter was assumed to be
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constant across the population. The mean and variances for the other two parame-

ters, Cl and V, were also estimated. Just like the first method, we also constructed a

population model from 1000 simulations of the concentration model using the normal

probability distribution for the two parameters and the fixed value for the third pa-

rameter. Although this second approach also seemed to capture the dynamics of the

three variables in which we were interested, there was also a tail in each population

distribution which is not warranted based on the original data set.

In conclusion, the two aggregate methods we considered in this thesis were a

good fit for the individual based-models while also capturing the dynamics with the

population based models. However, more work needs to be done to consider whether

there is a better way for determining the distribution for the parameter values in the

first approach as well as whether there is a set of models for which the assumption of

normal distribution for parameter values is accurate.
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