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individual. There is a striking difference in the balancing patterns: 78% of people over the age of 

45 had phase-space plots that revealed a double attractor pattern, while only 14% of people 

below age 45 show a double attractor pattern. 

 

 Figure 2.4. Characteristic phase-space plots. These figures 

are examples of the apparent attractors evident in the phase-

space plots of older people (left column). Younger subjects 

rarely (14%) exhibited similar space plot with attractors 

(right column). 
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Dimensionality and time-dependency of balancing 

Correlation dimensions are not dependent upon the sex, BMI, or age of the test participants 

(GLM, p > 0.05, df = 33). The participants of this study were all free of significant health issues, 

thus revealing that age does not affect the general geometric span of the data. Repeated patterns 

have been shown in older people (Figures 2.1-2.4), however since the dimensionality is 

unchanged, it is the timing and repetition of elements that marks the difference between the force 

data of younger and older individuals and not the magnitude of all changes. The descriptive 

statistics for the correlation dimensions are presented in Table 1. There are thus possible strange 

attractors with fractal dimension between 2 and 3 for healthy individuals balancing. 

 

 

Task Mean Standard Deviation Range Kurtosis 

Standard 2.63 0.70 3.03 0.20 

Knot tying 2.58 0.78 3.98 1.66 

Mental 2.54 0.90 4.15 0.61 

 

Table 1. Descriptive statistics of dimensionality. There is no significant 

difference between older and younger people in the correlation dimensions of 

their mediolateral force trajectories; healthy people, regardless of age, have 

force data in the dimension of approximately 2.5. The mental tasks and knot-

tying task is not different than the standard task (t-test, t stat mental = 1.67, t 

stat knot-tying =1.67; p > 0.05, p <0.05. 
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There is a negative linear relationship between the largest Lyapunov exponent and age (Figure 

5).  The largest Lyapunov Exponents for young people are predominately positive, indicating 

strong chaotic components. 

 

 

Fig 2.5. Time-dependency of balancing: largest Lyapunov exponents vs. age. 

Lyapunov exponents from mediolateral force data for each trial (general, knot 

tying, and mental tasks) were averaged and the results plotted against age. There 

is a negative linear relationship between the time-dependency of the data and 

age; linear model:#y = -0.2648x + 17.632, r = 0.57, p < 0.01, df = 32  
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Discussion 

There is a clear open-loop control strategy which emerges with age. Hurst exponents 

increase with age for the standard balancing task, indicating a continual decline in the brain’s 

ability to quickly process information and provide feedback to the central and peripheral nervous 

systems and the limbs. For the mental and knot-tying tasks, the polynomial fit reveals that people 

reach the higher Hurst exponent levels at a younger age for the mental and knot-tying tasks. The 

results of the mental task rely upon a participant’s ability to quickly understand the researcher 

ask the questions and to quickly process the information. There is damage of mitochondrial DNA 

and subsequent apoptosis of cochlear cells with age (Iwasaki et al. 2014). This may negatively 

affect balancing even at late middle-age. Rankin et al. (2000) showed that there was reduced 

muscle activity when balancing if given math problems to accomplish, both for young and older 

adults. The math tasks in their study affected the older and younger people equally. Since the 

muscle activity was similarly altered between age groups, it may be that the feedback 

mechanisms of the central brain processing centers are struggling to quickly provide feedback 

during cognition tasks, while in younger people, the decreased muscular activation quickly was 

processed by the brain and balance strategy quickly adapted. Further, the results of the knot-tying 

task rely upon the ability to concentrate on performing a fine motor control task while still 

remaining balanced on one foot. The balancing strategy becomes thus more random with age 

because of delays in muscle activation and diminished strength; the older people have a problem 

remaining upright while balancing and concentrating on something else.  Conceivably, problems 

with sensory input cause physiological delays, thereby causing older participants to have more of 

a struggle with knot tying efficiently and therefore having a delay in activation of their feedback 

mechanisms for balancing (Blaszczyk et al., 2006). Regarding the specific balancing pattern of 
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choice, it is possible that the double attractor pattern shown in the older individuals results from 

the subjects’ view of the trials as biphasic. In other words, they think about the task as 1. Get on 

the force plate and 2. Hold the balancing position. The younger people may think about the task 

as one distinct balancing challenge. The dimensionality is not altered by age in healthy people. 

The data thus has similar geometric complexity, but since there are significant differences in 

Hurst exponents and Lyapunov exponents, there is a change in the speed at which the body tries 

new patterns. 

There have been disagreements regarding the most appropriate method of analyzing 

balancing data. Collins and DeLuca (1993) were one of the first to propose to model their center 

of pressure data as a random walk. Their method was to split up their data into time intervals of 

equal length and then find the square of the displacement of each time interval, (Collins and 

DeLuca, 1993). They then made log log plots of the mean of this displacement squared vs. the 

time interval and determined the slope of this line to be the Hurst exponent. They found two 

different lines of different slopes and surmised that the first line was a Hurst exponent for the 

short term and the second line was the Hurst exponent upon longer balancing periods. This 

method has been questioned; Delignières et al. (2003) wrote that the Hurst exponent being two 

different values based upon time was only measured due to the inappropriate use of bounds in 

the system. The Hurst exponent has been appropriately used to describe motion of subatomic 

particles, yet biological systems such as a foot on a force plate has bounds that a subatomic 

particle does not experience. Delignières et al. (2003) showed that this problem may be solved 

by simply integrating the data. Calculation of the Hurst exponent, which relates to the 

randomness of data in relation to a suspended particle in a liquid’s random movements, is used 

for procedural modeling due to its nature to show the strength of feedback mechanisms. Amoud 
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et al. (2007) used statistical mechanical methods to quantify balancing data. They calculated the 

Hurst exponents via the detrended fluctuation analysis method as well as the stabilogram 

diffusion analysis method and found an increase in Hurst exponent with old age, indicating a 

tendency toward positive feedback in older people. Our study used the generalized Hurst 

exponent, which should avoid the bounding issues of the original estimation tool of Collins and 

DeLuca (1993).  

 

Conclusions 

 

Our general findings were in agreement with Amoud et al. (2007), in that the Hurst 

exponents showed increased pattern generation with age, and we were able to further conclude 

that there are intrinsic attractors associated with balancing disorders. Additionally, we were able 

to show differences in chaotic components in balancing in only 12 seconds and from 

mediolateral force trajectories on an inexpensive force plate, which will be useful as a quick and 

easy test for the health and complexity of an individual’s processing systems. 
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For the knot tying test, participants were asked to balance on one foot for 12 seconds 

while tying two knots in a 20 cm long piece of ribbon.  

 

Mathematical Methods 

 

Hurst exponents were used to analyze the force plate data in order to determine the control 

strategy of the participant (Collins and DeLuca, 1993). A Hurst exponent between 0.5 and 1 is 

assumed to be persistent; A Hurst exponent between 0 and 0.5 is anti-persistent. We analyzed the 

data for Hurst exponents as in Hilbun and Karsai (2016), based upon the generalized Hurst 

exponent approach of Aste (2013). He described the change in random variables in time 

(Equation 1), where X(t) is the time series,  𝝉𝝉 is a time delay, and q is the q order moments. The 

random walk is then related to the Hurst exponent, H (Equation 2), where v is a time resolution 

(Aste, 2013; Matteo et al., 2003). 

 

𝑲𝑲𝒒𝒒(𝝉𝝉) =  〈|𝑿𝑿(𝒕𝒕+𝝉𝝉)−𝑿𝑿(𝒕𝒕)|𝒒𝒒〉
〈|𝑿𝑿(𝒕𝒕)|𝒒𝒒〉         Equation 1 

𝑲𝑲𝒒𝒒(𝝉𝝉)~ 𝒕𝒕
𝒗𝒗

𝒒𝒒(𝑯𝑯(𝒒𝒒))
         Equation 2 

 

We use phase-space plots to reveal attractors; we have also calculated correlation 

dimensions based upon the degree of polynomial of best fit of the functions, assuming self-

similarity in the fluctuations of the force data (Hilbun and Karsai, 2016). Our code for this 
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function depends upon the fast fourier transform of the data, as shown in Equation 3, where T is 

the time series.  

  

 

𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟𝑐𝑐𝐶𝐶 𝐷𝐷𝑟𝑟𝐷𝐷𝑐𝑐𝐶𝐶𝑟𝑟𝑟𝑟𝑐𝑐𝐶𝐶 = ∫ 1
1000∗𝑁𝑁

∗ |𝑓𝑓𝑓𝑓𝑡𝑡(𝑇𝑇)|2     Equation 3 

  

We calculated the largest Lyapunov exponents to measure how the system changes in time and 

thus its relationship with initial conditions (Hilbun and Karsai, 2016). The largest Lyapunov 

exponent was calculated (Equation 5), where 𝛾𝛾 is the dominant Lyapunov exponent and is an 

average of the rate of dispersion of the trajectories (Cvitanovic et al., 2004). We assume that 

dominant Lyapunov exponents greater than 1 indicate either chaos or random movements, 

equivalent to 0 represent a stable system, and less than 0 indicate a fixed attractor.  

‖𝛿𝛿𝑥𝑥(𝑡𝑡)‖ ≈ 𝑐𝑐𝛾𝛾𝛾𝛾‖𝛿𝛿𝑥𝑥0‖         Equation 5. 

 

Statistics 

We used a generalized linear model approach to test the relationship between the chaos 

parameters (Hurst exponents, Lyapunov exponents, and correlation dimensions) and the age, sex, 

pain profile, and BMI of the participant. The alpha value was set to 0.05 (MATLAB 2015, XL 

version 2010).  
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Results 

Control Strategy 

Hurst exponents are not dependent upon the sex or BMI of the test subjects and no significant 

interaction terms were found amongst the studied variables (GLM, p > 0.05, df = 19, Figure 3.1). 

Significant relationships were found (Hilbun and Karsai, 2016) between the age and the Hurst 

exponents for healthy people for the standard balancing task and the concentration task (GLM, p 

< 0.05, df = 33, Figure 3.1). Pain does not affect this relationship for those tasks (GLM, p > 

0.05). Significant relationships were also found (Hilbun and Karsai, 2016) between the age and 

the Hurst exponents for healthy people for the mental task (GLM, p < 0.05, df = 33, Figure 3.1). 

Pain affects this relationship (GLM, p < 0.05). Additionally, when a Hurst exponent is between 

0.46 and 0.54, the behavior of the signal closely resembles a random walk (Mitra, 2012). For the 

standard balancing task, most people with chronic pain (80%) fell either into a random walk 

group (N = 7) or a strongly persistent group with H  > 0.7 (N = 8).  
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Fig 3.1. Control strategy as a function of age for dominant stance.  Generalized Hurst 

exponents vs. age were plotted for the mediolateral force trajectories while balancing on one 

foot, unperturbed, and compared to those of healthy people (Hilbun and Karsai, 2016). Control 

strategy increases with age for both conditions; GLM: y = 0.0063x + 0.3103, r = 0.71, p < 0.05; 

y = 0.0068x + 0.3329, r = 0.56, p < 0.05, df = 19.  

