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ABSTRACT 

Relationship of Force Variables to Vertical Jumps Performance 

by 

Hugo A. de P. Santana 

The isometric mid-thigh pull (IMTP) has been cited often in the scientific literature; 

however, there is still a lack of agreement as to the ideal body position used during this 

test, and how body position impacts the relationship between IMTP performance and 

dynamic performance. Thus, one aim of this dissertation was to compare two different 

IMTP positions and correlate the kinetic outputs from each position to vertical jump (VJ) 

performance. Another purpose of this dissertation was analyze which method of data 

normalization for IMTP force variables best correlates to squat jump (SJ) and 

countermovement jump (CMJ) performance. 

In the first study, subjects presented higher force outputs for an upright position (hip 

angles 145°, knee 125°) when compared to a bent position (hip angles 125°, knee 

125°). However, there were no statistical differences among correlations from the two 

positions when correlating to VJ performance. Thus, we suggest that the upright 

position should be the one used for research and monitoring due to higher force values 

presented. 

The second part of this study was to compare correlations from non-normalized and 

normalized data from the IMTP to SJ and CMJ. Besides non-normalized data, five 

common methods of normalization were used – subtracting the body mass force, 

dividing the forces per body mass, allometric scale, scaling by height (Ford’s scale) and 
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scaling by Sinclair coefficient value. In general, higher value correlations were 

presented with the non-normalized methods for both jumps – SJ and CMJ. Therefore, 

when using IMTP data to correlate with VJ performance, there is no need to normalize 

the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

Copyright 2016 by Hugo A. de P. Santana 

All rights reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

DEDICATION 

 This dissertation is dedicated to my family. Without your dedication and support 

(in all aspects, love and financial) nothing could be accomplished. To my brother and 

my sister – it is hard to come out of your big shadows by being giants, but you left me 

footsteps that I could follow to a great path. To my nephews and my niece any caring 

act, goofy face or joke in Skype gave me strength to continue even being so far away. 

Mom and Dad, I could write here forever and still would be no words, in any language, 

that I could express my gratitude for everything you have done and what you really are 

for me – Amo vocês! 

 

 

 

 

 

 

 

 

 

 

 



6 
 

ACKNOWLEDGEMENTS 

 First, I would like to thank Dr Stone for everything that he has done for me. Since 

my first email contact asking about the possibility of coming to this amazing program, 

his fast feedback and honesty helping to get here was fantastic. For all his classes, 

knowledge and dedication shared I am grateful – Doc, you are a great role model for us, 

if I am able to do 1% of what you did for me, for my future students, I know will have 

done good. 

 Again, Dr Stone and Coach Stone, thank you for building this program. I could 

not have asked for a better place to learn and coach. Your dedication to build this 

environment aiming to raise better students, to form future scientific driven coaches and 

to develop better athletes for ETSU is incredible. Dr Ramsey for helping to build this 

program and your dedication to make it better is inspiring, your human side to really 

care for the students should be the first goal of every professor. All the professors of this 

program, even a few that I could not take classes, thank you. Thanks for accepting me – 

a lot of times I still wonder how I manage to get here; thanks for the knowledge, for the 

time and dedication to make me better. It was not easy to come this entire path, I hope 

that I am worthy of it though. 

 I am thankful for my dissertation committee, Dr Stone for the guidance, Dr Sato 

for your huge hours of dedication, for the skype chats, and for encouraging me at the 

hardest moments when I was away. Dr Mizuguchi, thank you for every second that I 

suddenly appeared at your door with a question from nowhere and you were able to 

answer and clarify my doubts. Dr Haff, I am really thankful for all the suggestions, 

corrections and inputs; I am gratified to have you as part of my committee and I 



7 
 

appreciate the feedbacks and commitment to our project even being on the other side of 

the world. 

 My co-workers and students of this program, it would be hard to find words and 

have enough pages for you. My classmates, your support helped me going through 

classes, all students of the program helping me on my day-to-day adaptation – the little 

things will never be forgotten (rides to groceries, rides to airport, going out for dinner 

after stressful days). The whole team that taught me how to lift, that had an amazing 

impact in my life and every people that I will train will have something better because of 

you. Special thanks to: Shawn French being my next-door neighbor and helping me with 

many things, Jana Hollins (Meninno now) for being my sis, Caleb Bazyler for guiding me 

to coach the best Tennis Team I could ask, Josh Christovich – the best roommate ever, 

and all the black side strength crew (you know who you are) for the support in all 

moments. 

 The Men’s Tennis Team – players and coaches, you guys will always have a 

place in my heart for the trust, for pushing me to be better and of course for the wins – it 

is easier to coach an already winning team, but it is also a huge responsibility, thanks 

for that. The soccer team, the semester that we worked together encouraged me to 

higher challenges, thank you for that. 

 My Brazilian friends, who became my family, thanks for making this our home. 

You gave me the strength when I did not have it – I have so many moments to be 

thankful, that I will skip and let this part to be more general. Instead of citing so many 

names and memories, I prefer to relive them with you in a near future time. 



