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ABSTRACT 
 

The Relationship Between Strength, Power, and Sprint Acceleration in Division I Men’s Soccer 
Players 

 
by 
 

Christopher R. Bellon 
 
 

The purposes of this dissertation were three-fold. The first was to identify the approximate 

distances characterizing early-, mid-, and late-acceleration in a population of Division I men’s 

collegiate soccer players. The secondary purpose was to investigate the relationships between 

various strength-power variables and key sprint characteristics during early-, mid-, and late-

acceleration in a population of Division I men’s soccer players. The final purpose of this 

dissertation was to compare the spatiotemporal characteristics of “strong” versus “weak” and 

“more powerful” versus “less powerful” Division I men’s soccer players during early-, mid-, and 

late- acceleration. The following are the major findings of this dissertation. The early-, mid-, and 

late-acceleration zones within this sport population coincide with distances of approximately 0-

2.5, 2.5-6, and 6-12m, respectively. Peak power (PP) and rate of force development (RFD) at 

90ms appear to be strongly related to shorter ground contact times in each of these zones, while 

PP and RFD at 200 and 250ms showed strong relationships with step frequency during mid-

acceleration. Not surprisingly, athletes who were characterized as “strong” or demonstrated 

“higher power outputs” appeared to achieve greater sprint velocity by expressing higher step 

frequency, particularly during mid-acceleration, as well as abbreviated ground contact times 

across each sub-section of acceleration. These results support the importance of developing high 

levels of maximal strength, PP, and RFD to enhance sprint acceleration. Additionally, these 

findings may also be used to strategically integrate speed development and resistance training 
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practices into the annual training plan. The amalgamation of these training variables may allow 

practitioners to better manage fatigue and elicit desired performance adaptations at the 

appropriate times of the training year.  

 

 
 
  



	  
	  
	  

4	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2016 Christopher R. Bellon 
 

All Rights Reserved 
  



	  
	  
	  

5	  

DEDICATION 
 
 This dissertation is dedicated to my parents, Jeannie and Steven Bellon, for their 

unconditional love and support through all of life’s challenges. Thank you for every 6AM 

skating session, every weeknight spent in an ice rink, and every weekend that you sacrificed to 

allow me to play the game I loved. Each lesson was another stepping stone preparing me for life 

after hockey, and the driving force in finishing this chapter of my life. I love you both and look 

forward to the endless possibilities the future may hold.   

  



	  
	  
	  

6	  

ACKNOWLEDGEMENTS 

 Dr. Michael Stone – for your mentorship, commitment to excellence, and the daily 

conversations we have had over the last 3 years.  “Always remember. Never forget…”  

 Coach Meg Stone – for being my strength and conditioning “Momma Bear”, your 

mentorship, and your relentless pursuit to make our program at ETSU the definition of 

“excellent”. 

 Dr. Brad DeWeese – for teaching me the value of the athlete-coach relationship and 

mentoring me in “all things speed”. Most importantly, however, thank you for being a good 

friend.  

 Dr. Kimi Sato – for being the man who got me into this incredible program and 

supporting me throughout my time here at ETSU.  

 Dr. Ken Clark – for your guidance through this dissertation process and your genuine 

passion for speed development. 

 Grace Burnham – for being my best friend and the reason that I smile at the beginning 

and end of every single day.  

 Thank you to all of the athletes, coaches, and fellow students who participated in this 

project. 

  



	  
	  
	  

7	  

TABLE OF CONTENTS 

Page 

ABSTRACT……………………………………………………………………………………….2 

DEDICATION…………………………………………………………………………………….5 

ACKNOWLEDGEMENTS……………………………………………………………………….6 

LIST OF TABLES……………………………………………………………………………….11                            

LIST OF FIGURES……………………………………………………………………………...13 

Chapter 

1. INTRODUCTION…………………………………………………………………...15 

Dissertation Purposes…………………………………………………………….19 

Operational Definitions…………………………………………………………..20 

2. COMPREHENSIVE REVIEW OF LITERATURE..………………………………..21 

The Importance of Sprint Speed and Acceleration in Sport……………………..21 

The Development of Acceleration in Sport……………………………………...25

 Resistance Training………………………………………………………26

 Plyometrics………………………………………………………………27

 Resisted Sprinting………………………………………………………..31 

 Sprint Drills………………………………………………………………32 

Acceleration Kinematics and Characteristics……………………………………35 

Acceleration Kinetics…………………………………………………………….43 

Physiological Underpinnings of Acceleration…………………………………...46 

 The Short-to-Long Approach……………………………………………47 

  



	  
	  
	  

8	  

 Block Periodization, Conjugate Sequential Sequencing, and Phase   

 Potentiation………………………………………………………………47 

 Integrating the Short-to-Long Model within Block Periodization: The 

 Accumulation Phase……………………………………….......................51

 Integrating the Short-to-Long Model within Block Periodization: The 

 Transmutation Phase………………………………………......................57

 Integrating the Short-to-Long Model within Block Periodization: The 

 Realization Phase…………………………………………………...……62 

3. DEFINING THE EARLY, MID, AND LATE SUB-SECTIONS OF SPRINT 

ACCELERATION IN DIVISION I MEN’S SOCCER PLAYERS…………………68 

  Abstract…………………………………………………………………………..69 

  Introduction………………………………………………………………………70 

  Methods…………………………………………………………………………..73 

   Experimental Approach to the Problem………………………………….73 

   Participants……………………………………………………………….73 

   Testing Procedures……………………………………………………….73 

   Statistical Analysis……………………………………………………….76 

  Results……………………………………………………………………………76 

  Discussion………………………………………………………………………..79 

  Practical Applications……………………………………………………………85 

  References………………………………………………………………………..86 

4. THE RELATIONSHIP BETWEEN STRENGTH-RELATED VARIABLES AND 

SPRINT CHARACTERISTICS IN DIVISION I MEN’S SOCCER PLAYERS…...90 



	  
	  
	  

9	  

  Abstract…………………………………………………………………………..91 

  Introduction………………………………………………………………………92 

  Methods…………………………………………………………………………..95 

   Experimental Approach to the Problem………………………………….95 

   Participants……………………………………………………………….95 

   Testing Procedures……………………………………………………….96 

   Statistical Analysis……………………………………………………...101 

  Results…………………………………………………………………………..102 

  Discussion………………………………………………………………………106 

  Practical Applications…………………………………………………………..112 

  References………………………………………………………………………113 

5. THE EFFECT OF STRENGTH AND POWER ON ACCELERATION 

CHARACTERISTICS IN DIVISION I MEN’S SOCCER PLAYERS……………117 

  Abstract…………………………………………………………………………118 

  Introduction……………………………………………………………………..119 

  Methods…………………………………………………………………………121 

   Experimental Approach to the Problem………………………………...121 

   Participants……………………………………………………………...121 

   Testing Procedures……………………………………………………...121 

   Statistical Analysis……………………………………………………...126 

  Results…………………………………………………………………………..127 

   “Strong” versus “Weak” Comparison…………………………………..127 

   “Higher Power” versus “Lower Power” Comparison…………………..134 



	  
	  
	  

10	  

  Discussion………………………………………………………………………140 

  Practical Applications…………………………………………………………..144 

  References………………………………………………………………………145 

6. SUMMARY AND FUTURE INVESTIGATIONS………………………………..148 

REFERENCES……………………………………………………………………………..157 

APPENDICES……………………………………………………………………………...172 

 Appendix A: ETSU Institutional Review Board Approval…………………….172 

 Appendix B: ETSU Informed Consent Document……………………………..174 

 Appendix C: Additional Data from Chapter 5………………………………….177 

VITA………………………………………………………………………………………..179 

 

 

 

   

	  
 

 



	  
	  
	  

11	  

LIST OF TABLES 
 

Table                           Page  
 
3.1 Descriptive statistics for sprint velocity during early, middle, and late acceleration………..77 
 
3.2 Descriptive statistics for step length during early, middle, and late acceleration……………77 
 
3.3 Descriptive statistics for step frequency during early, middle, and late acceleration………..77 
 
3.4 Descriptive statistics for ground contact time during early, middle, and late acceleration….77 
 
3.5 Descriptive statistics for flight time during early, middle, and late acceleration……………77 
 
3.6 Effect sizes between acceleration zones for all sprint variables……………………………..78 
 
3.7 Differences in sprint characteristics between acceleration zones……………………………78 
 
4.1 Descriptive and reliability data from jumps and isometric mid-thigh pulls………………..103 
 
4.2 Descriptive and reliability data for sprint characteristics…………………………………..104 
 
4.3 Relationships between strength-power characteristics and early-acceleration……………..104 
 
4.4 Relationships between strength-power characteristics and mid-acceleration………………105 
 
4.5 Relationships between strength-power characteristics and late-acceleration………………105 
 
5.1 Descriptive data for strong versus weak groups…………………………………………....128 
 
5.2 Sprint velocity differences between strong versus weak groups…………………………...129 
 
5.3 Step length differences between strong versus weak groups……………………………….130 
 
5.4 Step frequency differences between strong versus weak groups…………………………...131 
 
5.5 Ground contact time differences between strong versus weak groups……………………..132 
 
5.6 Differences in sprint characteristics between acceleration zones…………………………..133 
 
5.7 Descriptive data for higher power and lower power groups………………………………..135 
 
5.8 Sprint velocity differences between athletes displaying higher power outputs versus lower 

power outputs……………………………………………………………………………….136 
 



	  
	  
	  

12	  

5.9 Step length differences between athletes displaying higher power outputs versus lower  
power outputs….………………………………………………………………………........137 

 
5.10 Step frequency differences between athletes displaying higher power outputs versus     

lower power outputs……………………………………………………………………….138 
 
5.11 Ground contact time differences between athletes displaying higher power outputs      

versus lower power outputs………………………………………………………………..139 
 
5.12 95% confidence interval for the differences in sprint velocity between acceleration 

zones…………………………………………………………………………....……….....177  
 
5.13 95% confidence interval for the differences in step length between acceleration zones….177 
 
5.14 95% confidence interval for the differences in step frequency between acceleration 

zones……………………………………………………………………………….………177 
 
5.15 95% confidence interval for the differences in ground contact time between acceleration 

zones……………………………………………………………...…………………..........178 
 
	  
	  
	  
	  
 
 
 
 
 
 
 



	  
	  
	  

13	  

LIST OF FIGURES 
 

Figure                Page 
 
2.1 The evolution of sprint characteristics from acceleration through maximum velocity……...38 
 
2.2 The relationship between impulse, momentum, and power…………………………………46 
 
2.3 Acceleration development during the accumulation phase………………………………….57 
 
2.4 Acceleration development during the transmutation phase………………………………….62 
 
2.5 Acceleration development during the realization phase……………………………………..67 
 
3.1 Starting position for the 20m-sprint test……………………………………………………..74 
 
4.1 Static jump “ready position”…………………………………………………………………98 
 
4.2 Isometric mid-thigh pull position…………………………………………………………….99 
 
4.3 Starting position for the 20m-sprint test……………………………………………………101 
 
5.1 Static jump “ready position”………………………………………………………………..123 
 
5.2 Isometric mid-thigh pull position…………………………………………………………...125 
 
5.3 Starting position for the 20m-sprint test……………………………………………………126 
 
5.4 Sprint velocity differences between strong versus weak athletes…………………………..129 
 
5.5 Step length differences between strong versus weak athletes……………………………...130 
 
5.6 Step frequency differences between strong versus weak athletes………………………….131 
 
5.7 Ground contact time differences between strong versus weak athletes…………………….132 
 
5.8 Sprint velocity differences between athletes displaying higher power outputs versus        

lower power outputs..……………………………………………………………………….136 
 
5.9 Step length differences between athletes displaying higher power outputs versus lower  

power outputs.…………………………………………………………………………........137  
 
5.10 Step frequency differences between athletes displaying higher power outputs versus     

lower power outputs……………………………………………………………………..….138  
 



	  
	  
	  

14	  

5.11 Ground contact time differences between athletes displaying higher power outputs      
versus lower power outputs………………………………………………………………...139  



	  
	  
	  

15	  

CHAPTER 1 
 

INTRODUCTION 
 
 
 The nature of competition in field sports is inherently chaotic. Often times, sports such as 

soccer, rugby, and field hockey showcase a fast-paced style of gameplay consisting of short-

sprints and frequent changes of direction (Duthie, Pyne, Marsh, & Hooper, 2006; Gregson, 

Drust, Atkinson, & Salvo, 2010; Jovanovic, Sporis, Omrcen, & Fiorentini, 2011; Murphy, 

Lockie, & Coutts, 2003). Due to this intermittent style of competition, field sport athletes (FSA) 

rarely attain maximum sprint velocity during match-play (Cronin & Hansen, 2005; Murphy et 

al., 2003). Accordingly, the ability to accelerate is a coveted skill in this athlete population. 

Aside from the obvious benefits related to gameplay, sprint acceleration has also been shown to 

differentiate levels of playing ability in FSA, as higher-level players appear to cover short 

distances at a more rapid pace than their lower-level counterparts (Ferro, Villacieros, Floria, & 

Graupera, 2014; Gabbett, Kelly, Ralph, & Driscoll, 2009; Gabbett, Kelly, & Sheppard, 2008; 

Gissis et al., 2006). Based on this information, it should come as no surprise that enhancing this 

performance quality is often a primary focus in the development of these athletes.  

 While common tactics used to develop this skill include resistance training, resisted 

sprint training, plyometrics, and sprint drills (Cronin & Hansen, 2006; Delecluse, 1997; 

Martinez-Valencia et al., 2015), the way each of these tools are implemented varies from one 

practitioner to the next. Perhaps an even more glaring issue, however, is the lack of integration 

with other training components such as resistance training and sport practice. The evolution of an 

integrated approach is critical to the organization of the training process, as each facet of training 

represents a physiological stimulus applied to the athlete. As Stone, Stone, and Sands (2007) 

remind us, the adaptations underpinning improvements in sport performance are the result of 
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chronic training stimuli. Keeping this in mind, harmonizing these physiological stimuli likely 

plays a vital role in effectively managing fatigue and maximizing performance capabilities at the 

desired time of the training year.  

 An approach that addresses these concerns, referred to as Seamless Sequential Integration 

(SSI), has been proposed by DeWeese, Sams, and Serrano (2014a, 2014b). Specifically, SSI 

encompasses block periodization (BP), conjugate-sequential sequencing (CSS), and a short-to-

long approach (S2L) to speed development (DeWeese et al., 2014a, 2014b). Generally, these 

methods aim to harmonize the physiological adaptations derived from resistance training, sport 

training, and speed enhancement, respectively. In particular, the S2L emphasizes the 

augmentation of acceleration early in the training year to bolster greater top-end speed during the 

competitive season (DeWeese, Sams, Williams, & Bellon, 2015). When combined with the 

tenants of BP and CSS, the acceleration and transition phases of sprinting are generally coupled 

with the development of strength endurance (SE) and maximal strength (MS), respectively, while 

maximum sprint velocity is often addressed while peak power outputs (PP) and high rates of 

force development (RFD) are being expressed (DeWeese, Bellon, Magrum, Taber, & Suchomel, 

2016 ). Despite the utility of this approach, SSI was originally intended for track and field and 

bobsled athletes (DeWeese et al., 2014a, 2014b) who accelerate distances of approximately 35-

60m (Mackala, Fostiak, & Kowalski, 2015) and 30-50m (DeWeese et al., 2014a) during 

competition, respectively. In contrast, FSA, such as soccer players, appear to spend the majority 

of their time covering shorter distances of approximately 9-15m (Bangsbo, Norregaard, & 

Thorso, 1991; Cometti, Maffiuletti, Pousson, Chatard, & Maffulli, 2001; Vigne, Gaudino, 

Rogowski, Alloatti, & Hautier, 2010).  
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 Consequently, it may be more appropriate to adapt a S2L for this athlete population. This 

is not to say that greater sprint distances and velocities should be neglected. In fact, occasionally 

attaining maximum sprint velocity during training may offer neurological adaptations that are 

beneficial to acceleration (Ross, Leveritt, & Riek, 2001). With that said, however, it cannot be 

ignored that soccer players rely much more on short accelerations during competition. 

Additionally, there has also been an exponential rise in the number of competitions per training 

year in recent decades (Issurin, 2008), which has inherently diminished the time that can be 

dedicated towards training. Therefore, appropriately allocating training time to cultivate the most 

relevant skills to the sport is a logical approach in addressing this issue. From a speed 

development perspective, it may be wise to bolster sprint acceleration by addressing the 

constituent sub-phases, such as early-, mid-, and late-acceleration, rather than addressing the 

entire phase as a whole.  

 When combined with BP and CSS, a S2L for FSA would likely elicit similar 

physiological responses as those seen in the traditional model, which may facilitate comparable 

performance adaptations. For example, supplying “concentrated loads” of activities geared 

towards improving early-acceleration and SE during the general preparatory phase of training 

may allow the athlete to enhance both qualities without interfering with one another, as the 

higher resistance training volumes will likely be off-set with shorter sprint distances. From a 

physiological standpoint, this may limit the interference effect by maximizing the up-regulation 

of the mTOR pathway, while mitigating excessive phosphorylation of AMPk (Nader, 2006). 

Ultimately, these biochemical alterations may lead to greater levels of MS, RFD, and speed 

(Stone, Stone, & Sands, 2007). Despite the utility of this model, the foundation of this 
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framework hinges on identifying appropriate distances constituting “early-“, “mid-“, and “late-

acceleration”.  

 While these sub-sections of sprint acceleration have been more clearly defined in the 

realm of track and field (Mackala et al., 2015; Mann, 2013; Nagahara, Matsubayashi, Matsuo, & 

Zushi, 2014), to the author’s knowledge, only one study has investigated how this phase can be 

differentiated into early, mid, and late segments in FSA (Barr, Sheppard, & Newton, 2013). 

However, this study examined the acceleration profiles of elite rugby players, who likely possess 

different kinematics in comparison to soccer players. Furthermore, to foster a complete 

understanding of how to enhance sprint performance in each of these sub-phases, it may also be 

important to investigate the kinetic parameters governing each segment as well. Such 

information may assist in selecting appropriate speed development methods when aiming to 

improving early-, mid-, or late-acceleration. For instance, if the late-acceleration zone appears to 

most related to RFD, this may warrant the use of sled towing to potentiate this performance 

variable and, subsequently, acceleration performance at those particular distances (Winwood, 

Posthumus, Cronin, & Keogh, 2015). Lastly, the appropriateness of each method may differ 

based on the strength level of the athlete, as increasing muscular strength and power appears to 

alter the motor patterns employed during coordinated movement (Cormie, McGuigan, & 

Newton, 2010b). Therefore, it is feasible that stronger, more powerful athletes may display 

different spatiotemporal characteristics during acceleration in comparison to weaker, less 

powerful individuals resulting from the expression of greater force outputs. Ultimately, exploring 

these areas of study may provide the means to effectively develop an adapted version of SSI for 

FSA.  
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Dissertation Purposes 

1. To identify the approximate distances characterizing early-, mid-, and late-acceleration in a 

population of Division I men’s collegiate soccer players. 

2. To investigate the relationships between various strength-power variables and key sprint 

characteristics during early-, mid-, and late-acceleration in a population of Division I men’s 

soccer players.  

3. To compare the spatiotemporal characteristics of “strong” versus “weak” and “more 

powerful” versus “less powerful” Division I men’s soccer players during early-, mid-, and 

late- acceleration.  
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Operational Definitions 

1. Allometric scaling – the process of scaling an absolute value in accordance with an athlete’s 

body shape and size, which is mathematically expressed as the quotient of the variable in 

question and the athlete’s body mass raised to the two thirds power. 

2. Concentrated load – a unidirectional load emphasizing the development of a particular fitness 

characteristic. 

3. Ground contact time – the time over which the foot is in contact with the ground during the 

stance phase of sprinting.  

4. Impulse – the total force produced over a given timeframe.  

5. Maximum sprint velocity – the highest rate at which an athlete can displace his or her body 

mass in a given direction. 

6. Power – the rate at which mechanical work is performed, often calculated as the product of 

force (F) x velocity (v). 

7. Rate of force development – the frequency at which force is applied over a given timeframe. 

8. Sprint – a maximal running effort over a given distance.  

9. Sprint acceleration – the rate at which velocity increases during a sprint effort. 

10. Sprint velocity – the rate at which an athlete is able to displace his or her body mass in a 

given direction. 

11. Step frequency – the rate of steps taken over a period of one second. 

12. Step length – the distance between consecutive foot contacts during a sprint effort. 

13. Strength – the ability to produce force against an external resistance. 
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CHAPTER 2 
 

COMPREHENSIVE REVIEW OF LITERATURE 
 

The Importance of Sprint Speed and Acceleration in Sport 
 

 Sprint speed is perhaps the most coveted skill in the world of athletics. While sprint 

ability has obvious value in the world of track and field, it is also a critical component across a 

variety of team sports as well. Most notably, sprint speed has been shown to differentiate levels 

of playing ability in team sports such as American football (Black & Elmo, 1994; Fry & 

Kraemer, 1991), rugby (Gabbett, 2009; Gabbett et al., 2008), soccer (Bangsbo et al., 1991; 

Cometti et al., 2001; Eniseler, Camliyer, & Gode, 1996; Gissis et al., 2006; Reilly, Williams, 

Nevill, & Franks, 2000), baseball (Hoffman, Vazquez, Pichardo, & Tenenbaum, 2009), 

basketball (Hoare, 2000; Hoffman, Tenenbaum, Maresh, & Kraemer, 1996; Shalfawi, Sabbah, 

Kailani, Tonnessen, & Enoksen, 2011), and even ice-hockey (Farlinger, Kruisselbrink, & 

Fowles, 2007; Krause et al., 2012; Peyer, Pivarnik, Eisenmann, & Vorkapich, 2011). This 

differentiation elucidates the simple fact that while other sport skills such as shooting, hitting, or 

even throwing may be valuable, sprint speed ultimately dictates an athlete’s opportunity to 

effectively utilize those abilities during competition.  

 This concept was clearly shown by Fry and Kraemer (1991) who investigated the sprint 

ability of Division I, II, and III collegiate football players in a 40-yard maximal running effort. 

The overall conclusion of the study was simple: Division I football players displayed faster sprint 

times in the 40-yard dash compared to Division II and III players. Furthermore, Division I 

athletes were also found to be faster than the Division II and III players when comparing the 

participants by position (i.e. – offensive backs, offensive line, receivers, defensive backs, 

defensive line, and linebackers). The only exception to this trend was with respect to the 
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defensive backs. Also, with the exception of offensive lineman, the starters displayed faster 

sprint times than the non-starters. A similar result on the dichotomy between starters and support 

players was provided by Black and Elmo (1994). These investigators also found 40-yard sprint 

times to be a discriminating variable between starters and non-starters in NCAA Division 1-A 

college football players. While these findings may be very useful to practitioners working with 

football players, the trend is not exclusive to this sport population.   

 For instance, this concept was also echoed in multiple studies by Hoffman and colleagues 

in (1996) and (2009) regarding basketball and baseball, respectively. In 1996, the authors 

investigated the relationship between athletic performance tests and playing time in Division I 

male college basketball players across multiple seasons. The results of this study revealed that 

27-meter sprint speed showed moderate-to-high correlations with playing time over a two-year 

time period. Similarly, Hoffman et al. (2009) compared 10-yard sprint speed over a 2-year period 

in major league (MLB) versus minor league (Rookie, A, AA, AAA) baseball players to 

investigate if this variable could positively distinguish MBL players from minor league athletes. 

The findings of this investigation indicated that MLB players were significantly faster than 

Rookie ball, A, and AA minor league players.  

 Interestingly, similar results were found by Gabbett et al. (2008) in rugby players. The 

purpose of their study was to identify if speed and agility field tests could differentiate between 

“higher-level” and “lower-level” skilled players based on their ranks within the same rugby club. 

The speed test implemented was a 20-meter sprint with 5-meter, 10-meter, and 20-meter split 

times. The findings revealed that the sprint times of  “higher-level” players were statistically 

faster sprint times at every distance in comparison to “lower-level” players. An obvious 

limitation to this study, however, was that these players were all apart of the same rugby club. As 
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such, a further exploration was needed to identify if sprint ability is able to differentiate elite and 

sub-elite rugby athletes. This was exactly the purpose of a follow-up study by Gabbett et al., 

(2009), which aimed to highlight the physical qualities separating elite versus sub-elite junior 

rugby players. Similar to the previous investigation, the athletes performed a continuous sprint 

with splits at multiple distances. In this study, however, those splits were at distances of 10-

meters, 20-meters, and 40-meters. The findings of this study indicated that, like higher and lower 

skill level players within the same organization, elite and sub-elite players can be effectively 

separated by sprint ability. Specifically, the differences in sprint times and velocities between the 

two groups were statistically significant, with the elite group displaying markedly superior sprint 

ability in comparison to their sub-elite counterparts. The magnitude of these differences was also 

supported by large to very large effect sizes at all sprint distances.  

 Up to this point, the studies presented have focused on sports that are predominantly 

anaerobic in nature (i.e. – football, basketball, baseball, rugby) (Bompa & Haff, 2009). While 

sprint speed is more relevant to power-oriented activities, sports that possess greater aerobic 

demands are also heavily influence by this skill as well. For example, this concept was clearly 

illustrated in multiple studies with respect to soccer players (Cometti et al., 2001; Eniseler et al., 

1996; Ferro et al., 2014; Gissis et al., 2006). Additionally, these studies also highlight that fact 

that playing ability may be better discriminated by sprint acceleration rather than maximum 

sprint velocity. In the context of field sport athletes, sprint acceleration is often defined as “sprint 

performance over smaller distances, such as 5m or 10m” (Murphy, Lockie, & Coutts, 2003). 

Moreover, a number of these studies have indicated that sprint ability over such distances has 

shown to positively separate “national” and “first level” professional soccer players from their 

regional and lower-tier counterparts, respectively (Cometti et al., 2001; Ferro et al., 2014; Gissis 
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et al., 2006). Specifically, a study by Commetti (2001) aimed to compare the sprint ability in 

elite, sub-elite, and amateur French soccer players over 10- and 30-meter distances. While the 

difference in 10-meter sprint speed between elite and amateur players was statistically 

significant, 30-meter sprint speed did not display this difference. Similar results were also found 

in a later study by Gissis et al. (2006) who examined sprint ability over 10-meters in elite, sub-

elite, and amateur Greek soccer players. Like the previous study by Commetti (2001), the elite 

players displayed statistically greater sprint speeds over this distance when compared to the 

amateur players. This study, however, also found the differences in sprint speed between the elite 

and sub-elite groups to be statistically significant as well, something that was not found in the 

previous investigation. Lastly, a recent study by Ferro et al. (2014) compared sprint ability 

between “competitive” versus “recreational” soccer players over 30-meters with split times for 

the 0-10, 10-20, and 20-30 meter segments. Compared to the recreational participants, the 

competitive soccer players displayed statistically greater sprint velocities from 0-10 and 10-20 

meters, but not during the 20-30 meter portion.   

