
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

8-2016

An Algorithm for the Machine Calculation of Minimal Paths An Algorithm for the Machine Calculation of Minimal Paths

Robert Whitinger
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Analysis Commons, Numerical Analysis and Computation Commons, Numerical Analysis

and Scientific Computing Commons, Other Mathematics Commons, Partial Differential Equations

Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Whitinger, Robert, "An Algorithm for the Machine Calculation of Minimal Paths" (2016). Electronic Theses
and Dissertations. Paper 3119. https://dc.etsu.edu/etd/3119

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/177?utm_source=dc.etsu.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=dc.etsu.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=dc.etsu.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=dc.etsu.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/185?utm_source=dc.etsu.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=dc.etsu.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=dc.etsu.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=dc.etsu.edu%2Fetd%2F3119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

An Algorithm for the Machine Calculation of Minimal Paths

A thesis

presented to

the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Mathematical Sciences

by

Robert James Whitinger

August 2016

Jeff Knisley, Ph.D., Chair

Ariel Cintron-Arias, Ph.D.

Robert Gardner, Ph.D.

Keywords: differential geometry, calculus of variations, functional analysis,
numerical approximation, minimal path.

ABSTRACT

An Algorithm for the Machine Calculation of Minimal Paths

by

Robert James Whitinger

Problems involving the minimization of functionals date back to antiquity. The math-

ematics of the calculus of variations has provided a framework for the analytical

solution of a limited class of such problems. This paper describes a numerical ap-

proximation technique for obtaining machine solutions to minimal path problems. It

is shown that this technique is applicable not only to the common case of finding

geodesics on parameterized surfaces in R3, but also to the general case of finding

minimal functionals on hypersurfaces in Rn associated with an arbitrary metric.

2

Copyright by Robert James Whitinger 2016

3

DEDICATION

Dedicated to my father, James Darwin Whitinger (1925-2011), the man who

taught me to love learning and to strive to know the unknown.

4

ACKNOWLEDGMENTS

My sincere gratitude goes to my committee chair Dr. Jeff Knisley for his guidance

and professional mentorship during this project. He fostered an environment in which

creativity and originality could flourish. Working together with him these past months

has been a very rewarding and enjoyable experience. I would also like to thank my

committee, Dr. Ariel Cintron-Arias and Dr. Robert Gardner, for taking the time to

review what has become a lengthly manuscript and for providing helpful suggestions

and feedback. Special thanks go to my wife, Jean Whitinger, who carefully read the

entire manuscript and offered many helpful grammatical and formatting suggestions,

but most importantly I am thankful for her encouragement and patience during the

long hours that were needed. Without her support a project of this scope would not

have been possible.

5

TABLE OF CONTENTS

ABSTRACT . 2

DEDICATION . 4

ACKNOWLEDGMENTS . 5

LIST OF FIGURES . 11

1 INTRODUCTION . 12

2 HISTORICAL BACKGROUND . 13

2.1 Antiquity . 13

2.2 Sixteenth and Seventeenth Centuries 13

2.3 Eighteenth Century . 14

2.4 Nineteenth Century . 15

3 THEORETICAL BACKGROUND 16

3.1 Calculus of Variations . 16

3.1.1 Preliminaries . 16

3.1.2 Classical Methods 18

3.1.2.1 Euler’s equation in parameterized form . . . 19

3.1.2.2 Example: Geodesic on the plane 20

3.1.2.3 Example: Brachistochrone 22

3.1.3 Direct Methods . 24

3.1.3.1 Euler’s method 25

3.1.3.2 Ritz method 26

4 A NUMERICAL APPROACH TO THE CALCULUS OF VARIATIONS 27

4.1 An overview of the CVA algorithm 27

6

4.1.1 Models and Metrics 28

4.1.2 Minpoint approximation 30

4.1.3 Straddling . 36

4.1.4 Refinement . 39

4.2 The CVA algorithm described through mathematics 43

4.2.1 Context . 43

4.2.2 Minpoint . 45

4.2.3 Straddling . 46

4.2.4 Refinement . 51

4.3 The CVA algorithm Implementation 54

4.3.1 Minpoint approximation 54

4.3.2 Straddling . 57

4.3.3 Refinement . 58

4.4 Validation of results . 59

4.5 Additional examples . 66

4.5.1 Example: Torus . 66

4.5.2 Example: Earth WGS84 Reference Model 67

4.5.3 Example: Sphylinder 67

4.5.4 Example: Capped Cylinder 69

4.5.5 Example: Moebius Strip 70

4.5.6 Example: Brachistochrone in Earth Gravity 70

4.5.7 Example: Brachistochrone on a Tilted Plane 71

4.5.8 Example: Brachistochrone in Moon Gravity 72

7

4.5.9 Example: Brachistochrone on a Unit Sphere 73

4.5.10 Example: Brachistochrone on a Hyperboloid 74

4.6 Extension to higher order spaces 75

4.6.1 Minkowski metric . 76

4.6.2 Schwarzschild metric 76

4.6.3 Viewing higher dimensions 77

4.6.4 Spherical model in Rn 78

4.6.5 Example: Hypersphere in R4 80

4.6.6 Example: Inflating Sphere in Spacetime 81

4.6.7 Example: Collapsing Sphere in Spacetime 83

4.6.8 Example: Geodesic Family near a Black Hole 85

4.6.9 Example: Hypersphere in R5 86

5 FUTURE DIRECTIONS . 88

5.1 Observation 1 . 88

5.2 Observation 2 . 88

APPENDICES . 91

A How to reproduce results . 91

A.1 Installation . 91

A.2 Quickstart Tutorial 91

B Code listings . 94

B.1 solve.py . 94

B.2 metric.py . 105

B.3 model.py . 112

8

B.4 view.py . 135

VITA . 145

9

LIST OF FIGURES

1 Model – Unit Sphere . 28

2 Euclidean Distance Metric . 29

3 Starting and ending points . 30

4 Secant vector from ua to ub . 31

5 Initial trial space . 32

6 Trial space after iteration on Figure 5 33

7 Trial space after iteration on Figure 6 33

8 Trial space after iteration on Figure 7 34

9 umin after n iterations . 34

10 Minpoint convergence . 35

11 Five-point path after an odd straddle 37

12 Five-point path after an even straddle 38

13 Straddle convergence . 39

14 After first refinement . 40

15 After second refinement . 41

16 After third refinement . 41

17 After nth refinement . 42

18 Refinement convergence . 43

19 Tilted plane . 59

20 Cylinder . 60

21 Hyperboloid . 62

22 Cosh-shaped surface . 63

10

23 Unit Sphere . 64

24 Unit Sphere . 65

25 Torus . 66

26 Earth WGS84 Ellipsoidal Model . 67

27 Sphylinder . 69

28 Capped Cylinder . 69

29 Moebius Strip . 70

30 Brachistochrone in Earth Gravity . 71

31 Brachistochrone on a Tilted Plane . 72

32 Brachistochrone in Moon Gravity . 73

33 Brachistochrone on a Unit Sphere . 74

34 Brachistochrone on a Hyperboloid . 75

35 Hypersphere in R4 . 80

36 Inflating Sphere in Spacetime . 82

37 Collapsing Sphere in Spacetime . 84

38 Geodesics in Spacetime with the Schwarzschild Metric 85

39 Hypersphere in R5 . 86

40 Hypersphere in R5 . 87

41 Creating a Custom Model . 93

11

1 INTRODUCTION

We notice that nature often “chooses” paths of minimum action. For this reason,

many problems in the sciences express themselves in terms of minimal paths. Only

a relatively small number of these problems lend themselves to a detailed analytical

solution. To counter this deficiency many problem domains are using simple and

ideal models. Many problem domains could benefit from more advanced and detailed

models if solutions in such models could be found.

It is this set of problems to which we direct our attention in this thesis as we de-

velop and present a convergent numerical approximation to minimum path problems.

We intend to show a technique for finding such minimal paths which can be applied

to arbitrary continuous manifolds in a general Rn space.

In the course of our investigation we propose and evaluate a method for obtaining

numerical solutions to problems of geodesics and to problems of variational calculus

in general.

12

2 HISTORICAL BACKGROUND

The mathematics of descriptive geometry and of the calculus of variations are

fundamental to the questions of extremization under constraint. Their roots can be

traced back to antiquity. Special credit must be given to the contributions of the 18th

and 19th centuries, especially those of Euler, Lagrange, and those who followed.

2.1 Antiquity

Archimedes (287-212 BCE) defined the line as the shortest distance between two

points lying in a plane [16]. In antiquity, the size of a city was commonly defined by

its circumference. In this context, the topic of isoperimetrical shapes is mentioned

by Zenodorus (circa 150 BCE) who stated without proof that the shape of largest

enclosed area was the circle. Ptolemy (circa 150 CE) documents mapping ideas which

we now refer to as the stereographic projection where he explains the concepts of

projection and conformality.

2.2 Sixteenth and Seventeenth Centuries

Renaissance Europe saw a renewed interest in the mapping of the Earth. Mercator

(1512-1594) introduced a projection in 1569 which maps meridians and parallels into

straight lines. This “Mercator projection” stimulated a lively discussion in mathe-

matics circles including later contributions from Leibniz.

Huygens (1629-1695) sought a means of measuring time exactly and looked for a

pendulum motion that would have a period independent of the pendulum’s altitude.

13

The solution to this problem, where a mass moves along a cycloid, was named the

tautochrone.

Leibniz, between 1684 and 1692, published descriptions of the circle of osculation,

and the significance of d2y = 0 as a definition of an inflection point. What followed

was a competition between Leibniz, Newton and the Bernoullis brothers which pro-

duced rapid advancements in the mathematics. Leibniz and Newton competed in

calculus and hinted at variational ideas. It wasn’t until Johann Bernoulli formulated

the “brachistochrone curve” problem that interest in the subject of the calculus of

variations gained momentum.

2.3 Eighteenth Century

Clairaut (1713-1765) investigated the analytic geometry of space as the intersec-

tion of surfaces. Euler (1707-1783) considered the topic of geodesics in a series of

papers published between 1728 and 1732. He proved in 1736 that mass points move

on a surface along geodesics in the absence of a force field [5]. His fundamental

contribution to the topic of the calculus of variations, Methodus inveniendi [6], was

published in 1744 [7]. He published a paper on the differential geometry of space

curves in 1782.

Lagrange (1736-1813) further developed a systematic formulation of the ideas of

Euler publishing a paper on the calculus of variations in 1762. In it he described the

equations for a minimal surface. Lagrange and Euler collaborated on the calculus of

variations mainly through a series of letters.

14

Monge (1746-1818) deserves special mention for his leadership role as well as

his contributions to descriptive geometry. He cofounded the École Polytechnique in

1794 which attracted such students as Cauchy, Carnot, Liouville, Poisson, Mallat,

Mandelbrot, Poincaré, Fresnel, and Ampère.

2.4 Nineteenth Century

During the 19th century, the center of progress moved from France to Germany

where Gauss (1777-1855) established a new approach to the properties of surfaces, one

depending only on the linear element and not the embedding in a higher dimensional

space.

Jacobi (1804-1851) contributed his own ideas to those of Gauss, establishing “the

existence of the conjugate points on the geodesics passing through a point on a surface

[15].” Liouville (1809-1882) noticed that conformal transformations in space consist

of inversions, simililarity and congruency transformations.

Riemann (1826-1866) presented ideas in an 1854 lecture at which Gauss was in

attendance. In his lecture, Riemann introduced the concept (published later in 1867)

of an n-dimensional manifold where both Euclidean geometry and non-Euclidean

geometry are represented as special cases. The ideas of Riemann were continued

and formalized by most notably by Grassmann (1809-1877), Lipschitz (1832-1903),

Helmholtz (1821-1894), Lie (1842-1899), Poincaré (1854-1912).

15

3 THEORETICAL BACKGROUND

3.1 Calculus of Variations

3.1.1 Preliminaries

The calculus of variations is a field of mathematical analysis that deals with max-

imizing or minimizing functionals, which are mappings from a set of functions to the

real numbers. Calculus of variations is considered to have begun with the contri-

butions [17] of Johann Bernoulli who posed the brachistochrone problem which was

quickly taken up by Jacob Bernoulli (brother of Johann), Euler, Lagrange, Legendre,

Jacobi, Weierstrass and Hilbert. The subject is inextricably associated with classical

mechanics [1, 2, 9, 12, 13].

We consider a normed linear function space H consisting of all continuous func-

tions y(x) : [a, b] → R with continuous first derivatives and with a norm defined

as

∥y∥1 = max ∥y(x)∥+max ∥y′(x)∥

and for the purposes of this section we call this set of such functions admissible

functions.1

1The term admissible function, as it is commonly used in the literature, is in some sense relative
to the specific variational problem we are addressing [8] in that it is a definition of the preconditions
which must be met by a set of functions. In Section 4.2 we see that the CVA algorithm requires only
boundedness and continuity, while the classical derivations in this section also require continuity in
the first derivative.

16

Definition 3.1. [8] A functional is a correspondence which assigns a real number to

each function (or curve) belonging to some class.

Definition 3.2. The functional J [y] for y ∈ H, is said to be continuous at the point

ŷ ∈ H if for all ε > 0, there exists δ > 0 such that

∥y − ŷ∥ < δ =⇒ |[J [y]− J [ŷ]| < ε.

Definition 3.3. The functional J [y] for y ∈ H, is said to be a linear functional if

1. J [αy] = αJ [y] for all y ∈ H and α ∈ R,

2. J [y1 + y2] = J [y1] + J [y2] for all y1, y2 ∈ H.

Definition 3.4. Let J [y] be a functional with y ∈ H, and consider an increment of

∆J [y;h] = J [y + h]− J [y] for h ∈ H. Now separating the increment into a principle

linear part and a residue, let

∆J [y;h] = δJ [y;h] + ε[y;h] ∥h∥.

If

lim
∥h∥→0

ε[y;h] = 0

then we call δJ [y;h], or simply δJ [y], the differential (or variation) of J [y], and J [y]

is said to be differentiable.

17

Definition 3.5. Given f : Rn → Rm then

J =
df

dx
=

[
∂f

∂x1

· · · ∂f

∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


is defined as the Jacobian matrix of f , and furthermore if m = n, then its determinant

is called the Jacobian determinant.

Theorem 3.6. If a differentiable functional J [y] has an extremum at y = ŷ then

δJ [y;h] = 0

for y = ŷ and all admissible h.

3.1.2 Classical Methods

We can separate calculus of variations solution techniques into two broad cate-

gories, classical (analytical) methods and direct (numerical) methods.

Euler noticed that a Taylor series expansion of a functional increment conveniently

maps into the form of a principle part and a residue, with the residue containing

vanishing second order and higher terms. By equating this principle part to zero (a

property of an extremum) he obtained a differential equation which we now refer to

as Euler’s equation. Euler’s equation can be viewed as a transform from a variational

expression into a differential equation, thus opening the possibility of an analytical

solution to problems of extremals.