8 
 

TABLE OF CONTENTS 
Page  

 
ABSTRACT ..................................................................................................................... 2  

DEDICATION .................................................................................................................. 5  

ACKNOWLEDGEMENTS ............................................................................................... 6  

LIST OF TABLES .......................................................................................................... 11 

LIST OF FIGURES ........................................................................................................ 13 

Chapter 

1. INTRODUCTION ....................................................................................................... 14 

2. REVIEW OF LITERATURE ....................................................................................... 17  

Isometric Mid-Thigh Pull Testing ........................................................................ 17 

Vertical Jump Testing ......................................................................................... 21  

Data Normalization for Strength Tests ................................................................ 25  

3. THE IMPACT OF BODY POSITION DURING THE ISOMETRIC MID-THIGH 

PULL ON THE RELATIONSHIP BETWEEN FORCE PRODUCTION AND 

DYNAMIC PERFORMANCE OF JUMPING .............................................................. 29  

Abstract .............................................................................................................. 30 

Introduction ......................................................................................................... 31  

Methods .............................................................................................................. 32  

Experimental approach to the problem .................................................... 32 

Participants .............................................................................................. 33 

Procedures .............................................................................................. 34 

Force-time curve analysis ........................................................................ 36 

Statistical analysis ................................................................................... 37 



9 
 

Results ............................................................................................................... 37 

Discussion .......................................................................................................... 41  

Practical Applications ......................................................................................... 43 

References ......................................................................................................... 44  

4. NORMALIZATION OF ISOMETRIC MID-THIGH PULL FORCE VALUES AND 

SQUAT (STATIC) JUMP PERFORMANCE .............................................................. 46 

Abstract .............................................................................................................. 47 

Introduction ......................................................................................................... 48  

Methods .............................................................................................................. 49  

Experimental approach to the problem .................................................... 49 

Participants .............................................................................................. 50 

Procedures .............................................................................................. 50 

Analysis ................................................................................................... 52 

Results ............................................................................................................... 53 

Discussion .......................................................................................................... 61 

Practical Applications ......................................................................................... 62 

References ......................................................................................................... 63 

5. NORMALIZATION OF ISOMETRIC MID-THIGH PULL FORCE VALUES AND 

COUNTERMOVEMENT JUMP PERFORMANCE .................................................... 65 

Abstract .............................................................................................................. 66 

Introduction ......................................................................................................... 67  

Methods .............................................................................................................. 68  

Experimental approach to the problem .................................................... 69 



10 
 

Participants .............................................................................................. 69 

Procedures .............................................................................................. 69 

Analysis ................................................................................................... 71 

Results ............................................................................................................... 72 

Discussion .......................................................................................................... 81  

Practical Applications ......................................................................................... 83 

References ......................................................................................................... 84 

6. SUMMARY AND FUTURE RESEARCH ................................................................... 87 

Practical Applications ......................................................................................... 88 

           Future Research ................................................................................................. 88 

REFERENCES .............................................................................................................. 89  

APPENDICES ............................................................................................................. 100  

Appendix A: ETSU Institutional Review Board Approval ............................................. 100 

Appendix B: Informed Consent Document .................................................................. 102 

VITA ............................................................................................................................ 105 

 

 

 

 

 

 
 



11 
 

LIST OF TABLES 
 
 

Table               Page  
 
3.1 Set angles for each isometric mid-thigh pull measured by goniometer before 

pulling ..................................................................................................................... 35  

3.2 Descriptive data of PF, F50, F90, F200, RFD 200, IMP 200 for bent and upright 

position on the Isometric Mid-Thigh Pull Test ......................................................... 38 

3.3 Descriptive data of JH, PF, PP, F@PP, PV and V@PP for Squat and 

Countermovement jumps ....................................................................................... 39 

3.4 Correlations of force variables between upright and bent position .......................... 40 

3.5 Correlations of force variables of the IMTP two positions (bent and upright) to 

dynamic performance of Squat Jump and Countermovement Jump ...................... 40  

4.1 Descriptive data from Squat Jumps ......................................................................... 54 

4.2 Descriptive data from the isometric mid-thigh pulls, non-normalized and 

normalized methods ............................................................................................... 54 

4.3 Correlations between Squat Jump Performance variables and non-scaled 

Isometric Mid-Thigh Pull data ................................................................................. 55 

4.4 Correlations between Squat Jump Performance variables and Isometric Mid-

Thigh Pull data subtracted by body mass force ...................................................... 56 

4.5 Correlations between Squat Jump Performance variables and Isometric Mid-

Thigh Pull divided by body mass (ratio scaling) ...................................................... 57 

4.6 Correlations between Squat Jump Performance variables and Isometric Mid-

Thigh Pull allometric scaled .................................................................................... 58 



12 
 

4.7 Correlations between Squat Jump Performance variables and Isometric Mid-

Thigh Pull scaled to height ..................................................................................... 59 

4.8 Correlations between Squat Jump Performance variables and Isometric Mid-thigh 

Pull scaled to Sinclair coefficient ............................................................................ 60 

5.1 Descriptive data from Countermovement Jumps .................................................... 73 

5.2 Descriptive data from the isometric mid-thigh pulls, non-normalized and 

normalized methods ............................................................................................... 74 

5.3 Correlations between Countermovement Jump Performance variables and non-

scaled Isometric Mid-Thigh Pull data ...................................................................... 75 

5.4 Correlations between Countermovement Jump Performance variables and 

Isometric Mid-Thigh Pull data subtracted by body mass force ................................ 76 

5.5 Correlations between Countermovement Jump Performance variables and 

Isometric Mid-Thigh Pull divided by body mass (ratio scaling) ............................... 77 

5.6 Correlations between Countermovement Jump Performance variables and 

Isometric Mid-Thigh Pull allometric scaled ............................................................. 78 

5.7 Correlations between Countermovement Jump Performance variables and 

Isometric Mid-Thigh Pull scaled to height ............................................................... 79 