 This trend is significant in the world of athletics, particularly in team sports, as 

competition often requires athletes to sprint across a variety of distances with frequent changes 

of direction occurring prior to reaching maximal velocity (Duthie et al., 2006; Jovanovic et al., 

2011; Murphy et al., 2003; Young, McLean, & Ardagna, 1995). This concept is clearly 

illustrated in time-motion analysis data across a number of sports including soccer (Gregson et 

al., 2010), rugby (Cunniffe, Proctor, Baker, & Davies, 2009), field hockey (Gabbett, 2010), and 

basketball (Ben Abdelkrim et al., 2010), all of which display average sprint distances below 20-

meters. This has been attributed to the fact that bursts of acceleration most often occur during 

key points in match play such as evading a defender or creating a scoring opportunity (Faude, 
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Koch, & Meyer, 2012; Meir, Colla, & Milligan, 2001; Rienzi, Drust, Reilly, Carter, & Martin, 

2000). Based on this information it’s not surprising that coaches often prioritize the development 

of acceleration with their athletes, as this skill can serve as a potent offensive or defensive 

weapon during competition.  

  

The Development of Acceleration in Sport 

 Despite the wide range of methods used to enhance sprint acceleration, typical modalities 

most often include resistance-training, plyometrics, resisted sprinting, and sprint drills (Cronin, 

Hansen, 2006; Delecluse, 1997; Martinez-Valencia et al., 2015). The majority of these tools aim 

to improve acceleration through the training principle of specificity, which states that 

performance adaptations are specific to the demands imposed upon the individual (Stone, Stone, 

& Sands, 2007). Specifically, training methods such as plyometrics, resisted sprinting, and sprint 

drills aim to mimic the spatiotemporal characteristics of sprinting, in hopes of fostering a 

positive transfer of training effect. An argument can even be made that resistance training 

provides a level of “kinetic specificity”, as the high ground reaction forces (GRF) inherent to 

sprinting may be similar to those achieved with certain resistance training practices (DeWeese, 

Bellon, Magrum, Taber, & Suchomel, 2016 ). Ultimately, sprinting is a complex skill that 

harmonizes a wide range of biomechanical and kinetic parameters. Due to the multifaceted 

nature of this skill, a single method or drill cannot stand alone as the primary tool for improving 

sprint performance. Rather, an integrated approach utilizing a combination of these methods is 

likely the most efficient way to develop speed (Cappadona, 2013; DeWeese, Sams, Williams, & 

Bellon, 2015; Rumpf, Lockie, Cronin, & Jalilvand, 2015; Young, 2006).  
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Resistance Training 

 While many coaches perceive plyometrics, sprint drills, and resisted movement training 

to be the most effective methods of acceleration development, perhaps the most efficient tool is 

that of resistance training. In fact, there is a wealth of evidence displaying a clear relationship 

between maximal strength and sprint performance, particularly sprint acceleration (Baker, 

Nance, 1999; Barr, Sheppard, Agar-Newman, & Newton, 2014; Comfort, Bullock, & Pearson, 

2012; Cunningham et al., 2013; Delecluse, 1997; Gissis et al., 2006; McBride et al., 2009; Seitz, 

Reyes, Tran, Saez de Villarreal, & Haff, 2014; Sleivert & Taingahue, 2004; Thomas, Comfort, 

Chiang, & Jones, 2015). Accordingly, whether coaches are aware of it or not, the principle of 

progressive overload is often utilized as a primary method of improving acceleration. A recent 

meta-analysis by Seitz and colleagues (2014) makes it abundantly clear that there is a positive 

transfer of lower-body strength training to sprint acceleration, as 50 of the 52 studies included in 

this investigation employed sprint tests at distances of less than 30-meters. The authors also 

noted that a primary conclusion of their analysis was that sprints over these short distances are 

highly dependent upon kinetic parameters such as “speed-strength” and “maximal power 

production”. More specifically, strength-power variables commonly correlated to sprint 

acceleration include rate of force development (RFD) (Marques, Gil, Ramos, Costa, & Marinho, 

2011; Marques & Izquierdo, 2014; Martinez-Valencia et al., 2015; Sha, 2014; Thomas et al., 

2015), impulse (IP) (Hunter, Marshall, & McNair, 2005; Sha, 2014; Thomas et al., 2015), and 

power (P) (Baker & Nance, 1999; Cronin & Hansen, 2005; Lopez-Segovia, Marques, van den 

Tillaar, & Gonzalez-Badillo, 2011; Marques & Izquierdo, 2014). Keeping this in mind, the 

development of these critical qualities is essential to developing sprint acceleration.  
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 It is important to note, however, that despite the strong relationship between power-

related characteristics (i.e. – RFD, IP, PP) and sprint acceleration, the importance of an athlete’s 

maximal strength capabilities cannot be understated. This concept is also commonly 

misunderstood; as many coaches argue the duration of common sport skills are too short for 

athletes to express maximal strength. This argument is often made in reference to the short 

ground contact times inherent to sprinting, as elite sprinters typically display ground contact 

times (GCT) as short as 140 and 87 milliseconds during acceleration and maximum velocity, 

respectively (Mann, 2013). While the brevity of these movements may limit an athlete’s ability 

to express maximal strength, a critical concept to understand is that maximal strength is more 

than the ability to produce force. Rather, it is the means by which RFD, P, and IP are developed 

(Stone, Moir, Glaister, Sanders, 2002; Stone, Stone, & Sands, 2007). In other words, maximal 

strength is the vehicle that drives the development of these strength and power qualities, as 

stronger athletes have been shown to display greater RFD (Beckham et al., 2013; Haff et al., 

1997; Hornsby, 2013; Sole, 2015; Stone, Stone, & Sands, 2007), P (Cormie, McGuigan, & 

Newton, 2010c; Stone, Moir, Glaister, Sanders, 2002; Stone, O'Bryant, et al., 2003; Stone, 

Sanborn, et al., 2003; Stone, Stone, & Sands, 2007), and IP (Cormie, McGuigan, & Newton, 

2010a, 2010b; Cormie et al., 2010c; Hornsby, 2013). Therefore, strength and speed are not 

separate entities, but are rather interrelated. Simply put, in order to develop the power-related 

qualities that are most relevant to sprint acceleration, an athlete’s maximal strength must be 

made a priority (Haff & Stone, 2015; Taber, Bellon, Abbott, & Bingham, 2016). 

Plyometrics 

 Sprinting is a skill that occurs in multiple planes of movement and requires the effective 

use of the stretch-shortening cycle (SSC) (Harrison, Keane, & Coglan, 2004). Based on this 
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information, practitioners often utilize plyometrics to overload the SSC in movements that 

appear mechanically similar to sprinting. Additionally, it has also been suggested that exercises 

offering the most efficient transfer to sprinting are those that include muscle contraction 

velocities similar to the task involved (Rimmer & Sleivert, 2000). With respect to plyometrics, 

this most often includes sprint acceleration (Rimmer & Sleivert, 2000), as the GCT and 

contraction velocities in exercises such as bounding and depth jumps closely resemble this phase 

of sprinting (Walsh, Arampatzis, Schade, & Bruggemann, 2004; Young, 1992). Also, it has long 

been established that ballistic exercises performed with maximal intent likely recruit type II 

motor units (Desmedt & Godaux, 1977). As such, many advocate the use of plyometrics to 

activate the high threshold motor units (HTMU) inherent to sprint acceleration, which would 

theoretically enhance the performance of this skill. This notion is supported in a review by 

Markovic and Mikulic (2010), who show a longitudinal trend in the improvement of sprint 

acceleration within training programs that utilize plyometrics. An even more interesting point 

made by the authors was that the average performance improvements tend to decrease at further 

sprint distances, particularly after 20 meters. Therefore, the vast majority of data indicate that 

plyometric exercises may be more beneficial in improving sprint acceleration in comparison to 

maximal velocity.  

 This point is also true from the perspective of developing leg and tissue stiffness, as 

plyometric exercises can also be used to develop these qualities and possibly sprint acceleration 

(Foure, Nordez, & Cornu, 2010, 2012; Foure, Nordez, McNair, & Cornu, 2011; Lloyd, Oliver, 

Hughes, & Williams, 2012). These adaptations may be valuable with respect to speed 

development, as it has been suggested that greater musculotendinous unit (MTU) stiffness may 

be advantageous to facilitating greater RFD (Brughelli & Cronin, 2008). This adaptation may 
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pave the road to greater sprint velocities by means of increasing GRF over the brief contact times 

experienced during sprinting. However, the relative contribution of leg-stiffness also appears to 

be dependent upon the velocity at which the athlete is sprinting, as leg-stiffness has been more 

closely related to the transition and maximum velocity phases than acceleration (Bret, Rahmani, 

Dufour, Messonnier, & Lacour, 2002; Chelly & Denis, 2001). Conversely, faster athletes have 

also been shown to display slightly greater leg stiffness during acceleration in comparison to 

their slower counterparts (Lockie, Murphy, Knight, & Janse de Jonge, 2011). The findings of 

Kuitunen, Komi, and Kyrolainen (2002) may explain this discrepancy, as these investigators 

characterized the patterns of ankle and knee stiffness with increasing running speeds. The 

authors concluded that ankle stiffness remains fairly constant from the beginning of acceleration 

to maximum velocity, while the knee joint displays a constant increase from the beginning of 

acceleration to top speed. Accordingly, the rigidity of the knee joint appears to be the primary 

source of increased leg stiffness contributing to faster sprint velocities in later stages of the 

sprints. Considering that the early acceleration phase contains minimal knee flexion during 

ground support (Nagahara, Matsubayashi, et al., 2014), it makes sense that this joint is a primary 

contributor during both acceleration and maximum velocity.  

 Despite the secondary role of ankle rigidity in developing greater leg-stiffness, this 

quality may still be an important consideration in improving acceleration. Theoretically, if an 

athlete develops a greater level of ankle stiffness through training, they may become more 

efficient in their ability to utilize the stored elastic energy in the MTU, which may lead to 

enhanced function of the stretch-shortening cycle (SSC). This is significant to sprinting in that 

greater efficiency of the SSC likely translates to greater forces being expressed during ground 

contact (Komi, 2008). This point was made in a study by Cornu and Goubel (1997) who showed 
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that 7-weeks of plyometric training increased passive stiffness and decreased active stiffness of 

the ankle by 52% and 32%, respectively. The authors noted that the increase in passive stiffness 

may be beneficial to increasing RFD, possibly by limiting the deformation imposed by GRF, 

while decreased active stiffness may be more desirable for storing and utilizing the potential 

kinetic energy of the MTU. Keeping this in mind, plyometric training may assist in developing 

this quality, likely through increasing the functional capacity of the Achilles tendon and triceps 

surae musculature (Foure et al., 2010, 2012; Foure et al., 2011; Kuitunen et al., 2002). This is 

perhaps a result of positive changes in the intrinsic mechanical properties of the tissue, such as 

increased cross-linkages within the collagen matrix of the Achilles tendon and a fiber-type shift 

towards the type IIx phenotype in the triceps surae (Almeida-Silveira, Perot, Pousson, & Goubel, 

1994; Foure et al., 2011).  

Considering the evidence provided, plyometrics may be a worthwhile means of 

improving acceleration ability. It is important to note, however, that a number of studies suggest 

that this training modality is likely complimentary to other methods, such as resistance training 

(Ford et al., 1983; Perez-Gomez et al., 2008; Ronnestad, Kvamme, Sunde, & Raastad, 2008) and 

conventional sprint training (Rimmer & Sleivert, 2000), rather than a primary training tool. The 

reason for this is that many of the performance benefits derived from plyometrics can also be 

achieved through these other methods. For example, similar connective tissue adaptations as 

those previously mentioned can also achieved through resistance training (Folland & Williams, 

2007; Stone, Stone, & Sands, 2007). In addition, other studies have found also conventional 

sprint training to yield similar or even superior results to improving sprint acceleration in 

comparison to plyometrics (Luebbers et al., 2003; Rimmer & Sleivert, 2000). While there is 

some evidence to support the implementation of plyometrics in concert with resistance training 
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(Dodd & Alvar, 2007; Perez-Gomez et al., 2008), another study found no change in sprint 

performance (Faigenbaum et al., 2007). Considering the inconsistency of these findings, 

plyometrics may serve as a valuable secondary tactic to resistance and sprint training, but should 

be used judiciously in the training process. 

Resisted Sprinting 

 Another common method in improving sprint ability is resisted sprinting. Common 

means of resistance include but are not limited to pulling sleds, pushing sleds, elastic bands, 

weight vests, and even motor vehicles (Hoffman, 2014; Hrysomallis, 2012). Despite the array of 

implements used to provide resistance, each are intended to increase an athlete’s ability to 

produce higher GRF without compromising proper sprint mechanics (Kawamori, Newton, & 

Nosaka, 2014). Although the use of resisted sprint training to improve maximum velocity has 

been largely unsupported, there is a wealth of research validating its usefulness in improving 

sprint acceleration (Hrysomallis, 2012; Kawamori, Newton, Hori, & Nosaka, 2014b; Lockie, 

Murphy, & Spinks, 2003; Spinks, Murphy, Spinks, & Lockie, 2007; Zafeiridis et al., 2005). 

 Despite the convincing research support for this method, the appropriate implementation 

of this type of training remains unknown. For example, in order to foster a positive transfer of 

training effect, determining the appropriate resistance during sprint training is paramount. 

Selecting a load that is too heavy may compromise the athlete’s sprint mechanics and defeat the 

purpose of the exercise (Kawamori, Newton, Hori, & Nosaka, 2014a). If a load is too light, 

however, the athlete may not receive a sufficient stimulus to elicit the intended higher GRF 

during their training. Some coaches advocate standardizing the use of 10% of the athlete’s 

bodyweight (Hrysomallis, 2012), while others prefer to choose a load that decreases sprint 

velocity by no more than 10% (Clark, Stearne, Walts, & Miller, 2010). Recent evidence even 
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supports the notion of using heavier loads that reduce sprint velocity up to 30% to improve 

acceleration ability (Kawamori, Newton, et al., 2014b). Clearly, the optimal loading scheme to 

improve sprint acceleration is likely dependent on a variety of factors, which may include the 

athlete’s sport, position, and strength levels. Other considerations regarding the proper 

implementation of resisted sprint training are the type of implements used (e.g. – sled pushing 

versus pulling), surface, and training volume and frequency. Taking these factors into 

consideration, it is likely that the best practices of resisted sprint training depend not only on the 

goals and capabilities of the athlete, but also on the focus of training at a particular time of the 

year.  

Sprint Drills 

 Historically, many coaches believe that sprinting is best learned by teaching the body to 

feel and respond to external stimuli, or “kinesthesis” (McFarlane, 1993).  Based on this 

foundational belief, practitioners often use sprint drills to develop and rehearse movement 

patterns that are inherent to sprint technique (McFarlane, 1993). For example, McFarlane (1993) 

has previously proposed the “basic technical model” for speed, which encompasses a number of 

sprint drills designed to address acceleration, transition, and maximum velocity mechanics.  

Although a vide variety of drills are used to meet these objectives, two drills that are most central 

to this model are “A-drills” and “B-drills”. Originally proposed by Gerard Mach, these drills 

were designed to mimic acceleration and maximum velocity kinematics, respectively 

(Cappadona, 2013; Kivi & Alexander, 1997; McFarlane, 1993). However, how and when these 

movements are utilized may differ from one coach to the next. In a study by Kivi and Alexander 

(1997), the authors interviewed a number of high-level track and field coaches from the United 

States and Canada to inquire why, how, and when the Mach drills were implemented in their 
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athletes’ training programs. The responses typically included rationales such as emphasizing 

proper movement mechanics, improving neuromuscular strength and endurance, and enhancing 

nerve conduction velocity. However, when asked to elaborate on how the drills were taught and 

where they fit into the big picture of their methodology, it is obvious that these drills actually 

utilized quite differently from one coach to the next.  

 Kivi and Alexander (1997) note that one coach preferred to use both sets of drills 

differently depending on the focus of the session. For instance, one coach implemented the drills 

over shorter distances (e.g. –10-meters) to emphasize speed and ground force application on 

speed days. In contrast, the same drills were used at the end of the warm-up on tempo days for 

longer distances (e.g. – 20-meters) to shift focus towards holding good technique for longer 

periods of time. Other coaches, however, used these drills as part of the tempo workout by 

having them perform them for a given time or distance. Little research has been done in this area 

to elucidate the most appropriate means by which these tools should be used, or if they should 

even be used at all.  

 To the author’s knowledge, only one study by Cappadona (2013) has explored this 

concept. This investigation aimed to identify the kinematic similarities and differences between 

the Mach drills (i.e. – A-skip and B-skip) and maximal sprinting in collegiate-level sprinters. To 

make this comparison, the investigator placed 24 reflective markers on the participants’ upper 

and lower bodies and captured their movements using 3D motion analysis cameras. Each 

participant performed two trials of 40-meter sprints, two trials of 15-meter A-skips, and two 

trials of 15-meter B-skips. Upon comparing the mechanics of each drill with those seen during 

the 40-meter sprints, both the A- and B-skip yielded statistically significant differences in joint 

kinematics. Specifically, the maximal sprint efforts yielded higher maximum hip flexion and a 
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significantly higher ankle angular velocity in comparison to the A-skip. Moreover, B-skips 

displayed significantly lower hip and knee flexion, lower maximum hip angular velocity, and 

higher ankle angular velocity. Based on these findings, it is quite clear that the premise on which 

the use of sprint drills is founded upon is flawed, as A-skips and B-skips do not mimic the 

movement patterns experienced in sprinting as closely as what some practitioners may believe. 

 A reason explaining this disconnect between sprint drills and the task may reside within 

the fundamental relationship between kinematics and kinetics. Essentially, movement outcomes 

are the result of both kinematic and kinetic parameters that govern the task (Jaric, Ristanovic, & 

Corcos, 1989). In other words, kinetic variables, such as GRF during a sprint, likely play a role 

in the outcome of biomechanics. Accordingly, drills that are used to rehearse or mimic the 

biomechanics of a task may not transfer when performing the skill if they lack the kinetic 

specificity of the task. This is not to say that sprint drills are not useful in any sense. Rather, they 

may be useful in attaining other objectives such as teaching fundamental movement concepts and 

reacquiring muscular tone in the latter portion of the warm-up. Although it is often overlooked, 

regaining muscular tone prior to training is crucial to performance, as stretching protocols used 

to increase an athlete’s range of motion during a warm-up likely diminishes contractile filament 

cross-bridging (Jahnke, Proske, & Struppler, 1989). With less cross-bridging occurring between 

actin and myosin, an athlete’s ability to produce force may be compromised during training. To 

combat this negative effect, sprint drills may be used as a means to “take out the slack” out of the 

muscle by restoring these cross-bridges and increasing muscle spindle sensitivity (Jahnke et al., 

1989). With that said, practitioners should be cautious with the intent for which they use sprint 

drills due to the lack of kinematic and kinetic specificity to the task of sprinting.  
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 Ultimately, sprint acceleration is a complex skill that can be developed through the use of 

multiple training methods. In contrast to this point, not all of these training strategies are created 

equal, as the efficacy of some are more supported in the literature than others. Therefore, 

understanding the kinematic, kinetic, and physiological mechanisms governing this skill will 

further clarify the best practices to develop sprint acceleration. Once a thorough understanding of 

these concepts is fostered, practitioners will be equipped select and integrate speed development 

tactics within the training process for different athlete populations and levels of ability.  

 

Acceleration Kinematics and Characteristics 

 Historically, the acceleration phase of sprinting has been divided into multiple sub-

sections. For example, Mackala et al. (2015) referred to these phases as “starting acceleration” 

(0-12m), “main acceleration” (12-35m), and in the case of elite sprinters, the “third transition” 

prior to reaching maximum velocity. Mann (2013), on the other hand, differentiates this phase 

into “the start” (steps 1-2), “the transition” (steps 3-10), and “maximum velocity”. Regardless of 

how each sub-section is characterized, the concept of differentiating the acceleration phase into 

separate “zones” is not a recent development.  

 While some coaches may argue that this delineation is redundant, the rationale for doing 

so is based on differences in movement patterns inherent to each acceleration zone. In fact, a 

number of studies have suggested that the acceleration phase can be separated into multiple sub-

sections based on biomechanical differences and alterations in sprint characteristics (e.g. – SL, 

SF, GCT, etc.) (Barr, et al., 2013; Debaere, Delecluse, Aerenhouts, Hagman, & Jonkers, 2013; 

Mackala, 2007; Mann, 2013; Nagahara, Matsubayashi, et al., 2014; Nagahara, Naito, Morin, & 

Zushi, 2014; Rabita et al., 2015). While each athlete possesses unique biomechanical nuances, 



	  
	  
	  

36	  

deviations in sprint characteristics appear to be more quantitative than qualitative, as similar 

trends are consistently displayed in the literature regardless of sprint ability (Nagahara, Naito, et 

al., 2014).  

 This concept was highlighted in a study by Nagahara, Matsubayashi, et al. (2014) who 

demonstrated that the acceleration phase could be separated into “initial-acceleration”, “mid-

acceleration”, and “transition” periods during a maximal effort 60-meter sprint. For example, the 

athletes displayed rapid increases in hip extension velocity while applying high GRF behind the 

center of gravity (COG) during their first 3 steps, which was characterized as the initial 

acceleration zone. These movements were also accompanied by a swift elevation of the COG 

and hips, as step length (SL) and step frequency (SF) increased exponentially to promote greater 

sprint velocities. Most notable, however, was the fact that the participants exhibited no knee 

flexion during ground support over these first few steps. That is, the sprinters began each trial by 

utilizing a “pushing motion” as a means to increase movement frequency. After the first 3-steps, 

the authors concluded that the kinematics began to show significant changes, which marked the 

beginning of the mid-acceleration zone. Specifically, the participants began to exhibit increased 

knee flexion during the support phase. This likely resulted from the athletes striking the ground 

further in front of the body. In addition, the rate of elevation in the COG began to slow down, 

while knee extension velocity rapidly increased up until approximately step 8. After this point, 

the transition to maximum velocity consisted of further increases in sprint speed, which was 

attributed to greater SL. This was likely caused by greater contribution from the shank during the 

anterior support phase and the foot during the posterior support phase, as the range and velocity 

of hip motion slightly decrease during this time period. Consequently, the differences in sprint 
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characteristics observed during acceleration are likely underpinned by different movement 

strategies within each zone.  

 When combined with the findings of other investigations, it can be argued these 

movement strategies can be characterized as “proximal-to-distal” in nature (Bezodis, 2009; 

Jacobs & van Ingen Schenau, 1992; Kugler & Janshen, 2010). More specifically, the early 

acceleration period seems to be more dependent on the proximal musculature of the hip and 

thigh (Bezodis, 2009; Jacobs & van Ingen Schenau, 1992), while the mid-acceleration period 

displays significant contributions from both the hip and lower leg (Nagahara, Matsubayashi, et 

al., 2014). Finally, the late-acceleration and maximum velocity phases often display the greatest 

contributions from the lower leg, as the foot must aggressively strike the ground in a 

“backwards” motion to deliver high GRF in close proximity to the sprinter’s center of mass 

(COM) (Gittoes, Bezodis, & WIlson, 2011; Hunter, Marshall, & McNair, 2004; Mann, 2013). 

Accordingly, the gradual rise of the COG at greater sprint speeds discussed by Nagahara, 

Matsubayashi, and colleagues (2014) is likely influenced by the force-producing capabilities of 

the hip, thigh, and lower-leg musculature. Furthermore, these muscles may also be the “driving 

force” catalyzing a series of sequential changes in sprint characteristics during acceleration.  

 This concept has been described in a number of different studies (Barr et al., 2013; M. 

Coh, Milanovic, & Kampmiller, 2001; Debaere et al., 2013; Mackala, 2007; Mann, 2013; Morin 

et al., 2012; Nagahara, Matsubayashi, et al., 2014; Nagahara, Naito, et al., 2014; Rabita et al., 

2015). For example, during the initial acceleration period, GCT is often at its peak, while flight 

time (FT) values are at a minimum (Barr et al., 2013; Coh et al., 2001; Mann, 2013; Nagahara, 

Naito, et al., 2014; Rabita et al., 2015). A similar antagonistic relationship exists between SL and 

SF, as SF usually shows a rapid increase towards maximum values, while SL measures are 



	  
	  
	  

38	  

minimal at this point (Mackala, 2007; Mann, 2013; Nagahara, Naito, et al., 2014; Rabita et al., 

2015). As the athlete transitions into mid-acceleration, GCT declines as FT is elevated with 

greater sprint velocities (Barr et al., 2013; Debaere et al., 2013; Nagahara, Naito, et al., 2014; 

Rabita et al., 2015). SF typically reaches its maximum and may show a slight decline before 

stabilizing at a constant rate, while SL continues to gradually increase with greater displacements 

(Debaere et al., 2013; Mackala, 2007; Nagahara, Naito, et al., 2014; Rabita et al., 2015). Finally, 

as sprint speed approaches maximum velocity during the late acceleration period, SF stabilizes, 

SL and FT approach maximum values, and GCT continues to decrease (Coh et al., 2001; 

Debaere et al., 2013; Mackala, 2007; Mann, 2013; Nagahara, Naito, et al., 2014; Rabita et al., 

2015). This relationship is illustrated in Figure 2.1.  

 

Figure 2.1 The evolution of sprint characteristics from acceleration through maximum velocity. 

Concept based on findings of Mackala et al. (2007), Mann (2013), Nagahara, Matsubayashi, et 

al., (2014), Nagahara, Naito, et al., (2014), and Rabita et al. (2015) 

 It is important to note, however, that the distances associated with these sprint phases 

varies in accordance with the ability of the athlete, as better sprinters can accelerate for longer 

distances in route to greater sprint velocities (Barr et al., 2013; Bruggerman & Glad, 1990; 
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Mackala et al., 2015; Mann, 2013). Additionally, the findings of Nagahara, Matsubayashi, et al., 

(2014) also suggest that sprint characteristics are, to a certain extent, relative to each athlete. This 

is likely due to a host of individual differences such as anthropomentric profiles (Mann, 2013; 

Rahmani, Locatelli, & Lacour, 2004), muscle fiber-type distribution (Trappe et al., 2015), and 

variations in the ability to express force (Alexander, 1989; Bret et al., 2002). It should come as 

no surprise that while Nagahara, Matsubayashi, and colleagues (2014) found similar 

spatiotemporal profiles between athletes, the acceleration zones defined in this study required a 

sizeable range. With the exception of the initial acceleration zone (steps 1-3), mid- and late-

acceleration periods range from approximately steps 5-15 and steps 16-28, respectively. 