18

Theorem 3.7 (Euler’s Equation [8]). Let J [y] be a functional of form

J [y] =

∫ b

a

F (x, y, y′)dx,

defined on the set of functions y(x) which have continuous first derivatives in [a, b]

and satisfy the boundary conditions y(a) = A, y(b) = B. Then a necessary condition

for J [y] to have an extremum for a given function y(x) is that y(x) satisfy Euler’s

equation

Fy −
d

dx
Fy′ = 0. (3.1)

3.1.2.1 Euler’s equation in parameterized form

Implicit in the representation y = y(x) is the requirement that y(x) be a single-

valued function of x. We can free ourselves of this restriction by considering param-

eterized representations of the curve leading to the form

J [y] =

∫ t1

t0

F [t, x(t), y(t), y′(t)]dt

=

∫ t1

t0

G[t, x(t), y(t), ẋ(t), ẏ(t)]dt

where

x = x(t) : [t1, t2] → [a, b]

y = y(t) : [t1, t2] → [A,B]

ẋ =
dx

dt

19

y′ =
dy

dx

ẏ =
dy

dt
=

dy

dx

dx

dt
= y′ẋ

as demonstrated in [18]. In this parameterized form, the associated Euler’s equation

becomes

Gx −
d

dt
Gẋ = 0, Gy −

d

dt
Gẏ = 0. (3.2)

See [18] for details.

We next demonstrate the application of Euler’s equation to some problems of

historical importance.

3.1.2.2 Example: Geodesic on the plane

Consider a curve represented by y(x) : [a, b] → R where y(a) = A and y(b) = B.

We wish to find the curve y(x) with the shortest path length (the geodesic on the

plane). We restate this problem in terms of its functional representation.

J [y] =

∫ b

a

F (x, y, y′)dx

=

∫ b

a

√
1 + (y′)2dx

so

F (x, y, y′) = (1 + (y′)2)1/2

20

We use Euler’s equation (3.1) to transform this problem into its corresponding differ-

ential equation

Fy −
d

dx
Fy′ = 0

where

Fy = 0

Fy′ =
y′

(1 + (y′)2)1/2

d

dx
Fy′ = 0

Fy′ =
y′

(1 + (y′)2)1/2
= constant

and after some basic algebraic manipulation we have the differential equation

y′ = constant

with the well-known solution

y(x) = C1x+ C2

which is the equation of a straight line. After applying the boundary conditions we

reach the final form of

y(x) =

(
B − A

b− a

)
x+

Ab−Ba

b− a

as the equation of the shortest path between two points (a,A) and (b, B) on the plane.

21

3.1.2.3 Example: Brachistochrone

Perhaps a more interesting (less obvious) problem is the one posed by John

Bernoulli where we are asked to find the curve which minimizes the transit time

of a heavy particle starting at rest and moving under the force of gravity along a

curve in the vertical plane. We note that the velocity of an object falling in a uniform

gravitational field, according to Newtonian physics, is v =
√
2gy, and that the transit

time is the integral of velocity over the path.

We can restate this problem in terms of its functional representation, choosing

a convenient frame of reference with (0, 0) as the origin and y increasing during the

transit, and terminating with the condition y′(b) = 0 corresponding to the condition

reached at the “bottom” of the curve. The corresponding functional is

T [y] =

∫ b

0

F (x, y, y′)dx

=

∫ b

0

√
1 + (y′)2√
2gy

dx

so

F (x, y, y′) =

√
1 + y′2√
2gy

=

(
1 + y′2

2gy

)1/2

(3.3)

Now we use Euler’s equation (3.1) to transform this problem into its corresponding

differential equation. We notice that F is not dependent on x so we can proceed from

Euler’s equation

Fy −
d

dx
Fy′ = 0

22

to obtain [
Fy −

d

dx
Fy′

]
y′ = 0

Fyy
′ − y′

dFy′

dx
= 0

dF

dx
− Fy′y

′′ − y′
dFy′

dx
= 0

d

dx
[F − y′Fy′] = 0

and consequently

F − y′Fy′ = C, a constant

but also

y′Fy′ =
(y′)2√

y(1 + (y′)2

which leads to √
1 + (y′)2

y
− (y′)2√

y(1 + (y′)2)
= C

y(1 + (y′)2) =
1

C2
= A

and finally

x =

∫ √
y

A− y
dy

By performing the substitution

y =
A

2
(1− cos θ) = A sin2(θ/2) (3.4)

23

it follows that

x =

∫ √
sin2(θ/2)

1− sin2(θ/2)
A sin(θ/2) cos(θ/2)dθ

x =

∫
sin2(θ/2)dθ

x =
A

2
(θ − sin θ) +B.

The constant B becomes zero if we set θ = 0 and y = 0 as our initial conditions, and

by recalling (3.4) we then have the solution

x =
A

2
(θ − sin θ)

y =
A

2
(1− cos θ)

which is the general solution of a cycloid, due to Euler [6] for θ ∈ [0, π].

3.1.3 Direct Methods

Many practical variational problems are difficult to solve with analytical methods,

and for these problems we turn to computational or direct methods. The direct

methods attempt to find a minimizing sequence which converges on a solution. Such

methods trace their origin back to Euler himself who proposed a direct method which

we examine in this section, followed by a method due to Ritz [14].

24

3.1.3.1 Euler’s method

Consider the extremum of the functional

J [y] =

∫ xn

x0

F (x, y, y′)dx

where

y(x0) = y0y(x1) = y1

Euler proceeded by partitioning the interval [x0, xn] into n equal parts each of length

h =
xn − x0

n

The functional may then be approximated by the following series

J [yi] = h

n−1∑
i=1

F (x0 + ih, yi,
yi+1 − yi

h
)dx

with extrema of yi such that

∂J

∂yi
= 0

The resulting system of n− 1 linear equations transforms a variational problem into

a problem of linear algebra.

25

3.1.3.2 Ritz method

Consider the extremum of the functional

J [y] =

∫ x1

x0

F (x, y, y′)dx

where

y(x0) = y0y(x1) = y1

Ritz proceeded by approximating the functional with a linear combination of basis

functions each of which also satisfy the boundary conditions

y(x) = α0b0(x) + α1b1(x) + · · ·+ αnbn(x)

J [y] =

∫ x1

x0

F (x, y, y′)dx

where the extremum requires

∂J [y]

∂αi

= 0, i = 0, 1, . . . , n.

Finite element or spline-based basis functions are commonly used for Ritz method

approximations.

26

4 A NUMERICAL APPROACH TO THE CALCULUS OF VARIATIONS

4.1 An overview of the CVA algorithm

It is our intention to describe a numerical method which can be applied to find

solutions for minimal path problems. We describe in this section what we call the

“CVA algorithm” (CVA, pronounced “see-va”), a numerical approximation to the

solution of problems in variational calculus.

We take some inspiration from Cooley and Tukey [4] in their elegant formulation

of the fast fourier transform, in that we approach our task by breaking our problem

down to its smallest element. We solve that element and then use it to build up

a full solution from these basic parts. We call this basic element the “minpoint

approximation” and describe it in Section 4.1.2. Next, we describe in Section 4.1.3 a

numerical method which will build minimal piecewise paths from minpoints. We call

this technique “straddling.” Finally, we describe in Section 4.1.4 a third numerical

method which we call “refinement.” Refinement produces paths which are arbitrarily

close to minimum path integrals.

While the mathematics is general (see Section 4.2), our descriptions in this section

are intended to be heuristic, explanatory, and accessible. For that reason we begin

with the simple case of a 2-dimensional (u, v) parameterized surface embedded into

a 3-dimensional space following the conventions established by the mathematics of

differential geometry [11]. Our first example is that of the geodesic on the unit sphere.

The solution of the geodesic on a unit sphere makes a fine example since it is a non-

trivial problem and one for which an analytical solution is well known.

27

4.1.1 Models and Metrics

We need a framework for our work. For that we create a 2-dimensional ⟨u, v⟩ unit

plane and a mapping G between points in that plane and points on a corresponding

3-dimensional unit sphere.2 Think of u as a “latitude” and v as a “longitude.” We

use the conventions u = 0 to represent the “north pole”, u = 1 the “south pole”,

and v ∈ [0, 1] where v = 0.5 is on the “prime meridian.” So far we have described

a model as in Figure 1 where we show a point in the ⟨u, v⟩ parameter space and its

corresponding point on the surface of the sphere.

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 1: Model – Unit Sphere

2The CVA algorithm is applicable to the general case of m-dimensional parameter spaces map-
ping into n-dimensional hypersurfaces. See Section 4.5 for example solutions in higher dimensional
spaces.

28

To measure distances between points in this space we need a metric. We use the

Euclidean distance metric3 in our first example. Here we depict a direct path through

the center of the sphere. The metric provides its length.

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 2: Euclidean Distance Metric

Using a framework equipped with a suitable model and an associated metric, we

are prepared in the next section to turn our attention to the task of finding minimum

paths.

3The CVA algorithm is valid for the general case of any bounded and continuous metric. See
Section 4.5 for example solutions using other metrics such as brachistochrone, Schwarzschild, and
Minkowski.

29

4.1.2 Minpoint approximation

In order to find minimum paths we break our problem down to its smallest element.

Consider that we want to find the minimum path across the surface of a sphere from

one point, call it ua (shown as a green dot) to another, call it ub (shown as a red

dot). These two points map onto the surface of the sphere as points that we will call

xa (also green) and xb (also red).

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 3: Starting and ending points

30

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCVA Solution

Figure 4: Secant vector from ua to ub

We first draw a line between ua and ub and we call this our secant vector. The

secant vector is a first approximation of our minimum path. We can improve our

accuracy by introducing a third point into our solution which we will call the “min-

point.” Let’s call it umin with its corresponding surface point xmin. We require that a

minpoint be found such that the length of the path from xa to xmin and then xmin to

xb be the minimum of all possible trial paths. For that we use an iterative solution.

First, we find the point in the ⟨u, v⟩ plane at the center between ua and ub which

is um = (ub − ua)/2. Then we find a perpendicular to the segment through that

point. We call that perpendicular a “trial space” and we locate a set of points on it

within an initial radius of um. Our model with its initial set of trial points is shown

in Figure 5.

31

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 5: Initial trial space

We use our metric to measure each of the five possible paths connecting xa and xb.

Recalling the extreme value theorem, if we find a point surrounded by two points of

higher value then we know that a minimum lies between the two neighboring points.

We select that minimum path and let it define our new um. At the same time we

can now restrict our radius of interest to 1/2 of its previous value. Repeating the

procedure gives us ever improving approximations

32

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 6: Trial space after iteration on Figure 5

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 7: Trial space after iteration on Figure 6

33

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 8: Trial space after iteration on Figure 7

By continuing this process, we reduce our error in each step until we have approx-

imated the optimal location of umin to whatever accuracy we desire.

x

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

y

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

z

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 9: umin after n iterations

34

With this procedure we have found the point on our trial space that defines a

minimal path of three points.

10 20 30 40
Number of minpoint operations

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

T
ri

a
l
sp

a
ce

 r
a
d
iu

s

Figure 10: Minpoint convergence

We can see in Figure 10 that we can continue to apply minpoint operations until

we have located our result inside a radius as small as we desire.

In this section we described the minpoint approximation which is the basic compu-

tational element on which the CVA algorithm is based. We will show in the following

sections how we can use this basic element to build minimal paths with larger numbers

of points.

35

4.1.3 Straddling

In the previous section we saw how we could begin with knowledge of two end-

points and then proceed to construct an intermediate point which we called the min-

point. Now let’s consider the problem of building a longer sequence which connects

our two endpoints.

Continuing with the same model and metric as in Section 4.1.2, let’s move from a

three-point path to a five-point path by adding an additional point between each of

our previous points4. Let’s call these five points (u0,u1,u2,u3,u4), where u0 = ua,

our original starting point, u4 = ub, our original ending point, and u2 = umin(ua,ub),

the minpoint between ua and ub .

We now have a five-point piecewise curve connecting ua and ub. As a first step we

can use our minpoint approximation to set initial values for these new points based

on the values of the neighbors. This gives us the path in Figure 11.

4Although we have chosen a path of length five as our example in this section, we should note
that the straddling operation is valid for sequences of arbitrary length.

36

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 11: Five-point path after an odd straddle

By producing updated values for each odd numbered point based on neighbors we

have moved our curve in the direction of the minimal. However, moving points with

an odd index means points with even indices are no longer minpoints. In the next

step we adjust each interior point with an even index (in our example that would be

u2) so that it is the minpoint of its new neighbors. This gives us the path in Figure

12.

37

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 12: Five-point path after an even straddle

Continuing this procedure of alternating odd/even straddle operations reduces the

length of the path on the sphere at each step until we have approximated a minimal

piecewise path to whatever accuracy we desire.

In order to see this convergence better, Figure 13 illustrates on a logarithmic scale

how the total path summation varies as the number of straddle operations increases.

38

2 4 6 8 10 12 14
Number of straddle operations

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

C
o
n
v
e
rg

e
n
ce

Figure 13: Straddle convergence

Figure 13 indicates convergence to the limit of 64-bit floating point representation

after fewer than 15 straddle operations.

At this point we have the machinery in place to approximate minimal paths for

piecewise curves. What remains to be covered in the next section will be the refine-

ment of this approach to form paths which lie arbitrarily close to our surface.

4.1.4 Refinement

In the previous section we saw how we could begin with knowledge of two end-

points and then proceed to construct minimal piecewise paths. What remains is to

successively expand the number of points in our solution curve so as to get as close to

a minimal path integral as we desire. To do that we refine our solution by introducing

an increasing number of points in a succession of straddle-converged paths.

39

To illustrate the refinement process, we begin with only a knowledge of a starting

point and an ending point, and after one refinement we have a three-point curve.

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 14: After first refinement

A second refinement adds points to our path and places us closer to a minimal

path on the surface.

40

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 15: After second refinement

A third refinement is a reasonable approximation in this first example.

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 16: After third refinement

41

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 17: After nth refinement

Continuing the process of refinement, we reduce our error in each step until we

have approximated the geodesic curve between ua and ub to whatever accuracy we

desire.

In Section 4.4 we look in more detail into the validation of these results, but before

we leave this section we include Figure 18 which illustrates the convergence curve for

the overall algorithm as a log plot.

42

0 2 4 6 8 10 12 14 16
Number of refinements

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

C
o
n
v
e
rg

e
n
ce

Figure 18: Refinement convergence

4.2 The CVA algorithm described through mathematics

It is our intent in this section to provide a formal proof of the validity of the

CVA algorithm. Our approach to this task is taken in four parts. We first establish

the mathematical context in which we work, then we define and prove the validity

of each component of the algorithm beginning with the minpoint concept, then the

straddling operation, and finally the refinement phase. We show that a given set of

preconditions implies convergence to a minimal.

4.2.1 Context

Before we can mathematically justify the CVA algorithm, we must first rigorously

define the context in which we develop the algorithm itself. We begin with a general

43

m-manifold representation from which we take a single chart as our mapping from a

parameter space to a hypersurface.

Definition 4.1. Given an m-manifold Ω with a collection of continuous 1-1 mappings

G : Um → Ω where Um is a bounded open subset of Rm, then we call each G a chart

and we call the collection of charts an atlas if for any pair G1, G2 of overlapping

charts, there exists a 1 − 1 map ϕ such that G1(u) = G2(ϕ(u))) for all u in the

overlap.

Definition 4.2. Given u = ⟨u0, u1, . . . , um−1⟩, u ∈ Um with some chart G ∈ Ω, then

we call u a parameterization point, and we call the set of all such points, Um an

m-dimensional parameter space.

Definition 4.3. Given a chart G : U → Ω then we call the set of points X ⊂ Ω,

X = {x | x = G(u) ∀ u ∈ U} a hypersurface.

Definition 4.4. Given a function α : [a, b] → U for a, b ∈ R, then the set of points

Su = {u | u = α(t), t ∈ [a, b],u ∈ U} is called a parameterization curve. The set of

points Ss = {x | x = G(u), u ∈ Su} is called a hypersurface curve or a path.

Definition 4.5. A metric is a continuous function M : X×X → R that assigns a real

number to any pair of points x,y ∈ X and satisfies M(x,y) = 0 whenever x = y, 0 ≤

M(x,y) < ∞ for all x,y and satisfies M(a, c) ≤ M(a,b) +M(b, c) for all a,b, c ∈

X.