 

 

There was no relationship between the age and Hurst exponent for the knot tying task for people 

with chronic pain (Figure 3.2., GLM, p > 0.05) Pain does, however, significantly affect this 

relationship for the mental task (Figure 3.3, GLM, 𝑃𝑃𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑐𝑐𝐶𝐶𝑐𝑐𝑃𝑃 = 0.004 ∗ 𝑟𝑟𝑎𝑎𝑐𝑐 +

ℎ𝑐𝑐𝑟𝑟𝐶𝐶𝑡𝑡ℎ𝑃𝑃 − 0.099
𝑝𝑝𝑟𝑟𝑟𝑟𝐶𝐶        0

+ 0.514, p < 0.05).  
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Figure 3.2. Control strategy vs. age for knot tying task. Generalized Hurst exponents vs. age 

were plotted for the mediolateral force trajectories while balancing on one foot while tying knots 

in a ribbon. Control strategy increases curvilinearly with age; polynomial:#y = -0.0002x2 + 

0.0193x + 0.1405, r = 0.64, p < 0.001, df = 27. Generalized Hurst exponents vs. age were plotted 

for the mediolateral force trajectories while balancing on one foot while tying knots in a ribbon 

for people with chronic pain; GLM: r = 0.1072, p > 0.05, df = 19. 
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Fig 3.3a,b. Control strategy vs. age, mental task. Generalized Hurst exponents vs. age were 

plotted for the mediolateral force trajectories while balancing on one foot and answering basic 

arithmetic questions. The control strategy increases curvilinearly with age; polynomial:#y = -

0.0001x2 + 0.0176x + 0.1114, r = 0.54, p < 0.01, df = 33. Generalized Hurst exponents vs. age 

were plotted for the mediolateral force trajectories while balancing on one foot and answering 

basic arithmetic questions for people with chronic pain;  

GLM: 𝑃𝑃𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑐𝑐𝐶𝐶𝑐𝑐𝑃𝑃 = 0.004 ∗ 𝑟𝑟𝑎𝑎𝑐𝑐 +
ℎ𝑐𝑐𝑟𝑟𝐶𝐶𝑡𝑡ℎ𝑃𝑃 − 0.099

𝑝𝑝𝑟𝑟𝑟𝑟𝐶𝐶        0
+ 0. 

Repetition of Balancing Patterns 

We used phase-space plots to analyze the pattern repetition in balancing. There is a double 

attractor pattern which emerges with older age; we have previously shown that 78% of 

participants over the age of 45 had an emergent double attractor pattern (Hilbun and Karsai, 

2016). This pattern was only observed in 36% of people with pain ages 40 and older (30% 45 
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and older, Figure 3.4). Older people with pain may not be using the same balancing patterns as 

their painless counterparts due to preoccupation with their pain, and that pain signal’s disruption 

of the central pattern generators which would typically be present. 

 

Figure 3.4. Characteristic phase-space plots. The double attractor patterns that were present in 

people with pain are shown. 
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Dimensionality and Time-Dependency of Balancing 

Correlation dimensions are not dependent upon the sex, BMI, or age of the test participants for 

people with chronic pain. (GLM, p > 0.05, df = 19). We compared the descriptive statistics of the 

correlation dimensions of the healthy people (Hilbun and Karsai, 2016) with those of the people 

with chronic pain. There are thus possible strange attractors with fractal dimension between 2 

and 3 for healthy and pained individuals balancing. The arithmetic means between groups were 

statistically equivalent, but the standard deviations in the standard balancing task were 

significantly different (F = 2.56, p < 0.05). 

 

 

Task Mean Mean pain Std. dev. Std.dev. Pain 

Standard 2.63 2.67 0.7 0.44 

Knot tying 2.58 2.58 0.78 0.62 

Mental 2.54 2.96 0.9 0.68 

 

Table 1. Descriptive statistics of dimensionality. All participants, 

regardless of age, have force data in the dimension of approximately 2.5. The 

standard deviation for the standard task for people with chronic pain is 

different than that of the healthy people, but not for the other tasks (F = 2.6, p 

<0.05). 

 



45 
 

There is a negative linear relationship between the largest Lyapunov exponent and age for 

healthy people, but not for people with chronic pain (Figure 3.5, Hilbun and Karsai, 2016).  The 

largest Lyapunov Exponents for young people are predominately positive, indicating strong 

chaotic components. 

 

 

Fig 3.5. Time-dependency of balancing: largest Lyapunov exponents vs. age. Lyapunov 

exponents from mediolateral force data for each trial (general, knot tying, and mental tasks) were 

averaged and the results plotted against age for the people with chronic pain, and then compared 

with those of the healthy people (Hilbun and Karsai, 2016). There is a negative linear 

relationship between the time-dependency of the data and age for healthy people, but not people 

with pain; linear model:#y = -0.2648x + 17.632, r = 0.57, p < 0.01, df = 32.  
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Discussion 

There is a clear open-loop control strategy which emerges with age in healthy people 

(Hilbun and Karsai, 2016). Interestingly, existence of pain affects the control strategy during the 

mental task, but not the knot-tying task. It is likely that the knot-tying task, which is a sensory 

task, literally interrupts the afferent pathway of pain traffic. There is a positive correlation 

between math scores and calculation activation in the bilateral anterior cingulate cortex (Price et 

al., 2013). It is thus possible that the processing of pain and mathematical reasoning are largely 

processed in the anterior cingulate cortex and that a math task is not capable of taking precedence over 

pain processing. For healthy people, the control strategy passes through a range that is 

approximately Brownian at around age 30. For the people with pain, the values are 

approximately either random or strongly persistent, which shows that the pain either distracts the 

brain from choosing a solid pattern to follow, or it causes the individual to be even more resistant 

to feedback mechanisms than their healthy counterparts. It has been shown that while performing 

basic arithmetic, both the agonist muscle (gastrocnemius) and the antagonist muscle (tibialis 

anterior), which both are integral in maintaining ankle positioning for solid stability, have 

reduced activity (Rankin et al., 2000). Additionally, there is decreased in amplitude of muscle 

activity in the gastrocnemius muscle when comparing older people with younger people at time 

350-500 milliseconds after beginning balancing (Rankin et al., 2000). Of significant importance 

is that balancing requires significant attention, and that with old age, the changes observed in 

muscle activity occur too quickly for the changed reaction to be a result of the monosynaptic 

system and thus must originate in higher brain centers (Rankin et al., 2000).  It is cognitive 

functioning that is changed with age, thus the increased attentional demands with the perturbing 

balancing tasks create signal overloads which disrupt the typical balancing capabilities. People 
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with pain react in various ways to the demands, which may be a result of differing magnitude of 

pain or differences in prioritizing focus.  

Conclusions 

 

In general, our findings show that the existence of any category of chronic pain alters the 

control strategy of balancing such that the patterns are either random or strongly persistent. 

Additionally, many young otherwise healthy people with pain exhibit persistent balancing 

strategies. Importantly, the existence of chronic pain alters the control strategy of balancing 

while performing mental arithmetic.  
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Abstract 

Simple regulatory mechanisms based on the idea of the saturable ‘common stomach’ can 

control the regulation of construction behavior and colony-level responses to environmental 

perturbations in Metapolybia wasp societies. We mapped the different task groups to mutual 

inductance electrical circuits and used Kirchoff’s basic voltage laws to build a model that uses 

master equations from physics, yet is able to provide strong predictions for this complex 

biological phenomenon. Similar to real colonies, independently of the initial conditions, the 

system shortly sets into an equilibrium, which provides optimal task allocation for a steady 

construction, depending on the influx of accessible water. The system is very flexible and in the 

case of perturbations, it reallocates its workforce and adapts to the new situation with different 

equilibrium levels. Similar to the finding of field studies, decreasing any task groups caused 

decrease of construction; increasing or decreasing water inflow stimulated or reduced the work 

of other task groups while triggering compensatory behavior in water foragers. We also showed 

that only well connected circuits are able to produce adequate construction and this agrees with 
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the finding that this type of task partitioning only exists in larger colonies. Studying the buffer 

properties of the common stomach and its effect on the foragers revealed that it provides stronger 

negative feedback to the water foragers, while the connection between the pulp foragers and the 

common stomach has a strong fixed-point attractor, as evidenced by the dissipative trajectory. 

 

Introduction 

Insect societies function as superorganisms (Holldobler and Wilson, 2008) in which 

parallel processing is ubiquitous. The parallel processing not only makes the system more 

reliable (Barlow and Proschan, 1975), but it also makes possible the emergence of a complex 

system of the network of specialized units (Karsai and Wenzel, 1998, Seurant and Stanley, 

2012). Division of labor is one of the most studied and intriguing phenomena in insect societies. 

One of the most complex types of labor organization mechanisms is called task partitioning, 

which describes a situation when a given task, such as nest construction, is partitioned into 

subtasks. These subtasks are commonly connected sequentially and carried out by different more 

or less specialized individuals, such that it can be observed on the working process of the bucket 

brigade (Anderson et al., 2002). The assignment of a given worker to a given subtask is 

commonly dynamic, because it depends on the progress of the work, the number of participants, 

and other factors, and it poses a decision problem at the individual level for task switching 

(Sinha et al., 2006). In the insect society, each agent has only a local perception and only local 

information about the overall situation, and these societies have no foreman or other central task 

allocation unit, therefore the whole system is self-organizing itself to establish close to optimal 

performance via allocating different numbers of workers to different task groups. 
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Swarm founding Metapolybia wasps exhibit flexible and adaptive task specialization, in which 

distinct subsets of the complex nest construction task are partitioned between cooperative teams 

of nest mates (Karsai and Wenzel, 1998; 2000; Karsai and Balazsi, 2002; Agrawal and Karsai, 

2016). The building task is partitioned into four subtasks, and all subtasks are carried out by 

generally different individuals. Some workers specialize in water collecting and bringing the 

water to the nest, where it is stored in the crop of other wasps. These water storer wasps form a 

“common stomach” where the water can be downloaded or taken out, if needed. Other 

specialized wasps called pulp foragers collect water from the common stomach and fly out to 

collect wooden pulp. The water they bring from the nest is needed to macerate the plant 

materials (cellulose) into building material. This building material then is transported to the nest, 

where it will be distributed to builder wasps, which built the pulp into the nest. Field experiments 

and modeling of this system revealed that the saturation of the common stomach is used by the 

wasp as an information center (Karsai and Schmickl, 2011). For example, if the common 

stomach is saturated with water, the water foragers have difficulty downloading their water load, 

while the pulp foragers can take water from the common stomach very easily. This indicates that 

in the colony, there would be more water providers than necessary. Consequently, some of the 

water foragers would give up water foraging and switch into water users such as pulp foragers or 

builders. However, these switches also have costs (Hamann et al., 2013); therefore a large 

common stomach also can play a role as a buffer (Karsai and Runciman, 2011), so small 

fluctuations would not trigger task switching, and the wasps would operate with high task 

fidelity (Karsai and Phillips, 2012). This would in turn ensure additional benefits to the colony, 

such as the ability to learn the position of water and pulp resources.  
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Task partitioning itself is an old and general challenge not only in insect societies (Deneubourg 

and Goss, 1989; Seeley et al., 1991; Schmickl et al., 2012) but also in computational distributed 

systems (Bannister and Trivedi, 1983; Klügl et al., 2003), or in robot groups (Gerkey and 

Matari´c, 2004; Lemaire et al., 2004). Due to the hiatus of master equations in biology, task 

partitioning is commonly described and modeled with agent-based approaches or by the use of 

empirical functions. For example the ‘‘response threshold models’’ assume that workers vary 

intrinsically in task preference (Robinson and Page, 1989) and these threshold functions are 

commonly described by some form of sigmoid curve (Boneabou, 1999). Karsai and Balazsi 

(2002) used a Weibull function, commonly used to describe stress and aging processes, for 

modeling task partitions and Karsai and Schmickl (2011) built a complex system dynamic model 

that used combinations of linear functions to describe material flow and task switching in 

Metapolybia societies. These models are based on empirical data, fitted functions, and simple 

reasonable assumptions which well predicted the operation of natural colonies.  