Unfortunately, this makes matters even more convoluted with respect to applying this 

information to field sport athletes.  

 Despite the insightfulness of these findings, the application to field sports should be 

approached cautiously, as the data previously presented were derived from populations of trained 

sprinters who began each effort from starting blocks. A comparison between these populations 

may be problematic for a few different reasons. The most obvious issue is that field sport athletes 

do not accelerate from starting blocks. Rather, they often begin sprint efforts from a variety of 

positions such as a crouched start, athletic stance, walking, jogging, or running. Therefore, it is 

feasible that they could display different sprint characteristics when compared to those 

previously discussed. This trend is noticeable in the little research that has been done comparing 

kinematic differences in “fast” and “slow” field sport athletes.  

 For example, Murphy et al. (2003) compared sprint kinematics in “fast” versus “slow” 

field sport athletes during steps 1 and 3 of the initial acceleration period from a staggered start 

position. The results revealed that the SL of faster participants was not statistically greater than 
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their slower counterparts. In contrast, the faster sprinters reached greater sprint velocities by 

means of producing statistically greater SF and abbreviated GCT. Similar results were found by 

Hewit and colleagues (2013), who investigated acceleration kinematics in national-level netball 

players during a 2.5-meter acceleration from an “athletic stance” starting position. The faster 

athletes of the group actually produced statistically shorter SL in comparison to the slower 

group. Surprisingly, SF was not statistically different between groups, but was still higher in the 

faster participants. When comparing early acceleration kinematics with those found in track and 

field athletes, faster sprinters seem to achieve greater sprint velocities by different means.  

 In a study by Slawinski et al. (2010), faster track and field sprinters reached higher sprint 

velocities during step 1 by displaying statistically greater SL over longer GCT. While not 

statistically different, SF was actually lower in the faster athletes. The opposite was true, 

however, when the sprinters reached step 2, as the faster sprinters progressed to higher velocities 

by increasing SF, as SL was no longer statistically different between groups. Along those same 

lines, the faster athletes also displayed shorter GCT in comparison to the slow group at this time 

point. Similar trends in the early acceleration period have been described by Coh and Tomazin 

(2006), Harland and Steel (1997), and Mann (2013). These authors explain that the increase in 

stride length during block clearance and step 1 are likely attributed to the fact that starting blocks 

allow sprinters to achieve steeper torso angles, which likely allows them to project their COM a 

greater distance.  Kugler and Janshen (2010) also remind us that faster sprinters use this greater 

anterior lean of the torso to deliver greater propulsive GRF. Furthermore, this greater lean of the 

torso probably allows faster sprinters to accelerate for a longer period of time before reaching 

maximum velocity. Ultimately, the difference in starting position greatly affects the resulting 

sprint kinematics between populations during the early acceleration period. As the athletes 
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accelerate over greater distances, however, sprint kinematics become increasingly similar these 

populations, which suggests that the basic tenants of acceleration are constant between 

populations.  

 This concept was illustrated in a recent study by Barr et al. (2013) examining the sprint 

characteristics in rugby union players during a 50-meter sprint. The variables observed included 

SL, GCT, SF, and FT at the 3-meter, 9-meter, 15-meter, 21-meter, 33-meter, 39-meter, and 50-

meter marks. Not surprisingly, each of these characteristics at 3-meters was significantly 

different from every other segment measured. Specifically, the 3-meter portion of the sprint 

encompassed longer GCT, shorter SL, and shorter FT in comparison with every other 

checkpoint. When comparing these qualities with those seen at 9-meters, sprint kinematics 

showed significant differences, as GCT became shorter while SL and FT became longer. In 

addition, SF measures reached maximum values. These maximum values were maintained at 

through the 15-meter mark. While SL continued to increase through this time point, it was not 

statistically different from SL at 9-meters and was also accompanied by further decreases in 

GCT. Lastly, it is also important to note that every athlete reached 96% of his maximum velocity 

by the 21-meter mark. Based on this information, the authors came to two major conclusions. 

First, the investigators suggest that the differences in sprint characteristics at 3-meters, 9-meters, 

and 15-meters serve to characterize these zones as the early-, mid-, and late phases of 

acceleration, respectively. Additionally, these results also indicate that the rugby athletes 

afforded greater sprint velocities by gradually increasing SL, maintaining near maximal SF, and 

rapidly reducing GCT, particularly in the mid- and late-acceleration zones. These results bear a 

striking resemblance to those displayed in Figure 2.1. Accordingly, it can be postulated that field 
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sport athletes likely display similar spatiotemporal trends during these segments in comparison to 

track and field athletes.   

 The potential underlying mechanisms that may explain this similarity may have been 

described by both Murphy et al. (2003) and Mann (2013). Particularly, one of the key kinematic 

differences between fast and slow field sport athletes as described by Murphy and colleagues 

(2003) was that faster sprinters did not display full knee extension prior to the foot leaving the 

ground at the end of each step. This characteristic is also supported by Mann (2013) in elite level 

sprinters. Combining this information with the fact that faster sprinters display greater horizontal 

velocity of the COM (Slawinski et al., 2010), it can be hypothesized that these superior velocities 

may not allow full extension of the trail leg prior to toe-off. Theoretically, this may lead to 

abbreviated GCT and an earlier initiation of stride recovery, or “swing time”, in preparation for 

subsequent steps. It is important to note, however, that swing time does not seem to differ greatly 

between fast and slow sprinters (Weyand, Sternlight, Bellizzi, & Wright, 2000). In other words, 

fast and slow sprinters reposition their legs at similar rates between strides. Although sprinters of 

different capabilities display similar swing times, the mechanical positions achieved during flight 

time are quite different between these groups. Specifically, faster sprinters typically exhibit 

greater peak hip flexion during stride recovery prior to striking the ground during the next step 

(Clark & Weyand, 2014; Mann, 2013). Taking this into consideration, faster sprinters are likely 

to find themselves in a more advantageous position to “attack” the ground (DeWeese, Sams, et 

al., 2015) and make contact in closer proximity to their COM, a key component in achieving 

high propulsive GRF (Mann, 2013; Mero, Komi, & Gregor, 1992). Ultimately, these high GRF 

are the means by which faster athletes achieve greater sprint velocities (Clark & Weyand, 2014; 

Hunter et al., 2005; Kawamori, Nosaka, & Newton, 2013; Weyand et al., 2000). Therefore, 
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differences in sprint kinematics may not necessarily be the key factor separating fast and slow 

sprinters. Contrary to this notion, these differences are likely a reflection of the athlete’s ability 

to apply high forces over the brief GCT inherent to sprinting. 

 

Acceleration Kinetics 

 As mentioned in previous sections, movement patterns are governed by both kinematic 

and kinetic parameters (Jaric et al., 1989). Rather than viewing these factors as separate entities, 

it is important to understand that each plays a key role in producing coordinated movement. 

Keeping this concept in mind, differences in motor patterns are not just a reflection of 

biomechanical dissimilarities, but also a disparity in an individual’s ability to produce force. 

When considered within the context of sprinting, differences in sprint mechanics are likely 

underpinned by an athlete’s kinetic profile (DeWeese, Sams, et al., 2015; Morin et al., 2012; 

Rahmani et al., 2004). Specifically, strength-power variables such as impulse (IP), PF, and RFD 

directly influence an athlete’s sprint mechanics by altering their ability to produce high GRF 

(Clark & Weyand, 2014; Hunter et al., 2005; Kawamori et al., 2013; Morin et al., 2012; Taber et 

al., 2016). This is significant because sprint velocity is ultimately limited by the amount of force 

an athlete can apply to the ground relative to their body mass (DeWeese, Sams, et al., 2015; 

Weyand et al., 2000).  

 This importance of GRF to sprint performance was clearly demonstrated in a 

foundational study by Weyand et al. (2000), who demonstrated the key differentiating factor 

between “fast” and “slow” runners was not the ability to rapidly reposition the legs between 

steps, but rather the ability produce higher GRF. This study pinpoints the ability to produce force 

as the limiting factor in sprint performance. Considering the importance of these findings, one 
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must also consider the underlying mechanisms contributing to the development of high GRF, 

particularly IP. IP can be described as the product of force and time (Taber et al., 2016). 

Specifically, IP describes the magnitude of force exerted over a given time period, such as the 

force delivered to the ground during the stance phase of sprinting. Essentially, greater levels of 

IP lead to higher GRF, which ultimately lead to greater sprint velocities.   

 This concept has been clearly shown in a number of studies in field sport athletes (Lockie 

et al., 2011; Lockie, Murphy, Schultz, Jeffriess, & Callaghan, 2013). Additionally, these studies 

not only support this notion, but also show the importance of generating large IP during the early 

(0-6 meters), mid- (6-12 meters), and late-acceleration (12-18 meters) periods, as proposed by 

Barr et al. (2013). For example, a study by Lockie et al. (2013) found moderate correlations 

between SL and vertical IP during in the first two steps of a 10-meter sprint. This is significant 

because SL also showed moderate correlations with sprint velocity during the first 5-meters of 

the sprint, thus showing the importance of generating high forces during the early acceleration 

period. With respect to the mid-acceleration period, Kawamori and colleagues (2013) examined 

the relationship between IP generated at the 8-meter mark during a 10-meter sprint in team sport 

athletes. The conclusions of this study revealed that the IP generated at this distance was also 

significantly correlated with 10-meter time. In addition, Hunter et al. (2005) found that field 

sport athletes displaying higher levels of propulsive IP relative to body mass reached faster sprint 

velocities at the 16-meters, thus confirming the significance of generating high forces in the late-

acceleration period as well. Although the distances for each acceleration zone are different for 

track and field athletes, a number of studies also support the importance of developing high GRF 

to reach greater sprint velocities within this population as well (Clark & Weyand, 2014; Morin et 

al., 2012; Rabita et al., 2015). Despite the practical value of this information, it is important to 
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remember that faster athletes also display shorter GCT in comparison to their slower 

counterparts as well (Lockie et al., 2011; Mackala et al., 2015; Murphy et al., 2003; Weyand, 

Sandell, Prime, & Bundle, 2010).  

 When considered together, these differentiating factors reveal that faster sprinters achieve 

greater sprint velocities applying higher GRF at a faster rate than slower athletes. Stated 

differently, since faster athletes display shorter GCT, they have to develop force at a higher 

frequency to achieve the superior GRF underpinning greater sprint velocities. This conclusion 

was originally shown in another foundational study by Weyand et al. (2010), who found that the 

stance phase of sprinting is limited by the time over which forces can be applied, not the 

maximal forces applied to the ground. These findings were further supported in a recent study by 

Clark and Weyand (2014), who found that sprinters reached greater sprint velocities than non-

sprinters by applying greater vertical forces during the first half of the stance phase. In fact, the 

authors described the force-time curve of the sprinters during ground contact as “biphasic” due to 

the rapid rise and early peak in force production. These athletes also displayed shorter contact 

times at sprint speeds of 3, 4, 5, 6, 7, and 8.1 meters per second. Lastly, similar results were also 

described by Morin and colleagues (2012), who determined that the primary mechanical 

determinant of a 100-meter sprinter is a “velocity-oriented” force-velocity profile. Stated 

differently, faster sprinters in the 100-meter event are those that express higher RFD during 

ground contact. Collectively, these findings support the notion of Stone et al. (2002) who suggest 

that RFD is perhaps “the most central factor to sport success”.   

 While some may argue that P is the primary determinant of sport success (D. Baker, 

2001a, 2001b; Bevan et al., 2010; Hawley, Williams, Vickovic, & Handcock, 1992), Taber and 

colleagues (2016) argue that RFD can be considered an underpinning mechanism of P (Figure 
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2.2). Specifically, greater RFD during a given time period leads to a greater IP, which is 

equivalent to momentum (M). Considering both of these variables contain the constituent 

components of P, RFD can be considered an underlying factor in determining the outcome of this 

variable. Therefore, regardless of terminology, it can be effectively stated that maximizing RFD 

is a primary objective with respect to enhancing sprint speed. 

 

Figure 2.2 The relationship between impulse, momentum, and power 

 

Physiological Underpinnings of Sprint Acceleration 

 With the fundamental understanding that speed is built upon strength characteristics, it 

becomes clear that the successful integration of these two entities is a primary objective in the 

training process.  If this objective is met, the athlete has a strong chance of maximizing their 

performance capabilities at the appropriate time of the competitive season. If these qualities are 

not managed appropriately, the athlete may not realize the same level of preparedness prior to 

critical competitive events (DeWeese, Hornsby, Stone, & Stone, 2015b). Furthermore, in order to 

synergize strength and speed, practitioners must be able to harmonize a milieu of physiological 

and neurological adaptations. As previously mentioned in chapter 1, DeWeese and colleagues 

(2014a, 2014b) have proposed the use of SSI to fulfill this objective by merging the tenants of 

S2L, BP, and CSS. By creatively and strategically integrating these paradigms, the athlete may 

better realize critical performance qualities, such as RFD, at desired times of the training year.  
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The Short-to-Long Approach 

 Originally coined by the late Charlie Francis (1992), the S2L is a speed development 

methodology built upon the premise that faster top-end speeds are achieved by enhancing sprint 

acceleration. Theoretically, if an athlete can accelerate for a greater distance, they will likely 

reach greater sprint velocities, thus potentiating their top-end speed (Ross et al., 2001). In order 

to achieve this objective, coaches implementing this model prescribe shorter sprints at the 

beginning of the training year and progressively extend the distance of these efforts over time. 

From a training perspective, this structure is complimentary to BP, as the strength associates 

underpinning sprint acceleration and maximum velocity are developed in the same fashion 

within this paradigm. For example, acceleration has been related to an athlete’s maximal strength 

levels and RFD in multiple studies (Bret et al., 2002; Comfort et al., 2012; Cunningham et al., 

2013; Sleivert & Taingahue, 2004; Thomas et al., 2015), while maximum velocity has been more 

closely associated with RFD and stretch-shortening cycle (SSC) function (Mann, 2013; Morin et 

al., 2012; Sha, 2014; W. Young et al., 1995). With respect to the individual phases of 

acceleration, the author is unaware of any studies that have investigated the strength-power 

variables that govern each zone. With that said, a detailed examination of the adaptations 

garnered using BP may further elucidate the relevant kinetic qualities during the initial, mid-, and 

late-acceleration zones. However, before these adaptations can be viewed within the context of 

sprint acceleration, it is necessary to first understand the basic tenants of BP.   

Block Periodization, Conjugate Sequential Sequencing, and Phase Potentiation 

 BP has been defined as “the logical, phasic method of manipulating training variables in 

order to increase the potential for achieving specific performance goals” (Stone, Stone, & Sands, 

2007). The overall goals of this framework are to effectively manage fatigue and maximize 
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important performance qualities, such as RFD and PP, at critical times of the training year. 

Essentially, BP can be thought of as a “blueprint” that outlines the development of fitness phases 

over a particular timeline. Programming, on the other hand, refers to the strategies used within 

this structure (e.g. – sets and reps) to elicit a desired response (Stone, Stone, & Sands, 2007). It is 

important to distinguish the difference between these two terms, as they each serve different 

purposes in the training process.  

 Traditionally, BP has been structured into periods of “accumulation”, “transmutation”, 

and “realization” (Bompa & Haff, 2009; DeWeese, Hornsby, et al., 2015b; Issurin, 2008; Stone, 

Stone, & Sands 2007). While there is often overlap between these phases and the fitness 

characteristics inherent to each of them, these periods typically coincide with the development of 

strength endurance (SE), maximal strength (MS), and RFD, respectively (DeWeese, Hornsby, et 

al., 2015b; Harris, 2000; Painter et al., 2012; Stone, Stone, & Sands, 2007). A number of studies 

have shown that sequencing fitness characteristics in this fashion is an effective method of 

maximizing P (Harris, 2000; Painter et al., 2012; Zamparo, Minetti, & di Prampero, 2002). This 

is significant because athletes who express greater P, and subsequently RFD, are likely to 

achieve greater sport success (Baker, Nance, S., 1999; Haff & Stone, 2015; Stone, Moir, 

Glaister, Sanders, 2002). This sequence is likely successful due to the different rates of decay of 

each fitness characteristic, as the adaptations from the accumulation and transmutation phase 

display a longer half-life than those in the realization phase (Issurin, 2008). Consequently, 

residual training effects from these phases likely serve to enhance or “potentiate” the adaptations 

in the subsequent training periods, which is referred to as “phase potentiation” (Bompa & Haff, 

2009; DeWeese, 2015; DeWeese, Sams, et al., 2015; Issurin, 2008; Stone, Stone, & Sands, 
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2007). Despite the value of this model, there are still key limitations that need to be considered 

over the course of the training year.  

 Most notably, there has been an exponential increase in the number of competitions per 

training year in recent decades, which has inherently diminished the time an athlete can dedicate 

towards training (Issurin, 2008). This decrement in training time will likely compromise the 

stability of the physiological adaptations garnered during the accumulation and transmutation 

periods (Issurin, 2008; Stone, Stone, & Sands, 2007). Consequently, the athlete is susceptible to 

physiological involution during the competitive period, as the adaptations from the previous 

training phases erode prior to reaching peak performance (Bompa & Haff, 2009; Issurin, 2008; 

Stone, Stone, & Sands, 2007). From a physiological standpoint, this is likely due to prolonged 

reductions in resistance training volume, which can result in diminished muscle cross-sectional 

area (CSA) and subsequent decrements in RFD and P (Stone, O'Bryant, Schilling, & Johnson, 

1999; Stone, Stone, & Sands, 2007). To avoid this pitfall, a variety of programming tactics have 

been adopted into modern day BP to attenuate this decay in fitness and preserve phase 

potentiation. Often referred to as CSS, these strategies primarily include utilizing concentrated 

loads, retention loads, and functional overreaching (Bompa & Haff, 2009; DeWeese, Hornsby, 

Stone, & Stone, 2015a; DeWeese, Hornsby, et al., 2015b; DeWeese, Sams, et al., 2015).  

 Concentrated loads are defined as brief periods of time in which a specific fitness 

characteristic is emphasized (DeWeese, Sams, et al., 2015; Stone et al., 1999; Stone, Stone, & 

Sands, 2007). This loading scheme is generally implemented for periods of approximately 4 to 8 

weeks (DeWeese, Hornsby, et al., 2015b; Stone et al., 1999; Stone, Stone, & Sands, 2007). Each 

week within this time period is typically referred to as a “microcycle”, while the whole time 

interval is referred to as a “mesocycle” or “block” (DeWeese, Hornsby, et al., 2015b; Issurin, 
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2010). When successive microcycles are linked together, they are commonly called “summated 

microcycles” (DeWeese, Hornsby, et al., 2015a, 2015b; Stone, Stone, & Sands, 2007). These are 

important concepts with respect to accumulating fitness characteristics, as summated 

microcycles are utilized to apply a concentrated load over the course of a block to facilitate a 

desired training response. Similar to summated microcycles, summated blocks of concentrated 

loads have shown been shown to provide superior training adaptations in comparison to the 

traditional, multi-directional loading scheme (Verkhoshansky, 1985). When combined with 

proper sequencing of fitness characteristics, the summated effects of concentrated loads may 

further bolster phase potentiation (DeWeese, Hornsby, et al., 2015b; Verkhoshansky, 1985). 

With respect to short-term adaptation, brief periods of marked increases in training volume or 

intensity, or “functional overreaching”, can also be used to facilitate a delayed training effect in 

the subsequent 2 to 5 week period (Stone et al., 1991b). Stated differently, the functional 

overreach likely provides a short-term potentiation effect following a period of adequate 

restitution. Even more important, however, this strategy can be used to re-establish fitness 

characteristics from previous training blocks, thus deterring training involution and “bleeding” 

the adaptations from one training phase into the next (Bompa & Haff, 2009).  

 While the combination of CSS and BP pave the road to phase potentiation, improvements 

in performance are ultimately driven by a defined sequence of training adaptations. 

Verkhoshansky (1985) defines this sequence as “relatively predictable” and further explains that 

individual variation from this structure is more “quantitative” than “qualitative”. In other words, 

the adaptations experienced during the accumulation, transmutation, and realization periods are 

fairly consistent from one person to the next. Therefore, understanding of how the interplay 
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between these adaptations impacts performance is paramount in successfully integrating BP with 

S2L.   

Integrating the Short-to-Long Model within Block Periodization: The Accumulation Phase 

 As previously stated, BP is generally composed of 3 phases: accumulation, transmutation, 

and realization. The accumulation stage typically consists of higher training volumes at lower 

intensities and is often implemented during the general preparatory period (GPP) (Bompa & 

Haff, 2009; Issurin, 2008). The primary objectives of this training phase are to increase work 

capacity, improve body composition, and increase CSA (DeWeese, Hornsby, et al., 2015b; 

Issurin, 2008; Zatsiorsky & Kraemer, 2006). Enhancing work capacity and body composition 

may better prepare the athlete to handle more rigorous training intensities in subsequent training 

phases. From a physiological standpoint, these objectives likely result from a shift in the myosin 

heavy chains towards the type IIa phenotype (Adams, Hather, Baldwin, & Dudley, 1993) and 

greater mobilization of free fatty acids in the post-training period, which is likely catalyzed by 

increased serum levels of growth hormone, insulin-like growth factor-1, and testosterone 

(Kraemer, 1992a; Kraemer et al., 1990). Similarly, the increases in CSA may also prepare the 

athlete to handle higher training intensities, as the CSA of a muscle fiber has been directly 

related to the magnitude of force it can produce (Cormie, McGuigan, & Newton, 2011). This 

morphological adaptation ultimately results from increased protein synthesis, which may be 

attributed to a rise in the muscular tension, damage, and metabolic stress associated with 

resistance training (Allen, Roy, & Edgerton, 1999; Goldspink, 1999; Schoenfeld, Aragon, & 

Krieger, 2013; Zanchi & Lancha, 2008). Additionally, increases in hypertrophy are commonly 

accompanied by important architectural changes to the muscle such as greater angles of 

pennation (Kawakami, Abe, & Fukunaga, 1993; Kawakami, Muraoka, Kubo, Suzuki, & 
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Fukunaga, 2000). This structural alteration likely results from the addition of sarcomeres in 

parallel alignment (Goldspink, 1999). This is significant from the perspective of muscle function 

in that this alignment has been show to increase the muscle’s ability to produce force (Goldspink, 

1999). With that said, increased force production is likely catalyzed by alterations to the central 

nervous system (CNS), as these adaptations appear to precede morphological alterations 

(Moritani & deVries, 1979; Seynnes, de Boer, & Narici, 2007; Siff, 2009).  

 Prior to discussing the neurological adaptations associated with the accumulation phase, 

it is important to understand how training volume impacts neurological function. Regardless of 

the type of training (e.g. – resistance training, sport activity, etc.), both acute and chronically 

elevated workloads may lead to an accumulation of neuromuscular fatigue and subsequent 

decrements in performance (Barker et al., 1990; Flanagan et al., 2012; Fry, 1998; Kuipers, 1996; 

Marshall, McEwen, & Robbins, 2011; Smith, 2000). This is not to say that periods of higher 

training volumes are unnecessary, as greater workloads are required to foster the muscular 

adaptations previously discussed. However, if the associated fatigue is not effectively managed, 

high training loads may lead to diminished RFD (Flanagan et al., 2012; Marshall et al., 2011) 

and decreased motor control (Barker et al., 1990), both of which are primarily governed by the 

CNS (Stone, Stone, & Sands, 2007).  

 While the precise mechanisms of CNS fatigue remain inconclusive, performance 

decrements may be attributed to a variety of causes including decreases in resting membrane 

potential (Gardiner, 1991), sarcolemma conductance (Ross et al., 2001), dendritic branching 

(Chen et al., 2009), soma size (Gardiner, Dai, & Heckman, 2006), size of the neuromuscular 

junction (Deschenes et al., 2000), neurotransmitter and receptor concentrations (Gardiner et al., 

2006), and axon diameter (Gardiner et al., 2006). There is also evidence suggesting that higher 



	  
	  
	  

53	  

training volumes may lead to excessive cortical activity, which may possibly accumulate greater 

levels of fatigue and decrease P (Flanagan et al., 2012). Although these maladaptations are 

contradictory to the end goal of maximizing RFD, the high-volumes of training during the 

accumulation phase are implemented long before the competitive season. Therefore, these 

decrements in neurological capabilities are not the primary concern during this time of the 

training year.  

 One may argue that this rationale is similar to those endorsing a Long-to-Short (L2S) 

approach, where longer sprint distances are used to accumulate greater work capacity early in the 

training year (DeWeese, Sams, et al., 2015). Despite these similarities, the increased work 

capacity developed in the S2L model is quite different from that of the L2S, as the means to 

acquire this fitness characteristic are completely separate. Although training loads are high in 

both methodologies, the SE in the S2L is developed using higher volumes of resistance training, 

whereas the L2S typically develops this quality by increasing sprint distances. Consequently, the 

physiological ramifications of each training tactic could not be more different from the other. For 

example, the resistance training used to develop work capacity in the S2L is typically performed 

at a level of intensity that upregulates protein synthesis, primarily through the mTOR pathway 

(Egerman & Glass, 2014). These physiological events lead to increased muscle CSA, thus 

creating a foundation for improved MS and RFD (Stone, Stone, & Sands, 2007; Zamparo et al., 

2002). In contrast to this sequence of events, increased training volume with longer sprint 

distances will likely have a different physiological impact (Ross & Leveritt, 2001). Rather than 

up-regulating the mTOR pathway, longer sprints will likely decrease the ATP-to-ADP ratio, thus 

increasing the activation of the AMPk pathway (Nader, 2006). Not only is this mechanism 

antagonistic to mTOR signaling, but it can also lead to muscle atrophy by activating E3 ligases, 
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such as MuRF-1, and FOXO proteins (Egerman & Glass, 2014; Lecker, Goldberg, & Mitch, 

2006). These agents play key roles in facilitating the Ubiquitin-Proteasome pathway, which is a 

primary source of protein degradation (Lecker et al., 2006). Furthermore, recent literature has 

also suggested that hypertrophy is non-uniform and highly specific to motor unit activation 

(Wakahara, Fukutani, Kawakami, & Yanai, 2013). In other words, high-volumes of work at low-

intensities will likely recruit lower-threshold motor-units (Henneman, Somjen, & Carpenter, 

1965), thus causing hypertrophy of type I fibers (Meijer et al., 2015) and potentially shifting the 

myosin heavy chains of type II fibers towards the type I phenotype (Ross & Leveritt, 2001). It 

has also been hypothesized that the presence of more type I fibers may cause a “dampening 

effect” on the contractile velocity of type II fibers as well (Bosco et al., 1982).  

 Subsequently, although high volumes of resistance training will likely inhibit the nervous 

system’s ability to produce high RFD, the work capacity and hypertrophy of type II fibers 

garnered within this time period are essential to potentiating the athlete’s MS development in 

future blocks (Minetti, 2002; Zamparo et al., 2002). As Stone and colleagues (2007) remind us, 

MS is the fitness quality underpinning superior gains in RFD and PP in future training phases. 