Definition 4.6. Given a chart G and a pair of parameterization points ua,ub ∈ Um,

and given um = ub−ua

2
, and given {u⊥} to be a set of m−1 orthonormal basis vectors

44

perpendicular to ub − ua, then the set of points which is spanned by {u⊥} and which

includes the parameterization point um is called the trial space T, which we write

T(ua,ub).

4.2.2 Minpoint

We now define the concept of a minpoint showing its relationship to the trial

space. We introduce an operator which we use to sum paths in our context.

Definition 4.7. Given a chart G and a pair of parameterization points ua,ub ∈ Um

with trial space T, and given a metric M , and given

Jumin
= min

ut∈T
[M(G(ua), G(ut)) +M(G(ut), G(ub)]

then Jumin
is called the minpoint functional and umin = argmin Jumin

is called the

minpoint of ua,ub which we write umin(ua,ub).

Definition 4.8. Given a chart G with metric M and a parameterization curve S

consisting of n points, then the sum

L[S] =
n−2∑
i=0

M(G(ui,ui+1))

is called a piecewise path summation and L[S] is called the piecewise path operator.

45

4.2.3 Straddling

The straddling concept is defined in several steps. The straddle operator is used

to generate a sequence of piecewise paths. The corresponding path summations are

shown to be monotonically decreasing converging to a minimal piecewise path.

Definition 4.9. Given a chart G with metric M , let Si ∈ U be a parameterization

curve containing n + 1 points, Si = (ui,0,ui,1, . . . ,ui,n−1,ui,n). We then define an

operator S such that

Si+1 = S[Si]

where

Si+1 = (ui+1,0,ui+1,1, . . . ,ui+1,n−1,ui+1,n)

and where if i is odd

ui+1,j =



ui,0 for j = 0

ui,j for j = even, j ̸= 0, n

umin(ui,j−1,ui,j+1) for j = odd, j ̸= 0, n

ui,n for j = n

46

and where if i is even

ui+1,j =



ui,0 for j = 0

umin(ui,j−1,ui,j+1) for j = even, j ̸= 0, n

ui,j for j = odd, j ̸= 0, n

ui,n for j = n

We call this operator a straddle operator which we write S[Si].

Lemma 4.10. Given a chart G with metric M and a parameterization curve S, then

L[S[S]] ≤ L[S]

Proof. Given a chart G with metric M and a parameterization curve Si and let

Si+1 = S[Si]. Then consider any point ui,j ∈ Si such that i, j are either both odd or

both even. For such points we have

ui+1,j = umin(ui,j−1,ui,j+1)

The piecewise path summation between this point and its neighbors in Si is

Li = L[ui,j−1,ui,j,ui,j+1]

47

The piecewise path summation between this point and its neighbors in Si+1 is

Li+1 = L[ui,j−1,umin(ui,j−1,ui,j+1),ui,j+1]

It follows from the definition of the minpoint, Definition 4.7, that

Li+1 ≤ Li

and since by Definition 4.8 the piecewise path summation of S is the sum of the

piecewise path summation of its subintervals, then

L[Si+1] ≤ L[Si]

and consequently

L[S[S]] ≤ L[S] for all S

Definition 4.11. Given a chart G with metric M and a parameterization curve S0 ∈

U containing n + 1 points, let S0 = (u0,0,u0,1, . . . ,uo,n−1,u0,n). We then construct a

sequence of parameterization curves as

48

S0 = (u0,0,u0,1,u0,2, . . . ,u0,j, . . .u0,n−1,u0,n)

S1 = S[S0]

...

Si = S[Si−1]

We call this sequence a straddle sequence.

Theorem 4.12. Given a chart G with metric M and with a straddle sequence S,

then the piecewise path summation L[S] converges to a positive number.

Proof. Given a chart G with metric M and let S denote a straddle sequence {Sn :

n = (0, 1, 2...)}. From Definitions 4.5 and 4.1, and 4.8 it follows that 0 ≤ L[Sn] < ∞.

From Lemma 4.10 it follows that the straddle sequence is monotonically decreasing

so we write

∞ > L[S0] ≥ L[S1] ≥ · · · ≥ L[Sn] ≥ · · · ≥ 0

Let ε > 0, and let L = minL[S]. Since L + ε is not a lower bound for L[S], there

exists N such that L[SN] < L+ ε. Since L[Sn] is decreasing, we have L[SN] ≥ L[Sn]

for all n ≥ N . Also L[Sn] ≥ L for all n, so n > N implies L ≤ L[Sn] < L + ε, and

consequently

lim
n→∞

L[Sn] = L.

49

Definition 4.13. Given a chart G with metric M and with a parameterization curve

connecting two parameterization points ua and ub, and let S denote the corresponding

straddle sequence. If

I[ua,ub] = lim
n→∞

L[Sn] = L

then we call L the straddle-converged piecewise path summation, and we call I[ua,ub]

the minimal path operator.

Note: At this point in our development of the CVA algorithm we reach a key result,

namely that straddle-converged piecewise path summations are minimal. Next, we

proceed to state and prove this result.

Theorem 4.14. Straddle-converged piecewise path summations are minimal.

Proof. Given a chart G with metric M and with a parameterization curve connecting

two parameterization points ua and ub, and let S denote the corresponding straddle

sequence where

I[ua,ub] = lim
n→∞

L[Sn] = L

and with SL such that

L = L[SL]

Now suppose that there exists another parameterization curve Sα connecting ua and

ub where Sα ̸= SL such that L[Sα] < L[SL]. From Theorem 4.12 we know that a

straddle sequence is monotonically decreasing, and therefore if we take the limit of the

straddle sequence, lim
n→∞

L[Sαn] = Lα, then L[Sα] ≥ Lα = LT . This contradiction then

50

shows that L[SL] ≤ L[Sα] and thus the straddle-converged piecewise path summation,

L[SL], is minimal.

4.2.4 Refinement

In problems of variational calculus we are concerned with functionals of the form

J [S] =

∫
S

M(G(s)) ds

over curves S satisfying some given boundary conditions. Our focus is on minimizing

such functionals over a set of parameterization curves connecting two parameteriza-

tion points ua and ub.

Definition 4.15. Given a chart G with metric M , where J = min J [S] over a set of

all parameterization curves connecting two parameterization points ua and ub, then

we call J a minimal path integral which we write J [ua,ub]. In the special case where

M is a Euclidean distance metric we call an argmin curve of J a geodesic of the

hypersurface.

Given a chart G with metric M and with a parameterization curve of length

2n + 1 connecting two parameterization points ua and ub, and consider a sequence

of straddle-converged path summations based on such parameterization curves with

increasing length

51

L0 = I[u0,u1]

L1 = I[u0,u1,u2]

...

Ln = I[u0,u1,u2, . . . , ,ui, . . . , ,u2n+1]

where u0 = ua and u2n+1 = ub ∀n.

In each step of this sequence, the parameterization curve is augmented with an

additional point between each pair of points from the previous step. We call these

points refinement points, and we call this sequence a refinement sequence.

Theorem 4.16. A refinement sequence converges to a minimal of J .

Proof. Given a chart G with metric M and with a bounded refinement sequence

L = L0, L1, . . . , Ln. Let un,j be a refinement point augmented in step n + 1 of the

sequence. From Definition 4.8 the piecewise path summation from step n is

L[un,j−1,un,j,un,j+1]

and the piecewise path summation from step n+ 1 is

L[un+1,j−1,un+1,j,un+1,j+1]

52

considering all such refinement points, then it follows from the triangle inequality

that

Ln ≤ Ln+1 ∀n

and so L is a monotonically increasing series and we can write

0 ≤ L0 ≤ L1 ≤ · · · ≤ Li · · · ≤ Ln < ∞

Let ε > 0, and let JL = supL. Since JL − ε is not an upper bound for L, there

exists N such that LN > JL − ε. Since Ln is increasing, we have LN ≤ Ln for all

n ≥ N . Also Ln ≤ JL for all n, so n > N implies JL−ε < Ln ≤ JL, and consequently

lim
n→∞

Ln = JL

and finally, since each Ln is by Theorem 4.12 minimal, then JL is minimal.

53

4.3 The CVA algorithm Implementation

We have implemented the CVA algorithm as an importable Python library and

have released this code as Free Open Source Software. The code is available through

the Python Package Index (PyPI) as well as other downstream repositories. See

Appendix A for installation details.

In Appendix B we include full length code listings for the most important files.

This section explains the construction of the most important parts of the library.

4.3.1 Minpoint approximation

For a minpoint computation, we first need to assign a model G, with an attached

metric M. Then we can call our minpoint function with a starting and an ending

point.

In the first part of this code sequence we convert our points into an internal form

and we find the dimensionality of our space.

def minpoint(sa, sb):

we determine the dimension of our phase space by examining the sa

point

sa = np.asarray(sa)

sb = np.asarray(sb)

if np.allclose(sa,sb):

return sa # quick return if starting and ending are equal

nparm = np.shape(sa)[0]

Now we construct a secant vector between the starting and ending points, and we

take its center as our first approximation of a minpoint. We then want to find a trial

54

space, perpendicular to the secant vector, which includes this center point. The first

step in this process is to find a non-orthogonal basis including the secant vector.

step 1: form a non-orthogonal basis space including our secant vector

basis = np.zeros((nparm,nparm))

cartesian_space = np.zeros((nparm,nparm))

for i in range(nparm):

cartesian_space[i,i] = 1.0

our non-orthogonal basis must include the primary (secant) unit

vector

basis[0] = (sb - sa)/np.linalg.norm(sb - sa)

we select a the set of cartesian unit vectors by eliminating the

worst choice

worst_choice = np.argmax(np.abs(basis[0]))

then we list the indices of the best cartesian choices

axis = [axis for axis in range(nparm) if axis != worst_choice]

for i in range(1,nparm):

and use them to form the rest of our basis

basis[i] = cartesian_space[axis[i-1]]

if np.allclose(basis[i],basis[0]):

raise ValueError(’colinear vectors found in basis’)

Now that we have a non-orthogonal basis including the secant vector we can apply

the Gramm-Schmidt process, or QR factorization, to convert to an orthonormal basis.

step 2: form an orthonormal basis including the secant vector

perp = np.empty((nparm,nparm))

perp[0] = basis[0] # perp[0] is the secant unit vector

for i in range(1,nparm): # the Gramm-Schmidt summation

perp[i] = basis[i] # starting with the basis vector

for j in range(i): # then subtracting previous vector components

perp[i] -=

perp[j]*np.inner(basis[i],perp[j])/np.inner(perp[j],perp[j])

perp[i] = perp[i]/np.linalg.norm(perp[i]) # normalize

With a trial space in hand, and after setting an initial radius of interest, we are

ready to use our metric and our model to find a metric-weighted path summation for

55

each trial point. The first part of this step is the setup of appropriate vectors to hold

results.

step 3: starting with a midpoint and a radius, find the best path

sm = (sb-sa)/2.0 + sa

radius = np.linalg.norm(sb-sa)*_parms[’tp_starting_trial_space_radius’]

our trial space has 5**(n-1) points,

five points accross each axis centered on the current midpoint

estimate

trial_shape = []

for i in range(nparm-1):

trial_shape.append(5)

trial_array_shape = deepcopy(trial_shape)

trial_array_shape.append(nparm)

trial_space = np.zeros(trial_array_shape) # the set of trial points

trial_integral = np.zeros(trial_shape) # path summations for each

trial point

maxtries = _parms[’tp_max_trials’]

Now that our setup is complete, we reach the inner loop of the minpoint approx-

imation. Inside this loop we find path summations for each possible path from the

starting point through a trial point and on to the ending point. We take that min-

imum path and use it as a new minpoint candidate. After reducing our radius of

interest by 1/2 its previous value we continue with another repetition.

while maxtries > 0 and radius > EPS*_parms[’tp_eps_multiplier’]:

maxtries -= 1

best_integral = np.infty

create a tuple of all possible trial index permutations

trial_index_set = itertools.product(range(5),repeat=nparm-1)

trial_space = np.zeros(trial_array_shape) # the set of trial points

trial_integral = np.zeros(trial_shape) # path integrals for each

trial point

for it in trial_index_set: # loop over all trial permutations

trial_space[it] = sm # our trial point includes the center

for i in range(nparm-1): # and spans the basis coordinates

56

trial_space[it] += radius*perp[i+1]*(it[i]-2)/2.0

#print np.linalg.norm(radius*perp[i+1]*(it[i]-2)/2.0)

trial_integral[it] = _parms[’M’](sa,trial_space[it])+

_parms[’M’](trial_space[it],sb)

if trial_integral[it] < best_integral:

best_integral = trial_integral[it]

bestit = it

prepare new trial (center and radius) based on our best path

if best_integral < np.infty:

sm = trial_space[bestit]

radius = radius/2

else:

print "no solution found"

return sm

After a suitable number of repetitions, we have found a best approximation for

the minpoint, and there is nothing left to do but return it.

4.3.2 Straddling

The major challenge in implementing a straddling sequence is that we must pay

close attention to indexing. An iteration consists of two parts. An odd straddle

updates all odd numbered points with a new minpoint based on its two even numbered

neighbors. Following that step, an even straddle updates all even numbered interior

points with a new minpoint based on its two odd numbered neighbors. These two

steps result in an improved path summation. By repeating this procedure, we arrive

at a minimal polygonal path between the two endpoints.

def straddle(s, step):

N = _parms[’N’]

incr = int(N/(2**step))

for iteration in range(_parms[’tp_straddles’]):

for k in range(1, int(N/incr), 2):

a = (k-1)*incr

57

b = (k+1)*incr

s[int(k*N/(2**step))] = minpoint(s[a], s[b])

for k in range(2, int(N/incr), 2):

a = (k-1)*incr

b = (k+1)*incr

s[int(k*N/(2**step))] = minpoint(s[a], s[b])

return (s)

4.3.3 Refinement

The process of refinement involves augmenting the path with additional points,

nearly doubling the sequence length with each step. Initially a solution vector is sized

large enough to hold all steps (2steps + 1). This very short code segment calls for a

straddle convergence over successively longer subsequences.

def refine(s,steps):

for step in range(1,steps+1):

s = straddle(s,step)

return s

58

4.4 Validation of results

In Section 4.2 we presented formal proofs validating the CVA algorithm. In this

section we illustrate its validity through comparison of our solutions with some ex-

ample cases for which we have known analytical solutions. We intend to show a high

correlation between the analytical solutions and our numerical results.

The most basic example is finding the shortest path between two points on the

surface of a unit plane, that being a line of length
√
2 [10].

Refinement
CVA

approximation
analytical
solution

difference
(percent)

step 1 1.414214 1.414214 0.0000
step 2 1.414214 1.414214 0.0000
step 3 1.414214 1.414214 0.0000
step 4 1.414214 1.414214 0.0000

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 19: Tilted plane

59

Another longstanding known result is the minimum distance between two points

on opposite sides of a unit cylinder. The cylinder is isometrically equivalent to a

plane so Euclidean distance provides a result. In this example we have an analytical

solution of d =
√
π2 + 1. Figure 20 illustrates the results.

Refinement
CVA

approximation
analytical
solution

difference
(percent)

step 1 2.657971 3.296908 19.3799
step 2 3.216842 3.296908 2.4285
step 3 3.277726 3.296908 0.5818
step 4 3.292103 3.296908 0.1457
step 5 3.295707 3.296908 0.0364
step 6 3.296608 3.296908 0.0091
step 7 3.296834 3.296908 0.0023
step 8 3.296890 3.296908 0.0006
step 9 3.296904 3.296908 0.0001
step 10 3.296908 3.296908 0.0000

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 20: Cylinder

60

The hyperboloid has, interestingly enough, straight lines as its geodesics (for suit-

ably chosen paths). The analytical solution therefore involves finding the length of a

line between two points in 3-dimensional space for such a suitably chosen path.