5.8 Correlations between Countermovement Jump Performance variables and 

Isometric Mid-Thigh Pull scaled to Sinclair coefficient ............................................ 80 

 

 

 

 



13 
 

LIST OF FIGURES 
 
 

Figure              Page  
 
3.1 Study design. The isometric  mid-thigh pull position were used randomly, one 

position was 125° knee angle and 125° trunk angle, the other was 125° knee 

angle and 145° trunk angle ..................................................................................... 33 

3.2 Coefficient of variation between trials with 90% confidence limits ........................... 39   

4.1 Study design ........................................................................................................... 49 

5.1 Study design ........................................................................................................... 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

CHAPTER 1 
 

INTRODUCTION 

Strength tests are widely used in sports, ergonomic and clinical practice. The 

goal of these tests are to assess muscle-function, monitoring for sports, rehabilitation 

and talent identification with valid methods (Abernethy, Wilson, & Logan, 1995; 

Johnston, 2014; Keogh, Weber, & Dalton, 2003). Muscle strength can be measured as 

maximum force (N) or torque (Nm) in a predetermined condition. Different 

dynamometers measuring concentric, eccentric and isometric forces have been used to 

measure forces, as well isokinetic devices. In recent years, the use of isometric devices 

has become a valuable tool in the measurement of athletes (Beckham et al., 2013; Haff 

et al., 2005; McGuigan & Winchester, 2008).  Most of these isometric assessments 

involve multi-joint movements such as a squat of pulling position. There are several 

reasons for using these multi-joint isometric measures: 1) they are less time consuming 

than typical multi-joint dynamic RM tests, 2) there is a greater potential of actually 

achieving a maximum measure of strength when compared to typical dynamic tests, 

and 3) Multi-joint isometric assessments of force show stronger correlations to dynamic 

performance than single-joint isometric assessments (McGuigan & Winchester, 2008; 

Nuzzo, McBride, Cormie, & Mccaulley, 2008). 

One of the more common tests used is an isometric clean pull (Haff et al., 2005). 

Although there is general agreement as to the value of isometric pulls there is some 

controversy concerning the exact positioning to achieve the best result (Beckham et al., 

2012; Comfort, Jones, McMahon, & Newton, 2015). This controversy deals with  a lack 

of consensus as to  where “is” the mid-thigh position; knee and hip angles will influence 
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where the bar will be placed and based on mathematical calculation should greatly 

influence the mechanical advantage of the position (Beckham et al., 2012; 2013; 

Comfort et al., 2015; Kawamori et al., 2006; McGuigan & Winchester, 2008). Comfort et 

al. (2015) indicates that a variety of positions based on knee and hip angles did not 

make a statistical difference in the peak forces achieved; however, Haff et al. (2005) 

and Beckham et al. (2012) have reported data that disagrees with these findings. In 

order to elucidate this problem, more research is needed to determine how positional 

differences contribute to the forces achieved during the IMTP. In addition, another 

question to be answered is whether different IMTP positions result in different 

relationships with dynamic muscle actions, such as vertical jump height and force 

variables. 

However, several factors can confound the evaluation of strength tests, one 

intervening factor that can influence levels of strength is body mass (BM). Generally, 

athletes with larger BM exhibit a greater level of lean BM, and are likely able to generate 

greater levels of absolute force (Batterham & George, 1997; Hoffman et al., 2005; 

Marković & Sekulić, 2006; Nedeljkovic, Mirkov, Bozic, & Jaric, 2009; Nedeljkovic, 

Mirkov, Markovic, & Jaric, 2009). This can make it harder to compare different athletes 

and track the evolution of training when athletes change their body mass during a 

season. In order to solve this problem of comparing different athletes, with different 

body sizes (mass and height), there are several ways of normalizing data – ratio 

scaling, allometric scale, scaling by height, Sinclair formula (Ford, Detterline, Ho, & Cao, 

2000; Jaric, Mirkov, & Markovic, 2005; Jaric, 2002; Stone et al., 2005). However, there 
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is still a need in the literature for strength normalization values for IMTP tests yielding 

the best relationships to dynamic performance of vertical jumps. 
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CHAPTER 2 

REVIEW OF LITERATURE 

Isometric Mid-Thigh Pull Testing 

Force can be measured as strength and can be assessed for different purposes 

such as to quantify the relative strength necessary for daily tasks and athletic events or 

to identify muscular function deficiencies, talent identification and monitor efficiency of 

training interventions (Abernethy et al., 1995). Strength is the “ability” to exert force 

against external resistance (Stone, Stone, & Sands, 2007). One common way of 

measuring strength is through isometric testing – single and multi-joint isometric tests 

can be seen in the 1960 (Chaffin, 1975). Single joint testing may be undesirable or even 

contraindicated in some pathological conditions of the knee joint (Palmitier, An, Scott, & 

Chao, 1991), probably due to differing muscle recruitment, joint and ligament stresses 

between multi-joint and single joint testing (Escamilla et al., 1998). 

Although single joint tests are still used, some researchers have observed weak 

relationships between single-joint isometric tasks and multi-joint dynamic tasks, e.g. 

squatting performance (Baker, Wilson, & Carlyon, 1994) and bench press performance 

(Wilson, Murphy, & Walshe, 1996). This observation has led to the general conclusion 

that isometric testing is ineffective when making conclusions about dynamic muscle 

actions (Wilson & Murphy, 1996). However, the validity of isometric testing depends on 

joint angle and position specificity, which may impact the ability of the isometric tasks 

ability to yield information about dynamic muscle actions (Haff et al., 1997; Kawamori et 

al., 2006; Murphy, Wilson, Pryor, & Newton, 1995; Wilson & Murphy, 1996) 
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The use of multi-joint isometric muscle actions is not new as it can be noted that 

in the 1980’s these tests were used in order to estimate preparation for job-related lifting 

tasks (Knapik, Vogel, & Wright, 1981; Teves, Wright, & Vogel, 1985; Vogel, 1986). 