Our goal in this paper is different. We will show that the essence of this complex biological 

phenomenon can be described by master equations using the physical systems of inductance 

circuits. We have built a model from electric circuits that will provide similar predictions to that 

which we observed in real colonies and empirical models. Models based upon electrical circuits 

have been adeptly used to model such systems as the nervous system; Hodgdon and Huxley 

(1952) provided a circuit model, based upon resistors and a capacitor, to model nerve impulses. 

Their research has been confirmed and expounded upon for further elucidation of cellular 

processes such as anesthesia (Heimburg and Jackson, 2007). Furthermore, it has been asserted 

that the properties of neural circuits and animal behavior are linked (Newcomb et al., 2012). 

Coupled circuits involving capacitors, resistors, and inductors were chosen for this model due to 



54 
 

the circuits’ inherent abilities to essentially explain storage through inductors and capacitors, loss 

due to environmental factors through resistors, and a general structure that would allow for a 

circular flow of a supply of particles: water in the biological system and electrons in the physical 

circuit. We will carry out a series of perturbation experiments in our model and we will compare 

the predictions or our model to field experiments and the predictions of other models constructed 

for the same system. 

  

Theory/Calculations 

Our model is based upon a simple physical system: an electrical circuit. It consists of four 

circuits, each of which acts as a different functional part of the wasp colony. The four parts of the 

wasp system which are modeled are the water foragers, the common stomach, the pulp foragers, 

and the builders. The electrons flowing through the circuits are used to model water flow through 

the system. In other words, each circuit corresponds to a group of wasps that are engaged in the 

same task, and the flow of electrons represents the flow of water through the system. Each task 

group (water foragers, pulp foragers, common stomach wasps, and builders) are represented by 

an RLC circuit. These circuits are related to simple harmonic oscillators. The inductance (L) acts 

as the mass of a harmonic oscillator system; the resistance (R) causes damping, and the 

capacitance (C) behaves like the spring constant of a mass oscillating on a spring. Each of the 

individual RLC circuits is connected by mutual inductance, representing the connectedness of 

these tasks (Figure 4.1). Mutual inductance was chosen as a connection between the circuits 

because the change of mutual inductance in one coil induces a current in the second coil. The 

water foragers acquire water, and then the water foragers directly affect the common stomach, 
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the common stomach directly affects the pulp foragers, and the pulp foragers directly affect the 

builders. Because the water foragers collect water and increase the supply of the common 

stomach, we use mutual inductance to model this work-based exchange of materials and 

information. Because in order to forage pulp, the pulp foragers need water from the common 

stomach, there is once again a work-based exchange of materials and information. The builders 

need supplies from the pulp foragers to build, so these circuits are also connected by mutual 

inductance. Sinks of water for construction and drinking/cooling are modeled via resistors. 

The current model is different from previously published models of task allocation of wasp 

societies (Karsai and Balazsi, 2002, Karsai and Schmickl, 2011, Karsai and Runciman, 2011; 

Karsai and Phillips, 2012; Hamann et al., 2013), because these models used either an agent-based 

approach or a combination of empirical and linear equations. Our present electrical circuit 

approach models the flow of water through the wasp system using master equations, which are 

based upon a well-studied physical system (Giancoli, 2000). This new model also allows us to 

derive new testable predictions on the connectedness of the system as a whole and the 

connectedness of the common stomach with the pulp foragers. 
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Figure 4.1. Circuit diagram model of task partitioning of Metapolybia wasps. The four circuits 

represent the group of wasps belonging to the four task groups. Elements of circuits are 

described in Table 1. 

The Model: 

The Water Foragers  

The task of the water foragers is to collect water and transfer the water to the common 

stomach. The circuit which models the water foragers comprises a capacitor (C1), a resistor (R1), 
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and an inductor (L1). This circuit also has two voltage sources, (V and G), allowing current to 

flow in two different directions and for directionality to be adjusted. The water forager circuit’s 

inductor (L1) is placed in close proximity to the inductor (L2) of the common stomach to allow 

for flow between the circuits. The work of the water foragers are regulated by how full the 

common stomach is and how much water is generated by the main water source (G). 

 

The Common Stomach 

The common stomach RLC circuit is comprised of a resistor (R2), a capacitor (C2) and 

two inductors (L2 and L3). The function of the common stomach is such that water foragers can 

download water into it and the pulp foragers can upload water from it. This flow of materials is 

modeled by L1 and L2 as well as L3 and L4 inductors being placed in close proximity (Fig 1). 

The L1 from the water foragers allows electrons to flow through the common stomach, and the 

L3 from the common stomach allows electrons to flow to the pulp foragers. There is a wire 

which divides the circuit so that this circuit will have two switches, each affecting a different 

inductor, allowing for feedback. One switch opens when the other switch closes, and vice versa. 

This causes changes in the magnetic field so that voltage can be induced in adjacent circuits 

(Faraday’s Law). Additionally, because the common stomach is a temporal storage place, it has a 

high capacitance capability (Table 1). The resistor (R2) of the common stomach reflects the 

common stomach’s potential use of the water for other reasons than construction, such as 

consumption and cooling. It has been shown that as the common stomach saturates, it decreases 

the flow into the common stomach, which means that the percentage of water foraging has 

decreased (Karsai and Schmickl, 2011). We modeled this property by simply placing the 
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common stomach near both the inductor coils of the water foragers and the pulp foragers. Its 

central location here allows it to act as a buffer and also provide feedback to the system. 

 

The Pulp Foragers 

The pulp forager RLC circuit is a combination of a capacitor (C3), resistor (R3), and two 

inductors (L4 and L5) in series, and it is connected to the common stomach via the inductor L4 

and it is connected to the builders via L5 (Figure 4.1). To simplify the system, we assumed that 

the pulp foragers simply convert water to watery pulp, therefore the water is lost only in small 

quantities through R3 (some water evaporates during pulp making). 

 

The Builders 

The builders’ RLC circuit is a combination of a capacitor (C4), resistor (R4), and an 

inductor (L6) in series, and it is connected to the pulp foragers via the inductor L5 (Figure 4.1). 

The resistor (R4) in this circuit drains the circuit of electrons and this loss of energy from the 

system represents the wasp building process, where the water is in the form of pliable building 

material, which will dry out after the construction finished.  

 

General Assumptions 

In our model, electron flux is representative of water flow. Wasps belonging to the same 

task are grouped into a single circuit. The main source of electrons to the system is originated 
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from the batteries of the water forager circuit (G and V). The wires in the system do not allow for 

dissipation of energy; the wires are completely efficient, as decrease of current is only supposed 

to occur at the resistors. There are no time delays in the circuit wires. Additionally, it is assumed 

that the changes in current causing voltage to be induced are equal to the charge on the adjacent 

circuit. The second derivative term, representing the voltage which is induced from one coil to 

the next, is thus equivalent to the charge of the adjacent circuit in this system. When perturbation 

experiments were carried out, if something was removed from the system, we assumed that this 

quantity was not replaced; therefore the system reached a new equilibrium based on the changes. 

The switches in the system can be opened and closed at appropriate times in order to cause a 

change in magnetic field and subsequently create a voltage in the proximal coil. Additionally, all 

switches in the system are assumed to open and close in such a way as to allow continuous 

electron flow between circuits and thus the circuit is assumed to allow for both the transfer of 

electrons through the inductors and also return to a state of equilibrium.  

 

In the circuit models, the electrons are generated by batteries, while in the wasp colonies, the 

water is collected by water foragers. This difference between the two systems is especially 

important for studying the effect of perturbations on the water foragers. In wasp colonies, the 

effect of a perturbation is commonly propagated through the whole system, but the continuous 

generation of electrons in a water forager circuit could flood the water forager circuit with 

electrons, therefore the backpropagation of the perturbation could not be detected easily. To keep 

the model simple, but make the effect of perturbation detectable, the mutual inductance between 

the common stomach and water foragers (M1) has 2 different values (either M1a or M1b, 

depending upon the origin of the current change). M1 = M1a when current change originates 
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within the water foragers and M1 = M1b when current change originates within the common 

stomach (or the pulp foragers or builders which in turn change the current in the common 

stomach). We assumed that the effect of common stomach to the water foragers is larger than the 

opposite effect, hence M1a < M1b (Table 1). This could be conceptualized as a step up 

transformer and this setup improves the detection of the effect of perturbations to the water 

forager circuit. 

The parameters of this model were not possible to obtain directly from the biological system, but 

we parameterize this model to adhere the biological system as closely as possible. We also 

follow the simplicity principle and therefore, if there is no indication in the biological system that 

similar parameters should be markedly different (for example water use for drinking of different 

types of wasps (R1-R3)) then we use the same values for the resistors except for R4, which also 

represents the water loss via the evaporation of water from the freshly constructed structure 

(Table 1). Generation of water is assumed to have a steady (V) and a fluctuating (G) component, 

which was described by a simple sinus function. The values of capacitors are different, because it 

represents the size of the task group of the wasps in the colony. The colonies generally operate 

only with few water foragers, more pulp foragers and larger number of builders and common 

stomach wasps (Karsai and Wenzel, 2000). We used inductance values to fine tune the basic 

model to predict realistic ratios between the task groups (Table 1). 

 

Behavior of the 4 Circuits 

Our model consists of four RLC circuits coupled by mutual inductance, simulating the 

wasp colony’s water and pulp foraging, the operation of the common stomach, and the building. 
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The different behavior of the 4 tasks (change of charge on the 4 loops), is solved by Kirchoff’s 

basic voltage laws. The four loops are described separately by simple second order differential 

equations (Equations 1-4) to study the responses of the tasks independently; P, W, C, and B refer 

to the charge on each RLC circuit for the pulp forager, water foragers, the common stomach, and 

the builders, respectively.  

 

The change of charge in time in the water forager circuit is described by  

𝑊𝑊′′[𝑡𝑡] =
�𝐶𝐶′′[𝛾𝛾]∗𝑀𝑀1−𝑅𝑅1∗𝑊𝑊′[𝛾𝛾]−�𝑊𝑊[𝑡𝑡]

𝐶𝐶1 �+𝑉𝑉𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵�

𝐿𝐿1
        (Equation 1) 

     

 

Where the 𝐶𝐶′′[𝑡𝑡] ∗ 𝑀𝑀1  term represents the mutual inductance term of the water foragers 

connected with the common stomach, and M1 = M1a with current change originating in the 

water foragers and M1 = M1b for current change originating from the common stomach; 

R1*W[t] is the voltage drop due to the resistor representing the water use of the water foragers. 