For the points ua = ⟨ua, va⟩ = (1.0, 0.0) and ub = ⟨ub, vb⟩ = (0.0, , 0.36024032), we

define φ and θ to depend on u and v as

φa = 3(0.5− ua)

φb = 3(0.5− ub)

θa = 2π(va − 0.5)

θb = 2π(vb − 0.5)

so the endpoints are thus given by

xa = (cosh(φa) cos(θa), cosh(φa) cos(θa), sinh(φa))

xb = (cosh(φb) cos(θb), cosh(φb) cos(θb), sinh(φb))

and the distance between them by

d = norm(xb − xa)

which yields an analytical solution of 6.022512. Figure 21 illustrates the results.

61

Refinement
CVA

approximation
analytical
solution

difference
(percent)

step 1 6.022512 6.022512 0.0000
step 2 6.022512 6.022512 0.0000
step 3 6.022512 6.022512 0.0000
step 4 6.022512 6.022512 0.0000
step 5 6.022512 6.022512 0.0000
step 6 6.022512 6.022512 0.0000
step 7 6.022512 6.022512 0.0000

x

−3
−2

−1
0

1
2

3

y

−3

−2

−1

0

1

2

3

z

−3

−2

−1

0

1

2

3

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 21: Hyperboloid

62

The cosh-shaped surface is isometrically equivalent to a plane so its geodesic is

also a Euclidean path. For the points

ua = (0.1, sinh−1(0.5 · 0.1))

ub = (1.0, sinh−1(0.5 · 1.0))

we have an analytical solution of d = 0.9
√
1 + 0.52. Figure 22 illustrates the results.

Refinement
CVA

approximation
analytical
solution

difference
(percent)

step 1 1.005871 1.006231 0.0358
step 2 1.006141 1.006231 0.0089
step 3 1.006208 1.006231 0.0022
step 4 1.006225 1.006231 0.0006
step 5 1.006229 1.006231 0.0001
step 6 1.006230 1.006231 0.0000
step 7 1.006231 1.006231 0.0000
step 8 1.006231 1.006231 0.0000

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 22: Cosh-shaped surface

63

Geodesics on the sphere have been of interest to navigation for hundreds of years.

We first consider a path on the unit sphere from a starting point to an ending point

directly opposite. We would expect this geodesic to have a length of exactly π.

Refinement
CVA

approximation
analytical
solution

difference
(percent)

step 1 2.815178 3.141593 10.3901
step 2 3.061408 3.141593 2.5524
step 3 3.121238 3.141593 0.6479
step 4 3.136483 3.141593 0.1627
step 5 3.140314 3.141593 0.0407
step 6 3.141273 3.141593 0.0102
step 7 3.141513 3.141593 0.0025
step 8 3.141573 3.141593 0.0006
step 9 3.141588 3.141593 0.0002
step 10 3.141591 3.141593 0.0000
step 11 3.141592 3.141593 0.0000
step 12 3.141593 3.141593 0.0000

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 23: Unit Sphere

64

As a final example we again take the unit sphere and find a geodesic between

two closer points, this time expressing these points in latitude/longitude format. The

analytical solution follows directly from the law of cosines in spherical trigonometry.

sa = cva.model.latlon(30, -90); sb = cva.model.latlon(45, -75)

theta = 15.0*pi/180; phi_a = pi/3; phi_b = pi/4

d = acos(cos(phi_b)*cos(phi_a) + sin(phi_b)*sin(phi_a)*cos(theta))

Refinement
CVA

approximation
analytical
solution

difference
(percent)

step 1 0.332634 0.333019 0.1155
step 2 0.332923 0.333019 0.0289
step 3 0.332995 0.333019 0.0072
step 4 0.333013 0.333019 0.0018
step 5 0.333018 0.333019 0.0005
step 6 0.333019 0.333019 0.0001
step 7 0.333019 0.333019 0.0000

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Figure 24: Unit Sphere

65

4.5 Additional examples

At this point we have validated the CVA algorithm both with mathematical proofs

and by comparison with known solutions. We can now move on to explore minimal

paths on surfaces and with metrics many of which have no known analytical solution.

4.5.1 Example: Torus

x

−2

−1

0

1

2

y

−2

−1

0

1

2

z

−2

−1

0

1

2

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCase 1: Torus

Figure 25: Torus

66

4.5.2 Example: Earth WGS84 Reference Model

x

−6000
−4000

−2000
0

2000
4000

6000

y

−6000

−4000

−2000

0

2000

4000

6000

z

−6000

−4000

−2000

0

2000

4000

6000

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCase 3: WGS84 Earth Reference Model

Figure 26: Earth WGS84 Ellipsoidal Model

4.5.3 Example: Sphylinder

We consider a surface which morphs between the shape of a sphere at one limit

and a cylinder at the other limit. We call this surface a sphylinder in recognition of

its two limiting shapes. We define the mapping for the sphylinder as follows. Let our

u parameter represent a “latitude” ranging from u = 0 (north pole) to u = 1 (south

pole), and let v represent a “longitude” ranging from v = 0 to v = 1 (2π). Next,

convert u, v into φ, θ as

67

φ = πu

θ = 2πv

and let p be a “morphing parameter” where p = 1 models a sphere and p → 0

approaches the model of a cylinder. For this example we set

p = 0.5

and model the surface as

x = (x, y, z)

x = (sinφ)p cos θ

y = (sinφ)p sin θ

z = |cosφ|p if φ < π/2

z = −|cosφ|p if φ ≥ π/2.

Figure 27 shows a geodesic on the sphylinder.

68

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCase 7: Sphylinder

Figure 27: Sphylinder

4.5.4 Example: Capped Cylinder

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCase 8: Capped Cylinder

Figure 28: Capped Cylinder

69

4.5.5 Example: Moebius Strip

x

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

y

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

z

−4

−3

−2

−1

0

1

2

3

4

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCase 9: Moebius Strip

Figure 29: Moebius Strip

4.5.6 Example: Brachistochrone in Earth Gravity

Recall the brachistochrone from Section 3.1.2.3. Here we apply the CVA algorithm

with the model of the plane and a brachistochrone metric to obtain an approximation

to the cycloid solution.

70

x

0.0

0.2

0.4

0.6

0.8

1.0

y

−0.4

−0.2

0.0

0.2

0.4

z

0.0

0.2

0.4

0.6

0.8

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCase 10: Brachistochrone in Earth Gravity

Figure 30: Brachistochrone in Earth Gravity

4.5.7 Example: Brachistochrone on a Tilted Plane

We verify that tilting the plane does not alter the brachistochrone solution.

71

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCase 11: Brachistochrone on a Tilted Plane

Figure 31: Brachistochrone on a Tilted Plane

4.5.8 Example: Brachistochrone in Moon Gravity

The time taken to traverse the optimal curve in Moon gravity is greater than that

obtained in Earth gravity, but here we show that the shape of the curve remains the

cycloid as we would expect.

72

x

0.0

0.2

0.4

0.6

0.8

1.0

y

−0.4

−0.2

0.0

0.2

0.4

z

0.0

0.2

0.4

0.6

0.8

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCase 12: Brachistochrone in Moon Gravity

Figure 32: Brachistochrone in Moon Gravity

4.5.9 Example: Brachistochrone on a Unit Sphere

The CVA algorithm can be used to answer new questions that have up to this

point evaded analytical solution. Here we ask for the path constrained to the surface

of a unit sphere that would minimize the time for a particle to descend from a starting

point (at rest) to an ending point under the influence of (negative z oriented) Earth

gravity. Figure 33 illustrates the result of a CVA solution of the brachistochrone

metric on a unit sphere surface model.

73

x

−1.0

−0.5

0.0

0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

z

−1.0

−0.5

0.0

0.5

1.0

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCase 13: Brachistochrone on a Unit Sphere

Figure 33: Brachistochrone on a Unit Sphere

4.5.10 Example: Brachistochrone on a Hyperboloid

Similarly we can ask for the path constrained to the surface of a hyperboloid that

would minimize the time for a particle to descend from a starting point (at rest)

to an ending point under the influence of (negative z oriented) Earth gravity. It is

interesting to observe that the best “strategy” for the particle is to descend near

the vertical as it begins its acceleration, then increasing its angle of attack in the

later phase of its journey. Figure 34 illustrates the result of a CVA solution of the

brachistochrone metric on a hyperboloid surface model.

74

x

−2

−1

0

1

2

y

−2

−1

0

1

2

z

−2

−1

0

1

2

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeCase 14: Brachistochrone on a Hyperboloid

Figure 34: Brachistochrone on a Hyperboloid

4.6 Extension to higher order spaces

When moving from R3 to higher dimensions, it becomes convenient to first adopt

a suitable notation. Let u = (u0, u1, . . . , um−1) represent a point in a parameter space

in Rm, and let x = (x0, x1, . . . , xn−1) represent a point in Rn, m < n.

Up to this point our primary metric has been the Euclidean distance metric in R3

which we expressed, in the notation of differential forms, as

ds2 = dx2 + dy2 + dz2.

75

As we now move into Rn we extend the distance metric to its more general form

ds2 =
n−1∑
i=0

dx2
i

and specifically in R4 two additional metrics take on special importance.

4.6.1 Minkowski metric

The Minkowski metric applies to flat spacetime, in that it provides a measure

between events occurring in a region of spacetime void of mass. The Minkowski

metric describes the essence of special relativity.

ds2 = d(ct)2 − dx2 − dy2 − dz2

We give this metric here in rectangular coordinates with time expressed as ct with

units of light seconds.

4.6.2 Schwarzschild metric

The Schwarzschild metric applies to curved spacetime in that it provides a measure

between events occurring in a region of spacetime containing a central mass. The

Schwarzschild metric describes the essence of general relativity. We give this metric

here in spherical coordinates with time expressed as ct with units of light seconds.

c2ds2 =

(
1− 2GM

rc2

)
d(ct)2 − 1

1− 2GM
rc2

dr2 − r2dθ2 − r2 sin2 θdφ2

76

If we wish to express this metric in Cartesian coordinates, we must add the relation-

ships

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

ct = ct

4.6.3 Viewing higher dimensions

We exist in a 3-dimensional world and therefore our intuition into higher dimen-

sions is limited. In order to view our results in a meaningful way we borrow a conven-

tion from the architects and engineers. They typically represent 3-dimensional objects

in the form of orthographic projections. Specifically, three 2-dimensional views (top

view, front view, side view) represent the 3-dimensional object. We can extend this

idea to view 4-dimensional objects with four 3-dimensional views, taking each view

as a slice of our 4-dimensional object with one axis set to zero. A 3-dimensional

parameter space is easily represented in a single 3-dimensional view.

In dimensions higher than four, we can continue to extend this view principle

by recognizing that

(
n

n− 3

)
= n!

3!(n−3)!
combinations will suffice to view a space of

dimension n.

77

dimensionality
of our space

number of 3-d
views required

3 1
4 4
5 10
6 20
7 35
8 56
9 84
10 120

The CVA library handles the general case in that it can generate views of arbitrary

dimension, and we have tested through 7-dimensional spacial views.

4.6.4 Spherical model in Rn

As a test of the CVA algorithm in higher dimensional spaces, we have chosen the

hypersphere as our model. We extend an R3 sphere to a general Rn hypersphere by

adding additional latitude parameters as follows.

def sphere(s):

s,x = startmodel(s)

start of model mapping

n = np.shape(s)[1]

length = np.shape(s)[0]

Convert to rectangular coordinate system

prod = 1.0

for i in range(n-1):

x[:,n-i] = prod * np.cos(np.pi * s[:,i])

prod = prod * np.sin(np.pi * s[:,i])

x[:,0] = prod * np.cos(2*np.pi * (s[:,n-1]-0.5))

x[:,1] = prod * np.sin(2*np.pi * (s[:,n-1]-0.5))

end of model mapping

x = finishmodel(x,s)

return x

78

As our first example we find a geodesic on a hypersphere in R4. Figure 35 illus-

trates the result of a CVA solution of the generalized Euclidean distance metric on

a hypersphere surface model. The surface is depicted as a set of four 3-dimensional

slices each obtained by setting one of the four dimensions to zero. The geodesic is

depicted in the uvw parameterization space and also in each hypersurface slice. On

viewing the result, it is interesting to conjecture that a geodesic on a hypersphere lies

on a plane intersecting the origin.

79

4.6.5 Example: Hypersphere in R4

x
1

−1.0

−0.5

0.0

0.5

1.0

x 2

−1.0

−0.5

0.0

0.5

1.0

x
3

−1.0

−0.5

0.0

0.5

1.0

Hypersurface (slice at x0 = 0)

x
0

−1.0

−0.5

0.0

0.5

1.0

x 2

−1.0

−0.5

0.0

0.5

1.0

x
3

−1.0

−0.5

0.0

0.5

1.0

Hypersurface (slice at x1 = 0)

x
0

−1.0

−0.5

0.0

0.5

1.0

x 1

−1.0

−0.5

0.0

0.5

1.0

x
3

−1.0

−0.5

0.0

0.5

1.0

Hypersurface (slice at x2 = 0)

x
0

−1.0

−0.5

0.0

0.5

1.0

x 1

−1.0

−0.5

0.0

0.5

1.0

x
2

−1.0

−0.5

0.0

0.5

1.0

Hypersurface (slice at x3 = 0)

u

0.0
0.2

0.4

0.6

0.8

1.0

v

0.0

0.2

0.4

0.6

0.8

1.0

w

0.0

0.2

0.4

0.6

0.8

1.0

uvw view

Case 22: Hypersphere in R
4

Figure 35: Hypersphere in R4

80

4.6.6 Example: Inflating Sphere in Spacetime

To further explore the application of the CVA algorithm to higher dimensional

spaces, we model an inflating sphere in 4-dimensional spacetime. The sphere is inflat-

ing at a rate of 50% of light speed. To this model we attach the Minkowski metric.

The CVA solution on this model and with this metric depicts the shortest path of a

particle possessed with unconstrained speed as it moves between a starting event and

an ending event in flat spacetime. Figure 36 illustrates the result of a CVA solution

of the Minkowski metric on an inflating sphere surface model. When interpreting

the result it is interesting to notice that the test particle’s best strategy is to favor

spacial movements (at near lightspeed) while the sphere is yet small then favor time

movements (waiting with minimal spacial movement) as the inflation nears its goal.

81

x
1

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

x 2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
3

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Hypersurface (slice at x0 = 0)

x
0

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

x 2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
3

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Hypersurface (slice at x1 = 0)

x
0

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

x 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
3

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Hypersurface (slice at x2 = 0)

x
0

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

x 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Hypersurface (slice at x3 = 0)

u

0.0
0.2

0.4

0.6

0.8

1.0

v

0.0

0.2

0.4

0.6

0.8

1.0

w

0.0

0.2

0.4

0.6

0.8

1.0

uvw view

Case 20: Sphere inflating at 50% light speed

Figure 36: Inflating Sphere in Spacetime

82

4.6.7 Example: Collapsing Sphere in Spacetime

Similar to the previous example we model a collapsing sphere in 4-dimensional

spacetime. The sphere is collapsing at a rate of 50% of light speed. To this model we

attach the Minkowski metric. The CVA solution on this model and with this metric

depicts the shortest path of a particle possessed with unconstrained speed as it moves

between a starting event and an ending event in flat spacetime. Figure 37 illustrates

the result of a CVA solution of the Minkowski metric on a collapsing sphere surface

model. When interpreting the result and compare it to the previous result, we notice

that the test particle’s best strategy in this case is to favor time movements while the

sphere is large and to delay favoring spacial movements (at near lightspeed) until the

sphere becomes small.