Additionally, during the mid to late 90’s, some researchers started reporting measures 

of multi-joint isometric tests and multi-joint dynamic performance in the same papers 

(Haff et al., 1997; Wilson, Newton, Murphy, & Humphries, 1993; Young, McLean, & 

Ardagna, 1995; Young, 1995). For example, isometric squats were initially used to 

monitor improvement on resistance training performance (Wilson et al., 1993) and 

correlate to sprint dynamic performance (Young et al., 1995), after that a few authors 

still used isometric squat testing (Blazevich, Gill, & Newton, 2002; Prue Cormie, Deane, 

Triplett, & McBride, 2006; McBride, Cormie, & Deane, 2006; Nuzzo et al., 2008). 

One multi-joint isometric test that was first described in 1997, is the isometric 

mid-thigh pull (IMTP) (Haff et al., 1997). The IMTP was created to mimic the second pull 

of the weightlifting movements (clean and snatch) and was expected to be similar to the 

power position which is often considered the most athletic position in sport. Moderate to 

large correlations were originally reported between force-time data from the IMTP and 

dynamic performance of pulling motions from weightlifting and vertical jumps (Haff et al., 

1997). After this first article, the use of IMTP was presented in several publications (Haff 

et al., 2008; Haff et al., 2005; Hori et al., 2008; Kawamori et al., 2006; Kraska et al., 

2009; McGuigan, Winchester, & Erickson, 2006; McGuigan & Winchester, 2008; Stone 

et al., 2004;  Stone et al., 2005; Stone et al., 2003; Stone, Sands, Pierce, Ramsey, & 

Haff, 2008). The IMTP test has been correlated to several dynamic performances, such 

as 1 RM Squats (McGuigan, Newton, & Winchester, 2008; McGuigan et al., 2006, 
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Nuzzo et al., 2008), weightlifting movements (Beckham et al., 2013; Haff et al., 1997, 

2005; Kawamori et al., 2006; Stone et al., 2005), countermovement jumps (Khamoui et 

al., 2011; Kraska et al., 2009; Thomas et al., 2015) and static jumps (Kraska et al., 

2009; Thomas et al., 2015).  

Harman (1993) defined strength as the force exerted under a given set of 

conditions, which includes posture, pattern and speed of movement. And, the posture 

and body positioning related to IMTP test is still an area of disagreement between 

different researchers. Haff et al, (1997) stated that the IMTP is performed in a position 

similar to second pull of clean weightlifting movement, which should show higher forces 

and power outputs maximizing force and power performances for the test (Haff et al., 

1997). Other publications from the same group of researchers presented similar body 

position and higher precision on reporting knee angles (Bailey, Sato, Alexander, 

Chiang, & Stone, 2013; Beckham et al., 2012; Beckham et al., 2013; Haff et al., 2005; 

Kraska et al., 2009; Stone et al., 2004; Stone et al., 2008; Stone et al., 2005). The 

authors reported knee angles varying between 120° up to 145°, considering that as the 

optimal position for the initiation of the second pull of power clean, and the hip angles 

when reported were ranging between 145° and 175° or described as near vertical. This 

position needs to be individualized among subjects due to differences of trunk and limb 

lengths between subjects. 

Other researchers reported to use similar knee angles (125°-135°), however they 

tested with more acute angles for the hips – below 140°(Kawamori et al., 2006; Leary et 

al., 2012; Spiteri et al., 2014). A very large portion of articles (Beckham et al., 2012; 

Crewther et al., 2012; Darrall-Jones, Jones, & Till, 2015; Haff et al., 2008; Haff et al., 
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2005; Hornsby et al., 2013; Khamoui et al., 2011; Lawton, Cronin, & Mcguigan, 2012; 

McGuigan, Newton, Winchester, & Nelson, 2010; McGuigan et al., 2006; McGuigan & 

Winchester, 2008; Nuzzo et al., 2008; Painter et al., 2012; Stone et al., 2004; Stone et 

al., 2005; Teo, McGuigan, & Newton, 2011; Thomas et al., 2015; West et al., 2011; 

Winchester et al., 2008) do not report the specific angle positions for knees and/or hips 

that the subjects were tested – it was simply omitted or general information was given, 

e.g. flat trunk and shoulders over the bar, bar at the height of the knee, bar was 

positioned just below the crease of the hip. 

Currently, to the author’s knowledge there are only two published articles that 

have investigated body position and how it might influence the performance during the 

IMTP (Beckham et al., 2012; Comfort et al., 2015). These articles present conflicting 

results, with Beckham et al. (2012) who reported that powerlifters produced higher peak 

force values in an upright position (knee angles at 125° and hip angle of approximately 

145°) when compared to three different positions (floor, knee and deadlift lockout). 

Conversely, Comfort et al. (2015) report different findings; they tested college athletes in 

nine different positions with different angles for knees (120° to 150°) and hips (125° and 

145°). There were no statistical differences among the positions tested causing the 

authors to suggest that the participants should use their own self-selected preferred 

position since there were no statistical differences to the other positions tested. 