When viewed from this perspective, the accumulation phase can be thought of as a “down 

payment” on future increases in these critical performance variables. With respect to sprinting, 

however, this adaptive process should not adversely effect the development of acceleration, as 

this skill seems to follow a predictable set of sequenced events. 

 More specifically, it has been suggested that an early adaptation to sprint training is 

acquiring a greater anterior lean of the torso, particularly during the first two steps of 

acceleration (Spinks et al., 2007). As Kugler and Janshen (2010) remind us, an increased 

inclination of the torso is critical because it puts the athlete in an advantageous position to deliver 
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higher propulsive GRF. Fortunately, several investigations have suggested that sled towing may 

be a useful training tactic to develop this particular quality (Letzelter, Sauerwein, & Burger, 

1995; Lockie et al., 2003; Spinks et al., 2007). Most notably, a study by Spinks and colleagues 

(2007) found an 8-week sled-towing program to facilitate greater lean of the torso in the early 

acceleration zone in field sport athletes. In addition to these findings, Letzelter (1995) and 

Lockie (2003) have also suggested that the increases in trunk lean may be influenced by 

increases in sled towing resistance. While an in increase in GCT with greater external loads is 

likely, this may actually benefit the athlete by providing a longer period of time to produce force, 

thus compensating for the diminished RFD from higher volumes of resistance training. 

Additionally, the resulting increases in CSA and angles of pennation from those higher 

workloads may also facilitate an improved ability to handle the greater loads required to reach a 

steeper anterior lean of the torso.  

 Similar to sled towing, incline sprinting may also be a valuable method in improving 

sprint acceleration during the accumulation phase, as this training modality may also minimize 

the deleterious effects from high volume loads. For example, Gottschall and Kram (2005) 

showed that incline running on an angle of 9 degrees displayed statistically lower impact loading 

rates upon ground contact and statistically greater propulsive GRF in comparison to running on a 

level surface. This trend was also evident at 3 and 6 degrees as well, but at smaller magnitudes as 

the surface approached 0 degrees. The authors note that the decrease in impact loading rates was 

likely attributed to decreased landing velocity of the foot, as the distance between the 

participants’ feet and the ground was shorter at greater inclines. In other words, the participants 

did not have to absorb the same high loading rates experienced in flat-ground sprinting, 

potentially reducing the role of RFD during the stance phase while running uphill. Gottschall and 
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Kram (2005) also hypothesized that this abbreviated footfall necessitated an increase in leg 

stiffness to maintain propulsive GRF. While these methods may enhance the athlete’s sprint 

capabilities during the early acceleration period, developing increased leg stiffness may also 

serve as a means to produce higher RFD in subsequent training phases as the sprint distances are 

lengthened. 

  Although these adaptations are best suited to develop the early acceleration phase, it may 

also be beneficial to briefly introduce the athlete to the mid- and late-acceleration zones as well. 

Conceptually, this strategy is similar to CSS in that multiple training components are addressed 

simultaneously, but with varying degrees of emphasis. For example, the concentrated load for a 

particular block would represent the primary stimulus, while less significant points of emphasis 

may serve as secondary and tertiary stimuli, respectively. When put in the context of speed 

development, this concept is often referred to as “vertical integration” (Francis, 1992) and may 

assist in the proper sequencing of acceleration development. For example, early acceleration can 

be made the primary point of emphasis by implementing a concentrated load specific to this 

objective. Although they are not as emphasized, the mid- and late-acceleration zones can also be 

addressed to a lesser extent as secondary and tertiary objectives within this timeframe as well 

(Figure 2.3). When combined, BP, CSS, and vertical integration may provide an avenue to 

simultaneously potentiate both speed and strength characteristics from one training phase to the 

next.  
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* = Concentrated Load 

Figure 2.3 Acceleration development during the accumulation phase 

Integrating the Short-to-Long Model within Block Periodization: The Transmutation Phase 

  Following the accumulation phase, the focus of training transitions towards enhancing 

MS during the transmutation period. This purpose is often achieved by decreasing resistance 

training volume and increasing intensity (Harris, 2000; Hornsby, 2013; Painter et al., 2012). This 

shift typically occurs during the transition from the GPP to the specific preparatory period (SPP) 

(Bompa & Haff, 2009). As previously mentioned, an athlete’s MS is the foundation upon which 

RFD and P are built (Andersen & Aagaard, 2006; Cormie et al., 2011; Stone, Stone, & Sands, 

2007; Taber et al., 2016). As such, the significance of this training period cannot be overstated. 

Unlike the accumulation phase, the adaptations fueling further increases in MS are likely both 

physiological and neurological in nature.  
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 In particular, the decrease in training volume coupled with increased intensity will likely 

cause a shift in the myosin heavy chains towards the type IIx phenotype (Ross & Leveritt, 2001). 

This change is crucial for three reasons. First, with more fibers transitioning towards the type IIx 

phenotype, the athlete will likely increase their type II to I fiber ratio (Hakkinen et al., 1998). 

Secondly, the fibers shifting in this direction may undergo further increases in CSA with higher 

training intensities (Froböse, Verdonck, Duesberg, & Mucha, 1993). Finally, the hypertrophy of 

these fast-contracting fibers will likely be accompanied by further increases in muscle angles of 

pennation (Goldspink, 1999). With these three morphological adaptations occurring in concert, 

the athlete will likely posses the means to adapt to greater training loads, which are vital to 

further developing the nervous system in the realization phase. While these structural changes 

are important, they can also be perceived as a reflection of enhanced neurological function as 

muscle fibers have been shown to adopt the characteristics of the motor neuron by which they 

are innervated (Buller, Eccles, & Eccles, 1960; Gardiner, 1991; Salmons & Vrbova, 1969). In a 

sense, the muscle fibers can be seen as a “slave to the nervous system”.  

 Keeping this in mind, the neurological status of the athlete will likely begin to show 

progressive improvements, as the accumulated fatigue from the previous phase will likely begin 

to dissipate with the removal of high training volumes (Stone, Stone, & Sands, 2007). These 

improvements are in accordance with the fitness-fatigue paradigm, which states that the athlete’s 

preparedness is defined as the summation of fitness and fatigue resulting from training 

(Zatsiorsky & Kraemer, 2006). If the accumulated fatigue from the previous training period was 

sufficiently managed, residual training effects may yield improvements in performance such as 

enhanced RFD (Hornsby, 2013; Painter et al., 2012) and P (Harris, 2000; Hornsby, 2013). 

Additionally, the higher training intensities implemented in this time period may also lead to 
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greater recruitment of high threshold motor units (HTMU) (Henneman et al., 1965) and 

increased rate coding (Aagaard, Simonsen, Andersen, Magnusson, & Dyhre-Poulsen, 2002), 

otherwise known as “neural drive”.  

 From a mechanistic perspective, it has been suggested that higher training intensities may 

decrease the sensitivity of type Ib afferents, which may decrease neural inhibition (Aagaard, 

2003). Additionally, greater training intensities may also decrease motor unit recruitment 

thresholds, particularly in high-threshold motor units (HTMU) (Desmedt & Godaux, 1977). This 

is very important from the perspective of enhancing RFD in that HTMU’s display faster 

conduction velocity in comparison to their lower-threshold counterparts (Duchateau, Semmler, & 

Enoka, 2006). Furthermore, enhanced rate coding likely increases the frequency at which those 

HTMU’s are activated (Aagaard, 2003). In other words, higher training intensities are not only 

likely to recruit a greater number of HTMU’s, but these motor units may also be activated at a 

higher frequency. While the mechanisms responsible for improved rate coding remain unclear, 

the potential sources contributing to these adaptations may include increases in resting 

membrane potential (Gardiner, 1991), dendritic branching (Gardiner et al., 2006), soma size 

(Gardiner et al., 2006), size of the neuromuscular junction (Deschenes et al., 2000), 

neurotransmitter and receptor concentrations (Gardiner et al., 2006), and axon diameter 

(Gardiner et al., 2006). Despite the fact that maximizing RFD is not the primary purpose of this 

training phase, these neurological adaptations likely catalyze the development MS (Moritani & 

deVries, 1979; Seynnes et al., 2007; Siff, 2009), thus enhancing the athlete’s ability to produce 

higher rates of force as well. This may better prepare the athlete to maximize this quality during 

the final phase of training and potentiate the adaptations in the subsequent blocks. Moreover, 
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enhancing the athlete’s ability to produce high rates of force may translate to greater sprinting 

ability, likely occurring through decreases in GCT (Morin et al., 2012). 

 While the earliest adaptation to sprint training appears to be attaining a steeper anterior 

lean of the torso, the ability to minimize GCT appears to be a secondary adaptation (Barr, 2014; 

Murphy et al., 2003). In fact, shorter contact times may be a residual benefit from achieving a 

greater forward lean of the trunk during early acceleration. When revisiting the results of Spinks 

et al. (2007), an important finding to note is that although the athletes who participated in sled 

towing showed the largest improvements in anterior lean of the trunk, another group that took 

part in non-resisted sprint training also showed improvements in this quality as well, but to a 

lesser extent. These findings reinforce the notion proposed by Lockie et al. (2003) and Letzelter 

(1995) that the degree of trunk inclination achieved by an athlete may be related to the level of 

resistance applied while sprinting. When these results are considered in conjunction with that of 

Barr et al. (2013) and Murphy et al. (2003), it can be argued that as an athlete acquires a steeper 

trunk angle, they may realize a more advantageous position from which they can express force. 

If these positions are accompanied by progressive increases in RFD, the athlete may be able to 

develop greater propulsive GRF over shorter GCT (Morin et al., 2012).  

 This notion was clearly evident in the findings previously discussed by Morin and 

colleagues (2012). Recall that the investigators found a “velocity-oriented” kinetic profile to be a 

key mechanical determinant in 100-meter sprint performance. The authors elaborated that this 

characteristic likely accounted for greater “resultant GRF vectors with a forward orientation”. 

Perhaps the most important finding, however, was higher SF was likely the result of abbreviated 

GCT. Stated differently, the expression of higher RFD may allow the athlete to generate greater 

propulsive GRF over shorter GCT, essentially forcing the athlete to express greater SF. This may 
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also explain why faster sprinters often display abbreviated knee extension prior to toe-off, as 

Mann (2013) and Murphy et al. (2003) have previously described. Ultimately, when combined 

with a steeper trunk angle developed in the accumulation phase, the increases in RFD during the 

transmutation period may allow the athlete to “capitalize” on this training effect by producing 

higher propulsive GRF in a positive direction over abbreviated GCT. Similar to previous training 

blocks, the speed development strategies implemented in the transmutation stage should mirror 

the physiological status of the athlete.   

 While the tactics utilized during the accumulation phase seem most relevant to early 

acceleration, the adaptations during the transmutation period may provide the appropriate 

resources to segue into the mid-acceleration zone. As described by Barr et al. (2013), the 

increases in SV within this period are realized by: maximizing SF, decreasing GCT, and steadily 

increasing SL. When comparing these sprint characteristics to those seen in the early acceleration 

phase, the differences appear to be more quantitative than qualitative, as similar trends were 

described by Murphy and colleagues (2003) during the first three steps of acceleration. 

Therefore, similar speed development methods from the previous training phase may also be 

appropriate to incorporate at further sprint distances. However, additional adjustments to these 

methods may increase task specificity during this training period, as the SV in the mid-

acceleration zone is likely higher than in early-acceleration (Barr et al., 2013). Therefore, 

decreasing sled towing resistance and using subtle inclines when sprinting uphill may be 

worthwhile considerations when addressing the mid-acceleration phase. Furthermore, these 

methods may be used to provide a concentrated load to emphasize this quality (Figure 2.4). 

While heavier sled towing loads and steeper inclines should be de-emphasized in this training 

phase, they may still be valuable in retaining the previously developed adaptations. Finally, 
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further exposure to the late acceleration zone may also benefit the athlete by introducing the 

primary training stimuli in subsequent training phase (DeWeese et al. 2015). Again, exploiting 

the concepts of BP, CSS, and vertical integration may further potentiate future adaptations 

during the realization phase. 

 

* = Concentrated Load 

Figure 2.4 Acceleration development during the transmutation phase 

Integrating the Short-to-Long Model within Block Periodization: The Realization Phase 

The realization phase of BP is carried out during the competitive period (CP), where the primary 

objective is to maximize P, and subsequently RFD, prior to important competitive events 

(Issurin, 2008; Zatsiorsky & Kraemer, 2006). This purpose may be achieved by further 

increasing training intensity while simultaneously decreasing training volume (Harris, 2000; 

Hornsby, 2013; Painter et al., 2012). This is a critical task, as excessive training volumes will 

likely accumulate additional fatigue, which has been shown to severely hinder RFD (Barker et 
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al., 1990; Flanagan et al., 2012; Marshall et al., 2011; Stone, Stone, & Sands, 2007). 

Accordingly, providing the athlete with a “minimum effective dose” of high intensity training is 

likely the best approach to heighten this fitness characteristic. For instance, prescribing low 

doses of high-load and low-velocity (HL) exercises, such as a back squat at >90% 1RM (Haff & 

Stone, 2015), and low-load and high-velocity (HV) exercises, such as jump squat (Baker, Nance, 

S., 1999), may elicit this desired training response. Additionally, high-load and high-velocity 

lifts (HLV), such as a mid-thigh power clean and other weightlifting movements, may also serve 

as an effective tool to fulfill this purpose as well (Haff & Stone, 2015). A number of studies have 

indicated that combination training using both HL and HV exercises produce greater gains in 

RFD and P in comparison to one of these methods in isolation (Haff & Nimphius, 2012; Harris, 

2000; Painter et al., 2012; Stone et al., 1998). Theoretically, the combination of these methods 

allows the athlete to “saturate” the entire force-velocity curve, thus shifting both ends of this 

paradigm in a positive direction (Haff & Nimphius, 2012). Consequently, HL, HV, and HLV 

movements may be effective tools in developing superior RFD.  

 Similar to the transmutation period, additional reductions in training volume and 

increases in training intensity may facilitate morphological adaptations that can lead to greater 

PF, P, and RFD (Ross & Leveritt, 2001). Specifically, these training alterations will likely cause 

a shift in the myosin heavy chains further towards the type IIx phenotype (Ross & Leveritt, 

2001), increase type II fiber CSA (Froböse et al., 1993), and elevate the type II to type I muscle 

fiber ratio (Hakkinen et al., 1998). With that said, one must recall that these changes are likely 

preceded by neurological adaptations (Moritani & deVries, 1979; Seynnes et al., 2007; Siff, 

2009). This concept is evident when revisiting the findings of Desmedt and Godaux (1977) who 

showed that higher intensities of resistance training tend to decrease motor unit recruitment 
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thresholds. Even more important, however, is that the motor units with the highest thresholds 

showed the greatest decrease in recruitment threshold. Stated differently, HL exercises may serve 

to increase the activation of HTMU’s, which could initiate the morphological alterations of the 

fibers associated with that motor unit (Buller et al., 1960; Gardiner, 1991; Salmons & Vrbova, 

1969).    

 Despite the absence of higher resistance, HV exercises (e.g. – ballistic or explosive 

movements) may also play a key role in the activation of HTMU’s. Specifically, rapid muscle 

contractions activate HTMU’s earlier than slower contractions, and may also activate up to three 

times as many motor units in comparison to slower movements as well (Duchateau et al., 2006). 

Similar to HF exercises, HV movements seem to utilize more HTMU’s by decreasing the 

recruitment threshold with training (Zehr & Sale, 1994) and could be accompanied by similar 

physiological adaptations, such as increase CSA of type IIx fibers (Froböse et al., 1993). The 

architectural adaptations, however, appear to be different, as explosive exercises appear to 

increase the number of sarcomeres in series rather than parallel alignment (Nimphius, 

McGuigan, & Newton, 2012). This is significant from the perspective of increasing RFD because 

this alignment tends to favor muscle fiber shortening velocity rather than force production 

(Maganaris, 2001).  

 HLV exercises likely offer most of the adaptations provided by HF and HV movements 

(DeWeese et al., 2016 ). These exercises typically include weightlifting (WL) movements such 

as the jerk, snatch, clean, power clean, and hang power clean (Haff & Stone, 2015). While many 

coaches argue that the weightlifting movements require too much time to teach, a strong 

argument can be made that the training efficiency of these exercises far outweighs the time 

required to learn the movements (DeWeese et al., 2016 ). Considering the importance of 



	  
	  
	  

65	  

prescribing the minimal effective dose of exercise, using a single WL exercise to foster a desired 

training effect is likely the more efficient training decision in comparison to prescribing two 

separate exercises, as often seen in post-activation potentiation complexes. Adding an additional 

exercise may accumulate higher training volumes thus defeating the primary objective of the 

training phase. This is not to say that potentiation complexes are inappropriate training tools. In 

fact, when appropriately implemented, they have been shown to effectively increase P (Tillin & 

Bishop, 2009). When put in the scope of the primary objective, however, the use of WL 

movements appears to be the most efficient method in achieving maximal RFD during this phase 

of training. 

 Considering the brevity of the foot contacts during the later phases of sprinting, maximal 

RFD must be expressed in order to develop the high GRF inherent to greater SV (DeWeese, 

Sams, et al., 2015). As this fitness quality is developed, the athlete may be better equipped to 

handle the demands of the late-acceleration and maximum velocity phases of sprinting  (Mann, 

2013; Weyand et al., 2010). Accordingly, the primary objective with respect to speed 

development is to allow the athlete to realize these adaptations at a further sprint distances. A 

potential issue in attaining this goal is that the athlete has to accelerate through the early- and 

mid-acceleration zones to reach greater SV. While this may allow the athlete to retain 

performance adaptations from previous blocks, it may also limit a coach’s ability to adequately 

develop the final phase of acceleration, as this may quickly accumulate larger training volumes 

and neuromuscular fatigue. To address this issue, many coaches advocate drills that are 

intermittent in nature to develop the later phases of sprinting. For example, a drill commonly 

referred to as “ins and outs” requires the athlete to sprint maximally for a distance of 10-20 

meters for the “in” portion and slow down to a submaximal pace for 5-20 meters of the “out” 
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portion (Ross et al., 2001). This cycle is typically repeated 2-3 times per repetition. This 

structure is believed to afford the athlete with the opportunity to activate HTMU’s multiple times 

over the course of the drill and accumulate more training volume that is conducive to developing 

top-end speed (Ross et al., 2001). Theoretically, implementing these types of drills in 

combination with “full sprints” may provide a concentrated load specific to the late-acceleration 

and maximum velocity phases, as well as provide retaining loads for the previous acceleration 

periods as well.  

 In summary, by exploiting the fundamental concept that sprint speed is built upon 

strength-related qualities, the S2L model harmonizes an array training adaptations to develop 

peak sprint acceleration abilities at the appropriate times of the year (DeWeese, Sams, et al., 

2015). By using BP, CSS, and vertical integration, the seamless sequential integration model 

aligns the sequential development of RFD with the demands of each acceleration zone. Despite 

the potential value of this model to field sport athletes, the specific kinetic demands inherent to 

each phase of acceleration have yet to be elucidated. While maximizing RFD is a primary 

objective in the training process, elucidating which kinetic variables are most prominent in each 

portion of the sprints may provide valuable information with respect to integrating strength 

training and speed development. This information may lead to greater training specificity and an 

enhanced transfer of training effect, thus further improving sprint performance.   
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* = Concentrated load 

Figure 2.5 Acceleration development during the realization phase 
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CHAPTER 3 
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Abstract 
 
Purpose: The purpose of this study was to investigate if the acceleration phase of sprinting can 

be divided into early, mid, and late sub-sections in Division I male collegiate soccer players. 

Methods: Twenty-three athletes completed two maximal-effort 20m sprints from a standing start 

position through an optical measurement system. Sprint characteristics measured included sprint 

velocity (SV), step length (SL), step frequency (SF), ground contact time (GCT), and flight time 

(FT). Each characteristic was recorded at approximately 2.5, 6, and 12m. Sprint characteristics at 

each distance were compared using a one-way repeated measures ANOVA. Results: The results 

indicated that SV, SL, SF, and FT were statistically greater at 12m in comparison to 6m (p = 

0.000) and 2.5m (p = 0.000), while GCT was statistically shorter at 12m compared to 6m (p = 

0.000) and 2.5m (p = 0.000). Additionally, sprint characteristics at 6m also displayed the same 

relationships when compared to 2.5m, with SV, SL, SF, and FT being statistically greater (p = 

0.000) at this distance, and GCT being statistically shorter (p = 0.000) as well. Conclusions: 

Based on these differences, these results suggest that the acceleration phase may effectively be 

differentiated into early, mid, and late sub-sections within this athlete population. More 

precisely, these sub-sections appear to be congruent with distances of approximately 2.5, 6, and 

12m, respectively.  

 

Key Words: speed development, field sport athletes, training specificity 
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Introduction 
 
 Sprint acceleration is perhaps the most critical skill for field sport athletes (FSA) to 

attain. Due to the intermittent style of gameplay, these athletes are often prevented from reaching 

maximum sprint velocity during competition (20, 28, 34, 47). Instead, they are exposed to 

greater volumes of high-intensity sprints over short distances with frequent changes of direction 

(20, 28, 34). Based on this information, it should come as no surprise that higher-level FSA 

cover these short distances at greater speeds than their lower-level counterparts (10, 21, 23, 24). 

Despite the wide range of methods used to enhance sprint acceleration, typical modalities often 

include resistance training, resisted sprinting, plyometrics, and sprint drills (12, 14, 45). The 

majority of these tools aim to improve acceleration by utilizing the training principle of 

specificity (56).  

 More precisely, training methods such as resisted sprinting, plyometrics, and sprint drills 

are used to mimic sprint mechanics to foster a positive transfer of training effect. While there is 

research to support the efficacy of these modalities (12, 14, 31, 39, 45, 53, 55), task specificity 

may also be influenced by a number of important considerations including training volume and 

intensity. If these training variables are not appropriately managed, the training modality may not 

posses the same level of specificity, which may result in forfeiting a positive transfer of training 

effect. For example, multiple studies have investigated the optimal load for sled towing to 

improve sprint performance (9, 31, 35), as loads that are too light may not provide a sufficient 

overload, while excessive loads may compromise sprint technique. Other studies by Lockie et al. 

(39) and Spinks et al. (55) have investigated the effectiveness of resisted sprint training versus 

un-resisted sprint training. However, a critical detail, often overlooked, is the distance over 

which these training methods are performed. This is a crucial consideration in that acceleration 
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mechanics are dynamic in nature. That is, the biomechanics inherent to the acceleration phase 

undergo a progressive sequence of changes prior to reaching maximum sprint velocity (42, 49-

51).  

 This is likely reflected in sequential changes in key sprint metrics such as sprint velocity 

(SV), step length (SL), step frequency (SF), flight time (FT), ground contact time (GCT), and 

height of the center of gravity (COG) during the stance phase (4, 13, 40, 42, 51). It has even been 

suggested that the acceleration phase can be differentiated into multiple sub-sections based on 

these differences (4, 41, 42, 49-51). For example, Mann (42) has previously suggested that the 

acceleration phase can be divided into the “start” and the “transition” based on changes in an 

athlete’s SV.  In particular, Mann (42) has found sprinters to attain approximately 50% of their 

maximum velocity by the end of the start, which he characterized as steps 1-2. Additionally, 

sprinters also appear to attain approximately 80% of their top-end speed by the end of step 10, 

thus establishing the transition phase as steps 3-10 (42). In contrast to this framework, Nagahara 

et al. (49) identified early-, mid-, and late-acceleration based on the mean height of sprinters’ 

COG during the stance phase. Interestingly, Nagahara and colleagues (49) found these 

acceleration zones to coincide with steps 1-3, 5-15, and 16-28, respectively. Mackala and 

colleagues (41), on the other hand, characterized these sub-phases based on specific sprint 

distances rather than steps. These investigators identified “starting acceleration”, “main 

acceleration”, and the “third transition”, which is typically exclusive to elite sprint athletes, as 0-

12, 12-35, and 35-60m, respectively. However, it is difficult to apply these concepts to field sport 

populations because this information was derived from track and field athletes beginning each 

sprint effort from starting blocks. Therefore, it has been suggested that further exploration of the 
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acceleration phase be carried out over distances that are more specific to FSA (e.g. – 5-15m) (1, 

10). 

 Presently, a number of studies have investigated acceleration ability in FSA over these 

distances with respect to level of playing ability (10, 21, 23, 24, 29) and strength-related qualities 

(11, 43, 57, 59). Conversely, there is a paucity of research that has outlined the changes in sprint 

characteristics at these distances within a FSA population (4, 37, 38, 47). Most notably, a recent 

study by Barr and colleagues (4) examined key sprint characteristics (i.e. – SV, SL, SF, FT, and 

GCT) at a number of distances during 50m maximal-efforts in elite rugby players. The authors 

concluded that differences in these variables occurring at approximately 6, 12, and 18m suggest 

that these distances likely represent the early, mid, and late sub-phases of sprint acceleration. 

Although the results of Barr et al. (4) highlight the importance of acceleration ability up to 18m, 

the average sprint distances in other field sports, such as soccer, appear to be shorter (e.g. – 12-

15m) (2). In fact, Vigne and colleagues (58) reported that approximately 75% of sprints 

performed by elite Italian soccer players were at distances of ≤9m over the course of a match. 

Other studies have also indicated that the first three steps of acceleration may also play a critical 

role in determining acceleration ability in the latter half of this phase of sprinting in FSA (37, 

47). Due to these differences, the paradigm proposed by Barr et al. (58) cannot be assumed valid 

in a different population of FSA.  

 Therefore, further research needs to be conducted to clarify the distances that best 

characterize early-, mid-, and late-acceleration in other populations of FSA, particularly soccer 

players. Such information is critical for practitioners to facilitate	   greater	   training	   specificity,	  

and,	   subsequently,	   a	   superior	   transfer	   of	   training	   effect. Consequently, the purpose of this 

study is to investigate the differences in sprint metrics occurring at distances of approximately 
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2.5, 6, and 12m in a population of Division I men’s soccer players. The investigators hypothesize 

that SV, SL, SF, and FT will increase as the athlete progresses from one acceleration zone to the 

next. In contrast, the investigators also hypothesize that ground GCT will show the opposite 

trend by displaying higher values during early-acceleration, and progressively shorter contacts as 

the athletes attain greater SV during mid- and late-acceleration.  

 
METHODS 
 
Experimental Approach to the Problem 
 
 A repeated measures design was used to compare SV, SL, SF, GCT, and FT at steps 3, 6, 

and 9 during 20m maximal-effort sprints. All participants completed each sprint trial within the 

same session. These measurements were made as a part of an on-going athlete monitoring 

program. 