83

x
1

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

x 2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
3

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Hypersurface (slice at x0 = 0)

x
0

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

x 2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
3

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Hypersurface (slice at x1 = 0)

x
0

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

x 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
3

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Hypersurface (slice at x2 = 0)

x
0

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

x 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Hypersurface (slice at x3 = 0)

u

0.0
0.2

0.4

0.6

0.8

1.0

v

0.0

0.2

0.4

0.6

0.8

1.0

w

0.0

0.2

0.4

0.6

0.8

1.0

uvw view

Case 19: Sphere collapsing at 50% light speed

Figure 37: Collapsing Sphere in Spacetime

84

4.6.8 Example: Geodesic Family near a Black Hole

We explore the Schwarzschild metric (curved spacetime) by attaching it to a plane

with a massive object at its center. In this model we assume the mass of Sgr A*,

the Milky Way’s supermassive black hole, and model a region of space measuring 10

event horizons in each direction. Minimal paths in this model and with this metric

correspond to the paths a photon could take as it passes through this region of space.

Figure 38 illustrates the result of a CVA solution of the Schwarzschild metric on a

planar surface model.

x

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

y

×

1
0
1
1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

z

×
1
0
1
1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv plane

Case18: Geodesics near Sgr A*

Figure 38: Geodesics in Spacetime with the Schwarzschild Metric

85

4.6.9 Example: Hypersphere in R5

As our final example in Figures 39 and 40 we show a geodesic on a hypersphere

in R5. Notice that there are a total of 10 combinations of 3-dimensional slices repre-

senting a 5-dimensional object. Also, we are working with a 4-dimensional parameter

space which requires four 3-dimensional views.

Figure 39: Hypersphere in R5

86

Figure 40: Hypersphere in R5

87

5 FUTURE DIRECTIONS

5.1 Observation 1

Considering further the relationship between the CVA algorithm and classical

calculus of variations, we note that what we have called in this paper a metric is

identified with the term objective functional, and what we have called a surface with

starting and ending points corresponds to a set of boundary conditions. We proved in

Theorem 4.16 that the CVA solution converges to the minimal path integral, and thus

it follows that it also approximates a solution of the set of differential equations of the

kind known in classical calculus of variations as Euler’s equation [6]. We state here as

a conjecture, that the CVA algorithm can be applied to the numerical approximation

of a class of partial differential equations with prescribed boundary conditions. We

propose an investigation in this direction to expand the generality of this observation.

5.2 Observation 2

In this thesis the CVA algorithm is described in the context of an m-manifold

from which we take a single chart. The generalization of the CVA algorithm to

comprehend all charts in the atlas should follow directly from the observation that

charts are required to share points with their neighbors and that a metric on an m-

manifold is required to be independent of the selected chart. It is therefore possible

to introspect the geometry of an m-manifold and thereby to implement the selection

of an appropriate chart on which the minpoint approximation will be valid or even

optimal.

88

BIBLIOGRAPHY

[1] Ralph Abraham, Jerrold E Marsden, and Jerrold E Marsden. Foundations of

mechanics. Benjamin/Cummings Publishing Company Reading, Massachusetts,

1978.

[2] Vladimir Igorevich Arnold. Mathematical methods of classical mechanics, vol-

ume 60. Springer Science & Business Media, 1989.

[3] CT Chen, EM Benglas, SK Singh, DC Bullock, and R Whitinger. A novel probe

tester for the characterization of 1 mbit/cm2 bubble memory devices. Journal

of Applied Physics, 52(3):2392–2394, 1981.

[4] James W Cooley and John W Tukey. An algorithm for the machine calculation

of complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

[5] Leonhard Euler. Mechanica sive motus scienta analytice exposita... instar sup-

plementi ad Commentar. Acad. scient. imper. ex typographia Academiae scien-

tarum, 1736.

[6] Leonhard Euler. Methodus inveniendi lineas curvas maximi minimive proprietate

gaudentes (appendix, de curvis elasticis). Marcum-Michaelem Bousquet, 1744.

[7] Craig G Fraser. Isoperimetric problems in the variational calculus of euler and

lagrange. Historia mathematica, 19(1):4–23, 1992.

[8] Izrail Moiseevich Gelfand, Sergĕı Vasilevich Fomin, and Richard A Silverman.

Calculus of variations. Courier Corporation, 2000.

89

[9] Herbert Goldstein. Classical mechanics. Addison Wesley, 2002.

[10] JL Heiberg and Richard Fitzpatrick. Euclid’s elements of geometry. 2007.

[11] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential geometry,

volume 1. New York, 1963.

[12] Cornelius Lanczos. The variational principles of mechanics, volume 4. Courier

Corporation, 1970.

[13] LD Landau and EM Lifshitz. Mechanics, vol. 1. Course of theoretical physics,

1976.

[14] Walter Ritz. Über eine neue methode zur lösung gewisser variationsprobleme

der mathematischen physik. 1909.

[15] Dirk J Struik. Outline of a history of differential geometry (ii). Isis, 20(1):161–

191, 1933.

[16] Dirk Jan Struik. Outline of a history of differential geometry: I. Isis, 19(1):92–

120, 1933.

[17] Bruce van Brunt. The calculus of variations. 2004.

[18] Robert Weinstock. Calculus of variations: with applications to physics and en-

gineering. Courier Corporation, 1952.

[19] R.J. Whitinger. Arbitrary drive for magnetic field waveform control, August 23

1983. US Patent 4,400,809.

90

APPENDICES

A How to reproduce results

Researchers wishing to reproduce the results we have presented, or wishing to

apply the CVA algorithm to their own research, will be pleased to know that we have

implemented the algorithm as a multi-platform importable python library and have

released this code as LGPLv2.1+ licensed open source software. The library is initially

available through the Python Package Index (PyPI) as well as other downstream

repositories.

A.1 Installation

Installation of the library directly from PyPI is done with this command:

pip install cva

See https://pypi.python.org/ for a description of how to set up the pip installer.

A.2 Quickstart Tutorial

With the library installed, we give here a few examples of its use. In keeping with

the tradition of beginning with the smallest example, we provide this two liner:

Hello World example:

import cva

cva.examples.case01_torus()

You should now see the graphic we show in Figure 4.5.1.

91

The cva library includes a variety of prepackaged models and metrics. These may

be accessed like this:

Using prepackaged models and metrics:

import cva

cva.solve.select(cva.model.hyperboloid, cva.metric.distance)

sa = (0.0, 0.2) # starting point in <u,v> parameterization space

sb = (1.0, 0.6) # ending point

path = cva.solve.run(sa,sb)

cva.view.draw(path)

It is also straightforward to implement your own custom models and metrics. Here

we show an example of a custom model:

Using custom models and metrics:

import cva

import numpy as np

def mymodel(s):

s,x = cva.model.startmodel(s)

start of model mapping

u = s[:,0]

v = s[:,1]

theta = 2.0*np.pi*(0.5-v)

x[:,0] = (1.0-u)*np.cos(theta)

x[:,1] = (1.0-u)*np.sin(theta)

x[:,2] = u

end of model mapping

x = cva.model.finishmodel(x)

return x

cva.solve.select(mymodel, cva.metric.distance)

sa = (0.0,0.0)

sb = (0.6,0.5)

steps = 4

92

path = cva.solve.run(sa,sb,steps)

cva.view.draw(path,title="My Custom Model")

When running this code we have these results:

step 1: path_integral = 1.613512 after 0.487 seconds

step 2: path_integral = 1.784420 after 1.916 seconds

step 3: path_integral = 1.806089 after 5.246 seconds

step 4: path_integral = 1.811742 after 12.353 seconds

and the following graphic:

x

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

y

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

z

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Surface

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

v

uv planeMy Custom Model

Figure 41: Creating a Custom Model

93

B Code listings

B.1 solve.py

-*- coding: utf-8 -*-

#---

Copyright (c) 2016, Robert Whitinger <cva_account@wmkt.com>

#

Distributed under the terms of the LGPL license either version 2.1 or

(at your option) any later version.

#

The full license is in the file LICENSE.txt, distributed with this

software,

and is also available at <http://www.gnu.org/licenses/>

#---

"""

cva.solve

A calculus of variations solver.

This module implements the CVA algorithm for the numerical computation of

minimum paths.

"""

from __future__ import division

system libraries:

import sys

import numpy as np

import math

from copy import deepcopy

import time

import itertools

project library

import cva

Constants

PI = math.pi

TPI = 2.0*PI

EPS = sys.float_info.epsilon

94

here we store this module’s parameter set and make it accessible

initialize default tuning parameters

_parms = {’tp_starting_trial_space_radius’: 0.5,

’tp_eps_multiplier’: 100,

’tp_straddles’: 32,

’tp_max_trials’: 20,

’trace_minpoint’: False,

’trace_straddle’: False,

’trace_refine’: False

}

def set_parm(parm_name, parm_value):

"""

cva.solve.set_parm(parm_name, parm_value)

"""

_parms[parm_name] = parm_value

def get_parm(parm_name):

"""

parm_value = cva.solve.get_parm(parm_name)

"""

return _parms[parm_name]

def list_parms():

"""

keys = cva.solve.list_parms()

"""

keys = _parms.keys()

return keys

def select(function_model, function_metric):

"""

cva.solve.select(function_model, function_metric)

Parameters

function_model : function

This parameter assigns a model.

function_metric : function

This parameter assigns a metric.

Returns

95

nothing

Notes

This function is called prior to cva.solve.run() invokation in order to

specify a model with an associated metric. See also cva.solve.run().

Examples

import cva

sa = (0.4,0.5)

sb = (0.6,0.7)

cva.solve.select(cva.model.sphere,cva.metric.distance)

path = cva.solve.run(sa,sb)

In this example, a spherical model with a Euclidean distance metric

are specified, and then with this configuration a minimal path is

calculated and a minimal curve is returned.

"""

_parms[’G’] = function_model

_parms[’M’] = function_metric

return

The basic computational element finds a minimum of the objective

functional

over a successively smaller trial space.

def minpoint(sa, sb):

"""

cva.solve.minpoint(sa, sb)

Parameters

sa : array_like

This parameter contains a starting point in the parameter space.

sb : array_like

This parameter contains an ending point in the parameter space.

Returns

sm : ndarray

On return sm contains the minpoint between the starting point sa

and the ending point sb. Given the constraints of the specified

model and metric.

96

Notes

This is the basic building block of the cva algorithm.

Examples

import cva

sa = (0.4,0.5)

sb = (0.6,0.7)

cva.solve.select(cva.model.sphere,cva.metric.distance)

sm = cva.solve.minpoint(sa,sb)

"""

we determine the dimension of our phase space by examining the sa

point

sa = np.asarray(sa)

sb = np.asarray(sb)

if np.allclose(sa, sb):

return sa # quick return if starting and ending are equal

nparm = np.shape(sa)[0]

use Gramm-Schmidt to form an n-dimensional space perpendicular to

the secant line

step 1: form a non-orthogonal basis space including our secant vector

basis = np.zeros((nparm, nparm))

cartesian_space = np.zeros((nparm, nparm))

for i in range(nparm):

cartesian_space[i, i] = 1.0

our non-orthogonal basis must include the primary (secant) unit

vector

basis[0] = (sb - sa)/np.linalg.norm(sb - sa)

we select a the set of cartesian unit vectors by eliminating the

worst choice

worst_choice = np.argmax(np.abs(basis[0]))

then we list the indices of the best cartesian choices

axis = [axis for axis in range(nparm) if axis != worst_choice]

for i in range(1, nparm):

and use them to form the rest of our basis

basis[i] = cartesian_space[axis[i-1]]

if np.allclose(basis[i], basis[0]):

raise ValueError(’colinear vectors found in basis’)

step 2: form an orthonormal basis including the secant vector

perp = np.empty((nparm, nparm))

perp[0] = basis[0] # perp[0] is the secant unit vector

97

for i in range(1, nparm): # the Gramm-Schmidt summation

perp[i] = basis[i] # starting with the basis vector

for j in range(i): # then subtracting previous vector components

perp[i] -= perp[j]*np.inner(basis[i],

perp[j])/np.inner(perp[j], perp[j])

perp[i] = perp[i]/np.linalg.norm(perp[i]) # normalize

step 3: starting with a midpoint and a radius, find the best path

sm = (sb-sa)/2.0 + sa

radius = np.linalg.norm(sb-sa)*_parms[’tp_starting_trial_space_radius’]

our trial space has 5**(n-1) points,

five points accross each axis centered on the current midpoint

estimate

trial_shape = []

for i in range(nparm-1):

trial_shape.append(5)

trial_array_shape = deepcopy(trial_shape)

trial_array_shape.append(nparm)

trial_space = np.zeros(trial_array_shape) # the set of trial points

trial_integral = np.zeros(trial_shape) # path summations for each

trial point

maxtries = _parms[’tp_max_trials’]

while maxtries > 0 and radius > EPS*_parms[’tp_eps_multiplier’]:

maxtries -= 1

best_integral = np.infty

create a tuple of all possible trial index permutations

trial_index_set = itertools.product(range(5), repeat=nparm-1)

trial_space = np.zeros(trial_array_shape) # the set of trial points

trial_integral = np.zeros(trial_shape) # path summations for each

trial point

for it in trial_index_set: # loop over all trial permutations

trial_space[it] = sm # our trial point includes the center

for i in range(nparm-1): # and spans the basis coordinates

trial_space[it] += radius*perp[i+1]*(it[i]-2)/2.0

#print np.linalg.norm(radius*perp[i+1]*(it[i]-2)/2.0)

trial_integral[it] = _parms[’M’](sa, trial_space[it]) +

_parms[’M’](trial_space[it], sb)

if trial_integral[it] < best_integral:

best_integral = trial_integral[it]

bestit = it

prepare new trial (center and radius) based on our best path

if best_integral < np.infty:

sm = trial_space[bestit]

radius = radius/2

98

else:

print "no solution found"

tracing brings a performance penalty, it is turned off by default

if _parms[’trace_minpoint’]:

try:

_parms[’log_minpoint’]

except:

_parms[’log_minpoint’] = []

log = deepcopy((sm, trial_space, trial_integral, radius))

_parms[’log_minpoint’].append(log)

return sm

utility procedure

def _strip_s(s, step):

strip uncalculated values from s

i = 0

s_temp = np.zeros((2**step+1, np.shape(s)[1]))

for i in range(2**step+1):

j = i*2**(_parms[’steps’]-step)

s_temp[i] = s[j]

return s_temp

def path_integral(s, step=False):

"""

cva.solve.path_integral(s, step=False)

Parameters

s : array_like

This parameter specifies a path which is not necessarily minimal.

step : int (optional)

This parameter specifies the scope of the straddle operation. The

default False results in a path integral computation over all of s.

Returns

result : ndarray

A value corresponding to the piecewise path summation of the curve

defined in s.

Notes

99

none

"""

if step:

s = _strip_s(s, step)

result = 0.0

for i in range(s.shape[0]-1):

result += _parms[’M’](s[i], s[i+1])

return result

def straddle(s, step):

"""

cva.solve.straddle(s,step)

An internal function called by cva.solve.run()

Parameters

s : array_like

This parameter specifies a path which is not necessarily minimal.

step : int

This parameter specifies the scope of the straddle operation.