Therefore, due to the minimal investigation comparing positions of the IMTP 

testing and the different results and conclusions from the authors, there is a need to 

compare different IMTP positions aiming to see if there is any difference in force 
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variables production. In addition, if there is any difference between positions how this 

could relate to dynamic performance tests (e.g. vertical jumps). 

Vertical Jump Testing 

Since early in the 20th century, the  Vertical Jump (VJ) has been suggested to be 

used to assess human muscular performance (Sargent, 1921), and currently is one of 

the most common test used to measure performance (Abernethy et al., 1995; Taylor, 

Chapman, Cronin, Newton, & Gill, 2012) and to monitor athletes’ performance 

(Gathercole, Stellingwerff, & Sporer, 2015). One of the reasons for the regular use of 

the VJ is it is simpler, easier and more affordable than most of other types of power 

tests (Klavora, 2000) and little familiarization is needed (Moir, Button, Glaister, & Stone, 

2004). VJ testing is a regularly used method by strength and conditioning coaches and 

sport scientists to indirectly assess athletes’ performance level.  

Explosive movements, such as sprinting and change of direction are well 

correlated to VJ performance (Peterson, Alvar, & Rhea, 2006), thus VJ testing might be 

a useful tool to measure performance. In addition, VJ testing can be adapted to 

measure neuromuscular performance in different ways, by simply limiting starting 

position, restraining countermovement (Markovic, Dizdar, Jukic, & Cardinale, 2004) or 

adding external loads (Cormie, McBride, & McCaulley, 2008; Cormie et al., 2007; 

Kraska et al., 2009). Also, VJ has been suggested to be an easy way to assess levels of 

neuromuscular fatigue (Byrne & Eston, 2002; Gathercole, Stellingwerff, et al., 2015) and 

it is a reliable, non-fatiguing measurement (Cormack, Newton, Mcguigan, & Doyle, 

2008; Marques et al., 2014; Moir, Sanders, Button, & Glaister, 2005; Moir, Shastri, & 

Connaboy, 2008). 
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Several sports performances that demand explosive strength and high power 

output such as weightlifting (Carlock et al., 2004; Fry et al., 2006; Viscaya, Viana, 

Fernandez Del Olmo, & Martin Acero, 2009), sprint cycling (Stone et al., 2004) have 

strong relationships to VJ performance. In addition, characteristics that are transferable 

and used in several sports, like sprinting (Berthoin, Dupont, Mary, & Gerbeaux, 2001; 

Bissas & Havenetidis, 2008; Bret, Rahmani, Dufour, Messonier, & Lacour, 2002; Cronin 

& Hansen, 2005; Peterson, Alvar, & Rhea, 2006) and change of direction (Barnes et al., 

2007; Brughelli, Cronin, Levin, & Chaouachi, 2008; Peterson, Alvar, & Rhea, 2006), are 

also correlated with VJ.  

Some dynamic strength tests have been associated with VJ. Soccer players 

have shown strong correlations between half squats maximal strength and VJ height 

(Wisløff, Castagna, Helgerud, Jones, & Hoff, 2004). Lower body strength has been 

shown to be linked to VJ performance variables, several authors reported that maximal 

dynamic strength correlate with VJ performance (Carlock et al., 2004; Haff et al., 1997, 

2005; Nuzzo et al., 2008; Stone et al., 2003). In addition, several authors (Haff et al., 

2005; Kawamori et al., 2006; Kraska et al., 2009; Nuzzo et al., 2008; Stone et al., 2004) 

showed that isometric peak forces and rate of force development have been correlated 

to VJ performance (height achieved and force variables from jumping). Due to the 

relationship between VJ performance and sports performance the VJ is often used as 

part of talent identification programs in some sports. 

For example, in weightlifting, the VJ is capable of discriminating elite and non-

elite athletes (Fry et al., 2006; Stone et al., 2005). The peak power reached in the VJ is 

associated with weightlifters current performance (Carlock et al., 2004). Researchers 
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also have been looking for height, impulse, rate of force development (Bosco & Komi, 

1979) and VJ power (Fry et al., 2006) and associating it to muscle fiber types. 

Therefore, not only height has been investigated, but also the force mechanisms 

associated with it. 

The performance of a VJ on a force platform permits the direct measurement of 

the ground reaction forces produced during the movement. During a VJ, the subject has 

to overcome body weight and the resultant force during the action is the ground reaction 

force during the jump. Force–time, acceleration–time, velocity–time, displacement–time, 

and force-displacement curves can be calculated from the ground reaction force 

obtained from the force platform (Linthorne, 2001). During the second half of the 20th  

century, force-times curves have been used to analyzed human movement, such as 

sprints and motor learning characteristics (Henry, 1952; Howell, 1956), and is 

considered an effective method of analyses of athletic movements, such as VJ (Payne, 

Slater, & Telford, 1968). The use of a force-time curves can aid evaluation at different 

levels and training backgrounds (Cormie, McBride, & McCauley, 2009; Laffaye, 

Wagner, & Tombleson, 2014; Ugrinowitsch, Tricoli, Rodacki, Batista, & Ricard, 2007). 

Additionally, force-time curves can be used as a diagnostic tool for optimizing 

performance and to guide training interventions (Cormie et al., 2009; Cormie, Mcguigan, 

& Newton, 2010a, 2010b, 2010c; Dowling & Vamos, 1993; Gathercole, Sporer, 

Stellingwerff, & Sleivert, 2015; Gathercole, Stellingwerff, et al., 2015; Henry, 1952; 

Howell, 1956). 