 
Participants 
 
 The athletes in this study included twenty-three Division I male collegiate soccer players 

(age = 20.7 ± 1.2 years, height = 179.38 ± 6.09cm, body mass = 76.4 ± 6.5kg). All athletes met 

the inclusion criteria of having at least one year of resistance training experience and two years 

of soccer experience. Additionally, each individual read and signed a written informed consent 

form prior to participating in any testing procedures. This study was approved by the East 

Tennessee State University Institutional Review Board.  

 

Testing Procedures 

 Prior to sprint testing, each athlete underwent a standardized warm-up consisting of light 

jogging, brief dynamic stretches, and submaximal build-ups at 50% and 75% of perceived 
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maximum effort. Upon completion of the warm-up protocol, each athlete performed 3 

maximum-effort 20m sprints with a 3-5 minute rest period between each trial. Each trial was 

initiated from a standing start position 30cm behind the starting line (Figure 3.1). This 30cm 

buffer was used to ensure the athletes’ knees did not accidentally trigger the electronic timing 

gates prior to initiating their start. Each standing start was performed with the athlete’s preferred 

leg forward, which they regularly performed during their dynamic warm-up prior to field 

practices. 

 

 

Figure 3.1 Starting position for the 20m-sprint test 

 

Data Collection 

 20-meter sprint times were recorded using two electronic timing gates (Brower Timing 

Systems, Draper, UT). Sprint characteristics were recorded using the OptoJump Next system 



	  
	  
	  

75	  

(Microgate, Bolzano, Italy). This optical measurement system is composed of transducer and 

receiver bars, which are each 1m in length. Each bar consists of 32 infrared light emitting bodies 

(LED) collecting at a sampling frequency of 1000 Hz. The average value of each sprint 

characteristic from the two fastest trials was used for analysis. 

 Sprint characteristics measured included SV, SL, SF, GCT, and FT for steps 3, 6, and 9, 

which were chosen to represent the distances of 2.5, 6, and 12m, respectively. These particular 

steps were chosen to represent their respective distances based on pilot data, as each of these 

steps was in closest proximity to their associated distance. For example, the footfall that was 

closest to 2.5m in nearly every 20m-sprint trial during pilot testing was step 3. The same 

relationship was also found between step 6 and 6m as well as step 9 and 12m. Accordingly, these 

steps appear to best represent acceleration zones 1, 2, and 3 for this athlete population. Although 

additional sub-sections of the acceleration phase may exist at further sprint distances (e.g. – 

18m), these zones will be referred to as the “early-”, “mid-”, and “late-acceleration” zones for 

the purpose of this study, as these distances are based on those inherent to men’s soccer players 

during competition. Furthermore, sprint characteristics at greater distances, such as the 18m-

mark proposed by Barr et al. (4) in elite rugby athletes, are likely less relevant to this athlete 

population.  

 It is also important to note that the pilot data on which these methods were derived 

included the 30cm space between the athletes’ lead foot and the starting line to ensure the 

athlete’s knees or arms did not prematurely trigger the timing gates. Consequently, this 30cm 

buffer should not have altered the relationships between these steps and their associated 

distances. Also, the first timing gate was stationed at a lower position of 40cm, whereas the 

second was at a higher position of 110cm. The rationale for these positions was to ensure that the 
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athlete’s hands did not prematurely trigger the timing gate prior to initiating their start.  

 

Statistical Analysis  

 The test-retest reliability of measurements was assessed using intraclass correlation 

coefficients (ICC) and coefficients of variation (CV). 95% confidence intervals were also used to 

quantify the precision of measurement for all variables. A series of one-way repeated measures 

ANOVA were used to compare the differences in SV, SL, SF, and GCT between each 

acceleration zone. If the assumption of sphericity was violated, Greenhouse-Geiser adjusted 

values were used. When necessary, post-hoc analyses were performed using the Bonferroni 

correction technique. Cohen’s d effect sizes were calculated and interpreted based on the scale 

proposed by Hopkins (30). Statistical power (c) was also calculated. All statistical analysis were 

calculated using SPSS version 21 (IBM, New York, NY) and statistical significance was set to p 

< 0.05 for all analyses.  

 
RESULTS 
 
 Descriptive and test-retest reliability statistics are listed in Tables 3.1, 3.2, 3.3, 3.4, and 

3.5 for SV, SL, SF, GCT, and FT, respectively. All sprint variables were found to be within an 

acceptable range of reliability with ICC values of 0.74 – 0.97 and CV values of 1.20 – 9.00%. 

Statistical differences in SV (F2,21 = 778.64, p = 0.000, c = 1.000), SL (F2,21 = 1260.75, p = 

0.000, c = 1.000), SF (F2,21 = 10.47, p = 0.000, c = 1.000), GCT (F2,21 = 92.16, p = 0.000, c = 

1.000), and FT (F2,21 = 61.70, p = 0.000, c = 1.000) were found between acceleration zones 1, 2, 

and 3. Pairwise comparisons revealed that SV, SL, SF, and FT in acceleration zone 3 were 

statistically greater than acceleration zones 2 and 1 (Table 3.7). Additionally, SV, SL, SF, and 

FT at acceleration zone 2 were also statistically greater than zone 1 (Table 3.7). In contrast, GCT 
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in acceleration zone 3 was statistically greater than acceleration zones 1 and 2. GCT in 

acceleration zone 2 was also statistically shorter than zone 1 (Table 3.7). 

 

Table 3.1 Descriptive statistics for sprint velocity during early, middle, and late acceleration 
 

Acceleration Zones Mean SD 95% CI ICC CV (%) 
Zone 1 – Step 3 (m/s) 5.54 0.25 5.44 – 5.67 0.74 3.35 
Zone 2 – Step 6 (m/s) 7.01 0.27 6.90 – 7.13 0.83 2.11 
Zone 3 – Step 9 (m/s) 8.02 0.27 7.91 – 8.15 0.84 1.77 

 
 

Table 3.2 Descriptive statistics for step length during early, middle, and late acceleration 
 

Acceleration Zones Mean SD 95% CI ICC CV (%) 
Zone 1 – Step 3 (cm) 129.04 8.41  125.41 – 132.68 0.95 1.41 
Zone 2 – Step 6 (cm) 157.80 9.85 153.55 – 162.06 0.96 1.50 
Zone 3 – Step 9 (cm) 177.43 9.12 173.49 – 181.40 0.95 1.20 

  
 

Table 3.3 Descriptive statistics for step frequency during early, middle, and late acceleration 
 

Acceleration Zones Mean SD 95% CI ICC CV (%) 
Zone 1 – Step 3 (steps/s) 4.31 0.31 4.18 – 4.45 0.86 3.54 
Zone 2 – Step 6 (steps/s) 4.46 0.27 4.34 – 4.58 0.89 2.51 
Zone 3 – Step 9 (steps/s) 4.53 0.23 4.44 – 4.68 0.86 2.36 

 
 

Table 3.4 Descriptive statistics for ground contact time during early, middle, and late 
acceleration 

 
Acceleration Zones Mean SD 95% CI ICC CV (%) 

Zone 1 – Step 3 (ms) 157.02 14.13 150.91 – 163.14 0.94 2.70 
Zone 2 – Step 6 (ms) 142.04 10.34 137.57 – 146.52 0.93 2.40 
Zone 3 – Step 9 (ms) 132.26 9.41 128.19 – 136.33 0.95 2.02 

 
 

Table 3.5 Descriptive statistics for flight time during early, middle, and late acceleration 
 

Acceleration Zones Mean SD 95% CI ICC CV (%) 
Zone 1 – Step 3 (ms) 64.28 11.97 59.39 – 69.17 0.91 9.00 
Zone 2 – Step 6 (ms) 77.65 3.68 76.15 – 79.15 0.93 4.94 
Zone 3 – Step 9 (ms) 87.52 3.99 85.89 – 89.15 0.88 4.60 
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Table 3.6 Effect sizes between acceleration zones for all sprint variables 

 
Acceleration Zone Cohen’s d  

SV Zone 1 versus Zone 2  5.65 
SV Zone 2 versus Zone 3 3.74 
SV Zone 1 versus Zone 3 9.53 
SL Zone 1 versus Zone 2  3.14 
SL Zone 2 versus Zone 3 2.07 
SL Zone 1 versus Zone 3 5.52 
SF Zone 1 versus Zone 2  0.52 
SF Zone 2 versus Zone 3 0.28 
SF Zone 1 versus Zone 3 0.81 
GCT Zone 1 versus Zone 2  1.21 
GCT Zone 2 versus Zone 3 0.99 
GCT Zone 1 versus Zone 3 2.06 
FT Zone 1 versus Zone 2 1.00 
FT Zone 2 versus Zone 3 0.91 
FT Zone 1 versus Zone 3 1.89 

 
 
 

Table 3.7 Differences in sprint characteristics between acceleration zones. 
 

Sprint Characteristic Zone 1 Zone 2 Zone 3 

Sprint Velocity (m/s) 5.54 ± 0.25 7.01 ± 0.27** 8.02 ± 0.27*  

Stride Length (cm) 129.04 ± 8.41 157.80 ± 9.85**  177.43 ± 9.12* 

Stride Frequency (m/s) 4.31 ± 0.31 4.46 ± 0.27** 4.53 ± 0.23* 

Ground Contact Time (ms) 157.02 ± 14.13 142.04 ± 10.34 † 132.26 ± 9.41*** 

Flight Time (ms) 64.28 ± 11.97 77.65 ± 3.68** 87.52 ± 3.99* 

* = Statistically greater than zones 1 and 2 (p = 0.000), ** = Statistically greater than zone 1 

(p = 0.000), *** = Statistically shorter than zones 1 and 2 (p = 0.000), † = Statistically 

shorter than zone 1 (p = 0.000) 
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DISCUSSION 
 
 The primary purpose of this study was to investigate the differences in sprint metrics 

occurring at distances of approximately 2.5, 6, and 12m in a population of Division I men’s 

soccer players. The investigators hypothesized that SV, SL, SF, and FT would increase in 

accordance with greater sprint distances, while GCT would decline during mid- and late-

acceleration. The main findings of this study support this hypothesis. Specifically, the late-

acceleration zone displayed statistically greater SV, SL, SF, and FT, as well as statistically lower 

GCT, compared to the early- and mid-acceleration segments (Table 3.7). The mid-acceleration 

zone displayed the same relationships when compared to early-acceleration as well (Table 3.7). 

Cohen’s d effect sizes indicated very large differences between each acceleration zone for SV 

and SL (Table 3.6). The effect sizes also indicated moderate to very large practical effects for FT 

and GCT between all phases of acceleration, and small-to-moderate effects for SF (Table 3.6).  

 These results further support the notion that the acceleration phase can be differentiated 

into multiple sub-sections (4, 40, 42, 49-51). Furthermore, these findings also suggest that the 

early-, mid-, and late-acceleration zones may be defined as approximately 0-3, 3-6, and 6-12m, 

respectively, in a population of Division I collegiate men’s soccer players. The results of this 

study, particularly with respect to the mid- and late- acceleration zones, are in accordance with 

those of Barr et al. (4). The results of Barr et al. (4) also suggest that greater distances, such as 

18-20m, may also possess different sprint characteristics as the athlete approaches maximum 

velocity. Although the majority of sprints during a men’s soccer match appear to be in 

accordance with those included in this study, practitioners are also encouraged to address sprint 

capabilities closer to top-end speed once the requisite skill of acceleration is attained.  
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 The distances of the acceleration zones identified in the current study appear to be shorter 

than others suggested in previous literature (41, 42, 49, 50). This may be due to the fact that 

these investigations included athlete populations of trained sprinters who began each effort from 

starting blocks, whereas the athletes in the present study and Barr et al. (4) initiated each sprint 

from a standing start position. This may have had a significant impact on acceleration 

performance, as the use of starting blocks likely allowed the sprint athletes to achieve a steeper 

anterior lean of the torso following block clearance (36). However, common sense also suggests 

that populations of trained sprinters likely possess greater top-end speed than FSA. This is 

evident when considering the fact that every rugby athlete in Barr et al. (4) achieved maximum 

velocity between 33-39m, whereas elite sprinters have been shown to attain maximum velocity 

between 50-70m (7, 25).  

 This discrepancy may also be related to the intermittent demands of field sports. 

Specifically, FSA are often walking, jogging, running, or changing direction when they begin to 

accelerate during gameplay (3). Accordingly, these athletes are likely more experienced in re-

accelerating while “on the move” rather than accelerating from a static position. The rationale for 

using a staggered start position in this study was twofold. First, using a static start position 

allowed each trial to be standardized for every athlete. Secondly, the goal of this investigation 

was to identify appropriate acceleration distances for speed development practices in collegiate 

male soccer players. The common methods of developing acceleration previously discussed (i.e. 

– resisted sprints and various sprint drills) are typically performed from a static position. While 

some may argue that these practices lack sport specificity, there is evidence indicating that these 

tactics likely transfer to sport. For example, multiple studies have concluded that higher-level 

soccer players display faster sprint speeds than their lower-level counterparts during 10-30m 
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sprint tests (10, 21, 26). While these results provide practical value, a detail that is often 

overlooked is that all the sprint tests employed in these studies were performed from a static 

starting position. Based on this information, it can be surmised that improvements in sprint 

acceleration from a static position will likely transfer to sport, as faster athletes are most often 

those playing at a higher level. 

 With respect to the training process, these results may be useful in creating an integrated 

methodology for strength, power, and speed development for FSA. Such an approach was 

developed by DeWeese and colleagues (17, 18) for track and field and bobsled athletes, which 

was coined Seamless Sequential Integration (SSI). This model merged the tenants of block 

periodization (BP), conjugate sequential sequencing (CSS), and a short-to-long approach (S2L) 

to speed development into a unified framework (17, 18). In short, this methodology aimed to 

augment an athlete’s acceleration capabilities early in the training year, while maximizing 

strength-related qualities such as strength endurance (SE) and maximal strength (MS). As these 

fitness qualities matured, the focus of training shifted towards maximizing rate of force 

development (RFD), which served to compliment sprint speeds that approached maximum 

velocity (5, 17-19). However, due to the shorter distances covered in soccer, it may be more 

appropriate to develop each sub-section of acceleration in conjunction with SE, MS, and RFD, 

rather than the entire acceleration and maximum velocity phases.   

 From a speed development perspective, dedicating more time to address each sub-phase 

of acceleration, rather than developing the entire phase as a whole, may facilitate performance 

improvements that are more specific to soccer. When combined with BP and CSS, a S2L for 

FSA may also elicit similar physiological responses as those believed to be developed in the 

traditional model, which may yield comparable performance adaptations. For example, 
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supplying “concentrated loads” of activities to emphasize the development of early-acceleration 

and SE during the general preparatory phase of training may allow the athlete to enhance both of 

these qualities, as the higher resistance training volumes will likely be off-set with shorter sprint 

distances. From a physiological standpoint, this may limit the interference effect by maximizing 

the up-regulation of the mTOR pathway, while mitigating excessive phosphorylation of AMPk 

(48). The resulting increase in contractile protein synthesis will likely increase muscle cross-

sectional area (46, 61), potentially bolstering the MS levels required to enhance the mid-

acceleration zone in subsequent training phases (56). As Stone and colleagues remind us (56), 

MS can be seen as “the vehicle” driving a host of other adaptations, particularly the development 

of higher RFD. Subsequently, sequencing the training process to maximize this critical quality 

will likely have a positive impact on an athlete’s ability to produce a high RFD, which is critical 

to attaining higher SV at greater distances, such as those inherent to late-acceleration and beyond 

(60). 

 An additional consideration to be noted is that the acceleration zones identified in this 

study were intended to serve as guidelines for practitioners and athletes. Since previous literature 

has suggested that sprint characteristics are, to a certain extent, relative to the individual (50, 52), 

one would expect these distances to differ slightly from one athlete to the next. However, these 

guidelines may be very useful when working with large groups, such as in a collegiate setting, 

where individual prescriptions are often impractical. Furthermore, these sub-sections of 

acceleration should not be used to rigidly develop each individual segment. Rather, they should 

be employed as a means to provide a particular emphasis in the athlete’s training. For example, 

methods implemented to augment early-acceleration do not have to be performed exclusively at 

a distance of 2.5m. Rather, coaches and athletes are encouraged to select methods that aim to 
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improve the start, particularly the first three steps of acceleration, when addressing this segment. 

Moreover, these methods may include sprints at shorter distances of 5-15m, with the majority of 

these efforts residing in the 0-5 and 5-10m ranges. As previously stated, keeping these distances 

on the shorter end of this range may limit unnecessary training volume and, subsequently, 

fatigue. This may allow for better fatigue management and superior adaptations to take place 

(56).  

 In later training phases, however, the resistance training focus often shifts towards 

enhancing MS and RFD, as per the BP paradigm (15, 16, 56). When these transitions occur, the 

resistance training volume is typically lowered to accommodate for higher training intensities (6, 

56). Accordingly, practitioners are encouraged to focus on longer distance accelerations that are 

in accordance with the mid- and late-zones, respectively, at these times of the training year. This 

is not to say that FSA should avoid accelerating beyond these distances. Quite the contrary, 

occasionally attaining maximum sprint velocity during training may offer neurological 

adaptations that are beneficial to acceleration (54). With that said, one cannot overlook the fact 

that high-level athletes are competing in substantially more events per year compared to previous 

decades (32). Due to more rigorous competitive schedules, training time has inherently 

diminished (32). Consequently, appropriately allocating training time to cultivate the most 

relevant skills to the sport is a logical tactic in addressing this issue as well as appropriately 

managing fatigue to enhance sprint performance.   

 Selecting the most appropriate training methods to enhance these skills is also a critical 

consideration to maximize training efficiency. Keeping this in mind, the results of the current 

study can also be used to assess the utility of particular speed development tactics, as the 

methods employed to emphasize a particular acceleration zone should possess similar sprint 
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metrics. In addition, one most also consider the impact that resistance training and sport practice 

may have on the athlete’s performance capabilities as well. Using the SSI for FSA described 

above as an example, if the early-acceleration zone is coupled with establishing a foundation of 

SE during resistance training, the athlete may be fatigued from the high-workloads necessary to 

attain an enhanced work capacity. As a previous studies have indicated, greater levels of 

accumulated fatigue will likely suppress an athlete’s RFD (22, 44), which could impact their 

ability to generate high ground reaction forces, thus limiting SV (60). Based on this information, 

methods that display inherently longer contact times, such as sled towing, incline sprinting, or 

select plyometric exercises, may be more effective in this situation. While this may sound 

counterintuitive, one may hypothesize that these tactics may require the athlete to generate a 

higher propulsive impulse (IP) over a longer period of time (27), thus accommodating for the 

diminished RFD. In combination with an understanding of training theory, the results of the 

current study can be used to identify the most appropriate training methods across a spectrum of 

scenarios.  

 Although kinetic variables such a RFD, IP, and peak power (PP) were not part of this 

investigation, the findings of this study may provide a heading for future investigations with 

respect to these variables during sprint acceleration. More specifically, human movement is 

influenced by both kinetic and kinematic parameters (33), so, disparities in movement patterns, 

such as differences in sprint characteristics, are likely accompanied by varying force-outputs (8). 

Therefore, future studies should aim to elucidate the differences in kinetic parameters that likely 

accommodate the changes in sprint metrics during acceleration. Such information may offer 

practical value to coaches by identifying particular training tasks (e.g. – resistance training 
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exercises, speed development methods, etc.) that are specific to a particular acceleration zone, 

potentially enhancing the transfer of training effect.   

 

PRACTICAL APPLICATIONS 

 The findings of this study may assist practitioners in properly implementing speed 

development tactics for the purpose of improving sprint acceleration in male collegiate soccer 

players. While the precise distance constituting each phase of acceleration likely differs from one 

athlete to the next, accommodating to the precise needs of each individual athlete is often 

impractical in the collegiate setting. As such, distances of 2.5, 6, and 12m may be used as 

guidelines to emphasize the development of early-, mid-, and late-acceleration, respectively. 

Furthermore, these sub-sections can also be used to merge speed enhancement strategies with 

resistance training programs through the use of BP and CSS. The integration of these training 

components may aid practitioners in maximizing key performance characteristics at desired 

times of the training year.   
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Abstract 
 
Purpose: The purpose of this study was to investigate the relationships between various 

strength-power variables and key sprint characteristics within the early, mid, and late sub-phases 

of sprint acceleration in Division I men’s soccer players. Methods: Twenty-one athletes 

performed static jumps (SJ) and countermovement jumps (CMJ) with loads of 0 and 20kg on 

dual force platforms. Allometrically scaled peak power (PPa) and peak power relative to body 

mass (PPr) were measured with every load for each jump condition. Isometric mid-thigh pulls 

(IMTP) were also performed on dual force platforms. Allometrically scaled peak force (IPFa) 

and isometric rate of force development (IRFD) were measured at time points of 90 (IRFD@90), 

200 (IRFD@200), and 250 (IRFD@250) milliseconds. Lastly, 20m sprints were performed 

through an optical measurement system, which recorded sprint velocity (SV), step length (SL), 

step frequency (SF), and ground contact time (GCT) within each zone. Pearson product-moment 

correlations (r) were calculated to examine the relationships between SJ, CMJ, IMTP, and sprint 

variables. Results: IRFD@90 displayed moderate-to-strong, negative correlations with GCT (r = 

-.337 – -.541) and small-to-moderate, positive correlations with SF (r = .270 – .430) within each 

acceleration zone. SJ PPr at 0kg also showed moderate-to-strong, negative correlations with 

GCT (r = -.439 – -.511) and moderate-to-strong, positive correlations with SF (r = .293 – .490) 

within each acceleration zone. Conclusions: It appears that IRFD@90 and SJ PP at 0kg may be 

related to shorter GCT and greater SF during sprint acceleration in Division I men’s soccer 

players.  

 

Key Words: rate of force development, peak power, speed development 
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Introduction 
 
 The nature of team sports is inherently chaotic. Gameplay often consists of short sprints 

across an array of distances with frequent changes of direction (20, 23, 33, 45). Due to the 

disorderly nature of these sports, field sport athletes (FSA) seldom reach maximum sprint 

velocity during competition, thus making sprint acceleration a vital skill for these athlete 

populations (15, 45). Perhaps even more important, sprint acceleration has been shown to occur 

most often at key points during competition, such as creating a scoring opportunity or dodging a 

defender (21, 42, 50). Although team sports often revolve around skills such as dribbling, 

passing, and shooting, the ability to express these attributes is likely influenced by an athlete’s 

facility to accelerate.  

 One of the primary tools employed to improve sprint acceleration is resistance training 

(17). This is not surprising considering that a wealth of studies and reviews have shown strength-

power measures such as maximal strength (MS) (1, 12, 16, 41, 52), rate of force development 

(RFD) (22, 54, 62, 64, 65), and peak power (PP) (1, 15, 16, 54) are positively related to superior 

acceleration ability. Other means of improving acceleration performance include resisted 

sprinting (14), plyometrics (39), and sprint drills (8, 35). These methods are often implemented 

to mimic the spatiotemporal characteristics of sprinting, in hopes of fostering a positive transfer 

of training effect. This is also a logical training approach because in addition to delivering higher 

ground reaction forces (GRF) with greater efficiency, faster FSA also appear to display different 

sprint characteristics during the acceleration phase as well (28, 37, 45). Despite these kinematic 

differences between “fast” and “slow” FSA, the dynamic nature of sprint mechanics during 

acceleration appears to be universal in this athletic population. In other words, as an athlete 

attains greater sprint velocity (SV), the change in sprint speed is accompanied by sequential 
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changes in key sprint characteristics such as step length (SL), step frequency (SF), and ground 

contact time (GCT) (3, 5). 

 From a speed development perspective, these changes are important to note, as it has 

recently been suggested that the alterations in sprint metrics can be used to divide the 

acceleration phase into constituent sub-sections in FSA (3, 5). Furthermore, these spatiotemporal 

alterations can be used to demarcate an “early-“, “mid-“, and “late-” phase of sprint acceleration. 

This concept was illustrated in a recent study by Barr et al. (3), who characterized the 

acceleration patterns of elite rugby players during a 50-meter maximal effort. Based on the 

differences in a variety of sprint metrics including sprint velocity (SV), SL, SF, flight time (FT), 

and GCT, Barr and colleagues (3) concluded that the early-, mid-, and late-acceleration zones for 

elite rugby players may be characterized as 0–6, 6–12, and 12–18m, respectively. Surprisingly, 

the authors did not differentiate the initial three steps into a separate sub-section. This is likely an 

important consideration because these contacts have been shown to influence acceleration ability 

at greater distances (37, 45).  

 However, this initial sub-section was included in a similar study by Bellon (5), who also 

examined the same sprint metrics as Barr et al. (3), but over distances of approximately 2.5, 6, 

and 12m. In contrast to Barr et al. (3), the investigation by Bellon (5) included a population of 

Division I men’s collegiate soccer players. Accordingly, the distances selected for that study 

were inherently shorter than those used by Barr and colleagues (3), as the average sprint distance 

during a soccer match likely resides between 9–12m (2, 63). The results reported by Bellon (5) 

revealed statistically significant differences in each sprint characteristic occurring at each 

distance. Specifically, the late-acceleration zone (6–12m) displayed statistically greater SV (p = 

0.000), SL  (p = 0.000), SF  (p = 0.000), and FT  (p = 0.000) and statistically shorter GCT  (p = 
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0.000) compared to the mid- (2.5–6m) and early-acceleration (0–2.5m) sub-phases. Additionally, 

the mid-acceleration zone displayed the same relationships in comparison to early-acceleration 

as well. While Bellon (5) illustrated the kinematic differences that likely separate the sub-phases 

of acceleration in collegiate men’s soccer players, the underlying strength-power variables that 

govern each segment remain unknown.  

 This is important because, as Siff (53) reminds us, a positive transfer of training effect 

depends not only on the mechanical specificity of a task, but also the kinetic specificity as well. 