W[t]/C1 is subtracted as the voltage drop across the capacitor, showing the water foragers’ 

ability to retain small quantities of water. The water inflow is modeled via the battery voltages, V 

and G (Figure 4.1). These are summed and are referred to as VBattery. The right hand side of the 

equation is divided by L1, which was derived as 𝑊𝑊′′[𝑡𝑡] multiplied by L1 as the change of 

current times the inductance of this circuit, also caused by mutual inductance. The equation is set 

equal to zero, and then solved for W′′[𝑡𝑡], causing all terms to be divided by the L1 inductor. 
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The change of charge in time in the common stomach circuit is described by  

 

𝐶𝐶′′[𝑡𝑡] =
�𝑊𝑊′′[𝛾𝛾]∗𝑀𝑀1−𝑃𝑃′′[𝛾𝛾]∗𝑀𝑀2−𝑅𝑅2∗𝐶𝐶′[𝛾𝛾]−�𝐶𝐶[𝑡𝑡]

𝐶𝐶2 ��

𝐿𝐿2+𝐿𝐿3
         (Equation 2) 

 

𝑊𝑊′′[𝑡𝑡] ∗ 𝑀𝑀1 represents the first mutual inductance term of the water foragers acting with the 

common stomach, and M1 = M1a with current change originating in the water foragers and M1 = 

M1b  for current change originating from the common stomach; 𝑃𝑃′′[𝑡𝑡] ∗ 𝑀𝑀2  represents the 

second mutual inductance term of the common stomach creating mutual inductance with the pulp 

foragers. These two terms allow the transfer of water to the common stomach by water foragers 

and from the common stomach by the pulp foragers. The 𝑅𝑅2 ∗ C′[𝑡𝑡] term is subtracted as the 

voltage drop across this resistor, showing the small loss of water from the common stomach. The 

𝐶𝐶[𝛾𝛾]
𝐶𝐶2

  term is subtracted for the capacitor; this is a large capacitor, because the common stomach 

plays the role of water storage, buffer and eventually regulating the wasp activity. The nominator 

on the right hand side of the equation is divided by L2 + L3, because the derivation was that 

𝐶𝐶′′[𝑡𝑡] ∗ (𝐿𝐿2 + 𝐿𝐿3) represents the second aspect of the mutual inductance, which is dependent 

upon the inductance of the individual coils that are in the common stomach coil. The equation is 

solved for 𝐶𝐶′′[𝑡𝑡], so the right hand side of the equation is divided by L2 + L3. 

 

The change of charge in time in the pulp forager circuit is described by: 
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𝑃𝑃′′[𝑡𝑡] =
�𝐶𝐶′′[𝛾𝛾]∗𝑀𝑀2−𝐵𝐵′′[𝛾𝛾]∗𝑀𝑀2−𝑅𝑅3∗𝑃𝑃′[𝛾𝛾]−�𝑃𝑃[𝑡𝑡]

𝐶𝐶3 ��

𝐿𝐿4+𝐿𝐿5
      (Equation 3) 

 

where 𝐶𝐶′′[𝑡𝑡] ∗ 𝑀𝑀2 represents the mutual inductance term of the pulp foragers connected with the 

common stomach and 𝐵𝐵′′[𝑡𝑡] ∗ 𝑀𝑀2  represents the mutual inductance term of the pulp foragers 

with the builders. These two terms allow the transfer of water from the common stomach to the 

pulp foragers and from the pulp foragers to the builders. 𝑅𝑅3 ∗ P′[𝑡𝑡] is simply the voltage drop 

across the resistor from Ohm’s Law, showing water use (other than pulp collecting behavior) of 

the pulp foragers. P[t]/C3 is subtracted as the voltage drop across the capacitor, showing the pulp 

foragers’ ability to store small quantities of water. The nominator of the right hand side of the 

equation is divided by L4 + L5, which was derived as the change of current times the inductance 

of this circuit, also caused by mutual inductance. The final equation shown above is set equal to 

𝑃𝑃′′[𝑡𝑡], so the right hand side is all divided by L4 + L5, the inductance of the pulp forager coil 

and thus its ability to accept water from the common stomach.  

 

The change of charge in time in the builder circuit is described by 

 

𝐵𝐵′′[𝑡𝑡] =
�𝑃𝑃′′[𝛾𝛾]∗𝑀𝑀2−𝑅𝑅4∗𝐵𝐵′[𝛾𝛾]−�𝐵𝐵[𝑡𝑡]

𝐶𝐶4 ��

𝐿𝐿6
         (Equation 4) 
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𝑃𝑃′′[𝑡𝑡] ∗ 𝑀𝑀2 represents the first mutual inductance term of the pulp foragers acting with the 

builders. This models the water arriving to the builders as a wet pulp. The 𝑅𝑅4 ∗ B′[𝑡𝑡] term is 

subtracted as the voltage drop across this resistor, modeling the evaporating water leaving the 

freshly constructed nest material. The 
𝐵𝐵[𝛾𝛾]
𝐶𝐶4

  term is subtracted for the capacitor showing the 

builders’ ability to store small quantities of water. The numerator on the right hand side of the 

equation is divided by L6, because the derivation was that 𝐵𝐵′′[𝑡𝑡] ∗ 𝐿𝐿6 represents the second 

aspect of the mutual inductance, which is dependent upon the inductance of the individual coils 

that are in the common stomach coil. The equation is solved for 𝐵𝐵′′[𝑡𝑡], so the right hand side of 

the equation is divided by L6. 

 

Table 1. 

Parameters of the Model 

Parameter/variable    Description    Value/unit 

C1 Capacitor WF 0.5 F 

C2 Capacitor CS 10 F 

C3 Capacitor PF 3 F 

C4 Capacitor B 10 F 

 R1 Resistor WF 5 © 

R2 Resistor CS 5 © 

R3 Resistor PF 5 © 

R4 Resistor B 10 © 
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G WF Battery part 1 Sin[1.5t]*e-t V 

V  WF Battery part 2 1 V 

L1 Inductance WF 5 H 

L2 Inductance CS + WF 10 H 

L3 Inductance CS + PF 5 H 

L4 Inductance PF+CS 5 H 

L5 Inductance PF+B 5 H 

L6 Inductance B 5 H 

M1a Mutual Inductance WF’ CS 0.1 H 

M1b Mutual Inductance CS’ WF 0.2 H 

M2 Mutual Inductance CS” PF, PF” B 0.1 H 

* WF = water foragers, CS = common stomach, PF = pulp foragers, B = builders 

  

Results 

The circuit model produced plausible predictions for the colony level behavior of wasp 

societies (Karsai and Wenzel, 2000) and comparable results to the earlier empirical models 

(Karsai and Balazsi, 2002; Karsai and Schmickl, 2011).  

Assuming zero initial charge on all circuits, there was a sharp increase of charge in the water 

forager circuit at the very beginning of the simulation, which quickly reached equilibrium. This 

was followed by an increase of charge in the common stomach circuit. Finally, the pulp foragers 

and the builder circuits increased in a delayed manner and reached equilibrium at approximately 

1200 seconds (Figure 4.2), when the electrons generated by the battery propagate through the 
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system, damped by the resistors. Overall, the model predicted a continuous construction where 

the charge of PF was larger than of WF, similar to wasp colonies, where there are more pulp 

foragers than water foragers. The charge on the builders is higher than that of the foragers, which 

was also found in actual colonies, where more builders exist than foragers. The common stomach 

has a higher charge than the foragers and this in fact is important to ensure the buffering ability 

of the common stomach. The values at which these circuits stabilize are independent of the initial 

charge on the circuits.  

-  

Figure 4.2. Change of charge on the four circuits after the batteries V and 

G are turned on (t=0). Common stomach: dashed line, builders: thin black 

line, water foragers: thick gray line, pulp foragers: thick black line. The 

model used the basic parameters (Table 1). 
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Perturbation Experiments 

In order to further test the robustness of the model, perturbation experiments were carried 

out and the model predictions were compared to field data and the predictions of previous 

models, qualitatively. Removing or adding components of the system or materials will force the 

system to adapt. For example, spraying water on wasp nests increases construction, because the 

water foragers can get water quickly on site, which in turn increases the water level of the 

common stomach. This will promote more pulp foraging; with more pulp arrives to the nest with 

a higher rate, more construction will result (Karsai and Wenzel, 2000).  

All simulations started as the normal run, but after the system stabilized at time t = 2000 seconds 

we made a sudden change in a single parameter and followed the change of the charge of the 

four circuits (the water foragers, the pulp foragers, the common stomach, and the builders). The 

direction of the change of different circuits is compared to the observed change in the number of 

pulp and water foragers (Karsai and Wenzel, 2000). 

To simulate capturing water foragers (removing members of this task group), we suddenly 

decreased their number by reducing C1 from 0.5 F to 0.25 F and reducing R1 from 2 to 1 © 

(Figure 5.3). The reduced number of water forager was unable to refill the common stomach, this 

in turn resulted in reduction of charge on all circuits. There is a concurrent drop of reserve water 

in the common stomach, which decreases the number of pulp foragers that can use the water to 

forage. New equilibriums were established, accommodating the lower electron flow.  
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Figure 4.3. Removal of water foragers (decrease of C1 from 0.5 to 

0.25 F and R1 from 5 to 2 ©); Common stomach: dashed line, 

builders: thin black line, water foragers: thick gray line, pulp 

foragers: thick black line. 

 

To simulate addition of extra water to the environment, we increased the water output by adding 

0.5 V to the fluctuating battery component (G). Because of the direction of the wires, increasing 

G would result in a decrease in the charge on the water foragers, but the change in current should 

induce voltage in the other circuits (Figure 4.4). The charge on the water foragers decreased and 

the charge on the common stomach increased. This in turn increased the charge of the pulp 
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forager and builder circuits. This behavior is very similar what we can observe in wasp colonies 

after the rain. Increased water availability will make the refilling of the common stomach easy, 

therefore part of the water foragers are converted to pulp foragers and builders.  

  

Figure 4.4. Addition of water to the environment (0.5 V added to G, 

increase of water output from the environment): Common stomach: 

dashed line, builders: thin black line, water foragers: thick gray line, 

pulp foragers: thick black line. 

 

Modeling the removal of pulp foragers was carried out by assuming the physical circuit 

decreased proportionally in size, causing a decrease in C3 from 3 to 1 F and a decrease of R3 
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from 5 to 2 ©. Fewer pulp foragers collected less pulp, therefore the colony had needed less 

water, so both the number of builders and water foragers decreased. The amount of water in the 

common stomach decreased as well (Figure 4.5). 

 

 

Figure 4.5. Change in time of charge when pulp foragers are removed 

(C3 reduced from 3 to 1 F and R3 reduced from 5 to 2 ©). Common 

stomach: dashed line, builders: thin black line, water foragers: thick 

gray line, pulp foragers: thick black line. 
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Decreasing the number of builders was modeled by assuming the physical circuit decreased 

proportionally in size, causing a decrease of C4 from 10 to 5 F, and a decrease of R4 from 10 to 

5 ©. (Figure 4.6). Decreasing building capacity decreased the demand of pulp and in turn the 

water, which would be why the number of foragers dropped. Due to less water use, the water in 

the common stomach increased, but the influx and outflux of water into the common stomach 

became much slower.  

 

Figure 4.6. Change of charge in time when builders are removed (C4 is 

reduced from 10 to 5 F, and R4 is reduced from 10 to 5 ©).  Common 

stomach: dashed line, builders: thin black line, water foragers: thick gray 

line, pulp foragers: thick black line. 
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Leakage of the common stomach was modeled by the drain of 0.05 V from the location of the 

resistor R3 in the common stomach (Figure 4.7). This caused a significant decline in the charge 

on the Common Stomach, and this in turn decreased pulp foraging and building. The number of 

water foragers increased as a compensatory effect for increasing water influx into the system. 

 

Figure 4.7. Change of charge in time implementing a leaky common 

stomach (0.05 V drained from R3): Common stomach: dashed line, 

builders: thin black line, water foragers: thick gray line, pulp foragers: 

thick black line. 

To simulate change in the capacity of the common stomach we reduced C2 from 10 to 3 F. This 

would mean that the common stomach wasps did not have their full ability to store water or the 
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number of water storer wasps decreased. Since they were not capable of storing adequate amounts 

of water, the water foragers were forced to increase to attempt to sustain the demand for water for 

the builders and pulp foragers (Figure 4.8). However even with larger water foraging the pulp 

foraging and building decreased into a lower equilibrium. 