There are several different jumping tests that can be used to estimate explosive 

power.  Some of the more common tests used are the Sargent VJ test (Sargent, 1921), 
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standing long jump, standing triple jump (Horita, Kitamura, & Kohno, 1991; Izquierdo, 

Aguado, Gonzalez, Lopez, & Häkkinen, 1999), drop-jump (Viitasalo, Salo, & Lahtinen, 

1998) and also Abalakow’s Jump (Klavora, 2000). However, the two most commonly 

used VJ tests are the squat or static jump (SJ) and the countermovement jump (CMJ) 

(Markovic et al., 2004).  

The SJ is initiated in a semi-squatted position and without a counter-movement. 

The participant using a CMJ starts in the standing position and initiates a downward 

(eccentric) movement just before the extension of hips, knees and ankles for the jump 

(concentric). The downward movement utilizes a stretch-shortening cycle mechanism of 

coordinated muscle action found to improve performance (Cavagna, Saibene, & 

Margaria, 1965). Therefore, the CMJ has been suggested as a test of the stretch-

shortening cycle (Markovic et al., 2004). 

Most subjects jump several centimeters higher in the CMJ when compared to the 

SJ, even with the same vertical pushoff range (Bobbert, Gerritsen, Litjens, & Van Soest, 

1996b; Linthorne, 2001). The CMJ has been suggested to allow the muscles cross-

bridges formation to occur before the propulsive phase leading to greater force 

production during the jump (Bobbert & Casius, 2005). Also, the amount of time of the 

eccentric phase (downward) of the jump, in addition to spinal reflexes activation of the 

pre-stretch (Bosco, 1997) leads to the concentric part beginning at a higher force that 

results in greater concentric force production (Bobbert, Gerritsen, Litjens, & Van Soest, 

1996a) and might contribute to a better performance (greater height). 

In conclusion, the VJ is a relative easy and reliable test that can be adapted to 

measure different neuromuscular performances and it is associated with strength and 
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explosive movements. However, there is room to examine the relation between VJ 

variables and isometric force variables, and ascertain a position of testing isometric 

force and which method of analyzing isometric forces better correlates with VJ 

performance variables. 

Data Normalization for Strength Tests 

Physical performance tests can be confound by several factors, such as age, 

sex, physical fitness level, skill and body size (Abernethy et al., 1995; Jaric, 2002; 

Keating & Matyas, 1996). Body size is a well-recognized factor that affects both muscle 

strength and the outcome of a number of functional performance tests (Jaric, 2002). 

Strength and performance have been analyzed from a theoretical prospective to 

determine what role body size may play (Jaric et al., 2005; Jaric, 2002; McMahon, 

1984). The comparisons between subjects starts from the point of view that the human 

body only differ in sizes, it is assumed that bodies have the same shape, which is 

commonly referred to as geometric or biological similarity (Challis, 1999; McMahon, 

1984). Therefore, limb lengths should be proportional to a characteristic length 

measured on a subject (body height), and all areas (muscle cross-sectional area) are 

proportional to body height (Jaric, 2002; McMahon, 1984). 

Based on the presumption of geometric similarity, some important relationships 

have been deduced from the effects of scale. Muscle force generating capacity is 

proportional to the muscle physiological cross-sectional area.  Specifically, it should 

increase with body size in a manner that is proportional to mass2/3. This relationship 

explains why muscle strength increases with body size at a lower rate than body mass 

or weight (Batterham & George, 1997; McMahon, 1984).  Based upon this many 
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authors use a muscle strength index based on an allometric scale (Batterham & 

George, 1997; McMahon, 1984; Vanderburgh & Dooman, 2000). In a different situation, 

the performance of some functional tests, based on muscle actions intended to support 

body weight under strength-demanding conditions, should be negatively related to body 

size (Jaric, 2002, 2003). Since body weight increases in a manner that is proportional to 

body mass, while the muscle force needed to overcome the body weight increases at a 

slower rate (proportionally to mass2/3) the performance of this group of functional tests 

(load bearing tests) should be proportional to m-1/3 (Jaric et al., 2005). In addition to the 

theory of geometric similarity, the use of body mass ratio in which performance test 

value divided by body mass does not obviate the impact of body mass because it 

underestimates strength values for heavier subjects (Nedeljkovic et al., 2009). 

The aforementioned normalizations are based on exerting a force against 

external objects, e.g. different kinds of weightlifting exercises that are often applied in 

athletic or physical education testing (Barnekow-Bergkvist, Hedberg, Janlert, & 

Jansson, 1996; Haff et al., 1997; Izquierdo et al., 2001; Jensen, Freedson, & J, 1996; 

Stone et al., 2005), or two-hand lift or manual material handling applied in ergonomic 

studies (Hattori et al., 2000). Different tasks for movement performance consisting of 

maximum speed of body segments, such as throwing, kicking, serving (Cronin, Mcnair, 

& Marshall, 2001; Fry & Morton, 1991; Kraemer et al., 2000), or whole body center of 

mass movement (Cometti, Maffiuletti, Pousson, Chatard, & Maffulli, 2001; Jaric, 

Ugarkovic, & Kukolj, 2002; Kukolj, Ropret, Ugarkovic, & Jaric, 1999; Ostenberg, Roos, 

Ekdahl, & Roos, 1998) require a different approach. Some complex scaling methods 

suggested a weak relationship with performance variables for these type of tests, and 
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allometric modelling based on geometric similarity suggests no relationship (Hill, 1950; 

Nevill, Ramsbottom, & Williams, 1992). So, squat jump height and countermovement 

jump height have been considered as a body size-independent index of muscle power 

and the ability to produce power (or rapid performance) in movements based 

predominantly on concentric actions and the stretch – shortening cycle could be partly 

independent (Markovic & Jaric, 2007).  Also, athletic experience suggests no 

relationship between maximum movement velocity and body size - the fastest running, 

or the longest jump, or the fastest tennis or volleyball serve, are expected neither from 

the smallest nor from the biggest athletes (Jaric, 2002). Therefore, the performance of 

rapid body movements is not likely to require normalization for body size. 