When viewed from this perspective, the kinetic parameters of a training task, such as the 

magnitude of force applied, RFD, and PP, are of equal importance in successfully transferring 

training adaptations to athletic performance. Accordingly, understanding which of these kinetic 

variables are most relevant to each sub-section of acceleration is crucial to selecting appropriate 

exercises to develop this skill. However, no studies have been conducted to identify which of 

these measures are most relevant to the sub-phases of acceleration. Consequently, the primary 

purpose of this study is to investigate the relationship between various strength-power variables 

and key sprint characteristics within the early-, mid-, and late-acceleration zones in a population 

of Division I men’s soccer players. The investigators hypothesize that the strongest relationships 

will be found between RFD, PP, and GCT. More specifically, the investigators believe that RFD 

at later time points (e.g. – 200 and 250ms) will display the strongest correlations with GCT 

during early-acceleration, when contact time is likely longer. In contrast, the authors further 

hypothesize that RFD at earlier time windows (e.g. – 90ms) will show stronger relationships with 

GCT during late-acceleration, which is likely to display longer foot contacts.  
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METHODS  

Experimental Approach to the Problem 

 Athletes completed static jumps (SJ), countermovement jumps (CMJ), isometric mid-

thigh pulls (IMTP), and 20m maximal-effort sprints over a single testing session. Pearson 

product-moment correlations were used to compare the relationships between sprint 

characteristics at steps 3, 6, and 9 during the 20m sprints and various strength-power variables 

from the SJ, CMJ, and IMTP. Specifically, allometrically scaled PP (PPa) and PP relative to 

body mass (PPr) at loads of 0 and 20kg were collected for each jump test, as both SJ (15) and 

CMJ (1) have been positively correlated with acceleration performance. Additionally, IPFa and 

isometric RFD (IRFD) at time windows of 90ms (IRFD@90), 200ms (IRFD@200), and 250ms 

(IRFD@250) were collected during IMTP testing. IPFa was collected to represent the athletes’ 

relative strength levels, which has also been related to acceleration performance (11). Lastly, 

IRFD measures were collected at time points of 90, 200, and 250ms to evaluate the importance 

of the “force” and “velocity” ends of the force-velocity curve during each sub-phase of 

acceleration, as a wide variety of sport movements appear to occur within this range (24, 61). 

Each of these measurements was made as a part of an on-going athlete monitoring program.  

 
Participants 
 
 The athletes in this study included twenty-one Division I male collegiate soccer players 

(age = 20.7 ± 1.2 years, height = 179.38 ± 6.09cm, 76.4 ± 6.5kg). All athletes met the inclusion 

criteria of having at least one year of resistance training experience and two years of soccer 

experience. Additionally, each individual read and signed a written informed consent form prior 

to participating in any testing procedures. This study was approved by the East Tennessee State 

University Institutional Review Board.  
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Testing Procedures 

Warm-Up 

 Prior to performing any strength, power, or speed testing, each athlete participated in a 

standardized warm-up protocol. This procedure included 25 jumping jacks and a series of mid-

thigh clean pulls with a standard 20kg barbell (Werksan, Turkey). Specifically, the mid-thigh 

clean pulls were performed for 1 set of 5 repetitions and 3 sets of 5 repetitions with loads of 20kg 

and 60kg, respectively.  

Static and Countermovement Jump Testing 

 Following the completion of the standardized warm-up, each athlete participated in 

vertical jump testing consisting of static jumps (SJ) and countermovement jumps (CMJ). Each 

condition was performed using loads of 0kg (PVC pipe) and 20kg (barbell). The athletes 

performed each jump by holding the 0kg or 20kg implement just below the seventh cervical 

vertebra (9, 58). Each maximum effort jump trial was performed on 91.4x91.4cm dual force 

platforms (Rice Lake Weighing Systems, Rice Lake, WI) with sampling rates of 1000 Hz. SJ 

were performed prior to CMJ, as the order in which jump conditions are completed does not 

seem to positively or negatively affect performance (34). In preparation for the SJ, each athlete 

was instructed to firmly grasp the 0kg or 20kg bar and assume a squat position with a 90° knee 

angle, which was measured using a handheld goniometer (Figure 1). Once this position was 

acquired, the athletes completed practice jumps at 50% and 75% of perceived maximum effort. It 

is important to note that the athletes were instructed to be still when holding the “ready position” 

to eliminate any use of the stretch-shortening cycle (SSC) (25). For the maximum effort SJ trials, 

the athletes were instructed to firmly hold the 0kg or 20kg bar, step onto the force platforms, and 

assume the “ready position”. Upon acquiring the proper position, a countdown of “3-2-1 Jump” 
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was given. The average of two trials within 2cm was used for analysis for each load. Additional 

trials were performed if the athlete appeared to put forth less than a maximum effort, used a SSC, 

or if the difference in jump height between attempts was greater than 2cm. A rest period of 1-

minute was provided between jump trials. A minimum of two trials was completed at both 0kg 

and 20kg, with 0kg jumps being performed first. Upon the completion of all SJ trials, a 3-minute 

rest period was given prior to performing CMJ. 

 The same procedures were applied to CMJ testing. However, unlike the SJ, the athletes 

executed these jumps without a pause to a self-selected depth, as described by Kraska et al. (36). 

Prior to each trial, the participant was instructed to firmly grasp the 0kg or 20kg bar, step onto 

the force platforms, stand in an upright position, and await the countdown of “3, 2, 1 Jump”. The 

average of two trials within 2cm was used for analysis for each load. Additional trials were 

performed if the athlete appeared to put forth less than a maximum effort or if the difference in 

jump height between attempts was greater than 2cm. 

 SJ and CMJ force-time data obtained from the force plates were filtered using a digital 

low-pass Butterworth filter with a cutoff frequency of 10 Hz and analyzed using a custom-built 

Labview program (LabView 8.5.1, 8.6, and 2010, National Instruments Co., Austin, TX). Peak 

power (PP) was calculated from the power-time data from each force plate. Allometrically scaled 

peak power (PPa) was calculated using the allometric scaling expression: Absolute PP 

(W)/(Body Mass (kg).67 ). Relative peak power (PPr) was calculated by simply dividing PP by 

the athlete’s body mass.  
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Figure 4.1 Static jump “ready position” 

Isometric Mid-Thigh Pull Testing 

 Following the completion of vertical jump testing, the athletes were positioned inside a 

power rack and guided into the appropriate joint angles to properly perform the IMTP test. 

Although body angles varied from one individual to the next due to anthropometrical differences, 

each athlete achieved knee and hip angles between 125-135 and 145-155 degrees, respectively 

(4) (Figure 2). Each pulling trial was performed while standing on 91.4x91.4cm dual force 

platforms (Rice Lake Weighing Systems, Rice Lake, WI) with sampling rates of 1000 Hz. These 

platforms were positioned inside a custom-built power rack that allowed the bar to be adjusted to 

any height. Once the permissible body positions were achieved, the athletes were given lifting 

straps and performed 2 practice repetitions at 50% and 75% of perceived maximal effort. Prior to 

performing the first trial at maximal intensity, the athlete’s hands were secured to the bar using 

athletic tape. Finally, the athlete was placed back into the proper pulling position and awaited the 
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tester’s countdown of “3, 2, 1 Pull”. The testers gave verbal encouragement for the duration of 

every maximal effort attempt. The attempts were terminated when the athlete displayed a plateau 

or a steady decrease in force output. Following each pull, the athletes were given a minimum rest 

period of 3-minutes.  

 Isometric mid-thigh pull (IMTP) force-time data obtained from the force plates were 

filtered using a digital low-pass Butterworth filter with a cutoff frequency of 10 Hz and analyzed 

using a custom-built Labview program (LabView 8.5.1, 8.6, and 2010, National Instruments Co., 

Austin, TX). The testing variables collected included allometrically scaled isometric peak force 

(IPFa), isometric rate of force development (IRFD) at 90ms (IRFD90), IRFD at 200ms (IRFD200), 

and IRFD at 250ms (IRFD250). IPFa was calculated using the following allometric expression: 

Peak Force/(Body Mass (kg).67) (59).  

 

Figure 4.2 Isometric mid-thigh pull position 
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20-Meter Sprints 

 Following IMTP testing, the athletes underwent an additional standardized warm-up 

consisting of light jogging, brief dynamic stretches, and submaximal build-ups at 50% and 75% 

of perceived maximum effort. Upon completion of the warm-up protocol, each athlete performed 

3 maximum-effort 20m sprints with a 3-5 minute rest period between each trial. Each trial was 

initiated from a staggered start position 30cm behind the starting line (Figure 3). This 30cm 

buffer was used to ensure the athletes’ knees did not prematurely trigger the electronic timing 

gates. 20m sprint times were recorded using electronic timing gates (Brower Timing Systems, 

Draper, UT). The first timing gate was stationed at a lower position of 40cm, whereas the second 

was at a higher position of 110cm. The rationale for these positions was to ensure that the 

athlete’s hands did not prematurely trigger the timing gate prior to initiating their start.  

Sprint characteristics were recorded using the OptoJump Next system (Microgate, Bolzano, 

Italy). This optical measurement system is composed of transducer and receiver bars, which are 

each 1m in length. Each bar consists of 32 infrared light emitting bodies (LED) collecting at a 

sampling frequency of 1000 Hz. Sprint characteristics measured included SV, SL, SF, and GCT 

for steps 3, 6, and 9, which were chosen to represent the early- (0-2.5m), mid-, (2.5-6m) and late-

acceleration (6-12m) zones, respectively. These steps were selected to represent their associated 

sub-sections based on the results of Bellon (5). The average value of each sprint characteristic 

from the two fastest trials was used for analysis.  
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Figure 4.3 Starting position for the 20m-sprint test 

Statistical Analysis 

 The test-retest reliability of measurements was assessed using intraclass correlation 

coefficients (ICC), coefficients of variation (CV), and paired t-tests. 95% confidence intervals 

were also used to quantify the precision of measurement for all variables. The relationships 

between all jump, IMTP, and sprint variables within each acceleration zone were assessed using 

Pearson-product moment correlation coefficients. The strength of these relationships were 

evaluated based on the scale established by Hopkins (29). All statistical analysis were calculated 

using SPSS version 21 (IBM, New York, NY) and statistical significance was set to p < 0.05 for 

all analyses. 
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RESULTS 
 

Descriptive and test-retest reliability data from jump and IMTP testing are displayed in 

Table 2.1. All jump variables showed acceptable reliability with ICC and CV values ranging 

from 0.80 – 0.97 and 2.28 – 5.05%, respectively. The IMTP variables also showed acceptable 

ICC values ranging from 0.86 – 0.98. However, while IPFa showed an acceptable CV at 2.54%, 

the CV values for each of the IRFD variables were less reliable, ranging from 18.33-36.67%. 

Despite finding higher CV values for these variables, paired t-tests did not show statistically 

significant differences between trials for IRFD@90 (p = 0.49), IRFD@200 (p = 0.91), 

IRFD@250 (p = 0.92). All sprint variables showed acceptable reliability with ICC values 

between 0.78 – 0.97 and CV values of 0.49 – 3.54%. 

Pearson product-moment correlations displaying the relationships between jump, IMTP, 

and sprint characteristics during early-, mid-, and late-acceleration can be found in Tables 2.3, 

2.4, and 2.5, respectively. GCT displayed statistically significant correlations with SJ PPr 0kg (r 

= -0.493, p  = 0.023), IRFD90 (r = -0.542, p = 0.011), and IRFD200 (r =  -0.486, p = 0.025) 

during early acceleration. During the mid-acceleration phase, SV showed statistically significant 

correlations with SJ PPa 0kg (r = 0.549, p = 0.010) and SJ PPr 0kg (r = 0.543, p = 0.011). 

Additionally, SJ PPr 0kg showed statistically significant correlations with GCT (r = -0.447, p = 

0.042) and SF (r = 0.490, p = 0.024) within this phase of acceleration as well. SF also showed 

statistically significant correlations with IRFD200 (r = 0.528, p = 0.014) and IRFD250 (r = 

0.562, p = 0.008). During the late acceleration phase, GCT showed statistically significant 

correlations with SJ PPr 0kg (r = -0.511, p = 0.018) and IRFD90 (r = -0.444, p = 0.044). SF 

displayed statistically significant correlations with IPFa (r = 0.489, p = 0.025) during the late 
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acceleration period as well. Although not statistically significant, 20m-time displayed moderate, 

negative correlations with SJ PPa 0kg (r = -0.349) and SJ PPr 0kg (r = -0.399). 

 

Table 4.1 Descriptive and reliability data from jumps and isometric mid-thigh pulls 

Kinetic Variables Mean SD 95% CI ICC    CV (%) Paired 
T-Test 

SJ PPa 0kg (W/kg0.67) 229.11 21.83 219.77 – 
238.45 

0.90 2.62 0.64 

SJ PPr 0kg (W/kg) 54.88 5.73 52.43 – 
57.33 

0.96 2.62 0.70 

SJ PPa 20kg (W/kg0.67) 227.95 22.97 218.12 – 
237.77 

0.97 2.28 0.93 

SJ PPr 20kg (W/kg) 54.55 5.47 52.21 – 
56.89 

0.97 2.28 0.90 

CMJ PPa 0kg (W/kg0.67) 228.00 18.29 220.18 –
235.83 

0.95 2.35 0.55 

CMJ PPr 0kg (W/kg) 54.57 4.39 52.69 –56.45 0.82 5.05 0.53 
CMJ PPa 20kg (W/kg0.67) 224.08 21.77 214.77 –

233.39 
0.80 5.05 0.88 

CMJ PPr 20 kg (W/kg) 53.67 5.67 51.24 – 
56.10 

0.83 5.05 0.93 

IPFa (N/ kg0.67) 196.23 24.66 185.68 – 
206.78 

0.98 2.54 0.12 

IRFD at 90ms (N/sec) 4287.76 2985.43 3010.87 – 
5564.65 

0.89 36.67 0.49 

IRFD at 200ms (N/sec) 5442.09 2438.63 4399.06 – 
6485.11 

0.91 23.26 0.91 

IRFD at 250ms (N/sec) 5314.22 1708.15 4583.63 – 
6044.81 

 

0.86 18.33 0.92 

Notes: SD = Standard deviation, CV = group coefficient of variation, ICC = Intraclass correlation 
coefficient, SJ PPa = allometrically scaled peak power in a static jump, SJ PPr = peak power relative to 
body weight in a static jump, CMJ PPa = allometrically scaled peak power in a countermovement jump, 
CMJ PPr = peak power relative to bodyweight in a countermovement jump, IPFa = allometrically scaled 
isometric peak force, IRFD = isometric rate of force development 
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Table 4.2 Descriptive and reliability data for sprint characteristics 
 

Sprint Variables Mean SD 95% CI CV(%) ICC Paired T-
Test 

SV S3 (m/s) 5.54 0.24 5.44 – 5.67 3.35 0.78 0.32 
SL S3 (cm) 129.04 8.41 125.41 – 132.68 1.41 0.95 0.83 
SF S3 (step/s) 4.31 0.31 4.18 – 4.45 3.54 0.86 0.34 
GCT S3 (ms) 157.02 14.14 150.91 – 163.14 2.70 0.94 0.13 
SV S6 (m/s) 7.01 0.27 6.90 – 7.13 2.11 0.83 1.00 
SL S6 (cm) 157.80 9.85 153.55 – 162.06 1.50 0.96 0.42 
SF S6 (step/s) 4.46 0.27 4.34 – 4.58 2.51 0.89 0.55 
GCT S6 (ms) 142.04 10.35 137.57 – 146.52 2.40 0.93 0.78 
SV S9 (m/s) 8.03 0.27 7.91 – 8.15 1.77 0.84 0.71 
SL S9 (cm) 177.43 9.12 173.49 – 181.40 1.20 0.95 0.64 
SF S9 (step/s) 4.53 0.23 4.44 – 4.68 2.36 0.86 0.59 
GCT S9 (ms) 132.26 9.41 128.19 – 136.33 2.02 0.95 0.86 
20m time (sec) 2.95 0.09 2.91-2.98 0.49 0.98 0.22 

Notes: SD = Standard deviation, CV = group coefficient of variation, ICC = Intraclass 
correlation coefficient, SV = Sprint velocity, SL = Step length, SF = Stride Frequency, GCT = 
Ground contact time, S3 = Step 3, S6 = Step 6, S9 = Step 9 
 
 

Table 4.3 Relationships between strength-power characteristics and early-acceleration 
  

 Kinetic Variables Vel Step 3 GCT Step 3 SL Step 3 SF Step 3 
SJ PPa 0kg (W/kg0.67) .194 -.359 -.130 .219 
SJ PPr 0kg (W/kg) .203 -.493* -.194 .293 
SJ PPa 20kg (W/kg0.67) .094 -.089 .096 -.047 
SJ PPr 20kg (W/kg) .096 -.175 .033 .018 
CMJ PPa 0kg  (W/kg0.67) -.007 -.141 .134 -.141 
CMJ PPr 0kg (W/kg) .003 -.230 .062 -.062 
CMJ PPa 20kg  (W/kg0.67) -.001 -.176 .137 -.135 
CMJ PPr (W/kg) .009 -.263 .060 -.051 
IPFa (N/ kg0.67) .269 -.320 .065 .117 
IRFD at 90ms (N/sec) .023 -.541* -.277 .270 
IRFD at 200ms (N/sec) .026 -.486* -.291 .272 
IRFD at 250ms (N/sec) .128 -.420 -.202 .259 

Notes: SJ PPa = allometrically scaled peak power in a static jump, SJ PPr = peak power 
relative to body weight in a static jump, CMJ PPa = allometrically scaled peak power in a 
countermovement jump, CMJ PPr = peak power relative to bodyweight in a countermovement 
jump, IPFa = allometrically scaled isometric peak force, IRFD = isometric rate of force 
development, * = p < 0.05, ** = p < 0 .01 
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Table 4.4 Relationships between strength-power variables and mid-acceleration 
  

Kinetic Variables Vel Step 6 GCT Step 6 SL Step 6 SF Step 6 
SJ PPa 0kg (W/kg0.67) .549* 

 
-.289 .003 .334 

SJ PPr 0kg (W/kg) .543* -.447* -.153 .490* 
SJ PPa 20kg (W/kg0.67) .352 .058 .067 .147 
SJ PPr 20kg (W/kg) .325 -.056 -.044 .244 
CMJ PPa 0kg  (W/kg0.67) .280 -.004 .049 .121 
CMJ PPr 0kg (W/kg) .257 -.122 -.072 .230 
CMJ PPa 20kg  (W/kg0.67) .384 -.062 .097 .139 
CMJ PPr (W/kg) .341 -.180 -.039 .250 
IPFa (N/ kg0.67) .294 -.286 -.241 .424 
IRFD at 90ms (N/sec) .157 -.377 -.328 .430 
IRFD at 200ms (N/sec) .241 -.228 -.380 .528* 
IRFD at 250ms (N/sec) .331 -.157 -.359 .562** 

 
Notes: SJ PPa = allometrically scaled peak power in a static jump, SJ PPr = peak power 
relative to body weight in a static jump, CMJ PPa = allometrically scaled peak power in a 
countermovement jump, CMJ PPr = peak power relative to bodyweight in a countermovement 
jump, IPFa = allometrically scaled isometric peak force, IRFD = isometric rate of force 
development, * = p < 0.05, ** = p < 0 .01 

 
Table 4.5 Relationships between strength-power characteristics and late-acceleration 

 
Kinetic Variables Vel Step 9 GCT Step 9 SL Step 9 SF Step 9 

SJ PPa 0kg (W/kg0.67) .241 -.371 -.117 .266 
SJ PPr 0kg (W/kg) .279 -.511* -.208 .377 
SJ PPa 20kg (W/kg0.67) -.094 -.106 .158 -.215 
SJ PPr 20kg (W/kg) -.055 -.195 .074 -.110 
CMJ PPa 0kg  (W/kg0.67) -.111 -.176 .117 -.191 
CMJ PPr 0kg (W/kg) -.067 -.267 .031 -.081 
CMJ PPa 20kg  (W/kg0.67) -.115 -.219 .160 -.232 
CMJ PPr (W/kg) -.070 -.308 .064 -.113 
IPFa (N/ kg0.67) .416 -.248 -.225 .489* 
IRFD at 90ms (N/sec) .120 -.444* -.259 .314 
IRFD at 200ms (N/sec) .013 -.413 -.318 .299 
IRFD at 250ms (N/sec) .059 -.362 -.295 .315 

 
Notes: SJ PPa = allometrically scaled peak power in a static jump, SJ PPr = peak power 
relative to body weight in a static jump, CMJ PPa = allometrically scaled peak power in a 
countermovement jump, CMJ PPr = peak power relative to bodyweight in a countermovement 
jump, IPFa = allometrically scaled isometric peak force, IRFD = isometric rate of force 
development, * = p < 0.05, ** = p < 0 .01 
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DISCUSSION 
 
 The primary purpose of this study was to investigate the relationships between various 

kinetic variables and sprint characteristics during the early, mid, and late sub-sections of sprint 

acceleration in Division I male collegiate soccer players. The investigators hypothesized that 

RFD measures at later time points (e.g. – 200 and 250ms) would show the strongest relationships 

with GCT during early-acceleration, while RFD measures at earlier time windows (e.g. – 90ms) 

would display the strongest relationships with GCT during late-acceleration. The rationale 

behind this hypothesis was that as GCT decreases with greater SV, the athletes might need to 

generate a higher RFD at earlier time points to generate the GRF necessary to obtain greater 

sprint speeds (6, 10, 55). Overall, the main findings of this investigation did not support this 

hypothesis, as IRFD@90, IRFD@200, and IRFD@250 displayed fairly consistent relationships 

with GCT across multiple acceleration zones. Additionally, these variables also showed steady 

relationships with SF within each sub-phase of acceleration as well. 

 For instance, IRFD@90 showed moderate-to-large relationships with GCT (r = -.337 – -

.541) and small-to-moderate relationships with SF (r = .270 – .430) across all three sub-phases of 

acceleration. Additionally, while IRFD@200 (r = -.486) and IRFD@250 (r = -.420) did display 

moderate correlations with GCT during early-acceleration, both of these variables also displayed 

moderate relationships during the late acceleration zone as well, which were evident with 

correlation coefficients of r = -.362 and r = -.420, respectively. In contrast to these trends, 

however, IRFD@200 and IRFD@250 displayed the strongest relationship with SF during mid-

acceleration, with correlation values of r = 0.528 and r  = 0.562, respectively. Interestingly, SJ 

PPr 0kg also showed consistently strong relationships with GCT (r = -.439 – -.511) and SF (r = -

.439 – -.511) across all three sub-phases as well. Lastly, SJ PPr 0kg also showed large, positive 
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correlations with SV in the mid-acceleration zone (r = .543), as well as moderate, negative 

correlations with 20m times (r = -.399). When considered in combination, these findings support 

the notion that sprint acceleration is likely underpinned by “power-related” qualities (6, 22, 51, 

55, 62, 67). 

 The results of this study are in accordance with a number others that have positively 

related PP with acceleration performance (1, 14, 40, 49). For example, a study by Peterson et al. 

(49) found strong, positive relationships with CMJ peak power and 20m speed in collegiate team 

sport athletes. Cronin and colleagues (14) further supported these findings in reporting strong 

correlations between SJ PPr at 30kg and sprint speed over distances of 5 and 10m in professional 

rugby players. Another study by Baker et al. (1) also found strong, negative relationships 

between PPr during jump squats at various loads and 10m sprint performance in professional 

rugby athletes as well . Finally, a study by Marques et al. (40) found strong correlations between 

CMJ PP with a load of 17kg and 10m sprint ability in another population of assorted team sport 

athletes.  

 With respect to IRFD, despite the fact that this variable was not consistently correlated 

with SV, this measure did show steady relationships with GCT and SF during sprint acceleration 

within each acceleration zone (Tables 4.3, 4.4, 4.5). This may be significant from a practical 

standpoint, as previous literature has indicated that “faster” team sport athletes display shorter 

GCT and greater SF in comparison to their “slower” counterparts (28, 37, 45). In particular, 

Murphy et al. (45) found that faster FSA in a 15m sprint exhibited statistically shorter GCT 

during steps 1 (0.20 ± 0.02 sec versus 0.23 ± 0.03 sec, p = 0.01) and 2 (0.17 ± 0.02 sec versus 

0.19 ± 0.02 sec, p = 0.01), and also statistically greater average SF (1.82 ± 0.12 Hz versus 1.67 ± 

0.24 Hz, p = 0.01) in comparison to their slower counterparts. Interestingly, stride length (209 ± 
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15cm versus 205 ± 13cm, p = 0.73) was not statistically different between these groups. Hewit 

and colleagues (28) also found similar results with respect to SF and SL in a population of 

national-level netball players. The investigators concluded that faster netball players actually 

displayed statistically shorter SL (112 ± 10cm versus 120 ± 6cm, p = 0.03) and, although not 

statistically significant, greater SF (5.45 ± .42Hz versus 5.22 ± .26Hz, p = 0.13) in comparison to 

the slower players over a distance of 2.5m. In contrast to the findings of Murphy et al. (45) and 

Hewit et al. (28), Lockie et al.  (38) found mean SL over 0–5m and 0–10m to be statistically 

correlated with SV over 0–5m (r = .502, p = 0.011) and 0–10m (r = .462, p = 0.020), 

respectively. Despite this deviation from previous findings, Lockie and colleagues (38) did find 

similar results as those found by Murphy et al. (45) and Hewit et al. (28) with respect to GCT, as 

this sprint metric over 0–5m (r = -.506, p = 0.010) and 0–10m (r = -.477, p = 0.016) intervals 

showed statistically significant, negative relationships with SV over 5–10m. Regardless of 

expressing greater SL or SF, it appears that a commonality amongst all these investigations is 

that faster athletes produce force more efficiently, likely due to a superior RFD, which may 

result in shorter GCT. 

 The findings of the current study also conflicted with the investigators’ hypothesis that 

GCT would be closely associated with RFD measures collected within a similar time window (6, 

10, 55). For example, the investigators believed that contact times closest to 200ms, such as 

those seen during early acceleration, would show the strongest relationship with IRFD@200. 

Theoretically, this concept makes sense, as the athlete likely has to apply force at a greater rate 

as contact time diminishes at greater sprint speeds (6, 10, 55). Contrary to this notion, the results 

of this study suggest that this is not the case. Specifically, the strongest correlations between 

IRFD@90 and GCT were found in the early acceleration zone (r = -.541), where contact times 
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were the longest (Table 2.3). Additionally, the relationships between SJ PP 0kg and GCT also 

remained consistent across each portion of acceleration and did not show the progressive 

increase one would expect at further sprint distances (Tables 4.3, 4.4, 4.5). Therefore, these 

results imply that the shorter GCT inherent to greater SV may not lead to a strengthened the 

relationship with RFD at earlier time points or PP, as previously believed (6, 10, 55). In fact, our 

findings infer that these instantaneous variables may be more relevant in the early stages of 

acceleration rather than the later phases.  

 A possible explanation for this result may be the found by examining the force-velocity 

curve of the stance phase during sprint acceleration, which is composed of an eccentric, 

“braking” portion and a concentric, “propulsive” portion (32, 43, 44). According to Hunter et al. 

(32) and Morin et al. (44), the duration of the braking phase appears  to be well below the 90ms 

threshold, and likely accounts for ≤20% of contact time (31, 43). When these observations are 

considered in conjunction with those of the current study, it can be hypothesized that faster 

athletes may express a higher RFD at earlier time points (e.g. - ≤90ms), thus attenuating 

eccentric, braking forces at a superior rate in comparison to their slower counterparts. 