 

Figure 4.8. Change in charge of circuits when the storage capacity of the 

common stomach is reduced (C2 reduced from 10 F to 3 F.): Common 

stomach: dashed line, builders: thin black line, water foragers: thick gray 

line, pulp foragers: thick black line. 
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Mutual inductance (M1 and M2) of the system, which serve as the linkage between the task 

groups, were manipulated to test the reliance of the common stomach and the pulp foragers on 

the water foragers. M1 and M2 were reduced from 0.1 H to 0.075 H, 0.05 H, and 0.01 H, to 

represent a 25%, 50%, and 90% reduction, respectively. This resulted in the plummeting of the 

charge on the pulp foragers and builders (Figure 4.9). Our standard simulations had high mutual 

inductance between the circuits, because the wasp society we studied is highly connected. 

Decreasing the mutual inductance means that the task groups became less coupled. This resulted 

in large drop in the charge of all circuits indicating that this system is not effective with low 

linkage. Decreasing the inductance simulates the situations where the task groups are loosely 

connected and the society operates with less specialized individuals (Karsai and Wenzel, 1998). 

 

 

Figure 4.9. Change of charge in time with different coupling intensity 

between the circuits (M1 and M2 were reduced from 0.1 H to 0.01 H 
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(thickest line), from 0.1 H to 0.05 H (dot/dashed line), and from 0.1 H to 

0.75 H (medium thick line); pulp foragers (black), builders (gray). With 

decreased coupling, the charge on the circuits drops due to decreased 

current passed through each circuit by the inductors. 

 

 

Simulating difficulty to obtain water from the common stomach by the pulp foragers indicates a 

situation when conserving water is important to the colony. This was achieved by decreasing the 

coupling between the two circuits by decreasing the mutual inductance between the common 

stomach and the pulp foragers (M2) from 0.1 to 0.05 H. This resulted in the significant decline in 

charge of the common stomach, foragers, and the builders (Figure 4.10). This reflects the difficulty 

in sustaining pulp foraging and thus building if the transfer of water is hindered between the 

common stomach and the pulp foragers.  
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Figure 4.10. Change in charge of circuits when the connectivity between 

the common stomach and the pulp foragers is reduced (mutual inductance 

M2 between common stomach and pulp foragers reduced from 0.1 to 0.05 

H). Common stomach: dashed line, builders: thin black line, water 

foragers: thick gray line, pulp foragers: thick black line. 

 

To demonstrate that the common stomach has different types of relationships with the foragers, 

the charge of the common stomach was plotted vs. the charge of the foragers. In these 

experiments, we assumed low water consumption (R2 reduced from 5 © to 0.000001 © (Figure 

4.11). The phase-space plots show that the number of water foragers quickly stabilize, while the 



77 
 

common stomach oscillated in a damped fashion. The pulp foragers relationship is different, 

their charge oscillates longer following the oscillations of the common stomach and they 

together slowly decay toward a stable point. This suggests that the common stomach’s 

relationship with the water foragers involves more feedback than the relationship between the 

common stomach and the pulp foragers. 

 

Figure 4.11a. Charge in time: Common Stomach plotted against water foragers with low 

common stomach resistance (R2 reduced from 5 to 0.000001 ©). b: Charge in time: 

Common Stomach plotted against pulp foragers with low common stomach resistance 

(R2 reduced from 5 to 0.000001 ©), The start point is at the origin. 

 

 

Discussion 

The common stomach as a regulatory mechanism for task partitioning and work 

allocation has been shown in wasps (Karsai and Wenzel, 1998; 2000; Karsai and Balazsi, 2002, 



78 
 

Hamann et al, 2013; Karsai and Runciman, 2011; Karsai and Phillips, 2012), ants (Schmickl and 

Karsai, 2014) and bees (Schmickl and Karsai, 2016). These agent-based or system dynamic 

models are based on empirical functions and observations and provide numerically calculated 

predictions for comparison with empirical data and other models. Our goal in this paper was to 

apply master equations of circuit dynamics to describe our biological system and to show that the 

circuit model we present here is not only able to provide similar predictions to empirical models, 

but it is also able to explore new relationships between variables, and hence can promote new 

experimentation.  

Our circuit system is very minimalistic, but it is capable of modeling the task allocation of the 

social wasps and the predictions of the model are very similar to what we can observe in the field 

or using empirical models (Karsai and Wenzel, 2000; Karsai and Balazsi, 2002; Karsai and 

Phillips, 2012). The system is strongly controlled by the common stomach, which is akin in 

several ways to the information center introduced by Seeley (1985). The water providers and 

users are interacting indirectly through the common stomach, which not only provides 

information on the status of water flow, but also buffers the system. The system works 

independently of the initial conditions shortly set into an equilibrium, which provides optimal 

work/task allocation for a steady construction, depending on the influx of accessible water. The 

system is very flexible and in the case of perturbations, it reallocates its workforce and adapts to 

the new situation with a different equilibrium level. 

This flexibility of task reallocation correlates with other life-history parameters, such as colony 

size, body size, and nesting habits (Karsai and Wenzel, 1998). The wasp colonies we modeled 

here are of medium size, and individual workers are not strongly fixed in a task. The individuals 

can change their behavioral profile quickly (Karsai and Wenzel, 2000), therefore we assumed 
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that every worker wasp is identical to the others and they differ only in which task group to 

which they belong. This allowed us to simplify this system into group levels and describe the 

groups as circuits. Our model has intrinsic differences between the parameters of the circuits, but 

each circuit is intrinsically the same type of circuit (RLC).  

Perturbation of the circuit model predicted changes that similar to the field observation on 

Metapolybia (Karsai and Wenzel 2000) and Polybia (Jeanne 1996) wasps. Addition of water to 

our system increased pulp foraging and construction, but decreased water foraging. The removal 

of water foragers also decreased the charge on all involved circuits, meaning that the system was 

set to a lower equilibrium until new wasps could be recruited for water foraging. Decreasing pulp 

foragers showed a decrease in charge to all circuits except for a slight increase in charge for the 

common stomach, due to its central position and enhanced storage capacity. The circuit model 

was able to predict all major perturbations qualitatively the same manner as it was observed in 

the field and in other models (Karsai and Wenzel, 1998; 2000; Karsai and Balazsi, 2002; Karsai 

and Phillips, 2012) 

Karsai and Wenzel, 1998 analyzed several life history parameters of many wasp species and 

their main finding was that simple individual level behaviors and interactions will lead to 

variances in life history, such as how flexible the behavioral repertoire of the individual is and 

how connected the subsystems are via interactions. The two extremes of this scale are the small 

societies with independently acting jack-of-all-trade individuals and the strongly connected more 

rigid behavioral or age based caste systems of large colonies. Our model, via manipulating the 

mutual inductance terms and the storage capacity of the common stomach, allowed us to predict 

what would happen if these interactions (or the connectedness of the circuits) are weakened. The 

model predicted a large decrease of construction related activities including drop of water 
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content in the common stomach. In fact, the nest construction based on common stomach is not 

viable in societies with small number of wasps. Metapolybia and Polybia wasps are breeding via 

colony fission, therefore their colony size normally does not go too low (Forsyth, 1978). Wasps 

with small societies are using jack-of-all-trade workers and they do not have common stomachs. 

(Karsai and Wenzel, 1998). 

Our model also was able to explain the differences regarding how water foragers and pulp 

foragers connect to the common stomach. Pulp foragers generally spend more time and a higher 

number of interactions with common stomach wasps than water foragers do (Karsai and Wenzel, 

2000). Our model predicted different dynamics between the two forager types with the common 

stomach. In the phase-space plots, the relationship between the foragers and the common 

stomach both have point attractors, however, the water foragers observably orbit around the 

common point attractor and quickly reach a close spot to that attractor, but  then spirals away 

from it (Figure 4.11a). The phase-space plot of pulp foragers vs. the common stomach reveals a 

consistent dissipation towards the point attractor (Figure 4.11b). This suggests that the common 

stomach’s relationship with the water foragers involves more negative feedback than the 

relationship between the common stomach and the pulp foragers. We propose that the task 

allocation via the common stomach is a very efficient regulatory mechanism, because through a 

network of worker interactions, a set of positive and negative feedbacks are connected and 

balanced by a robust buffer system. 
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Abstract 

The control systems for maintaining postural stability have been modeled by an electrical 

circuit. This model is capable of predicting control strategy as well as attractors of the system, 

based upon the manipulation of the capacitors, resistors, and inductors. Healthy people have 

increased capacitance and inductors out of phase, when compared with the elderly, people with 

chronic pain, and Parkinson’s patients. 

 

Introduction 

We have developed a simple model which represents the complexity of the central and 

peripheral nervous system and their connection with the muscular system. This model is based 

upon basic circuit theory, and it is capable of simulating the neuromuscular connection. Recent 

research has emerged which models such aspects of the neuromuscular connections as the nerve-
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muscle interface, muscular contraction, and muscular contraction in connection with the spinal 

cord (Peasgood et al., 2003, Valero-Cuevas et al., 2011). These models are effective, but are at 

the cellular level. Additionally, current models have not been capable of representing the 

variability of force with muscular contraction increase, and there is a gap in knowledge regarding 

the connection between spinal circuitry and muscles (Valero-Cuevas et al., 2011). The goal of 

this study was to produce a large-scale model of the connection between the central nervous 

system, the peripheral nervous system, and the muscles, which could quantify the effectiveness 

of the bodily system as a whole, based upon overall current.  This model could thus be capable of 

revealing how the body operates as a whole unit, and can be used to simulate the differences in 

neurological tasks between people of different ages and health statuses.   

We have previously shown that postural stability is negatively affected by age and 

chronic pain. There is an increase of feedforward control mechanisms intrinsic to balancing with 

increased age, and with pain, there is a tendency to behave either randomly or with very 

persistent strategies (Hilbun and Karsai, 2016, Duarte et al., 2000). Because decline in postural 

stability is caused by a decrease in the sensitivity of neural receptors, a decrease in the speed of 

the central processing systems of the brain, and a decreased potential of power production in 

motor systems, we use our postural stability analysis to study the complex neurological system 

and thus our model (Blaszczyk et al., 2006).  

 We also test the model on force data from people with Parkinson’s Disease. Parkinson’s 

Disease (PD) is a neurodegenerative illness affecting nearly 1 million Americans (Parkinson’s 

Disease, 2015). Major symptoms include dramatically slowed movements, cognitive impairment, 

and tremors. At the time when motor symptoms in people are significant enough that diagnosis is 

given, there has already been a roughly 70% loss of dopamine producing cells in the substantia 
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nigra. Recent research has sought biomarkers for PD, because early detection and treatment may 

be pivotal for prevention of death and loss of autonomy (Parkinson’s Disease, 2015, Yulmetyev 

et al., 2003). There is a reduced occurrence of chaos in movement with PD, and Levadopa, the 

most common drug of treatment, brings back chaos intrinsic to healthy motor movement 

(Yulmetyev, 2003). 