Another normalization method that can be used to try to equalize people with 

different body sizes would be height. A constant ratio was observed, for both men and 

women, between different classes weightlifting champions from 1993-1997 when 

dividing their total weightlifted by height2.16 (Ford et al., 2000). A possible limitation of 

this finding is that an absolute upper limit to lateral muscle growth at a height of about 

183 cm in men and 175 cm in women (Ford et al., 2000).  The idea of using height as a 

normalization method is based upon the hypothesis that athletes would have achieved 

maximum or near-maximum muscle fiber size (i.e., cross section) with maximum 

strength being directly related to the number of muscle fibers in parallel (Ford et al., 

2000). Because final muscle fiber number, cross-sectional area and bone length appear 

to be determined as a result of commonly shared maturation factors (Taylor & 

Wilkinson, 1986) the final number of muscle fibers and cross-section area should be 

strongly correlated with height.  
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One type of normalization that occurs in sports (weightlifting) is the Sinclair 

Coefficient. The Sinclair Coefficient formula, a polynomial equation,  is a method used in 

weightlifting to compare athletes’ performance among different weight classes, it is 

updated every 4 years, and appears to have a reasonable theoretical foundation when 

measuring compare exercises from the weightlifting (Stone et al., 2005). The use of 

Sinclair coefficient formula as a normalization method might be limited to few exercises 

(e.g. weightlifting movements), however there is a paucity of research supporting the 

use of this coefficient as a normalization method for non-weightlifters. 

Thus, there are several different methods of analyzing force production in order 

to equalize performance for different body sizes people, however there is still a need to 

study which method might be more appropriate to normalize IMTP variables in relation 

to dynamic performance of jumps. 
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Abstract 

The isometric mid-thigh pull (IMTP) has been cited often in the scientific literature; 

however, there is still a lack of agreement as to the ideal body position used during this 

test, and how body position impacts the relationship between IMTP performance and 

dynamic performance. The aim of this study was to compare two different IMTP 

positions and correlate the kinetic outputs from each position to vertical jump (VJ) 

performance. Twenty-two male subjects participated on two different testing days 

separated by at least 72 hours. Subjects performed Squat Jumps and 

Countermovement Jumps; and two positions for the IMTP (Upright position – 125° knee 

angle and 145° hip angle, and bent position - 125° knee angle and 125° hip angle). All 

force-time curves were analyzed using custom LabVIEW software.  All IMTP data were 

analyzed with paired samples t-tests in order to compare the force-time curve results 

from the two pull-positions. Pearson product moment correlations were used to 

determine relationships between the dynamic and isometric performance variables. 

Isometric Peak Force, Force at 50, 90 and 200ms, Rate of force development from 0-

200ms, as well as impulse from 0-200ms were significantly greater (p<0.008) during the 

upright position. However, both positions resulted in comparable correlations with 

dynamic performance variables.  

Keywords: Maximal Strength, Performance Testing, Vertical Jump Performance  
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Introduction 

 Neuromuscular function can be evaluated with several types of tests, including 

both dynamic and isometric methods. Maximal strength is a worthwhile monitoring test 

characteristic athletes (19) and is commonly tested dynamically with the use of a 1 

repetition maximum (RM). However, 1 RM tests are considered time consuming and 

might cause fatigue, especially considering the method of load increment. Isometric 

tests using force platforms to examine peak force (PF) and force related variables, such 

as rate of force development (RFD), have been suggested to be an advantageous 

method because of its time efficiency and the ability to perform a more detailed analysis 

of the athletes force production capacity when compared to typical non-instrumented 

dynamic tests such as the 1RM. As a result of these advantages, the isometric mid-

thigh pull (IMTP) is a test that has increasingly been used as a monitoring or testing tool 

among researchers and strength coaches (1,5,7,12,17,22,23). One factor making the 

IMTP test a more attractive test is that there are large relationships between the 

performance during the IMTP and other dynamic performance tests including 1RM 

strength measures, jumping performance and sprint performance (7,20,22,23).  

 The IMTP test was initially created to mimic the power position or initiation of the 

second pull during weightlifting movements, such as the clean and snatch (7).  This 

position was originally selected because in weightlifting it is the position during the 

pulling motion producing the highest forces and velocities (10). This basic position can 

be observed in a variety of sporting movements such as sprinting, jumping and 

changing directions.  However, there appears to be some debate as to which body 

position optimizes IMTP performance. Some studies set ranges from 120° to 135° for 
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knee angles and 140° to 150° for hip angles (1,2,6,10,13,22), and there are a few 

studies which for the knee and hip angles are not even reported (17,18). Additionally, a 

few studies (2,5) are in disagreement as to which positions produce the best results 

when using the IMTP. 

 The noted discrepancies in the scientific literature regarding body position during 

the IMTP may lead to variability in the reliability of the test and result in difficulties in 

comparing athletes tested with different methodologies. These differences measured 

values may ultimately impact the interpretation of the data collecting during the IMTP 

test. It is possible that differences in body position resulted in the lack of agreement in 

the scientific literature in regard to the relationship between the IMTP force variables 

and dynamic performance (7,13,18,23). 