Returns

s : ndarray

On return s specifies a minimal path of 2**steps + 1 points.

Notes

The straddle operation uses minpoints to build convergent piecewise

minimal

paths. This function is used primarily by cva.solve.run(), the primary

entry point. See cva.solve.run() for example usage.

"""

try:

N = _parms[’N’]

except:

N = len(s)-1

incr = int(N/(2**step))

for iteration in range(_parms[’tp_straddles’]):

for k in range(1, int(N/incr), 2):

a = (k-1)*incr

b = (k+1)*incr

100

s[int(k*N/(2**step))] = minpoint(s[a], s[b])

for k in range(2, int(N/incr), 2):

a = (k-1)*incr

b = (k+1)*incr

s[int(k*N/(2**step))] = minpoint(s[a], s[b])

if _parms[’trace_straddle’]:

try:

_parms[’log_straddle’]

except:

_parms[’log_straddle’] = []

log = deepcopy((iter, s))

_parms[’log_straddle’].append(log)

return (s)

def refine(s, steps, silent):

"""

cva.solve.refine(s, steps, silent)

An internal function called by cva.solve.run()

Parameters

s : array_like

This parameter specifies a path.

steps : int

This parameter specifies the number of refinement operations to

be performed. Each refinement approximately doubles the number

of points in the path.

Returns

s : ndarray

On return s specifies a minimal path of 2**steps + 1 points.

Notes

The refinement operation uses straddles and minpoints to build

convergent piecewise minimal paths of increasing length. This function

is used primarily by cva.solve.run(), the primary entry point.

See cva.solve.run() for example usage.

"""

for step in range(1, steps+1):

s = straddle(s, step)

run_time = time.time() - _parms[’start_time’]

101

if _parms[’trace_refine’]:

try:

_parms[’log_refine’]

except:

_parms[’log_refine’] = []

log = deepcopy((step, run_time, s))

_parms[’log_refine’].append(log)

if not silent:

print "step %d: path_integral = %.6f after %.3f seconds" %

(step, path_integral(s, step), run_time)

return s

def _choose_path(sa, sb):

for now we assume that the last parameter is periodic

N = _parms[’N’]

nparm = _parms[’nparm’]

s = np.zeros((N+1, nparm))

s[0] = sa

s[N] = sb

we give the model a chance to declare its periodic axes

cause the model to report periodicity

_parms[’G’](sa)

periodicity = cva.model.get_parm(’periodicity’)

check for a tuple of booleans

for now we only implement periodicity in the last parameter

if periodicity[-1] == True:

sm = (s[N]-s[0])/2.0 + s[0]

dist = _parms[’M’](sm, s[N])

if s[0, nparm-1] < s[N, nparm-1]:

sa_ext = deepcopy(s[0])

sa_ext[nparm-1] += 1.0

sm_ext = (s[N]-sa_ext)/2.0 + sa_ext

dist_ext = _parms[’M’](sm_ext, s[N])

if dist_ext + EPS < dist:

s[0, nparm-1] += 1.0

else:

sb_ext = deepcopy(s[N])

sb_ext[nparm-1] += 1.0

sm_ext = (sb_ext-s[0])/2.0 + s[0]

dist_ext = _parms[’M’](sm_ext, s[N])

if dist_ext + EPS < dist:

s[N, nparm-1] += 1.0

102

return s

def run(sa, sb, steps=5, silent=False):

"""

cva.solve.run(sa, sb, steps=5, silent=False)

Parameters

sa : array_like

This parameter contains a starting point in the parameter space.

sb : array_like

This parameter contains an ending point in the parameter space.

steps : int, optional

This parameter specifies the number of refinement steps to be

executed. Each step approximately doubles the number of points

in the returned path.

silent : bool, optional

In the normal case, cva.solve.run() prints a runtime status

report. Setting silent = True will disable this reporting.

Returns

s : ndarray

On return s contains a sequence of points in parameter space which

define a minimal path for the given starting/ending points, metric,

and model. The length of s will be 2**(steps) + 1 points.

Notes

This is the primary entry point for the cva.solve module. See also

cva.solve.select().

Examples

import cva

sa = (0.4,0.5)

sb = (0.6,0.7)

cva.solve.select(cva.model.sphere,cva.metric.distance)

path = cva.solve.run(sa,sb)

In this example, the parameterization points sa and sb are mapped into

their corresponding points on the surface of a unit sphere, and a

33 point minimal curve is returned.

103

"""

we deduce the required parameters from the user’s input

the length of the starting point sa is the dimension of our phase

space

N = 2**steps # length of path array is N+1

nparm = len(sa)

set_parm(’start_time’, time.time())

set_parm(’sa’, np.asarray(sa))

set_parm(’sb’, np.asarray(sb))

set_parm(’steps’, steps)

set_parm(’N’, N)

set_parm(’nparm’, nparm)

set_parm(’silent’, silent)

we create a suitably sized path array and set its starting and

ending points

s = _choose_path(sa, sb)

s = refine(s, steps, silent)

return s

if __name__ == "__main__":

print "running cva/solve.py"

104

B.2 metric.py

-*- coding: utf-8 -*-

#---

Copyright (c) 2016, Robert Whitinger <cva_account@wmkt.com>

#

Distributed under the terms of the LGPL license either version 2.1 or

(at your option) any later version.

#

The full license is in the file LICENSE.txt, distributed with this

software,

and is also available at <http://www.gnu.org/licenses/>

#---

"""

cva.metric

This module contains implementations of several metrics. These

metrics accept two points in parameter space and return a single value.

That value may be a distance, or in a more general case it may be

an arbitrary objective functional.

"""

from __future__ import division

import numpy as np

import math

project library

import cva

Constants

PI = math.pi

TPI = 2.0*PI

def distance(sa, sb):

"""

cva.metric.distance(sa, sb)

Parameters

sa : array_like

This parameter contains a starting point in the parameter space.

sb : array_like

105

This parameter contains an ending point in the parameter space.

Returns

metric : float64

The Euclidean distance between the two surface points corresponding

to sa and sb.

Notes

none

Examples

import cva

sa = (0.4,0.5)

sb = (0.6,0.7)

cva.solve.select(cva.model.sphere,cva.model.distance)

metric = cva.model.distance(sa,sb)

In this example, the parameterization points sa and sb are mapped into

their corresponding points on the surface of a unit sphere, and the

Euclidean distance between those two points is returned.

"""

G = cva.solve.get_parm(’G’)

xa = np.asarray(G(sa)) # from point

xb = np.asarray(G(sb)) # to point

summation = np.sum((xb-xa)**2)

metric = math.sqrt(summation)

return metric

Brachistochrone objective functional

def brachistochrone_earth(s0, s1):

"""

cva.metric.brachistochrone_earth(sa, sb)

Parameters

sa : array_like

This parameter contains a starting point in the parameter space.

sb : array_like

This parameter contains an ending point in the parameter space.

106

Returns

metric : float64

The time required to move between the two surface points

corresponding

to sa and sb on a straight line path in Earth gravity.

Notes

none

Examples

import cva

sa = (0.4,0.5)

sb = (0.6,0.7)

cva.solve.select(cva.model.tilted_plane,cva.model.brachistochrone_earth)

metric = cva.model.brachistochrone_earth(sa,sb)

In this example, the parameterization points sa and sb are mapped into

their corresponding points on the surface of a tilted plane, and the

time required to traverse between those two points is returned.

"""

G = cva.solve.get_parm(’G’)

sa = cva.solve.get_parm(’sa’)

x0, y0, z0 = G(s0[:])[0] # from point

x1, y1, z1 = G(s1[:])[0] # to point

_, _, za = G(sa[:])[0] # model starting point

g = 9.8

if z1 >= za:

metric = np.infty # we can’t reach points higher than our starting

point

else:

metric =

math.sqrt(((x1-x0)**2+(y1-y0)**2+(z1-z0)**2)/(2.0*g*(za-z1)))

return metric

def brachistochrone_moon(s0, s1):

"""

cva.metric.brachistochrone_moon(sa, sb)

Parameters

sa : array_like

107

This parameter contains a starting point in the parameter space.

sb : array_like

This parameter contains an ending point in the parameter space.

Returns

metric : float64

The time required to move between the two surface points

corresponding

to sa and sb on a straight line path in Moon gravity.

Notes

none

Examples

import cva

sa = (0.4,0.5)

sb = (0.6,0.7)

cva.solve.select(cva.model.tilted_plane,cva.model.brachistochrone_moon)

metric = cva.model.brachistochrone_moon(sa,sb)

In this example, the parameterization points sa and sb are mapped into

their corresponding points on the surface of a tilted plane, and the

time required to traverse between those two points is returned.

"""

G = cva.solve.get_parm(’G’)

sa = cva.solve.get_parm(’sa’)

x0, y0, z0 = G(s0[:])[0] # from point

x1, y1, z1 = G(s1[:])[0] # to point

_, _, za = G(sa[:])[0] # model starting point

g = 1.62

if z1 >= za:

metric = np.infty # we can’t reach points higher than our starting

point

else:

metric =

math.sqrt(((x1-x0)**2+(y1-y0)**2+(z1-z0)**2)/(2.0*g*(za-z1)))

return metric

def schwarzschild(s0, s1):

"""

cva.metric.schwarzschild(sa, sb)

108

Parameters

sa : array_like

This parameter contains a starting point in the parameter space.

sb : array_like

This parameter contains an ending point in the parameter space.

Returns

metric : float64

The distance in spacetime between the two events in curved space,

near a massive object, corresponding to sa and sb.

Notes

none

Examples

import cva

sa = (0.4,0.5)

sb = (0.6,0.7)

cva.solve.select(cva.model.blackhole,cva.model.schwarzschild)

metric = cva.model.schwarzschild(sa,sb)

In this example, the parameterization points sa and sb are mapped into

their corresponding events near a supermassive blackhole, and the

spacetime distance between those two events is returned.

The Schwarzschild metric forms the basis of general relativity.

"""

G = cva.solve.get_parm(’G’)

if np.ndim(s0) == 1:

nparm = len(s0)

else:

nparm = np.shape(s0)[1]

if nparm == 2: # model surface at fixed time

x0, y0, z0 = G(s0[:])[0] # from point

x1, y1, z1 = G(s1[:])[0] # to point

ct0 = ct1 = 0.0

else:

raise NotImplementedError

C = 299792458.0 # speed of light (m/s)

109

Ms = 1.98855e+30 # mass of the Sun (kg)

Mb = 4.31e+6 * Ms # mass of Sagitarius A* (kg)

Gc = 6.67384e-11 # gravitational constant (m^3 kg^-1 s^-2)

gm = Gc*Mb

Rs = 2.0*gm/(C*C) # Schwarzschild radius

r0 = math.sqrt((x0-0.5)**2 + (y0-0.5)**2 + (z0-0.5)**2)

r1 = math.sqrt((x1-0.5)**2 + (y1-0.5)**2 + (z1-0.5)**2)

r = (r1+r0)/2.0

theta0 = theta1 = theta = PI/2.0

phi0 = (PI/2.0)-np.arctan2(z0, y0)

if phi0 > PI:

phi0 = phi0 - TPI

phi1 = (PI/2.0)-np.arctan2(z1, y1)

if phi1 > PI:

phi1 = phi1 - TPI

try:

dphi = phi1 - phi0

if dphi > PI:

dphi = TPI - dphi

metric = (1/C)*math.sqrt(-(1-(Rs/r))*(ct1-ct0)**2 +

(1/(1-(Rs/r)))*(r1-r0)**2 + r**2 * (theta1-theta0)**2 + r**2 *

np.sin(theta)**2 * (dphi**2))

except:

metric = np.infty

return metric

def minkowski(s0, s1):

"""

cva.metric.minkowski(sa, sb)

Parameters

sa : array_like

This parameter contains a starting point in the parameter space.

sb : array_like

This parameter contains an ending point in the parameter space.

Returns

metric : float64

The distance in spacetime between the two events in flat space

(a region of space void of massive objects) corresponding to sa and

sb.

110

Notes

none

Examples

import cva

sa = (0.4,0.5)

sb = (0.6,0.7)

cva.solve.select(cva.model.inflating_sphere,cva.model.minkowski)

metric = cva.model.minkowski(sa,sb)

In this example, the parameterization points sa and sb are mapped into

their corresponding events in spacetime, and the spacetime distance

between those two events is returned.

The Minkowski metric forms the basis of special relativity.

"""

G = cva.solve.get_parm(’G’)

x0, y0, z0, ct0 = G(s0[:])[0] # from point

x1, y1, z1, ct1 = G(s1[:])[0] # to point

metric = math.sqrt(abs((ct1-ct0)**2 -(x1-x0)**2 - (y1-y0)**2 -

(z1-z0)**2))

if ct1 < ct0:

metric = np.infty # we don’t allow negative time movements

return metric

if __name__ == "__main__":

print "running cva/metric.py"

111

B.3 model.py

-*- coding: utf-8 -*-

#---

Copyright (c) 2016, Robert Whitinger <cva_account@wmkt.com>

#

Distributed under the terms of the LGPL license either version 2.1 or

(at your option) any later version.

#

The full license is in the file LICENSE.txt, distributed with this

software,

and is also available at <http://www.gnu.org/licenses/>

#---

"""

cva.model

This module contains implementations of several surface models. These

implementations are in the form of mappings from a <u,v> plane to an

<x,y,z>

surface, or in the general case of higher dimensional hypersurfaces in

the form of mappings from a <u0,u1,...uj> parameter space into an

<x0,x1,...,xk> hypersurface.

We adopt the convention that the surface is described by u-parameters in

the range of [0,1]. Models are required to accept out of range inputs

over the range of [-1,2] and return valid manifold surface mappings. In

other

words, the responsibility for wraparound lies with the model. This is

reasonable since wraparound rules tend to be model-specific.

"""

from __future__ import division

import numpy as np

import math

from copy import deepcopy

Constants

PI = math.pi

TPI = 2.0*PI

here we store this module’s parameter set and make it accessible

global _parms

initialize default parameters

112

_parms = {’periodicity’ : (False, True),

’sdim’ : 2,

’xdim’ : 3

}

def set_parm(parm_name, parm_value):

"""

cva.model.set_parm(parm_name, parm_value)

"""

_parms[parm_name] = parm_value

def get_parm(parm_name):

"""

parm_value = cva.model.get_parm(parm_name)

"""

return _parms[parm_name]

def list_parms():

"""

keys = cva.solve.list_parms()

"""

keys = _parms.keys()

return keys

def startmodel(s, periodicity=True, xdim = 3):

"""

startmodel(s)

Model prologue.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length, nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1, nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

periodicity : tuple of boolean (optional)

By default, models are assumed to be periodic in all dimensions.

When creating a model that departs from this default, then

the periodicity of each axis can be defined. For example a

model with a 2-dimensional parameter space where neither axis

is periodic would be specified with periodicity=(False,False).

xdim : integer (optional)

113

By default models are assumed to map into 3-dimensional space.

When creating a model with mapping into a higher dimensional space

then the dimension is specified with the xdim parameter.

Returns

s : ndarray of parameter space points

The s parameter is returned in the form of a row vector.

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z. The zero value array x has a dimension

of [len(s), xdim].

Notes

This function is called by every model immediately on entry. See also

finishmodel().