 

Theory/Calculations 

Moreover, we have developed a neurological circuit model to explain the results of 

balancing and gait data. The predictions of the model were compared to balancing data of 

healthy people and people with chronic pain (Hilbun and Karsai, 2016). Our model has three 

tiers which represent the central nervous system (with a battery source V1), the peripheral 

nervous system (with a battery source V2), and the muscular system (Figure 5.2). The bottom 

tier represents the central nervous system. The middle tier represents the peripheral system, 

because it is the mechanical connection between the central nervous system and the muscular 

system, and the top tier represents the muscular system, which is connected in parallel with the 

central nervous system and the peripheral nervous system. We assume that the charge on the 

circuit model (Figure 5.1) is equivalent to the efficiency of the neurological system, and thus 

predictive of the control strategy. Our model is based upon RLC circuits with two variable 

battery sources (V1 and V2). The central nervous system has been modeled by RLC circuits, 

which allows for neuronal cell membranes to be passive through resistors and capacitors (Dwyer 

et al., 2010). The inductor allows for resonance within the system and thus the ability to act as a 

band-pass filter (Dwyer et al., 2010). All resistors are for the purpose of damping the signals to 

prevent over heating, while regulating the ease of flow of current. The bottom current loop, 
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labeled ‘A’ consists of a resistor (R1), inductor (L1),  capacitor (C1) and the battery (V1) in 

series, and in parallel with the other battery (V2) and R3 (Equation 1).  Likewise, the top current 

loop, labeled ‘B’, consists of a resistor (R2), inductor (L2), and capacitor (C2) in parallel with 

the second battery (V2) and R3 (Equation 2). There is a conservation of current at point C 

(Equation 3).  

The output charge from loops A and B represents the Hurst exponents during standard 

balancing. The charge of P[t] plotted vs. B[t] represents the phase-space plots of the force plate 

data and reveals the attractors in the system. The parameters were chosen such that there would 

be realistic charge values such that Hurst exponents could be directly paralleled.  

Central Nervous System 

The central nervous system (CNS) tier consists of a battery (V1), a capacitor (C1), a 

resistor (R1), and an inductor (L1). The battery (V1) paralleles the input of the central nervous 

system (CNS) in maintaining postural stability. The capacitor in the CNS (C1) also allows for the 

storage of information as it is sent to the brain, after which it is further processed. The resistor 

(R1) allows for control and dissipation and the inductor (L1) allows for the filtering of elevated 

current flow, which represents the brain’s  resistence to such diseases as epilepsy, Parkinson’s 

Disease, and Huntington’s Disease.  

Peripheral Nervous System 

The peripheral nervous system (PNS) tier consists of a battery (V2) and a resistor (R2). 

The PNS has been studied in the treatment of neurological illnesses via neural stimulation, and 

such stimulation has been done by the application of a battery to the PNS (Slavin, 2016). 

Therefore, a properly functioning PNS has an inherent battery capable of adequate levels of 
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bodily stimulation. The PNS also has a resistor, which represents the axoplasm and any existing 

cell membranes with a myelin sheath (Thompson et. al, 2004).  

Muscular System 

The top tier of the circuit (R2, L2 and C2)  represents the muscular structure of the body. 

The inductor (L2) along with the capacitor (C2) allows for the storage of energy in both the 

magnetically and electrically; this represents the muscle contractions’ dependency on chemical 

energy (through ATP production) as well as electrical energy (through nerve synapses). 

Additionally, the muscle system’s memory storage capability has been observed; muscle fiber 

area is maintained for long periods of time even during lack of use (Staron et al., 1985).  

 

Circuit Sensitivity 

The sensitivity of our circuit and the robustness of our model is strong. Because this 

model consists of RLC circuits, we used the standard transfer function for a low-pass filter, and 

by using resultant resistance, capacitance, and inductance values, observed the frequency 

response change based on the doubling and halving of the resistance values.  (Fig 5.1., Table 1).  

 

 

 



88 
 

 

Fig 5.1. Frequency response (based upon transfer function from input to output voltage, based 

upon initial resistance values): (100%), double the resistance values (200%) and half of the 

resistance values (50%). 

 

General Assumptions 

The wires in the system do not allow for dissipation of energy; the wires are completely 

efficient, as decrease of current is only supposed to occur at the resistors. There are no time 

delays in the circuit wires. Unless otherwise stated, circuit parameters are as listed in Table 1. 

 

𝐴𝐴′′[𝑡𝑡] =
V1−(𝑃𝑃′[𝛾𝛾]∗R2)−𝐴𝐴[𝑡𝑡]

C1 −(𝐴𝐴′[𝛾𝛾]∗R1)

𝐿𝐿
     Equation 1. Loop A 

 

Where V1 is the time variant voltage source, (𝑃𝑃′[𝑡𝑡] ∗ R2) is subtracted due to the voltage drop 

across R2, 
𝐴𝐴[𝛾𝛾]
C1

 is subtracted due to the charge stored in the capacitor, and −(𝐴𝐴′[𝑡𝑡] ∗ R1) is 

subtracted due to the voltage drop across R1, controlling the ease of flow of current. The 

A’’[t]*L is the inductance term, and is also subtracted, but the equation is solved for A’’[t] for 

simplicity.  
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𝐵𝐵′′[𝑡𝑡] =
V2−(𝑃𝑃′[𝛾𝛾]∗R2)−𝐵𝐵[𝑡𝑡]

C2 −(𝐵𝐵′[𝛾𝛾]∗R3)

L2
     Equation 2. Loop B 

 

Where V2 is the time variant voltage source, (𝑃𝑃′[𝑡𝑡] ∗ R2) is subtracted due to the voltage drop 

across R2, 
𝐵𝐵[𝛾𝛾]
C2

 is subtracted due to the charge stored in the capacitor, and −(𝐵𝐵′[𝑡𝑡] ∗ R3) is 

subtracted due to the voltage drop across R3, controlling the ease of flow of current.. The 

𝐵𝐵′′[𝑡𝑡]*L is the inductance term, and is also subtracted, but the equation is solved for 𝐵𝐵′′[𝑡𝑡] for 

simplicity.  

 

𝑃𝑃′[𝑡𝑡] = 𝐴𝐴′[𝑡𝑡] + 𝐵𝐵′[𝑡𝑡]        Equation 3.  

 

Where 𝐴𝐴′[𝑡𝑡] is the current flowing toward point C from the central nervous system tier, and 𝐵𝐵′[𝑡𝑡] 

is the current flowing toward point C from the muscular tier, which sum to give the current 

through the peripheral nervous system tier via the junction law. 
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Fig. 5.2. Circuit model: This circuit presents the model for the control system in postural 

stability. The bottom tier represents the central nervous system. The middle tier represents the 

peripheral nervous system. The top tier represents the muscular reactivity (A[t] = Current loop 1, 

Central Nervous System, B[t] = current loop 2, Muscular System, C[t] = current junction, 

Peripheral Nervous System). 

 

Table 1.  

Parameters of the Model 

Parameter/variable    Description    Value/unit 

C1 Capacitor CNS 30 F 

C2 Capacitor PNS 10 F 
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 R1 Resistor CNS 0.001 © 

R2 Resistor PNS 0.001 © 

R3 Resistor Muscles 0.001 © 

 V1  Battery CNS 𝟎𝟎.𝟏𝟏 ∗ 𝑺𝑺𝑺𝑺𝑺𝑺(𝒕𝒕) V 

V2 Battery PNS 𝟎𝟎.𝟏𝟏 ∗ 𝑺𝑺𝑺𝑺𝑺𝑺(𝒕𝒕) V 

L1 Inductance CNS 40 H 

L2 Inductance Muscles 20 H 

* CNS = central nervous system, PNS = peripheral nervous system 

 

Results 

 

We measured the current flowing through each tier of the system. The control strategy is based 

on the Hurst exponent for standard balancing and is estimated by summing the current flowing 

through each tier of the circuit. The linear equation modeling the increased Hurst exponent with 

age (Hilbun and Karsai, 2016) was y = 0.0063x + 0.3103; therefore, people between 14 and 22 

are likely to have an anti-persistent control strategy, with a Hurst exponent between 0.4 and 0.45 

for balancing. The parameters from Table 1 produce a Hurst exponent of approximately 0.4 

(Table 1, Figure 5.3). 
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Figure 5.3. Charge on each tier of circuit in time for a young person (age approximation: 14-22, 

Hurst exponent = 0.42) 

 

Testing the model for older people 

  We were able to model the control strategy of older individuals (age greater than 45 

years) by paralleling the calculated Hurst exponents with the charge on each tier of the circuit 

(Hilbun and Karsai, 2016). The linear equation modeling the increased Hurst exponent with age 

(Hilbun and Karsai, 2016) was y = 0.0063x + 0.3103; the age of onset of strongly persistent 

control strategy (H > 0.60) would thus be only 46 years of age. To model the change in the 

system for an approximately 46 year old person, we assume that the central nervous system has 

decreased storage capability, so we reduced C1 from 30 to 3 F. Muscles also decline in strength 
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with age, so we reduced C2 from 10 to 1 F. We also increased the resistance on all resistors from 

0.001 © to 0.1 © because current does not flow as freely in older people. This resulted in the 

current having a persistent pattern (Hurst exponent = 0.68, Figure 5.4).  In our recent study 

(Hilbun and Karsai, 2015), we showed that in most older people, their phase-space plots of 

mediolateral force trajectories while balancing revealed a double attractor pattern (Figure 5.4). 

For the parameters, which gave the figure 8 pattern (Figure 5.6), the charge on the system 

oscillates in such a way that the inductors were in phase for the emergence of this pattern 

(Hilbun and Karsai, 2015, Figure 5.5). There may be thus a linking of these two distant 

inductors, which causes the feedforward information exchange. 
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Figure 5.4. Summed current from circuit system, age > 45: C1 from 30 F to 3 F, and C2 from 10 

F to 1 F, Resistance increase from 0.001 to 0.1 © on all resistors, Hurst exponent = 0.63. 

 

 

Figure 5.5. From Hilbun and Karsai, 2015: Characteristic phase-

space plot of mediolateral force data in older people 
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Figure 5.6. Phase-space plot of P[t] vs. B[t], where P[t] is the 

peripheral nervous system and B[t] is the muscular system, with 

C1 = 3 F, C2 = 1 F, L1 = 40 H, and L2 = 30 H, R1 = R2 = R3 

=0.1; 

 

Chronic Pain 

 

We also analyzed how the model relates to people with chronic pain. In collecting mediolateral 

force data in people with pain, we found that there was no relationship between age, sex, or BMI 

and control strategy for the perturbation tasks (Hilbun and Karsai, 2016, GLM, p<0.05). 

Therefore, there is an increased occurrence of closed loop control strategy at young age if pain 

exists. According to our model, with significant pain, C1 and C2 are decreased as in old age, but 

the resistance remains the same. This is very similar to that which was seen in the older people 

(Figure 5.4), however, the inductors are not in the same phase, so the figure 8 pattern is not 

generally observed. The Hurst exponent is 0.63 for this perturbation (Figure 5.7). 
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Figure 5.7. Summed current for people with chronic pain: C1 from 30 F to 3 F, and C2 from 10 F 

to 1 F, Hurst exponent = 0.63 

 

Further Analysis 

We extrapolated the use of this model further to include analysis of data from a different 

source than stationary balancing. We used raw data from Physionet people with Parkinson’s 

patients (Physionet, Yogev et al., 2005). Participants walked on a force treadmill while resultant 

forces were calculated during 30 seconds of walking. We analyzed the Hurst exponents using the 

generalized Hurst exponent. (Aste, 2013; Hilbun, 2016). Walking is more common than 

balancing on one foot, so the body was more effective at performing this task, so the persistence 

of force data where less pronounced than for one-foot balancing, but were significantly different 
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than age-matched controls (t-stat = 1.68, p <  0.01). According to our model, C1 is decreased in 

Parkinson’s patients, a more significant decrease than with age-matched controls. C1 was 

reduced to 1 F and C2 was reduced to 0.5 F. In addition, the brain inductance is decreased with 

Parkinson’s Disease, so we decreased the inductor of the central nervous system, L1, from 40 H 

to 4 H. Because the majority of people with Parkinson’s Disease is over 60 years of age, the 

resistance on all resistors are again increased to 0.1 © (Yulmetyeve et al., 2003). This results in a 

more pronounced persistent pattern (H = 0.81), (Yulmetyev et al., 2003, Figure 5.8). 