Consequently, this may allow these athletes to develop a greater eccentric force from which to 

initiate the concentric portion of the stance phase, essentially “potentiating” propulsive IP during 

the latter portion of ground contact. By creating a greater propulsive IP (44), these athletes may 

generate a higher GRF, thus facilitating greater SV (66). In addition to accentuating the 

significance of RFD, this concept further highlights the potential importance of 

musculotendonous unit (MTU) stiffness (7) and leg stiffness (6), as these qualities may be 

advantageous in developing a greater RFD (7) and, subsequently, sprint acceleration (6).  
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 Furthermore, expressing high RFD at earlier time windows may be more critical during 

early-acceleration, as the braking portion of the stance phase appears to be shortest during the 

first few steps of each effort (43, 44). This is likely due to foot placement, as these steps often 

contact the ground behind the center of mass during this sub-section of acceleration (46). As a 

result, the athlete may have less time to equalize body mass and develop greater eccentric force 

to begin the concentric portion of the stance phase (43). Although this hypothesis has yet to be 

thoroughly investigated, the results in a recent study by Wang and colleagues (64) may support 

this notion, as IRFD during an IMTP at time windows of 30 and 50ms showed strong, negative 

correlations with 5m sprint performance in collegiate rugby players. Based on these 

observations, the ability to express a high RFD at earlier time points is likely a critical 

performance variable during both acceleration and maximum velocity. Keeping these 

considerations in mind, the importance of developing high forces at later time points should not 

be overlooked, as IRFD@200 and IRFD@250 also displayed moderate-to-strong, negative 

relationships with GCT during early- and late-acceleration, as well as strong, positive 

relationships with SF during mid-acceleration (Tables 4.3, 4.4, and 4.5). These time points may 

be instrumental in developing the latter half of propulsive IP during the stance phase, thus 

making them a key component in developing greater SV during acceleration as well.  

 From a training perspective, the results of the present study provide a number of 

considerable implications.  Most notably, these findings highlight the importance of RFD and PP 

within each acceleration zone. However, the crucial role of MS in the development of these 

fitness characteristics cannot be overlooked, as it is well documented that stronger athletes 

display superior RFD (4, 25, 30, 56, 60) and PP (13, 57, 58, 60). Also, stronger athletes have 

been shown to develop greater levels of eccentric force (13), which may enhance their ability to 
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produce high forces upon ground contact, potentially heightening the propulsive portion of 

stance phase. Given the impact of these performance capabilities on sprint acceleration, the 

development of MS should remain a priority when aiming to enhance this skill. Secondly, these 

findings also support the critical nature of addressing the entire force-velocity curve to improve 

sprint acceleration. This is evident when viewing the consistent relationship between each IRFD 

measure and GCT throughout sprint acceleration. Subsequently, improvements in PP and RFD 

can be achieved by shifting this curve in a positive direction (24). 

 This objective appears to be effectively met by using a “mixed methods” training 

approach (24, 47, 60). Theoretically, using a combination of heavy (≥80% 1RM) and light 

(<50% 1RM) loads may shift both sides of the force-velocity curve in a positive direction (24, 

26, 60). When combined with block periodization and phase potentiation (18, 19), multiple 

studies and reviews have shown combination training to be a more effective method in 

developing RFD (24, 30, 48, 60) and PP (24, 27, 30, 47, 60) than heavy resistance training or 

power-training alone. Ultimately, the use of both training modalities in the proper sequence may 

enhance sprint acceleration by developing the force-producing capabilities necessary to express 

higher propulsive GRF. 

 Although there is a wealth of literature relating greater levels of MS (1, 11, 16, 41, 52), 

PP (1, 15, 54), and RFD (22, 54, 62, 64, 65) to sprint performance, the author is unaware of any 

study that has investigated the way in which these qualities effect the sprint characteristics in 

FSA. Previous studies have compared the differences in sprint characteristics between “fast” and 

“slow” FSA during acceleration (28, 45), but have not done so with respect to their strength-

power capabilities or within different sub-sections of acceleration. Based on the results of the 

current study, one may hypothesize that stronger and more powerful FSA likely demonstrate 
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shorter GCT and greater SF, which might facilitate greater SV. However, this study did not make 

such comparisons. Consequently, future research should aim to compare the sprint characteristics 

between “strong” and “weak” FSA during the early-, mid-, and late-acceleration zones. A 

comparison between FSA who display “higher power outputs” versus “lower power outputs” 

within these sub-phases is also warranted as well.  

 

PRACTICAL APPLICATION 

 The results of this study support the notion that developing high RFD and PP may 

positively enhance sprint acceleration by decreasing GCT and increasing SF. Practitioners should 

consider utilizing a combination of “heavy” and “light” exercises to concurrently develop MS in 

addition to these power-associates. Furthermore, organizing these training methods through the 

use of block periodization and phase potentiation may further enhance these training adaptations 

(18, 19). By effectively managing the training process, athletes and practitioners may optimize 

RFD and PP, thereby increasing the likelihood of achieving a desirable transfer of training effect.  
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Abstract 
 
Purpose: The purpose of this study was to compare the sprint characteristics of “strong” versus 

“weak” athletes, as well as athletes who generate “high power outputs” versus “low power 

outputs”, during early-, mid-, and late-acceleration. Methods: Twenty-one Division I men’s 

soccer players performed unloaded static jumps (SJ) and isometric mid-thigh pulls (IMTP) on 

dual force platforms. Peak power relative to body mass (SJ PPr 0kg) was measured for the SJ, 

while allometrically scaled peak force (IPFa) was recorded for the IMTP. Lastly, 20m sprints 

were performed through an optical measurement system, which recorded sprint velocity (SV), 

step length (SL), step frequency (SF), and ground contact time (GCT) within each zone. 2x3 

repeated measures ANOVA were used to compare these sprint characteristics between strong 

versus weak athletes, as well as those generating higher power outputs versus lower power 

outputs during early-, mid-, and late-acceleration. Results: There were no statistically significant 

strength level main effects for SV (p = 0.760), SL (p = 0.152), SF (p = 0.342), or GCT (p = 

0.701). In contrast, there were statistically significant power level main effects for SV (p = 

0.027) and GCT (p = 0.041), but not SL (p = 0.953) or SF (p = 0.213). Post Hoc analysis 

revealed that the high power group achieved statistically greater SV during mid- (p = 0.040) and 

late-acceleration (p = 0.041), as well as shorter GCT during mid-acceleration (p = 0.026) in 

comparison to the low power group. Effect sizes indicated that the strong and high power groups 

achieved greater SV by expressing greater SF and shorter GCT compared to the weak and lower 

power groups, respectively. Conclusion: Stronger, more powerful athletes may accelerate faster 

than their weaker, less-powerful counterparts by maximizing SF and minimizing GCT.  

 

Key Words: rate of force development, sprinting, speed development 
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INTRODUCTION 

 Sprint acceleration is recognized as one of the most critical skills to develop in field sport 

athletes (FSA) such as soccer and rugby players (2, 6, 26). Not only has acceleration been shown 

to differentiate levels of playing ability (8, 20-23), but it also appears to play a role in key points 

of gameplay such as evading a defender or creating scoring opportunities (19, 37, 40). Common 

methods of developing this skill include resistance training, plyometrics, resisted sprinting, and 

sprint drills (11, 14, 35). The majority of these tools, particularly the latter three mentioned, 

attempt to exploit the principle of specificity by overloading movement patterns similar to those 

employed during sprint acceleration. However, the importance of resistance training should not 

be undervalued, as a wealth of investigations have shown athletes who showcase greater sprint 

acceleration often possess higher levels of maximal strength (MS) (9, 13, 36, 41), peak power 

(PP) (1, 12, 13, 42), and rate of force development (RFD) (33, 34, 49, 50). In fact, an argument 

can be made that resistance training provides a level of “kinetic specificity”, as the high ground 

reaction forces (GRF) inherent to sprinting may be similar to those achieved with various 

resistance training practices (32).  

 This notion was recently supported in a recent study by Bellon (4), who explored the 

relationship between power-related variables and key sprint characteristics during the early, mid, 

and late sub-sections of sprint acceleration in collegiate men’s soccer players. The findings of 

this investigation revealed that PP relative to body mass during an unloaded static jump (SJ PPr 

0kg) and RFD at 90ms (RFD@90) showed moderate-to-strong correlations with ground contact 

time (GCT) during each phase of acceleration. Additionally, these variables, as well as RFD at 

200 (RFD@200) and 250ms (RFD@250), also showed moderate-to-strong correlations with step 

frequency (SF) during mid-acceleration. Based on these results, it can be hypothesized that 
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collegiate men’s soccer players demonstrating higher levels of PP and RFD may attain greater 

sprint velocity (SV) during acceleration by expressing higher forces over shorter GCT, thus 

facilitating greater SF. However, it is also important to consider that athletes who display higher 

levels of MS often exhibit greater PP (10, 44, 45, 47) and RFD (3, 25, 29, 43, 47). Accordingly, 

stronger athletes may also demonstrate similar acceleration patterns as those proposed by Bellon 

(4) as well. 

 Interestingly, multiple studies have shown faster team sport athletes to demonstrate 

greater acceleration ability by exhibiting shorter GCT and greater SF in comparison to their 

slower counterparts (27, 30, 38). However, none of these investigations compared the strength 

and power capabilities of the “fast” versus the “slow” athletes. Therefore, the mechanisms 

underpinning these kinematic differences remain unknown. Such information is pertinent to 

understanding how strength and power may affect the spatiotemporal profiles of FSA. Therefore, 

the primary purpose of this study is to compare the sprint characteristics of “strong” versus 

“weak” Division I collegiate men’s soccer players during early, mid, and late acceleration. 

Additionally, the secondary purpose of this study is to compare the same acceleration variables 

in players who are able to generate “higher power outputs” versus “lower power outputs”. 

Considering the wealth of evidence relating strength-power capabilities to SF and GCT (4, 27, 

30, 38), the investigators hypothesize that the strong and higher power output groups will display 

faster SF and shorter GCT in comparison to their weak and lower power output counterparts, 

respectively.  
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METHODS 
 
Experimental Approach to the Problem 
 
 The athletes completed unloaded static jumps (SJ), isometric mid-thigh pulls (IMTP), and 

20m maximal-effort sprints over a single testing session. The athletes were separated in strong 

and weak groups based on allometrically scaled peak force (IPFa) values from the IMTP. 

Similarly, the athletes were also divided into groups that demonstrated higher power outputs and 

lower power outputs based on SJ PPr 0kg values. These variables were chosen as differentiating 

criteria based on the findings of Bellon (4). 2x3 repeated measures ANOVA were used to 

compare the sprint characteristics during steps 3, 6, and 9 of the 20m sprints between these 

groups. Each of these measurements was made as a part of an on-going athlete monitoring 

program. 

 
Participants 
 
 The athletes included in this study were twenty-one Division I male collegiate soccer 

players (age = 20.7 ± 1.2 years, height = 179.38 ± 6.09cm, body mass = 76.4 ± 6.5kg). All 

athletes met the inclusion criteria of having at least one year of resistance training experience and 

two years of soccer experience. Additionally, each individual read and signed a written informed 

consent form prior to participating in any testing procedures. This study was approved by the 

East Tennessee State University Institutional Review Board.  

 

Testing Procedures 

Warm-Up 

 Prior to performing any strength, power, or speed testing, each athlete participated in a 

standardized warm-up protocol. This procedure included 25 jumping jacks and a series of mid-
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thigh clean pulls with a standard 20kg barbell (Werksan, Turkey). Specifically, the mid-thigh 

clean pulls were performed for 1 set of 5 repetitions and 3 sets of 5 repetitions with loads of 20kg 

and 60kg, respectively.  

Static Jump Testing 

 Following the completion of the standardized warm-up, each athlete participated in 

vertical jump testing, which consisted of unloaded SJ using a 0kg (PVC pipe) bar. The athletes 

performed each jump by holding the 0kg bar just below the seventh cervical vertebra (7, 45). 

Each maximum effort jump trial was performed on 91.4x91.4cm dual force platforms (Rice Lake 

Weighing Systems, Rice Lake, WI) with sampling rates of 1000 Hz. In preparation for the 

maximum effort trials, each athlete was instructed to firmly grasp the 0kg bar and assume a squat 

position with a 90° knee angle, which was measured using a handheld goniometer (Figure 1). 

Once this position was acquired, the athletes completed practice jumps at 50% and 75% of 

perceived maximum effort. It is important to note that the athletes were instructed to be still 

when holding the “ready position” to eliminate any use of the stretch-shortening cycle (SSC) 

(25). For the maximum effort SJ trials, the athletes were instructed to firmly hold the 0kg bar, 

step onto the force platforms, and assume the “ready position”. Upon acquiring the proper 

position, a countdown of “3-2-1 Jump” was given. The average of two trials within 2cm was 

used for analysis for each load. Additional trials were performed if the athlete appeared to put 

forth less than a maximum effort, used a SSC, or if the difference in jump height between 

attempts was greater than 2cm. A rest period of 1-minute was provided between jump trials.  

 SJ force-time data obtained from the force plates were filtered using a digital low-pass 

Butterworth filter with a cutoff frequency of 10 Hz and analyzed using a custom-built Labview 

program (LabView 8.5.1, 8.6, and 2010, National Instruments Co., Austin, TX). Peak power 
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(PP) was calculated from the power-time data from each force plate. Relative peak power (PPr) 

was calculated by simply dividing PP by the athlete’s body mass. The first timing gate was 

stationed at a lower position of 40cm, whereas the second was at a higher position of 110cm. The 

rationale for these positions was to ensure that the athlete’s hands did not prematurely trigger the 

timing gate prior to initiating their start. 

 

Figure 5.1 Static jump “ready position” 

Isometric Mid-Thigh Pull Testing  

 Following the completion of vertical jump testing, the athletes were positioned inside a 

power rack and guided into the appropriate joint angles to properly perform the test. Body angles 

will vary from one individual to the next due to anthropometrical differences, but each athlete 

will achieve knee and hip angles between 125-135 and 145-155 degrees, respectively (3) (Figure 

2). Each pulling trial was performed while standing on 91.4x91.4cm dual force platforms (Rice 

Lake Weighing Systems, Rice Lake, WI) with sampling rates of 1000 Hz. These platforms were 
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positioned inside a custom-built power rack that allowed the bar to be adjusted to any height. 

Once the permissible body positions were achieved, the athletes were given lifting straps and 

performed 2 practice repetitions at 50% and 75% perceived maximal effort. Prior to performing 

the first trial at maximal intensity, the athlete’s hands were secured to the bar using athletic tape. 

Finally, the athlete was placed back into the proper pulling position and awaited the tester’s 

countdown of “3, 2, 1 Pull”. The testers gave verbal encouragement for the duration of every 

maximal effort attempt. The attempts were terminated when the athlete displayed a steady 

decrease or plateau in force output. Following each pull, the athletes were given a minimum rest 

period of 3-minutes.  

 IMTP force-time data obtained from the force plates were filtered using a digital low-

pass Butterworth filter with a cutoff frequency of 10 Hz and analyzed using a custom-built 

Labview program (LabView 8.5.1, 8.6, and 2010, National Instruments Co., Austin, TX). IPFa 

was calculated using the following allometric expression: Peak Force/(Body Mass (kg).67) (46).  

 



	  
	  
	  

125	  

 

Figure 5.2 Isometric mid-thigh pull position 

20-Meter Sprints 

 Following IMTP testing, the athletes underwent an additional standardized warm-up 

consisting of light jogging, brief dynamic stretches, and submaximal build-ups at 50% and 75% 

of perceived maximum effort. Upon completion of the warm-up protocol, each athlete performed 

3 maximum-effort 20m sprints with a 3-5 minute rest period between each trial. Each trial was 

initiated from a crouched starting position 30cm behind the starting line (Figure 3). This 30cm 

buffer was used to ensure the athletes’ knees did not prematurely trigger the electronic timing 

gates. 20m sprint times were recorded using electronic timing gates (Brower Timing Systems, 

Draper, UT). The first timing gate was stationed at a lower position of 40cm, whereas the second 

was at a higher position of 110cm. The rationale for these positions was to ensure that the 

athlete’s hands did not prematurely trigger the timing gate prior to initiating their start. Sprint 

characteristics were recorded using the OptoJump Next system (Microgate, Bolzano, Italy). This 
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optical measurement system is composed of transducer and receiver bars, which are each 1m in 

length. Each bar consists of 32 infrared light emitting bodies (LED) collecting at a sampling 

frequency of 1000 Hz. Sprint characteristics measured included SV, SL, SF, and GCT for steps 

3, 6, and 9, which were chosen to represent the early- (0-2.5m), mid-, (2.5-6m) and late-

acceleration (6-12m) zones, respectively. These steps were selected to represent their associated 

sub-sections based on the results of Bellon (4). The average value of each sprint characteristic 

from the two fastest trials was used for analysis. 

 

Figure 5.3 Starting position for the 20m-sprint test  

Statistical Analysis 

 The test-retest reliability of measurements was assessed using intraclass correlation 

coefficients (ICC) and coefficients of variation (CV). 95% confidence intervals were also used to 

quantify the precision of measurement for all variables. Athletes who displayed values above the 

group median in IPFa (median = 192.22 N/kg.67) and SJ PPr 0kg (54.75 N/kg) were assigned to 
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strong (N = 11) and higher power output (N = 10) groups, while those who expressed values 

below this threshold were assigned to the weak (N = 10) and lower power output (N = 11) 

groups. An independent samples t-test was performed to ensure that these groups were in fact 

statistically different from one another. Statistical significance was set to p < 0.05.  

 A 2 x 3 repeated measures ANOVA was used to determine if the sprint variables were 

statistically different between the strong and weak groups within each sprint zone. Additionally, 

a 2 x 3 repeated measures ANOVA was also used to determine if the sprint variables were 

statistically different between the higher power and lower power groups within each sprint zone 

as well. If the assumption of sphericity was violated, Greenhouse-Geiser adjusted values were 

used. When necessary, post-hoc analyses were performed using the Bonferroni correction 

technique. Cohen’s d effect sizes were calculated and interpreted as trivial, small, moderate, 

large, very large, and nearly perfect with values of 0.0, 0.2, 0.6, 1.2, 2.0, and 4.0, respectively, 

based on the scale by Hopkins (28). Statistical power (c) was also calculated. All statistical 

analysis were calculated using SPSS version 21 (IBM, New York, NY) and statistical 

significance was set to p < 0.05 for all analyses.  

 

RESULTS 
 
“Strong” versus “Weak” Comparison 
  
 An independent samples t-test revealed the difference in IPFa between the strong and 

weak groups to be statistically significant (t 19= 8.111, p = 0.000).  Descriptive data for both 

groups can be found in Table 5.1. All sprint variables were found to be within an acceptable 

range of reliability for the strong and weak groups with ICC values of 0.89 – 0.99 and .87 – .99, 

respectively. CV values also ranged from of 1.32 – 3.40% and 0.76 – 4.00%, respectively.  IPFa 
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for both the strong and weak groups was also found to be reliable with each group displaying 

ICC values of 0.97 and 0.93, respectively. CV values were also found to be reliable at 2.23% and 

2.90%, respectively. Statistically significant main effects for acceleration zone existed for SV 

(F2, 38 = 625.58, p = 0.000, c = 1.000), SL (F2, 38 = 1030.68, p = 0.000, c = 1.000), SF (F2, 38 = 

9.78, p = 0.000, c = 0.975), and GCT (F2, 38 = 98.61, p = 0.000, c = 1.000). Post Hoc analysis 

revealed that SV, SL, and SF in acceleration zone 3 were statistically greater than acceleration 

zones 1 and 2 (Table 5.6). Additionally, SV, SL, and SF in acceleration zone 2 were also 

statistically greater than zone 1 (Table 5.6). In contrast, GCT in acceleration zone 3 was 

statistically shorter than in acceleration zones 1 and 2. GCT in acceleration zone 2 was also 

statistically shorter than zone 1 (Table 5.6). 95% confidence intervals for the difference in SV, 

SL, SF, and GCT between zones 1, 2, and 3 can be found in the Tables 5.12-5.15 in Appendix C, 

respectively. There were no statistically significant main effects for strength levels for SV, SL, 

SF, or GCT. Additionally, there were no statistically significant strength level x acceleration 

zone interaction effects for SV, SL, SF, or GCT.  

 

Table 5.1 Descriptive data for “strong” versus “weak” groups 

 

 

 

 
 
 

 
 
 
 
 

Variable Mean SD 

95% CI 

Lower Bound 

95% CI 

Upper Bound 

Strong (N/kg.67) 216.44 4.86 213.57 219.31 

Weak (N/kg.67) 174.00 5.01 170.91 177.09 
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Figure 5.4 Sprint velocity differences between “strong” versus “weak” athletes 
	  

	  
 
 

Table 5.2 Sprint velocity differences between “strong” versus “weak” athletes 
 
 

Group Zone 1 
95% 

Confidence 
Interval 

Zone 2 
95% 

Confidence 
Interval 

Zone 3 
95% 

Confidence 
Interval 

Strong 
(m/sec) 5.59 ± 0.28 5.43 -5.75 7.06 ± 0.31 6.88 – 7.23 8.11 ± 0.25 7.95 – 8.27 

Weak 
(m/sec) 5.47 ± 0.23 5.30 – 5.64 6.92 ± 0.22 6.74 – 7.10 7.89 ± 0.25 7.72 – 8.06 
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Figure 5.5 Step length differences in “strong” versus “weak” athletes 
	  
	  	  	  	  	  	  	  

	  	  
 

Table 5.3 Step length differences in “strong” versus “weak” athletes 
 

Group Zone 1 
95% 

Confidence 
Interval 

Zone 2 
95% 

Confidence 
Interval 

Zone 3 
95% 

Confidence 
Interval 

Strong 
(cm) 

128.77 ± 
6.80 

123.68 – 
133.87 

155.77 ± 
10.23 

151.72 – 
164.68 

175.77 ± 
8.90 

170.36 – 
181.18 

Weak 
(cm) 

127.00 ± 
9.29 

121.65 – 
132.35 158.2 ± 9.27 151.72 – 

164.68 
176.75 ± 

8.18 
171.08 – 
182.42 
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Figure 5.6 Step frequency differences between “strong” versus “weak” athletes 
	  

	  

	  
	  

	  
Table 5.4 Step frequency differences between “strong” versus “weak” athletes 

 

Group Zone 1 
95% 

Confidence 
Interval 

Zone 2 
95% 

Confidence 
Interval 

Zone 3 
95% 

Confidence 
Interval 

Strong 
(steps/sec) 4.36 ± 0.30 4.16 – 4.56 4.55 ± 0.28 4.37 – 4.72 4.63 ± 0.23 4.48 – 4.77 

Weak 
(steps/sec) 4.33 ± 0.35 4.11 – 4.54 4.39 ± 0.27 4.21 – 4.57 4.47 ± 0.23 4.32 – 4.63 
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Figure 5.7 Ground contact time difference between “strong” versus “weak” athletes 
	  

	  
 

 
 

Table 5.5 Ground contact time difference between “strong” versus “weak” athletes 
  

Group Zone 1 
95% 

Confidence 
Interval 

Zone 2 
95% 

Confidence 
Interval 

Zone 3 
95% 

Confidence 
Interval 

Strong (ms) 155 ± 14 146 – 164 141 ± 11 134 – 147 131 ± 12 126 – 137 

Weak (ms) 161 ± 14 151 – 171 145 ± 8 138 – 152 134 ± 4 128 – 141 
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Table 5.6 Differences in sprint characteristics between acceleration zones (N = 21) 

Sprint Characteristic Zone 1 Zone 2 Zone 3 

Sprint Velocity (m/sec) 5.53 ± 0.26 6.99 ± 0.27** 8.00 ± 0.27*  

Stride Length (cm) 127.93 ± 7.93 156.93 ± 9.62**  176.24 ± 8.37* 

Stride Frequency (steps/sec) 4.34 ± 0.31 4.47 ± 0.28** 4.55 ± 0.24* 

Ground Contact Time (ms) 158.09 ± 14.19 142.71 ± 10.01† 132.86 ± 9.32*** 

* = Statistically greater than zones 1 and 2 (p = 0.000), ** = Statistically greater than zone 1 

(p = 0.000), *** = Statistically shorter than zones 1 and 2 (p = 0.000), † = Statistically 

shorter than zone 1 (p = 0.000)  
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“Higher Power” versus “Lower Power” Comparison 

 An independent samples t-test revealed the difference in SJ PPr 0kg between the higher 

power and lower power groups to be statistically significant (t19 = 5.343, p = 0.000).  Descriptive 

data for both groups can be found in Table 5.7. All sprint variables were found to be within an 

acceptable range of reliability for both the higher power and lower power groups with ICC 

values of 0.85 – 0.98 and .89 – .98, respectively. CV values also ranged between 1.71 – 3.75% 

and 0.87 – 3.49% for the higher power and lower power groups, respectively. SJ PPr 0kg was 

also found to be reliable within the higher power and lower power groups with each exhibiting 

ICC values of 0.95 and 0.96, respectively. CV values were also found to be reliable at 2.45% and 

2.77% for the higher and lower power groups, respectively. Statistically significant main effects 

for acceleration zone existed for SV (F2,38 = 652.18, p = 0.000, c = 1.000), SL (F2, 38 = 952.37, p 

= 0.000, c = 1.000), SF (F2, 38 = 9.63, p = 0.000, c = 0.973), and GCT (F2, 38 = 100.24, p = 0.000, 

c = 1.000).  Post Hoc analysis revealed that SV, SL, and SF in acceleration zone 3 were 

statistically greater than acceleration zones 2 and 1 (Table 5.6). Additionally, SV, SL, and SF at 

acceleration zone 2 were also statistically greater than zone 1 (Table 5.6). In contrast, GCT in 

acceleration zone 3 was statistically greater than acceleration zones 1 and 2. GCT in acceleration 

zone 2 was also statistically shorter than zone 1 (Table 5.6). 95% confidence intervals for the 

difference in SV, SL, SF, and GCT between each acceleration zone can be found in the Tables 

5.12-5.15 in Appendix C, respectively. There were statistically significant main effects for SJ 

PPrel 0kg between athletes for SV (F1,19 = 5.735, p = 0.027, c = 0.623) and GCT (F1,19 = 4.792, p 

= 0.041, c = 0.547), but not SL (F1,19 = 0.758, p = 0.953, c = 0.050) or SF (F1,19 = 1.661, p = 

.213, c = 0.232). Post Hoc analysis revealed that the higher power group achieved statistically 

greater SV in acceleration zones 2 (p = 0.040, 95% CI = 0.127– 0.468m/sec) and 3 (p = 0.041, 
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95% CI = 0.10 – 0.461m/sec) in comparison to the lower power group. Further Post Hoc analysis 

revealed that the higher power group also displayed shorter GCT in acceleration zone 2 (p = 

0.026, 95% CI = 1.26 – 17.70ms) compared to the lower power group as well.  