"""

global entry_id

entry_id = id(s)

set_parm(’xdim’, xdim)

if we are called with an array we just use it after making a local

copy

if type(s) is np.ndarray:

local_copy = deepcopy(s)

else:

but we also accept tuples and lists, others generate an error

if type(s) is not tuple and type(s) is not list:

raise TypeError("Expected tuple or list but got %s" % (type(s)))

local_copy = np.asarray(s)

single points are converted into a uniform array format

if np.ndim(local_copy) == 1:

local_copy = local_copy.reshape(1, -1)

s = local_copy

create a suitably sized array x for the model’s path array

length, nparameters = np.shape(s)

set_parm(’sdim’, nparameters)

x = np.zeros((length, xdim))

save periodicity

periodicity = True means that this model takes the default, that is

the last parameter in our list is periodic.

A model may pass a mask in order to override, for example,

a model with two parameters may set periodicity=(False,False) in

114

order to declare that neither parameter is periodic.

if the model does not override then we apply the default which

is to assume that the last parameter is periodic

if periodicity == True:

periodicity = (False,)*(np.shape(s)[1]-1)

periodicity += (True,)

set_parm(’periodicity’, periodicity)

exit_id = (id(s))

make sure we have a local copy of s for our model

assert entry_id != exit_id

return s, x

def finishmodel(x, s):

"""

finishmodel(x, s)

Model epilogue.

Parameters

x : ndarray of surface points

s : ndarray of parameter space points

Returns

x : ndarray of surface points

Notes

This function is called by every model just prior to its return. See

also startmodel().

"""

code any general model exit conventions here

verify that the model did not alter s

exit_id = id(s)

assert entry_id != exit_id

return x

def vertical_plane(s):

"""

Model a vertical plane in R3.

Parameters

115

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

Examples

import cva

sa = (0.4, 0.5)

x = cva.model.vertical_plane(sa)

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s, (False, False))

start of model mapping

u = s[:, 0]

v = s[:, 1]

x[:, 0] = u

x[:, 1] = np.zeros_like(u) # this obtains a zero vector with the shape

of u

x[:, 2] = v

end of model mapping

x = finishmodel(x, s)

return x

116

def tilted_plane(s):

"""

Model a tilted plane in R3.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

Examples

import cva

sa = (0.4, 0.5)

x = cva.model.tilted_plane(sa)

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s, (False, False))

start of model mapping

u = s[:, 0]

v = s[:, 1]

alpha = -np.pi/4.0

rotate around the x axis by pi/4

x[:, 0] = u

x[:, 1] = v*np.cos(alpha)

117

x[:, 2] = -v*np.sin(alpha)

end of model mapping

x = finishmodel(x, s)

return x

def hyperboloid(s):

"""

Model a hyperboloid in R3.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

Examples

import cva

sa = (0.4, 0.5)

x = cva.model.hyperboloid(sa)

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s)

start of model mapping

118

u = s[:, 0]

v = s[:, 1]

theta = (v-0.5)*TPI

x[:, 0] = np.cosh(3.0*(0.5-u))*np.cos(theta)

x[:, 1] = np.cosh(3.0*(0.5-u))*np.sin(theta)

x[:, 2] = np.sinh(3.0*(0.5-u))

end of model mapping

x = finishmodel(x, s)

return x

def cylinder(s):

"""

Model a cylinder in R3.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

Examples

import cva

sa = (0.4, 0.5)

x = cva.model.cylinder(sa)

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

119

as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s)

start of model mapping

u = s[:, 0]

v = s[:, 1]

x[:, 0] = np.cos(v*TPI)

x[:, 1] = np.sin(v*TPI)

x[:, 2] = 1.0 - u

end of model mapping

x = finishmodel(x, s)

return x

def capped_cylinder(s):

"""

Model a capped_cylinder in R3.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

Examples

import cva

sa = (0.4, 0.5)

x = cva.model.capped_cylinder(sa)

120

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s)

start of model mapping

u = s[:, 0]

v = s[:, 1]

p = 4.0/32.0

theta = (v-0.5)*TPI

x[:, 0] = np.cos(theta)

x[:, 0] = np.where(u < p, x[:, 0]*(u/p), x[:, 0])

x[:, 0] = np.where(u > (1.0-p), x[:, 0]*(1.0-u)/p, x[:, 0])

x[:, 1] = np.sin(theta)

x[:, 1] = np.where(u < p, x[:, 1]*(u/p), x[:, 1])

x[:, 1] = np.where(u > (1.0-p), x[:, 1]*(1.0-u)/p, x[:, 1])

x[:, 2] = (u-p)/(1.0-(2.0*p))

x[:, 2] = np.where(u < p, 0.0, x[:, 2]) # add top cap

x[:, 2] = np.where(u > (1.0-p), 1.0, x[:, 2]) # add bottom cap

end of model mapping

x = finishmodel(x, s)

return x

def moebius(s):

"""

Model a Moebius strip in R3.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

121

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

Examples

import cva

sa = (0.4, 0.5)

x = cva.model.moebius(sa)

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s)

start of model mapping

band_width = 2.0

u = s[:, 0] # u runs around the strip

v = s[:, 1] # v runs from edge to edge

w = (u-0.5)*(band_width)

x[:, 0] = (1.0+w*np.cos(v*PI))*np.cos(v*TPI)

x[:, 1] = (1.0+w*np.cos(v*PI))*np.sin(v*TPI)

x[:, 2] = w*np.sin(v*PI)

end of model mapping

x = finishmodel(x, s)

return x

def torus(s):

"""

Model a torus in R3.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

122

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

Examples

import cva

sa = (0.4, 0.5)

x = cva.model.torus(sa)

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s)

start of model mapping

u = s[:, 0]

v = s[:, 1]

R = 2 # the distance from the origin to the center of the torus

D = 1 # the diameter of the torus

phi = (u-0.5)*TPI # where phi in [-pi,pi]

theta = (v-0.5)*TPI # where theta in [-pi,pi]

x[:, 0] = (R + D*np.cos(phi))*np.cos(theta)

x[:, 1] = (R + D*np.cos(phi))*np.sin(theta)

x[:, 2] = D*np.sin(phi)

end of model mapping

x = finishmodel(x, s)

return x

def sphylinder(s):

"""

123

Model a sphylinder in R3.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

Examples

import cva

sa = (0.4, 0.5)

x = cva.model.vertical_plane(sa)

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s)

start of model mapping

"latitude" ranges from u=0 (north pole) to u=1 (south pole) with

special wrapping

"longitude ranges from v=0 to v=1 (2pi) with wrapping

s[:, 1] = np.abs(s[:, 1]) # wraparound v assuming negative and

positive latitudes are equal

s[:, 1] = np.mod(s[:, 1], 2.0) # wraparound v handling 2pi multiples

124

s[:, 0] = np.where(s[:, 1] > 1.0, 1.0-s[:, 0], s[:, 0]) # wraparound u

at "south pole"

s[:, 1] = np.where(s[:, 1] > 1.0, 2.0-s[:, 1], s[:, 1]) # wraparound v

at "south pole"

u = s[:, 0]

v = s[:, 1]

Convert the unit u,v plane into phi, theta representation

phi = u*PI

theta = (v-0.5)*TPI

p = 1.0/2.0

Convert to rectangular coordinate system

x[:, 0] = (np.sin(phi)**p)*np.cos(theta)

x[:, 1] = (np.sin(phi)**p)*np.sin(theta)

x[:, 2] = np.where(u < 0.50, np.abs(np.cos(phi))**p,

-np.abs(np.cos(phi))**p)

end of model mapping

x = finishmodel(x, s)

return x

def latlon(lat, lon):

"""

A utility function to convert latitude and longitude into a <u,v>

representation suitable for use in the cva.model.earth.

Parameters

lat : float

Latitude in the range of -90 (south pole) to +90 (north pole).

lon : float

Longitude in the range of -180 (west) to +180 degrees (east).

Returns

sa : tuple of <u,v> coordinates

Notes

See also cva.model.earth()

"""

sa = ((90.0 - lat)/180.0, (lon+180.0)/360.0)

return sa

def earth(s):

125

"""

Model the Earth (WGS84) in R3.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

This is the WGS84 (World Geodetic System 1984) geocentric

equipotential ellipsoid model of the Earth surface as projected onto

the

ECEF (Earth centered Earth fixed) cartesian coordinate system in units

of kilometers.

Circumference of Earth:

40,075.017 km (equatorial)

40,007.860 km (meridional)

See also the utility function cva.model.latlon().

Examples

import cva

sa = (0.4, 0.5)

x = cva.model.earth(sa)

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

126

as a row array of points in cartesian coordinates.

import cva

lat = 36.303181

lon = -82.368280

sa = cva.model.latlon(lat,lon)

x = cva.model.earth(sa)

In this example we show the use of the utility function

cva.model.latlon() to find the coordinates of a point on the

Earth’s surface corresponding to a geographical location expressed

in decimal latitude and longitude.

"""

s, x = startmodel(s)

start of model mapping

WGS84 defining constants

a = 6378.1370 # Semi-major axis in units of kilometers

f = 1.0/298.257223563 # flattening

Derived constants

b = a*(1-f) # Semi-minor axis (6356752.31425)

e2 = 2*f - f*f # First eccentricity squared

"latitude" ranges from u=0 (north pole) to u=1 (south pole) with

special wrapping

"longitude ranges from v=0 (-pi) to v=1 (pi) with wrapping

u = np.empty_like(s[:, 0])

v = np.empty_like(s[:, 1])

u = np.where(s[:, 0] > 1.0, 2.0-s[:, 0], s[:, 0]) # if u is wrapped at

south pole

v = np.where(s[:, 0] > 1.0, s[:, 1]+0.5, s[:, 1]) # then wrap v

correspondingly

u = np.where(s[:, 0] < 0.0, -s[:, 0], s[:, 0]) # if u is wrapped at

north pole

v = np.where(s[:, 0] < 0.0, s[:, 1]+0.5, s[:, 1]) # then wrap v

correspondingly

Convert the unit u,v plane into phi, theta representation

phi = u*PI # where phi ranges from 0 (north pole) to pi (south

pole)

theta = (v-0.5)*TPI # theta in [-pi,pi] where theta = 0 is on the

prime meridian

Convert to ECEF rectangular coordinate system

Nphi = a/(np.sqrt(1+e2*np.cos(phi)**2))

x[:, 0] = Nphi*np.sin(phi)*np.cos(theta)

127

x[:, 1] = Nphi*np.sin(phi)*np.sin(theta)

x[:, 2] = Nphi*np.cos(phi)

end of model mapping

x = finishmodel(x, s)

return x

def blackhole(s):

"""

Model a region of space as a plane intersecting a massive object.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

where x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

Examples

import cva

sa = (0.0, 0.4, 0.5)

x = cva.model.blackhole(sa)

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s, periodicity=(False, False)) # we declare that

neither axis is periodic

128

start of model mapping

u = s[:, 0]

v = s[:, 1]

C = 299792458.0 # speed of light (m/s)

Ms = 1.98855e+30 # mass of the Sun (kg)

Mb = 4.31e+6 * Ms # mass of Sagitarius A* (kg)

Gc = 6.67384e-11 # gravitational constant (m^3 kg^-1 s^-2)

gm = Gc * Mb # we use the mass of the Sgr A* supermassive

blackhole

Rs = 2.0*gm/(C*C) # Schwarzschild radius

R = 20.0 * Rs # our region is 10x the Schwarzschild radius

x[:, 0] = u * 0.0

x[:, 1] = (u - 0.5) * R

x[:, 2] = (v - 0.5) * R

end of model mapping

x = finishmodel(x, s)

return x

def inflating_sphere(s):

"""

Model a sphere inflating in spacetime at 1/2 the speed of light.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

129

Examples

import cva

sa = (0.4, 0.5, 0.6)

x = cva.model.inflating_sphere(sa)

In this example, the point defined by ct = 0.4, u = 0.5, and v = 0.6 is

mapped into its corresponding point on the model’s surface and that

result

is returned as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s, xdim=4)

start of model mapping

u[0] = ct (time * light speed)

u[1] = "latitude" ranges from u[1]=0 (north pole) to u[1]=1 (south

pole) with special wrapping

u[2] = "longitude ranges from v=0 (-pi) to v=1 (pi) (periodic)

ct = s[:, 0]

u = np.empty_like(s[:, 1])

v = np.empty_like(s[:, 2])

u = np.where(s[:, 1] > 1.0, 2.0-s[:, 1], s[:, 1]) # if u is wrapped at

south pole

v = np.where(s[:, 1] > 1.0, s[:, 2]+0.5, s[:, 2]) # then wrap v

correspondingly

u = np.where(s[:, 1] < 0.0, -s[:, 1], s[:, 1]) # if u is wrapped at

north pole

v = np.where(s[:, 1] < 0.0, s[:, 2]+0.5, s[:, 2]) # then wrap v

correspondingly

Convert the unit u,v plane into phi, theta representation

phi = u*PI # where phi ranges from 0 (north pole) to pi (south

pole)

theta = (v-0.5)*TPI # theta in [-pi,pi] where theta = 0 is on the

prime meridian

define the rate of inflation

radius = 0.5*ct+0.5 # inflation rate is 1/2 light speed

Convert to rectangular coordinate system

x[:, 0] = np.sin(phi)*np.cos(theta)*radius

x[:, 1] = np.sin(phi)*np.sin(theta)*radius

x[:, 2] = np.cos(phi)*radius

x[:, 3] = ct

130

end of model mapping

x = finishmodel(x, s)

return x

def collapsing_sphere(s):

"""

Model a sphere collapsing in spacetime at 1/2 the speed of light.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

none

Examples

import cva

sa = (0.4, 0.5, 0.6)

x = cva.model.collapsing_sphere(sa)

In this example, the point defined by ct = 0.4, u = 0.5, and v = 0.6 is

mapped into its corresponding point on the model’s surface and that

result

is returned as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s, xdim=4)

start of model mapping

u[0] = ct (time * light speed)

131

u[1] = "latitude" ranges from u[1]=0 (north pole) to u[1]=1 (south

pole) with special wrapping

u[2] = "longitude ranges from v=0 (-pi) to v=1 (pi) (periodic)

ct = s[:, 0]

u = np.empty_like(s[:, 1])

v = np.empty_like(s[:, 2])

u = np.where(s[:, 1] > 1.0, 2.0-s[:, 1], s[:, 1]) # if u is wrapped at

south pole

v = np.where(s[:, 1] > 1.0, s[:, 2]+0.5, s[:, 2]) # then wrap v

correspondingly

u = np.where(s[:, 1] < 0.0, -s[:, 1], s[:, 1]) # if u is wrapped at

north pole

v = np.where(s[:, 1] < 0.0, s[:, 2]+0.5, s[:, 2]) # then wrap v

correspondingly

Convert the unit u,v plane into phi, theta representation

phi = u*PI # where phi ranges from 0 (north pole) to pi (south

pole)

theta = (v-0.5)*TPI # theta in [-pi,pi] where theta = 0 is on the

prime meridian

define the rate of deflation

radius = 1.0-0.5*ct # deflation rate is 1/2 light speed

Convert to rectangular coordinate system

x[:, 0] = np.sin(phi)*np.cos(theta)*radius

x[:, 1] = np.sin(phi)*np.sin(theta)*radius

x[:, 2] = np.cos(phi)*radius

x[:, 3] = ct

end of model mapping

x = finishmodel(x, s)

return x

def sphere(s):

"""

Model a sphere in R^N.

Parameters

s : array_like

This parameter contains one or more points in the parameter

space. Multiple parameters are of the form s[length,nparm] where

nparm is the dimensionality of the parameter space. Single

points are accepted as an ndarray s[1,nparm], tuple (u0,u1,...), or

as a list [u0, u1, ...].

132

Returns

x : ndarray of surface points

In R^3, x[:,0] corresponds to the x dimension, x[:,1] to the y

and x[:,2] to the z.