 

 

 

Figure 5.8. Summed current for people with Parkinson’s Disease: C1 from 30 F to 1 F, 

and C2 from 10 F to 0.5 F, L1 from 40 H to 4 H, Hurst exponent = 0.81 
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Discussion 

In essence, there is a decrease in C1 and C2 with age, which causes the increase in 

persistent control strategy in old age and with pain profiles. With increased age, there is also a 

tendency to have increased inductance and specifically to have a resonant ratio of L1 to L2 with 

respect to the other parameters, which produces the double attractor pattern which is common to 

the force phase-space plots of older people. The major difference between the pain patients and 

the older people is that the pain patients do not have the L1 and L2 values in phase due to 

differing resistance values. This indicates that with age, there is a feedforward relationship that is 

kept between L1 and L2. Although there is discomfort with pain, the existence of pain may 

interrupt this relationship, because the brain is focused on the pain signals, which disturbs the 

signal from the muscles to the brain; therefore the phase relationship between L1 and L2 is more 

chaotic, as in younger people. 

 For Parkinson’s patients, there is also a decrease in C1, but it is of a greater magnitude 

than with healthy older people. Because the main importance of this capacitor is to store charge 

in the central nervous system part of the circuit, it is probably that the decreased efficiency of 

this capacitor relates to a storage issue within the brain. It has been shown that if there are 

mutations in genes that encode beta-glucocerebrosidase (GBA), lysosomal storage is marred and 

people have a higher proclivity to develop Parkinson’s Disease (Parkinson’s Disease, 2015). 

Additionally, there is a significant in inductance for Parkinson’s patients when compared with 

that of healthy older individuals. Regarding the decreased inductance, there has been a patent for 

an implantable inductor in the brain to help induce signals which are diminished in Parkinson’s 

disease (US8412332). Physical circuitry involving such efficient inductors, along with capacitors 
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with storage potential equivalent to that of this model may be useful as treatment inside the 

brain. 
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CHAPTER 6 

DISCUSSION/CONCLUSIONS 

We have shown the emergence of a clear open-loop control strategy with age. Hurst 

exponents increase linearly with age for standard one-foot balancing, which shows predictable 

and progressive decline of the brain’s ability to efficiently process information and provide 

feedback to the central and peripheral nervous systems and the limbs. This same relationship is 

observed in people with chronic pain. For the mental and knot-tying tasks, the polynomial fit of 

data in healthy people shows that people reach persistent levels at a younger age, most likely 

because of divided cognitive function demands. Additionally, the performance on the arithmetic 

task requires the participant to quickly understand the researcher’s prompts and to quickly 

process the information, do arithmetic, and respond. As there is known damage of mitochondrial 

DNA and subsequent apoptosis of cochlear cells with age, this may be at play even at middle-age 

(Iwasaki et al. 2014). Similarly, Rankin et al. (2000) showed that there was reduced muscle 

activity when balancing if given math problems to accomplish, both for young and older adults. 

In their study, the math tasks affected the older and younger people equally in terms of 

electromyography. Considering that the muscle activity was similarly altered between age groups 

in this study by Rankin et al. (2000), but we have shown that the addition task decreases the 

strength of feedback mechanisms, it may be that the increased focus on balancing actually is 

what actually detracts from the antipersistent behavior of healthy people; in younger people, the 

decreased muscular activation quickly was processed by the brain and balance strategy quickly 

adapted. For people with pain, the age-dependency of balancing while answering the arithmetic 

questions disappeared. People thus behaved similarly to older people at a much younger age. 

Further, the results of the knot-tying task rely upon the ability to concentrate on performing a 
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fine motor control task while still remaining balanced in one foot. The balancing strategy 

becomes thus more random with age because of delays in muscle activation and diminished 

strength, the older people have a problem remaining upright while balancing and concentrating 

on something else.  Conceivably, problems with sensory input cause physiological delays, 

thereby causing older participants to have more of a struggle with knot tying efficiently and 

therefore having a delay in activation of their feedback mechanisms for balancing (Blaszczyk et 

al. 2006). Regarding the specific balancing pattern of choice, it is possible that the double 

attractor pattern shown in the older individuals results from the subjects’ view of the trials as 

biphasic. They segment the balancing task into two parts: getting comfortably balanced and 

remaining comfortably balanced. The younger people just swiftly move on the plate and adjust 

when necessary. The dimensionality is not altered by age in healthy or pained people. The data 

thus has similar geometric complexity, but since there are significant differences in Hurst 

exponents and Lyapunov exponents, there is a change in the speed at which the body tries new 

patterns. Lyapunov exponents in people with pain are without age dependency as well, which 

indicates that relationship to initial conditions in people with pain is weaker than in healthy 

people, indicating traffic from diverted focus. Finally, the manipulation of capacitance and 

inductance models the observed balancing changes. For this reason, further research endeavors 

should explore treatment methods which specifically target the storage capabilities of the 

nervous systems, such as more precise neurostimulation. 



104 
 

REFERENCES 

 

Alekseev AA, Strunin BM. 1973. Dissipation of the energy of a dislocation moving in a 
random field of internal stresses. All-Union Institute of Light Alloys; Moscow 
Engineering Physics Institute. 

 
Amoud H, Abadi M, Hewson DJ, Michel-Pellegrino V, Doussot M, Duchene J. 2007. Fractal 

time series analysis of postural stability in elderly and control subjects. J. Neuroeng 
Rehabil.4, 12. 

Anderson C, Boomsma JJ, Bartholdi III JJ.  2002. Task partitioning in insect societies: bucket 
brigades. Insectes Sociaux 49, 171-180. 

 
Aste, Tomaso (2013). General Hurst exponent of a stochastic variable. Genhurst m file. 

http://www.mathworks.com/matlabcentral/fileexchange/30076-generalized-hurst-
exponent/content/genhurst.m 

 
Aybek S, Ionescu A, Berney A, Chocron O, Aminian K, Vingerhoets FJ. 2012. Fractal temporal 

organization of motricity is altered in major depression. Psychiatry Res. 200, 288-293. 

Bannister JA, Trivedi KS. 1983. Task allocation in fault-tolerant distributed systems. Acta 
Inform., 20, 261–281. 

 
Barlow, R. Proschan, F. (1975) Statistical Theory of Reliability 

and Life Testing (Holt, Rinehart, and Winston, New York). 
 
Blaszczyk JW, Hansen PD, Lowe DL. 1993. Evaluation of the postural stability in man: 

Movement and posture interaction. Acta Neurobiologiae Experimentaus, 53, 155-160. 
 
Blaszczyk JW, Michalski A. 2006. Ageing and postural stability. Studies in Physical Culture and 

Tourism, 13, 11-14. 
 
Carlos A, Dutra MS, Raptopoulos LSC. 2006. Modeling of bipedal robots using coupled 

nonlinear oscillators. InTech, 57-79. Retrieved from 
http://cdn.intechopen.com/pdfs/49/InTech-
Modelling_of_bipedal_robots_using_coupled_nonlinear_oscillators.pdf 

 
Clapp WC, Rubens MT, Sabharwal J, Gazzaley A. 2011. Deficit in switching between functional 

brain networks underlies the impact of multitasking on working memory in older adults. 
Proceedings of the National Academy of Sciences, Retrieved from: 
http://www.pnas.org/content/early/2011/04/04/1015297108.abstract 

http://link.springer.com/journal/40


105 
 

Cooper R, Strand BH, Hardy R, Patel KV,  Kuh D. 2014. Physical capability in mid-life and 
survival over 13 years of follow-up: British birth cohort study. Bmj, 348-g2219. 

Cvitanovic P, Artuso R, Dahlquist P, Mainieri R, Tanner G, Vattay G, Whelan N, Wirzba A. 
2014. Chaos classical and quantum, Chaosbook.org 

 
Collins JJ, De Luca CJ. 1993. Open-loop and closed-loop control of posture a random-walk 

analysis of center-of-pressure trajectories, Experimental Brain Res. 95(2), 308–318. 
 
Davidson B. 2005. Hurst_exponent m file. 
 
Delignières D,  Deschamps T,  Legros A,  Caillou N. 2003. A methodological note on non-linear 

time series analysis: Is Collins and De Luca (1993)'s open- and closed-loop model a 
statistical artifact? Journal of Motor Behavior, 35, 86-96. 

Deneubourg JL, Goss S. 1989. Collective patterns and decision-making. Ethol. Ecol. Evol., 1(4), 
295–311. 

Agrawal D, Karsai I. 2016. The mechanisms of water exchange: the regulatory roles of multiple 
interactions in social wasps. PlosOne (in press). 

 
Duarte M, Zatsiorsky VM. 2000. On the fractal properties of natural human standing. 

Neuroscience Letters, 283, 173-176. 
 
Dwyer J, Lee H, Martell A, Stevens R, Hereld M, Drongelen WV. 2010.  Oscillation in a 

Network Model of Neocortex. Neurocomputing. 73(7-9). 1051-1056. 
 
Ehde DM, Dillworith TM, Turner JA. 2014. Cognitive-behavioral therapy for individuals with 

chronic pain: efficacy, innovations, and directions for research. American Psychological 
Association. 69(2),153-166. 

 
Elert G. 1995 The Chaos Hypertext book, hypertextbook.com/chaos/43.shtml 

Forsyth AB. 1978. Studies in the behavioral ecology of polygynous social wasps, Thesis, 
Harvard University, Cambridge, MA. 

Frazier C, Kockelman KM. 2004. Chaos theory and transportation systems:an instructive 
example. Retrieved from  

 http://www.ce.utexas.edu/prof/kockelman/public_html/trb04chaos.pdf 
 
Gerkey BP, Matari´c MJ. 2004. A formal analysis and taxonomy of task allocation in multi-robot 

systems. Int. J. Robot. Res., 23(9), 939–954. 



106 
 

Giancoli DC. 2000.  Physics for Scientists and Engineers. Prentice Hall: Upper Saddle River. 
New Jersey. 

 
Gois S, Savi M. 2009. An analysis of heart rhythm dynamics using a three coupled oscillator 

model. Chaos, Solitons, and Fractals, 41(5), 2553-2565. 
http://www.sciencedirect.com/science/article/pii/S0960077908004517 

 
Hamann H, Karsai I, Schmickl T. 2013. Time delay implies cost on task switching: a  model 

to investigate the efficiency of task partitioning. Bulletin of Mathematical  Biology. 
75,1181-1206. DOI 10.1007/s11538-013-9851-4. 

 
Heimburg T, Jackson A. 2007. On the action potential as a propagating density pulse and the role 

of anesthetics. Biophys. Rev. Letters 2 57-78. 
 
Hodgdon, Huxley AA. 1952. A quantitative description of membrane current and its application 

to conduction and excitation in nerve. J. Physiol. 116, 449-556. 
 
Holldobler B, Wilson EO. 2008. The superorganism. The beauty, elegance and strangeness of 

insect societies. New York: WW. Norton & Company. 
 
Horak, FB. 2006. Postural orientation and equilibrium: what do we need to know about  neural 

control of balance to prevent falls? Mechanistic and Physiological Aspects, 35, ii7-ii11. 
 
Iwasaki S, Yamasoba T. 2014. Dizziness and imbalance in the elderly: age-related decline in the 

vestibular system. Aging and Disease, 6(1), 38-47. 
 
Jeanne RL. 1996. Regulation of nest construction behavior in Polybia accidentalis. Anim. Behav. 