 

 
Table 5.7 Descriptive data for the “higher power” and “lower power” groups 

 
 
 
 
 
 

	  
	  
	  
	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Variable Mean SD 

95% CI 

Lower Bound 

95% CI 

Upper Bound 

Higher Power (W/kg) 59.85 1.48 58.93 60.77 

Lower Power (W/kg) 50.30 1.35 49.46 51.13 
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Figure 5.8 Sprint velocity differences between athletes displaying “higher power” outputs versus 
“lower power” outputs 

	  

	  
	  

	  
Table 5.8 Sprint velocity differences between athletes displaying “higher power” outputs versus 

“lower power” outputs  
 

Group Zone 1 95% CI Zone 2 95% CI Zone 3 95% CI 

Higher 
Power 5.57 ± 0.21 5.40 – 5.74 7.12 ± 0.25* 6.95 – 7.28 8.13 ± 0.21* 7.97 – 8.29 

Lower 
Power 5.5 ± 0.30 5.34 – 5.66 6.88 ± 0.24 6.72 – 7.03 7.89 ± 0.21  7.74 – 8.05 

 
Note: * = statistically significant at the p < 0.05 level. 
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Figure 5.9 Step length differences between athletes displaying “higher power” outputs versus 
“lower power” outputs  

	  

	  
	  

	  
Table 5.9 Step length differences between athletes displaying “higher power” outputs versus 

“lower power” outputs  
 

Group Zone 1 
95% 

Confidence 
Interval 

Zone 2 
95% 

Confidence 
Interval 

Zone 3 
95% 

Confidence 
Interval 

Higher 
Power 

127.25 ± 
8.40 

121.89 - 
132.61 

156.9 ± 
10.88 

150.37 – 
163.43 

176.6 ± 
9.91 

170.36 – 
181.18 

Lower 
Power 

128.55 ± 
7.82 

123.43 - 
133.66 

156.96 ± 
8.86 

150.73 – 
163.18 

175.91 ± 
7.17 

170.50 – 
182.28 
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Figure 5.10 Step frequency differences between athletes displaying “higher power” outputs 
versus “lower power” outputs  

	  

	  
	  

	  
Table 5.10 Step frequency differences between athletes displaying “higher power” outputs versus 

“lower power” outputs  
 
 

Group Zone 1 
95% 

Confidence 
Interval 

Zone 2 
95% 

Confidence 
Interval 

Zone 3 
95% 

Confidence 
Interval 

Higher 
Power 4.40 ± 0.39 4.19 – 4.61 4.56 ± 0.34 4.38 – 4.74 4.62 ± 0.26 4.47 – 4.77 

Lower 
Power 4.29 ± 0.39 4.09 – 4.49 4.39 ± 0.19 4.21 – 4.56 4.49 ± 0.21 4.35 – 4.64 
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Figure 5.11 Ground contact time differences between athletes displaying “higher power” outputs 
versus “lower power”  

 

	  
	  

	  
Table 5.11 Ground contact time differences between athletes displaying “higher power” outputs 

versus “lower power” outputs  
 
 

Group Zone 1 
95% 

Confidence 
Interval 

Zone 2 
95% 

Confidence 
Interval 

Zone 3 
95% 

Confidence 
Interval 

Strong 152 ± 11.86 143 – 161 138 ± 8.89* 132 – 144 130 ± 10.62 124 – 135 

Weak 164 ± 14.44 155 – 172 147 ± 9.07 142 – 153 135 ± 7.11 130 – 142 

 
Note: * = statistically significant at the p < 0.05 level.  
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DISCUSSION 

 The primary purposes of this investigation were twofold. First, this study aimed to 

compare the sprint characteristics in strong versus weak Division I men’s collegiate soccer 

players during early-, mid-, and late-acceleration. Similarly, the second purpose of this study was 

to compare the same sprint metrics in athletes who display higher power outputs versus lower 

power outputs. The investigators hypothesized that the stronger and higher power output groups 

would achieve greater SV by displaying greater SF and shorter GCT in comparison to the weak 

and lower power output groups, respectively. The main findings of this study supported this 

hypothesis, as the stronger and higher power groups did in fact show these trends in comparison 

to their weak and lower power counterparts, respectively. Additionally, the differences in SV 

between these groups increased in magnitude at greater sprint distances. This appears to be 

catalyzed by rapid increases in SF between the early- and mid-acceleration zones for both the 

strong and high power cohorts (Figures 5.6 and 5.10). This trend may also be the result of the 

strong and higher power groups displaying consistently lower GCT across all three sub-sections 

of acceleration in comparison to the weak and lower power athletes (Figures 5.7 and 5.11).  

 Although statistically significant strength and power level main effects were sparse for 

these variables, the practical significance revealed by effect sizes accentuates the importance of 

these spatiotemporal characteristics. While some of these effects may be characterized as 

“small”, they may be quite meaningful to performance. For example, the small-to-moderate 

effects for both SF (d = .54 – .61) and GCT (d = .54 – 1.0) may account for the statistically 

greater SV in zones 2 and 3 displayed by the higher power group, as SL (d = 0.01 – 0.08) only 

showed trivial effect sizes within these segments. Similar practical effects were also found in the 



	  
	  
	  

141	  

comparison between the strong and weak groups as well. Accordingly, these small-to-moderate 

effect sizes may have a significant impact on acceleration performance. 

 These results are in accordance with a host of other studies and reviews that have shown 

athletes who possess greater levels of MS (9, 13, 36, 41) and PP (1, 12, 13, 42) likely display 

superior sprint acceleration. Moreover, these findings are also in agreement with a number of 

previous investigations that have suggested faster FSA likely exhibit enhanced acceleration 

ability through increased SF and diminished GCT, but not SL (4, 27, 30, 38). For instance, 

Murphy et al. (38) found that “faster” FSA expressed greater SF and abbreviated GCT over the 

first three steps of a 15m sprint in comparison to “slower” FSA. Hewit et al. (27) also found 

faster national-level netball players to display greater SF over a distance of 2.5m in comparison 

to slower players. Most notably, however, a recent study by Bellon (4) found SF during the mid-

acceleration zone to display moderate-to-strong, positive correlations with SJ PP 0kg, RFD@90, 

RFD@200, and RFD@250 in Division I men’s soccer players. The investigators of that study 

also found GCT to exhibit moderate-to-strong, negative correlations with SJ PP 0kg and RFD at 

90ms during all three sub-sections of acceleration as well. Considering the interrelationship 

between PP and RFD (48), the findings of the current study in combination with that of Bellon 

(4) support the notion that FSA who can quickly express high forces are more likely to possess 

greater acceleration ability in comparison to their less-powerful counterparts.  

 In contrast to these findings, however, the results of the current study conflict with others 

that have shown stronger relationships between sprint acceleration and SL, rather than SF, in 

FSA (31, 32). For example, Lockie and colleagues (31) found sprint acceleration over a distance 

of 5-10m to show moderate-to-strong correlations with both SL and GCT, but not SF. However, 

as noted by the authors, the faster athletes in this study (31) were likely able to express these 
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sprint characteristics by producing greater vertical GRF at a higher rate during ground contact. 

Therefore, despite expressing longer SL instead of higher SF, it appears the underlying 

mechanisms of those spatiotemporal variables are likely similar to those suggested in the current 

study. Opposing results were also found in another investigation by Lockie and colleagues (32), 

who examined the effect of different speed development protocols on 5-10m sprint performance 

in FSA over a 6-week period. The athletes were separated into groups performing free-sprint 

training, resisted sprint training, plyometric training, or resistance training. Interestingly, despite 

not having any sprint training over the 6-week period, the athletes in the resistance training group 

displayed the greatest practical effects from pre-to-post-testing in both 5 and 10m sprints, which 

appeared to result from increases in SL. Similar to the Lockie et al. (31), the investigators again 

noted that these augmentations to sprint mechanics were likely a reflection of increased power 

outputs, which were evident when examining the athletes’ pre-to-posttest scores in a 5-bound 

protocol. While the sprint characteristics employed to reach greater SV may vary from one 

population to the next, a commonality in the literature appears to be that faster athletes produce 

force more efficiently, likely due to a superior RFD. 

 When considered from a training perspective, these results emphasize the concept that 

sprint acceleration is likely built upon a foundation of MS, as stronger athletes have been shown 

to display greater levels of PP (10, 44, 45, 47) and RFD (3, 25, 29, 43, 47). Consequently, the 

development of this fitness quality is of the upmost importance to improving acceleration 

performance. Additionally, due to the importance of power-related variables, such as PP and 

RFD (4), addressing the “force” and “velocity” ends of the force-velocity curve is also a key 

training consideration (1, 24, 47). These objectives can be met by integrating a “mixed- 
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methods” training approach (24, 39, 47) within the frameworks of block periodization and phase 

potentiation (15, 16).  

 Furthermore, properly integrating speed development tactics into these paradigms may 

also be warranted to not only compliment strength training adaptations, but also to maximize the 

transfer of training effect. Specifically, utilizing appropriate speed enhancement methods within 

the training process may allow athletes to learn how to effectively express higher force outputs 

during acceleration (5), as resistance training adaptations have shown to alter movement patterns 

and, subsequently, sport performance (10). The results of the current study are a prime example 

of this concept, as the strong and higher power groups, despite having no formal sprint training, 

displayed different acceleration characteristics in comparison to the weak and lower power 

groups. Consequently, the methodical implementation of speed, strength, and power 

development strategies within the training process is likely a critical component when aiming to 

bolster sprint acceleration. An amalgamation of these training factors into a single framework, 

known as Seamless Sequential Integration (SSI), has been proposed by DeWeese and colleagues 

(17, 18). Specifically, SSI merges block periodization, conjugate-sequential sequencing, and 

short-to-long speed development practices to improve sprint performance (17, 18). However, this 

particular model was implemented in a population of elite level bobsled athletes rather than FSA. 

To address this issue, an adapted model of SSI for men’s soccer players was proposed by Bellon 

(4). Unfortunately, that model has not yet been investigated. Consequently, future studies should 

explore the longitudinal effects of that methodology on the development of sprint acceleration in 

men’s soccer players.  
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PRACTICAL APPLICATION 

 The results of this study indicate that stronger, more-powerful Division I men’s soccer 

players achieve greater SV by during acceleration by expressing greater SF due to shorter GCT.  

Practitioners and athletes should aim to develop MS, PP, and RFD by utilizing a mixed-methods 

training approach within the confines of block periodization and phase potentiation (15, 16). 

Additionally, SSI may also be used to integrate speed development methods into the training 

process in a logical and progressive manner (17, 18).  
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CHAPTER 6 
 

SUMMARY AND FUTURE INVESTIGATIONS 
 

 The overall purpose of this dissertation was to develop a S2L model for FSA to more 

effectively integrate speed and strength development practices into the training process. In order 

to achieve this purpose, the following were explored as individual research investigations: 1.) an 

examination of the approximate distances constituting the early, mid, and late sub-phases of 

sprint acceleration in a population of Division I men’s collegiate soccer players, 2.) an 

investigation of the relationships between various strength-power variables and key sprint 

characteristics during early-, mid-, and late-acceleration in a population of Division I men’s 

soccer players, and 3.) a comparison of the spatiotemporal characteristics of “strong” versus 

“weak” and “more powerful” versus “less powerful” Division I men’s soccer players during 

early-, mid-, and late- acceleration. By fulfilling these objectives, practitioners and athletes may 

benefit from understanding how to seamlessly integrate speed, strength, and power development 

practices into the training process for this athlete population. 

 The results of study I indicated that the early-, mid-, and late-acceleration zones may be 

characterized as approximately 0-2.5, 2.5-6, and 6-12m, respectively. When these sub-sections 

are considered within the context of the training process, they can be implemented in a manner 

similar to that described by DeWeese and colleagues (2014a, 2014b) using SSI. More 

specifically, BP can be used to merge the development of the early-, mid-, and late-acceleration 

sub-phases with that of SE, MS, and RFD, respectively. By coupling each segment of 

acceleration with these particular fitness characteristics, practitioners may utilize CSS to deliver 

unidirectional stimuli, or “concentrated loads”, to their athletes within each phase of training. For 

example, a concentrated load of resistance training practices used to develop SE typically 
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requires each exercise to be performed at higher training volumes (e.g. – 3 sets of 10 repetitions) 

(DeWeese, Hornsby, et al., 2015a, 2015b). By keeping the set and rep scheme consistent for each 

lift, these exercises may elicit a similar, “unidirectional” physiological response. Accordingly, 

applying the same concept to speed development by selecting methods emphasizing the early-

acceleration zone may also foster a unified adaptive response as well. Consequently, the 

adaptations resulting from these concentrated loads may be superior in comparison to those 

garnered from multi-directional loading schemes (Stone, Stone, & Sands, 2007; Verkhoshansky, 

1985).  

 More importantly, however, the effects resulting from a concentrated load of early-

acceleration drills may act synergistically with those derived from resistance training. 

Specifically, the elevated resistance training volumes needed to establish a foundation of SE will 

likely limit an athlete’s capacity to adapt to greater workloads in other areas of training, such as 

speed development, as these larger volume loads are typically accompanied by greater levels of 

fatigue (Sams, 2014), reduced force outputs (Flanagan et al., 2012; Marshall et al., 2011), and 

diminished motor control (Barker et al., 1990). Therefore, implementing longer sprint efforts 

may further inflate the athlete’s volume load and potentially blunt strength development by 

activating catabolic mechanisms, such as PGC-1 alpha and AMPk (Smiles, Hawley, & Camera, 

2016). In contrast, utilizing a concentrated load of shorter distance drills, particularly those 

pertinent to the early-acceleration segment, may aid the up-regulation of the mTOR pathway, 

while mitigating excessive phosphorylation of AMPk (Nader, 2006). From a physiological 

perspective, this is significant in that greater phosphorylation of mTOR, particularly mTORC1, 

may lead to greater increases in muscle cross-sectional area (Egerman & Glass, 2014; West, 

Burd, Staples, & Phillips, 2010), which could serve as the foundation for greater strength and 



	  
	  
	  

150	  

power improvements in subsequent training phases (Minetti, 2002; Zamparo, Minetti, & di 

Prampero, 2002). Furthermore, as the resistance training focus transitions towards enhancing MS 

and RFD, in accordance with the BP paradigm, training volume is typically lowered (i.e. – 3 sets 

of 3-5 repetitions) to accommodate for higher training intensities (DeWeese, Hornsby, et al., 

2015a, 2015b; Stone, Stone, & Sands, 2007). Additionally, this reduction in training volume may 

also facilitate greater recovery-adaptation, which could foster greater strength and power 

development as well (Stone, Stone, & Sands, 2007). As a result, the athletes may be more 

capable of generating the high GRF necessary to achieve greater SV. Keeping this in mind, 

concentrated loads geared toward the mid- and late-acceleration zones may be more appropriate 

when the strength profile of the athlete matures.  

 Although the sets and repetitions for each exercise can be used to direct the purpose of a 

concentrated load, another key programming consideration driving this model is exercise 

selection. Simply put, each exercise should be selected to elicit a desired response. An often 

overlooked detail, however, is that the appropriateness of each exercise will vary based on the 

physiological status of the athlete. For instance, referring back to the previous example, higher 

training volumes resulting from a concentrated load of SE will likely diminish PP (Sams, 2014) 

and RFD (Flanagan et al., 2012; Marshall et al., 2011). This may be significant from a sprinting 

perspective in that these requisite strength-power qualities may underpin sprint performance 

during early-acceleration. To accommodate for this issue, exercise selection would have to be 

adjusted to account for lower force outputs. Accordingly, identifying which of these strength-

associates was most relevant to early-, mid-, and late-acceleration in study II was the next logical 

step in developing an integrated model for FSA.  
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 The results of study II suggested that PP and RFD at earlier time-points (i.e. – RFD@90) 

appear to be related to producing shorter GCT during all sub-sections of acceleration, as well as 

SF during mid-acceleration. Additionally, PP and RFD at later time-points (i.e. – RFD@200 and 

RFD@250) were more related to increasing SF, particularly during mid-acceleration. Previous 

studies have suggested that faster team sport athletes express shorter GCT and greater SF during 

acceleration in comparison to their slower counterparts (Hewit, Cronin, & Hume, 2013; Lockie 

et al., 2011; Murphy, Lockie, & Coutts, 2003). Therefore, since PP and RFD are likely related to 

these critical sprint variables, higher training volumes may blunt the development of these 

abilities, thus hindering sprint performance. To address this issue, practitioners are encouraged to 

consider employing tactics that require inherently longer GCT when higher resistance training 

volumes are implemented. 

 While this may sound counterintuitive, one may hypothesize that methods such as sled 

towing and incline sprinting may require the athlete to generate a higher propulsive IP over a 

longer period of time (Gottschall & Kram, 2005), thus accommodating for lower RFD and PP. 

Furthermore, Spinks et al. (2007) showed that sled towing led to a greater anterior lead of the 

torso, particularly during the first two steps of acceleration, over the course of an 8-week training 

period in FSA. As Kugler and Janshen (2010) remind us, an athlete’s body position greatly 

influences their ability to develop high propulsive forces, which may dictate the SV attained 

during acceleration. Additionally, Mann (2013) also suggests that the ability to maintain a 

greater anterior lean of the torso allows the athlete to accelerate for greater distances, potentially 

leading to greater SV. Accordingly, various forms of resisted sprinting may be warranted to 

supply a concentrated load during periods that require higher resistance training volumes. 
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Perhaps even more important, this tactic may allow the athlete to attain more advantageous body 

positions to accelerate greater distances in subsequent training phases.  

 With that said, it is also important to evaluate the training status and strength level of 

each athlete when determining the appropriateness of training methods as well. Recent evidence 

has shown that stronger athletes tend to display a superior ability to handle higher training loads, 

while weaker athletes appear to take longer to recover and adapt from greater training demands 

(Johnston, Gabbett, Jenkins, & Hulin, 2015; Sole, 2015). When revisiting the previous example 

of a block emphasizing early-acceleration and SE, weaker athletes may not be able to adapt 

beyond the workloads resulting from resistance training. Taking this information into account, 

when working with less-trained athletes, a “less is more” approach is likely warranted. Lockie 

and colleagues (2012) have even showed that resistance training alone over a period of 6-weeks 

was enough to improve the acceleration capacity in FSA. Therefore, coupling resistance training 

sessions with very conservative speed development practices is likely enough to improve 

acceleration ability for weaker athletes.  

 In contrast to this notion, stronger, more advanced athletes appear to display a diminished 

transfer of training effect with respect to sprinting in comparison to their less-trained cohorts 

(Barr et al., 2014). As noted by Barr and colleagues (2014), this could indicate an exhaustion of 

the initial technique and neuromuscular adaptations that improve sprinting speed. This could also 

be due to the simple fact that these athletes are closer to their genetic potential, which may stifle 

their rate of adaptation. Furthermore, these individuals may benefit from implementing tasks that 

possess greater levels of specificity. As Siff (2009) reminds us, to successfully transfer to 

athletics performance, exercises must overload a host of parameters including the type of muscle 

action, the magnitude of force applied, as well as the RFD inherent to the task. Keeping this in 



	  
	  
	  

153	  

mind, these individuals may show a more positive adaptive response to additional speed 

development tactics, such as sled towing, incline sprinting, or other sprint drills. Regardless of 

the strength level of the athlete, however, the physiological status of the athlete should be 

continuously monitored so that objective training decisions can be made. Despite the fact that 

stronger athletes appear to tolerate higher training loads with greater ease, the training and 

competitive demands inherent to sport still affect these athletes as well. As such, consistently 

assessing the fatigue level of each athlete may allow practitioners to better evaluate the 

appropriateness of each training method for his or her athletes. 

 While selecting suitable speed enhancement tactics is an important part in organizing the 

training process, the importance of establishing high-levels of MS, PP, and RFD cannot be 

overstated. The results of study III strongly support this notion. In particular, athletes designated 

to the “strong” and “higher power output” groups attained greater SV during acceleration by 

displaying greater SF and shorter GCT in comparison to the “weak” and “lower power output” 

groups. Although these results appear to conflict with other studies that have reported faster FSA 

to display superior SL, rather than SF, over abbreviated GCT (Lockie et al., 2013; Lockie et al., 

2012), a commonality amongst all of these investigations appears to be the importance of PP. 

More specifically, regardless of which sprint characteristics were expressed to reach greater SV, 

each of these studies suggest that this result was likely due to the expression of higher power 

outputs. Also, the differences in spatiotemporal characteristics may have been attributed to 

varying athlete populations between investigations, as both studies that reported conflicting 

results included a wide variety of FSA such as soccer, rugby, and field hockey. Consequently, 

the positions from which athletes accelerate likely differ in each sport. For instance, field hockey 

players are often more flexed at the hip to control the ball and accelerate while holding a stick in 
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their hands, while rugby players are also likely to adopt different sprint characteristics when 

carrying a ball during gameplay (Barr, 2014). Taking these differences into consideration, sprint 

characteristics displayed by faster athletes do appear to differ between sport populations, but the 

expression of higher-levels of PP is probably a common underlying mechanism across all FSA.  

 Despite the obvious importance of this fitness characteristic, PP is likely a by-product of 

RFD via the impulse-momentum relationship (Taber et al., 2016). In other words, the higher 

RFD an athlete can express, the greater the IP generated, which, subsequently, enhances PP. 

Consequently, greater PP outputs may be a reflection of an improved ability to express higher 

rates of force. Regardless of which power-associate is the precise mechanism to enhancing 

acceleration, it is imperative to recall the relationship between both of these qualities and MS, as 

stronger athletes often possess higher PP (Cormie et al., 2010a; Stone, Moir, Glaister, & Sanders, 

2002; Stone et al., 2003; Stone, Stone, & Sands, 2007) and RFD (Beckham et al., 2013; Haff et 

al., 1997; Hornsby, 2013; Sole, 2015; Stone, Stone, & Sands, 2007). Ultimately, establishing a 

solid foundation of MS may facilitate greater potential to express greater PP and RFD (Taber et 

al. 2016; Cormie et al., 2010a).  

 Interestingly, despite that MS (Comfort, Haigh, & Matthews, 2012; Cunningham et al., 

2013; McBride et al., 2009; Seitz, Reyes, Tran, Saez de Villarreal, & Haff, 2014) and PP (Baker, 

1999; Cronin & Hansen, 2005; Cunniffe et al., 2009; Sleivert & Taingahue, 2004) have been 

linked with acceleration performance in numerous studies and reviews, study III is perhaps the 

first to investigate the effects of these fitness qualities on sprint characteristics. The results of this 

study further validate the notion that the kinetic profile of an athlete may influence his or her 

movement mechanics. In addition, although a biomechanical analysis was not apart of this study, 

the differences in spatiotemporal profiles in strong versus weak and high power output versus 
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low power output groups likely indicate different movement strategies employed during 

acceleration, which appears to be supported by a number of previous investigations (DeWeese, 

Sams, et al., 2015; Mann, 2013; Murphy et al., 2003; Weyand et al., 2010). For example, 

previous literature has indicated that faster athletes often display abbreviated knee angles prior to 

toe-off during acceleration (Mann, 2013; Murphy et al., 2003), which may lead to an earlier 

initiation of the recovery phase, or “swing time”. Swing time constitutes the period over which 

the athlete repositions his or her legs between steps. According to Weyand et al. (2010), swing 

time is not statistically different between “fast” and “slow” runners. Therefore, faster athletes do 

not appear to reposition their legs at a faster rate, but rather find themselves in a more 

advantageous position to “attack the ground” by achieving greater hip flexion (DeWeese, Sams, 

et al., 2015; Mann, 2013), potentially contacting the ground in closer proximity to their center of 

mass (Mero, Komi, & Gregor, 1992). This mechanical advantage may lead to enhanced RFD 

during the stance phase, higher GRF, and greater SV. Overall, it can be surmised that producing 

higher forces during acceleration likely allows the athlete to attain sprint mechanics that afford 

him or her to continue to generate higher GRF at greater distances, thus potentiating top-end 

speed. Ultimately, sprint speed is built upon a foundation of MS (DeWeese, Sams, et al., 2015).  

 While this adapted version of SSI is an evidence-based model, only a theoretical 

foundation for this framework has been provided in this dissertation. Future investigations 

should aim to test the efficacy of this paradigm across athletes of different sports and strength 

levels through the use of sound athlete monitoring practices. Additionally, although higher-level 

players appear to be faster accelerators from a static position (Ferro et al., 2014; Gabbett et al., 

2009; Gabbett et al., 2008; Gissis et al., 2006), it is still unknown if these athletes are also faster 

when initiating a sprint effort from a walk, jog, or run. Subsequently, follow-up investigations 
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should also examine the relationship between acceleration ability from a static position and the 

re-acquisition of acceleration while “on the move”. Lastly, future research should also aim to 

further investigate the efficacy of particular speed development methods, such as sled towing and 

incline sprinting. By fostering a better understanding of the longitudinal training effects derived 

from these tactics, they may be implemented with greater purpose at particular times of the 

training year.  

 In conclusion, this model of SSI for FSA is not intended to be used a rigid structure to 

organize the training process. Rather, it is a conceptual framework that can be adapted to fit the 

training demands of each athlete in a variety of scenarios. Due to the variable demands of 

different sports, positions, and playing styles, a “one-size fits all” model is unrealistic and 

impractical. Simply put, no theoretical paradigm can replace a sound understanding of the 

training process, the physiological theory governing adaptation, and common sense. As such, 

practitioners are encouraged to tailor the theoretical concepts provided in this dissertation to 

meet the practical needs of their athletes.   
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APPENDIX	  C:	  Additional	  Data	  from	  Chapter	  5	  
	  
	  

Table 5.12 Differences in sprint velocity between acceleration zones 

Acceleration Zone Comparison p-value 95% CI for difference (m/s) 

Zone 3 versus Zone 2 0.000 0.82 −1.21  

Zone 3 versus Zone 1 0.000 2.30 − 2.65 

Zone 2 versus Zone 1 0.000 1.29 − 1.63 

 

Table 5.13 Differences in step length between acceleration zones 

Acceleration Zone Comparison p-value 95% CI for difference (cm) 

Zone 3 versus Zone 2 0.000 16.72 − 21.93  

Zone 3 versus Zone 1 0.000 45.76 − 50.95 

Zone 2 versus Zone 1 0.000 25.54 − 32.52 

 

Table 5.14 Differences in step frequency between acceleration zones 

Acceleration Zone Comparison p-value 95% CI for difference (steps/sec) 

Zone 3 versus Zone 2 0.000 0.03 − 0.20  

Zone 3 versus Zone 1 0.000 0.08 − 0.35 

Zone 2 versus Zone 1 0.000 0.00 − 0.259 
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Table 5.15 Differences in ground contact time between acceleration zones 

Acceleration Zone Comparison p-value 95% CI for difference (ms) 

Zone 3 versus Zone 2 0.000 5.79 − 13.78  

Zone 3 versus Zone 1 0.000 20.14 − 30.11 

Zone 2 versus Zone 1 0.000 10.31 − 20.37 
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