Notes

This function generalizes an n-dimensional sphere by examining its

input s to determine the number of parameters in the request. For

example

a parameter request of dimension 2 (s[0]=latitude, s[1=longitude)

implies

a 2-sphere in R^3. A three parameter request (s[0]=first latitude,

s[1]=second latitude, s[2]=longitude implies a 3-sphere in R^4, etc.

Examples

import cva

sa = (0.4, 0.5)

x,y,z = cva.model.sphere(sa)

In this example, the point defined by u = 0.4 and v = 0.5 is mapped

into

its corresponding point on the model’s surface and that result is

returned

as a row array of points in cartesian coordinates.

"""

s, x = startmodel(s)

sdim = get_parm(’sdim’)

s, x = startmodel(s, xdim=sdim + 1)

start of model mapping

n = np.shape(s)[1]

Convert to rectangular coordinate system

prod = 1.0

for i in range(n-1):

x[:, n-i] = prod * np.cos(np.pi * s[:, i])

prod = prod * np.sin(np.pi * s[:, i])

x[:, 0] = prod * np.cos(2*np.pi * (s[:, n-1]-0.5))

x[:, 1] = prod * np.sin(2*np.pi * (s[:, n-1]-0.5))

end of model mapping

133

x = finishmodel(x, s)

return x

if __name__ == "__main__":

print "running cva/model.py"

134

B.4 view.py

-*- coding: utf-8 -*-

#---

Copyright (c) 2016, Robert Whitinger <cva_account@wmkt.com>

#

Distributed under the terms of the LGPL license either version 2.1 or

(at your option) any later version.

#

The full license is in the file LICENSE.txt, distributed with this

software,

and is also available at <http://www.gnu.org/licenses/>

#---

"""

cva.view

A matplotlib wrapper for creating graphical representations of cva

solutions.

"""

system libraries:

from __future__ import division

import numpy as np

import matplotlib as mpl

#matplotlib.use(’qt4agg’)

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import warnings

warnings.filterwarnings("ignore", category=DeprecationWarning)

import matplotlib.cbook

warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation)

import itertools

project libraries:

import cva

from cva import model

global initialized

initialized = False

here we store this module’s parameter set and make it accessible

initialize default parameters if any

_parms = {

135

}

def set_parm(parm_name, parm_value):

"""

cva.view.set_parm(parm_name, parm_value)

"""

_parms[parm_name] = parm_value

def get_parm(parm_name):

"""

parm_value = cva.view.get_parm(parm_name)

"""

return _parms[parm_name]

def list_parms():

"""

keys = cva.view.list_parms()

"""

keys = _parms.keys()

return keys

def _init(title="CVA Solution", **kwargs):

To display an n-dimensional surface using 3-dimensional views,

we need to show combinations of n taken n-3 at a time. For

example a 3-d object is represented in one 3-d view, a 4-d

object in four 3-d views, a 5-d object in 10 3-d views, etc.

#

global G, P, sdim, xdim, nxviews, nsviews, surface_index, parm_index,

surface_axes, parm_axes

global fig, ax

G = cva.solve.get_parm(’G’)

P = cva.solve.get_parm(’steps’)

sdim = cva.model.get_parm(’sdim’)

xdim = cva.model.get_parm(’xdim’)

plt.ion()

plt.rc(’text’, usetex=True)

mpl.rcParams[’legend.fontsize’] = 20

Calculate the number of views needed

surface_axes = [x for x in range(xdim)]

parm_axes = [x for x in range(sdim)]

if xdim == 3:

surface_index = [(0,)]

136

else:

surface_index = list(itertools.combinations(surface_axes, xdim-3))

nxviews = len(surface_index)

if sdim <= 3:

nsviews = 1 # setting the number of parameter views

parm_index = [(surface_index[-1][0] +1,)]

else:

parm_index = list(itertools.combinations(parm_axes, sdim-3))

nsviews = len(parm_index)

nviews = nxviews + nsviews

fig = plt.figure(figsize=(12, int((6*nviews+1)/2)), dpi=72)

fig.suptitle(title)

ax = [x for x in range(nviews)]

if xdim == 3:

view = 0

ax[view] = fig.add_subplot(1, 2, 1, projection=’3d’)

else:

for view in range(nxviews):

ax[view] = fig.add_subplot(int((len(ax)+1)/2), 2, view+1,

projection=’3d’)

view += 1

if sdim == 2:

ax[view] = fig.add_subplot(int((len(ax)+1)/2), 2, view+1)

ax[view].set_xlim(0.0, 1.0)

ax[view].set_ylim(0.0, 1.0)

ax[view].grid(True)

else:

for view in range(nxviews, nxviews + nsviews):

ax[view] = fig.add_subplot(int((len(ax)+1)/2), 2, view+1,

projection=’3d’)

ax[view].set_xlim(0, 1)

ax[view].set_ylim(0, 1)

ax[view].set_zlim(0, 1)

return

def _draw_manifold(title=False, **kwargs):

view a hypersurface in n-dimensions

#

N = 33

decimation = 8

s = np.zeros((N, xdim-1))

137

grid = np.linspace(0.0, 1.0, N)

colors = ["b", "g", "r", "m"]

for view in range(len(surface_index)):

if xdim == 3:

axis = (0,1,2)

decimation = 2

if title == False:

title = "Surface"

ax[view].set_title(title)

ax[view].set_xlabel(r"x")

ax[view].set_ylabel(r"y")

ax[view].set_zlabel(r"z")

else:

axis = [axis for axis in surface_axes if axis not in

surface_index[view]]

if title == False:

title = "Hypersurface"

strng = "x_%d" % (surface_index[view][0])

for i in range(1, len(surface_index[view])):

strng += ", x_%d" % (surface_index[view][i])

ax[view].set_title(r"%s (slice at $%s=0$)" % (title, strng))

ax[view].set_xlabel(r"$x_%d$" % (axis[0]))

ax[view].set_ylabel(r"$x_%d$" % (axis[1]))

ax[view].set_zlabel(r"$x_%d$" % (axis[2]))

for this view we draw each axis that is not set to zero

for i in parm_axes:

for each parameter axis, i, we fix the remaining axes on a

grid

and then plot the primary axis

span = [span for span in parm_axes if span != i]

get a list of all grid intersections for the fixed parameters

points = list(itertools.product(grid[::decimation],

repeat=len(span)))

for each grid point, we span the primary parameter and plot

the resulting line

for point in points:

for j in range(N):

s[j, i] = grid[j]

for k in range(len(span)):

s[j, span[k]] = point[k]

we have a line in s ready to plot

x = G(s)

138

ax[view].plot(x[:, axis[0]], x[:, axis[1]], x[:, axis[2]],

"-", color=colors[i%len(colors)], linewidth=1,

linestyle="-")

try:

ax[view].set_xlim(cva.view.get_parm(’xyzlim’))

ax[view].set_ylim(cva.view.get_parm(’xyzlim’))

ax[view].set_zlim(cva.view.get_parm(’xyzlim’))

except:

pass

try:

ax[view].set_xlim(cva.view.get_parm(’xlim’))

except:

pass

try:

ax[view].set_ylim(cva.view.get_parm(’ylim’))

except:

pass

try:

ax[view].set_zlim(cva.view.get_parm(’zlim’))

except:

pass

for parm_view in range(len(parm_index)):

view = parm_view+len(surface_index)

if sdim == 2:

ax[view].set_title("uv plane")

ax[view].set_xlabel("u")

ax[view].set_ylabel("v")

if sdim == 3:

ax[view].set_title("uvw view")

ax[view].set_xlabel("u")

ax[view].set_ylabel("v")

ax[view].set_zlabel("w")

elif sdim > 3:

axis = [axis for axis in parm_axes if axis not in

parm_index[parm_view]]

str = "u_%d" % (parm_index[parm_view][0])

for i in range(1, len(parm_index[parm_view])):

str += ", u_%d" % (parm_index[parm_view][i])

title = "Phase Space View"

ax[view].set_title(r"%s (slice at $%s=0$)" % (title, str))

ax[view].set_xlabel(r"$u_%d$" % (axis[0]))

ax[view].set_ylabel(r"$u_%d$" % (axis[1]))

ax[view].set_zlabel(r"$u_%d$" % (axis[2]))

139

ax[view].set_zlim(0, 1)

global initialized

initialized = True

return

def _draw_path(s, **kwargs):

for view in range(len(surface_index)):

if xdim == 3:

axis = (0,1,2)

else:

axis = [axis for axis in surface_axes if axis not in

surface_index[view]]

for this view we draw the axes that are not set to zero

x = G(s)

if ’color’ not in kwargs.keys():

kwargs[’color’] = ’k’

if ’linewidth’ not in kwargs.keys():

kwargs[’linewidth’] = 2

ax[view].plot(x[:, axis[0]], x[:, axis[1]], x[:, axis[2]], **kwargs)

ax[view].scatter3D(x[:, axis[0]][0], x[:, axis[1]][0], x[:,

axis[2]][0], ’o’, c=’g’, s=50, edgecolor=’g’) # starting point

ax[view].scatter3D(x[:, axis[0]][-1], x[:, axis[1]][-1], x[:,

axis[2]][-1], ’o’, c=’r’, s=50, edgecolor=’r’) # ending point

for parm_view in range(len(parm_index)):

view = parm_view+len(surface_index)

if sdim == 2:

border = 0.01

umax = np.max(s[:, 0])

umax = umax + border if umax > 1.0 + border else 1.0 + border

umin = np.min(s[:, 0])

umin = umin - border if umin < 0.0 - border else 0.0 - border

vmax = np.max(s[:, 1])

vmax = vmax + border if vmax > 1.0 + border else 1.0 + border

vmin = np.min(s[:, 1])

vmin = vmin - border if vmin < 0.0 - border else 0.0 - border

ax[view].set_xlim(umin, umax)

ax[view].set_ylim(vmin, vmax)

ax[view].plot(s[:, 0], s[:, 1], **kwargs)

ax[view].plot(s[0, 0], s[0, 1], c=’g’, marker=’o’) # starting

point

ax[view].plot(s[-1, 0], s[-1, 1], c=’r’, marker=’o’) # ending

point

ax[view].grid(True)

else:

140

axis = [axis for axis in parm_axes if axis not in

parm_index[parm_view]]

ax[view].plot(s[:, axis[0]], s[:, axis[1]], s[:, axis[2]],

**kwargs)

ax[view].scatter3D(s[0][axis[0]], s[0][axis[1]], s[0][axis[2]],

’o’, c=’g’, s=50, edgecolor=’g’) # starting point

ax[view].scatter3D(s[-1][axis[0]], s[-1][axis[1]],

s[-1][axis[2]], ’o’, c=’r’, s=50, edgecolor=’r’) # ending

point

return

def draw_hold(s, title=’CVA Solution’, **kwargs):

"""

cva.view.draw_hold(s, title=’CVA Solution’, **kwargs)

The primary entry point cva.view.draw() is split into two parts,

cva.view.draw_hold() and cva.view.draw_show(). This split makes

it possible to construct graphics with multiple paths by placing

one or more calls to cva.view.draw_hold() followed by a single call

to cva.view.draw_show().

Parameters

s : array_like

This parameter contains a parameter space sequence that defines

a path to be drawn.

title : string, optional

Specify the graphic’s top title

**kwargs : dictionary, optional

This passthrough parameter allows some matplotlib options to be

overridden. See the matplotlib documentation for usage information.

Returns

nothing

Notes

Examples

import cva

sa = (0.4,0.2)

141

sb = (0.5,0.5)

cva.solve.select(cva.model.sphere,cva.metric.distance)

path = cva.solve.run(sa,sb)

cva.view.draw_hold(path)

sa = (0.6,0.2)

sb = (0.5,0.5)

path = cva.solve.run(sa,sb)

cva.view.draw_hold(path)

cva.view.draw_show()

In this example, two minimal paths are plotted on a single graphic.

"""

if not initialized:

_init(title)

_draw_manifold()

_draw_path(s, **kwargs)

def draw_show(title=’’, image_file=False, **kwargs):

"""

cva.view.draw_show(image_file=False, **kwargs)

The primary entry point cva.view.draw() is split into two parts,

cva.view.draw_hold() and cva.view.draw_show(). This split makes

it possible to construct graphics with multiple paths by placing

one or more calls to cva.view.draw_hold() followed by a single call

to cva.view.draw_show().

Parameters

image_file : string (optional)

This parameter contains the file name where an image is to be

saved. The extension field of this name is checked to determine the

format of the saved image.

**kwargs : dictionary, optional

This passthrough parameter allows some matplotlib options to be

overridden. See the matplotlib documentation for usage information.

Returns

nothing

Notes

See cva.view.draw_hold for example usage.

142

"""

initialized = False

plt.grid(True)

if image_file:

fig.tight_layout()

fig.suptitle(title, y=1.0) # fix an inconsistency in matplotlib

plt.savefig(image_file)

else:

plt.show()

return

def draw(s, title=’CVA Solution’, image_file=False, **kwargs):

"""

cva.view.draw(s, title=’CVA Solution’, image_file=False, **kwargs)

This function is a matplotlib wrapper that can be used to display

and save graphical representations of cva solutions.

Parameters

s : array_like

This parameter contains a parameter space sequence that defines

a path to be drawn.

title : string, optional

Specify the graphic’s top title

image_file : string, optional

In the default, a graphic is displayed. An image can also be

directed to a file by giving its name.

Example: image_file="mygraphic.pdf"

**kwargs : dictionary, optional

This passthrough parameter allows some matplotlib options to be

overridden. See the matplotlib documentation for usage information.

Returns

nothing

Notes

This is the primary entry point for the cva.view module.

Examples

import cva

143

sa = (0.4,0.2)

sb = (0.6,0.6)

cva.solve.select(cva.model.sphere,cva.metric.distance)

path = cva.solve.run(sa,sb)

cva.view.draw(path)

In this example, the parameterization points sa and sb are mapped into

their corresponding points on the surface of a unit sphere, and the

resulting minimal curve is displayed.

"""

cva.view.initialized = False

draw_hold(s, title, **kwargs)

draw_show(title, image_file)

return

if __name__ == "__main__":

print "running cva/view.py"

144

VITA

ROBERT WHITINGER

Education: Bachelor of Science

in Electrical Engineering

University of Wisconsin

Madison, Wisconsin 1971

Master of Science

in Mathematical Sciences

East Tennessee State University

Johnson City, Tennessee 2016

Honors Society: Kappa Mu Epsilon

Professional Experience: Director of Engineering, Amtelco

Madison, Wisconsin 1973-1978

Engineering Lead, Memory Systems Development

Texas Instruments, Semiconductors

Dallas, Texas 1978-1982

Engineering Lead, Network Systems Development

Texas Instruments, Industrial Systems

Johnson City, Tennessee 1982-1990

Lead Systems Architect , Siemens Inc.

Johnson City, Tennessee 1990-1995

International Product Manager, Siemens AG

Nürnberg, Germany 1995-1997

Senior Consulting Engineer, Siemens Inc.

Johnson City, Tennessee 1997-2013

145

Licensures: Professional Engineer

licensed to practice in the State of Tennessee

FAA Certified Flight Instructor

Single/Multi-Engine Instrument

Publications: CT Chen, EM Benglas, SK Singh, DC Bullock,

and R Whitinger.

A novel probe tester for the characterization of

1 mbit/cm2 bubble memory devices.

Journal of Applied Physics, 52(3):23922394, 1981. [3]

R.J. Whitinger. Arbitrary drive for magnetic field

waveform control, August 23 1983.

US Patent 4,400,809. [19]

146

	An Algorithm for the Machine Calculation of Minimal Paths
	Recommended Citation

	tmp.1469822069.pdf.GLglo