52,473-488. 
 
Karsai I,  Balazsi G. 2002. Organization of work via a natural substance: regulation of nest 

construction in social wasps. J Theor Biol. 218,549–565. 
 
Karsai I,  Phillips MD. 2012. Regulation of task differentiation in wasp societies: A bottom-up 

model of the “common stomach” J. Theor. Biol. 294:98-113. 
 
Karsai I, Runciman A. 2011. The “common stomach” as information source for the regulation of 

construction behavior of the swarm. Mathematical and Computer  Modelling of 
Dynamical Systems. 18: 13-24. iFirst,DOI:10.1080/13873954.2011.601423. 

 



107 
 

Karsai I, Runciman A. 2009. The effectiveness of the ‘‘common stomach’’in the regulation of 
behavior of the swarm. In: Troch I, Breitenecker F, 

 editors. Proceedings MATHMOD 09 Vienna Full papers CD volume, 
 6th Vienna Conference on Mathematical Modelling; 2009; Feb. 11–13. 
 
Karsai I,  Schmickl T. 2011. Regulation of task partitioning by a “common stomach”: a model of 

nest construction in social wasps. Behavior Ecology 22, 819-830. 
 
Karsai I, Wenzel JW.  2000. Organization and regulation of nest construction behavior in 

metapolybia wasps. J. Insect Behav., 13, 111–140. 
 
Karsai I,  Wenzel JW. 1998. Productivity, individual-level and colony-level flexibility, and 

organization of work as consequences of colony size. Proc. Natl.  Acad. Sci. USA, 95, 
8665–8669. 

 
Klügl F, Triebig C, Dornhaus A. 2003. Studying task allocation mechanisms of social insects for 

engineering multi-agent systems. In 2nd international workshop on the mathematics and 
algorithms of social Insects, Atlanta, GA, USA. 

 
Lafer B, Renshaw PF, Sachs GS. 1997. Major depression and the basal ganglia. Psychiatr Clin 

North Am, 20(4), 885–896 
 
Laughton C, Slavin M, Katdare K, Nolan L, Bean J, Kerrigan D, Collins J. 2002. Aging, muscle 

activity, and balance control: physiologic changes associated with balance impairment. 
Gait & Posture,18, 101-108. 

 
Lee DC, Ham YW, Sung PS. 2012. Effect of visual input on normalized standing stability in 

subjects with recurrent low back pain. Gait Posture 36, 580-585. 
 
Lemaire T, Alami R, Lacroix S. 2004. A distributed tasks allocation scheme in multi-  UAV 

context.In Proc. of the IEEE international conference on robotics and automation 
(ICRA’04) (4, 3622–3627). New York: IEEE Press. 

 
Mandelbrot BB, van Ness JW. 1968. Fractional Brownian motions, fractional noises and 

applications. SIAM, 10, 422-437. 
 
Mann L, Kleinpaul JF, Pereira Moro AR, Mota CB, Carpes FP. 2010. Effect of low back pain on 

postural stability in younger women: influence of visual deprivation. J. Bodyw Mov. 
Ther. 14,361-366. 

 



108 
 

Matteo TD, Aste T, Dacarogna MM. 2003. Scaling behaviors in differently behaving markets. 
Physica . 324, 183-188. 

 
Melzer I, Benjuya N, Kaplanski J. 2004. Postural stability in the elderly: a  comparison between 

fallers and non-fallers. Age and Ageing (33), 602-607.  
 
Mitra SK. 2012. Is Hurst Exponent value useful in forecasting financial time series?  

Asian Social Science. 8(8), 111-120. 
 
Newcomb JM. Sakurai A. Lillvis JL Gunaratne CA. Katz PS. 2012. Homology and homoplasy 

of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, 
Opisthobranchia). Proc. Natl. Acad. Sci. U. S. A. 109 Suppl 1, 10669-10676. 

 
Osorio I, Harrison MA, Lai YC, Frei MG. 2001. Observations on the application  of the 

correlation dimension and correlation integral to the prediction of seizures. Journal of 
Clinical Neurophysiology, 18(3), 269-274. 

 
Parkinson's Disease: Challenges, Progress, and Promise", NINDS. September 30, 2015. 
 NIH Publication No. 15-5595, retrieved from: 

http://www.ninds.nih.gov/disorders/parkinsons_disease/parkinsons_research.htm,  
prepared by Prepared by: Office of Communications and Public Liaison, National 
Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 
MD 20892 

 
Patent US8412332 B2 4/2/13, “Implantable system for deep brain stimulation” 
 
Penitente G, Sands WA, McNeal J, Smith SL, Kimmel W. 2010. Investigation of hand contact 

forces of female gymnasts performing a handspring vault. International Journal of Sports 
Science and Engineering, 4, 15-24.  

 
Peasgood W, Dissado LA, Lam CK, Armstrong A, Wood W. 2003. A novel electrical model of 

nerve and muscul using Pspice. Journal of Physics D: Applied Physics. 36, 311-329. 
 
Physionet (Galit Yogev et al., dual tasking in PD; Eur J Neuro, 2005) 
 
Price GR, Mazzocco MM, Ansari D. 2013. Why Mental Arithmetic Counts:  

Brain Activation during single digit arithmetic predicts high school math scores. The 
Journal of Neuroscience, 33(1), 156-163. 

 



109 
 

 Radonovich KJ, Fournier KA, Hass CJ . 2013. Relationship between postural control and 
restricted, repetitive behaviors in autism spectrum disorders. Front. Integr. 
Neurosci. 7, 28. 

 
Rankin JK, Woollacott MH, Shumway-Cook A, Brown LA. 2000. Cognitive influence on 

postural stability: a neuromuscular analysis in young and older adults, J. Gerontol A. 
Biol. Sci. Med. Sci. 55(3), M112-M119. 

 
Robinson GE, Page RE. 1989. Genetic basis for division of labor in an insect society. The 

genetics of social evolution. Westview Press Boulder (CO). 61-80. 
 
Robinson DS. 2007. The role of dopamine and norepinephrine in depression. The Role of 

Dopamine and Norepinephrine in depression. Primary Psychiatry. 14(5),  21-23 
Retrieved from http://primarypsychiatry.com/the-role-of-dopamine-and-norepinephrine-
in-depression/ 

 
Sato K, Heise GD. 2012 Influence of weight distribution asymmetry on the biomechanics of a 

barbell back squat. Journal of Strength and  Conditioning Research 26(2), 342–349 
 
Slavin KV. 2016. Stimulation of the peripheral nervous system: the neuromodulation frontier. S 

Karger A. 29. 15. 
 
Schmickl T, Thenius R, Crailsheim K. 2012 Swarm-intelligent foraging in honeybees: benefits 

and costs of task-partitioning and environmental fluctuations. Neural Comput Appl. 21: 
251–268. 

 
Schmickl T, Karsai I. 2014. Sting, Carry and Stock: How Corpse Availability Can Regulate De-

Centralized Task Allocation in a Ponerine Ant Colony. PLoS ONE  9(12): e114611. 
doi:10.1371/journal.pone.0114611. 

 
Schmickl T, Karsai I. 2016. How regulation based on a common stomach leads to economic 

optimization of honeybee foraging. Journal of theoretical Biology (in press) 
 
Seeley TD. 1985. The information center strategy of honeybees. Fortschr Zool. 31,75–90. 
 
Seeley TD, Camazine S, Sneyd J. 1991. Collective decision-making in honey bees: how colonies 

choose among nectar sources. Behav. Ecol. Sociobiol., 28(4), 277– 290. 
 
Simmons RW. 2005. Sensory organization determinants of postural stability in trained ballet 

dancers. Int. J. Neurosci. 115, 87-97. 



110 
 

Sinha N, Brown JTG, Carpenter RHS. 2006. Task switching as a two-stage decision process. J. 
Neurophysiol., 95, 3146–3153. 

 
Smallwood R, Laird A, Ramage A, Parkinson A, Lewis J, Clauw D, Robin, D. 2013. Structural 

Brain Anomalies and Chronic Pain: A Quantitative Meta- Analysis of Gray Matter 
Volume. The Journal of Pain, 14(7), 663-675. 

 
Staron RS, Leonardi MJ, Karapondo DL, Malicky ES, Falkel JE, Hagerman FC, Hikida RS. 

1985. Strength and skeletal muscle adaptations in heavy-resistance-trained women after 
detraining and retraining. J. Appl. Physiol. 70(2). 631-640. 

 
Thompson K, Stewart M, Rodriguez J. 2004. Nerve Conduction. © 2004. 

 http://www.centenary.edu/attachments/biophysics/bphy304/11a.pdf 
 
Valero-Cuevas F, Hoffmann H, Kurse M, Kutch J, Theodorou E. 2011. Computational Models 

for Neuromuscular Function. IEEE Rev. Biomed. Eng. IEEE Reviews in Biomedical 
Engineering, 2, 110-135. 

 
Vilar JM, Morales M, Santana A, Batista M, Miró F, Spinella G. 2013. Long- term   valuation of 

oral mavacoxib in osteoarthrosic dogs using force platform analysis. Pak Vet J, 33(2), 
229-233.  

 
Wikstrom EA, Tillman MD, Smith AN, Borsa PA. 2005. A new force-plate technology measure 

of dynamic postural stability: the dynamic postural stability index. J. Athl Train. 40, 305-
309. 

 
Yulmetyev R, Demin S, H�̈�𝑟nggi P. 2003. Manifestation of chaos in real, complex  systems: case 

of parkinson’s disease. Physica A, 319, 432-446. 
 
Zhang J, Ishikawa-Takata, K, Yamazaki H, Morita T, Ohta, T. 2008. Postural stability and 

physical performance in social dancers. Gait & Posture, 27(4), 697-701. 
 

 
 

  



111 
 

VITA 
 

ALLISON LEICH HILBUN  
 
Education:  Lake Mary High School, Lake Mary, FL 

B.S. Physics, The College of William and Mary, Williamsburg, 
Virginia, 2009 

M.S. Exercise Science (Biomechanics), The University of 
Northern Colorado, Greeley, Colorado, 2012 

Ph.D. Biomedical Science, East Tennessee State University 
Johnson City, TN, 2016 

 

Professional Experience:        Math Teacher and Physical Education Instructor for grades   7-10,       
Stonebridge School, Chesapeake, Virginia, 2009 – 2010 

Head Cheerleading Coach, The University of Northern Colorado, 
Greeley, Colorado, 2011 – 2012 

Instructor of Record, Biochemistry Lab, East Tennessee State 
University, Johnson City, Tennessee, 2013-2014  
  

Publications: Hilbun, A., Karsai, I., The effect of age on balancing behavior,  
 2015 (Under Review), Journal of NeuroEngineering and 
  Rehabilitation 

 
Hilbun, A., Karsai, I., Task allocation of wasps governed by 

common stomach: a model based on electrical circuits, 
2016, (Submitted Manuscript), Journal of Physical Biology 

 
Hilbun, A., Karsai, I., The effect of pain on balancing behavior, 

2016 (prepared Manuscript) 
 

Hilbun, A., Karsai, I., A simple neurological circuit model for 
balancing, 2016 (prepared Manuscript) 

 
    
  



112 
 

Honors and Awards: ETSU Student Research Grant recipient, 2013: ‘Postural Stability  
 as an Emergent Phenomenon’ 
  

Sigma-Xi Grant-In-Aid of Research, 2015: ‘Balance Data as a 
Diagnostic Tool’ 

 
Research Development Committee Small Research Grant 

recipient, 2014: ‘Stability and resilience of chaotic systems 
of coupled oscillators’. 

 
 

 

 