 Therefore, the purpose of this study was to compare the force-time curve 

variables generated during two different common used IMTP body positions. A 

secondary purpose was to determine the impact of these body positions on the 

relationship between isometric force values and jumping performance to determine if 

body position impacts the relationship between the isometric and dynamic 

performances. 

Methods 

Experimental approach to the problem 

This study was designed to investigate differences in isometric force 

characteristics between two positions of the IMTP and the relationships between these 

variables and maximal Vertical Jump (VJ) performance (fig 1). Maximal isometric 
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strength was selected as it provides an efficient measure of maximal strength in a 

variety of populations (7,15,18).  The squat jump (SJ) and countermovement jump 

(CMJ) were selected as these tests are commonly used to assess VJ performance 

(20,25). The IMTP tests and jumping tests were performed on different days, at least 72 

hours apart, and the subjects were asked to maintain a consistent dietary intake and to 

avoid any intense or high volume exercise 48 hours before both testing sessions; 

subjects were questioned before testing to ensure this occurred. 

 

Figure 3.1. Study design. The isometric mid thigh pull position were used randomly, 
one position was 125° knee angle and 125° trunk angle, the other one was 125° knee 
angle and 145° trunk angle. 

 

 

Participants 

Twenty-two males (age of 24.9 ± 3.2 years old, height 177.8 ± 6.9 cm, body 

mass 80.2 ± 10.4 kg) volunteered to participate in this study. Subjects had different 

sports backgrounds and different resistance training background, ranging from zero to 

over 8 years of resistance exercise. Twenty-four hours prior to participation, all subjects 

were informed of study procedures and screened for any injuries or contraindications to 



34 
 

perform maximal strength tests. Each participant then read and signed informed 

consent documents according to procedures outlined by the University Institutional 

Review Board. 

Procedures 

All participants performed SJ followed by CMJ in one session and three to four 

days later they performed an IMTP in two different randomized positions. On each 

testing day, participants performed a standardized warmup consisting of 2 minutes of 

cycling at 50 watts at 60 RPM, followed by 6 repetitions of forward walking lunges, 

reverse walking lunges, side lunges, straight leg march, and quadriceps stretching, then 

5 bodyweight squats and 5 ballistic bodyweight squats - used in other studies (7,17). 

During the jump test session, the subjects performed unloaded SJ and CMJ. 

Unloaded trials were completed while subjects held a PVC pipe (< 1 kg) just beneath 

the 7th cervical vertebrae behind the neck. A 90o knee angle, measured with a 

goniometer, was used as the starting position for the SJ. After standing on two adjacent 

force plates (45.5 cm x 91 cm, RoughDeck HP; Rice Lake Weighing Systems), the 

subjects were instructed to assume the “ready position,” by descending to the 90o knee 

angle. This position was held for a 3-second count and then they jumped. Participants 

jumped with 50% and 75% of perceived maximum effort as a specific warm-up, after 

which, they performed two maximum SJ. A SJ was determined to be successful if there 

was no observable countermovement. If so, another trial was given to the participant. 

After the completion of the two successful unloaded SJ trials, the same basic procedure 

(50%, 75% and two 100% jumps) was used for the CMJ test.  In this test, 

countermovement depth (drop) was self-selected. The average of the two maximum 
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jumps was used for data analysis. Rest between all jump trials and types was  one 

minute. 

During the second testing session, the participants performed the IMTP in a 

custom power rack (Sorinex, Irmo, SC) that allows the bar to be fixed at any height. 

Subjects stood on two adjacent force plates (45.5 cm x 91 cm, RoughDeck HP; Rice 

Lake Weighing Systems), in two separate positions (See Table 3.1). The hip angle 

changed between positions. The difference in angles was designed to represent the 

more bent over body position used in some studies  (5,15–17) or an upright position 

(1,6,7,13,22). The body positions were measured using hand goniometry and confirmed 

by video analysis.  

Table 3.1: Set angles for each isometric mid-thigh 
pull measured by goniometer before pulling. 

     Hip Angle        

(degrees) 

Knee Angle 

(degrees) 

POS1 (Upright) 145 125  

POS2 (Bent) 125 125  

   

Both positions were tested within a single testing session.  The order of pulls for 

each subject was randomized with three minutes of rest being used to separate the 

testing of each position.  Prior to performing each pull position a specific warm-up which 

required the participants to  perform two efforts with 50% and 75% of perceived 

maximum effort separated by one minute (2). Two minutes of rest was given between 

each maximal effort pull. In order to ensure there was minimal slack in the body before 

initiation of the pull, participants were instructed to use a very small amount of pre-
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tension (1). Once in position (verified by viewing the athlete and stability of the force 

trace), participants received a countdown to begin the pull, and then were instructed 

when to stop in accordance with previous methods (1,7). For all maximum effort pulls, 

participants received substantial encouragement from the investigators in order to 

ensure a maximal effort was achieved (3). Before each pull, participants were instructed 

to “pull as fast and hard as possible” to maximize rate of force development (7). 

Subjects pulled on the bar until maximal efforts to ensure peak force production 

occurred (verified by the force tracing). 

A minimum of two pulls was performed at each position. A third trial was 

performed when there was a difference greater than 250N in peak force between pulls 1 

and 2, or if any visible countermovement was noticed (observable by the investigators 

or greater than ~200N on the force trace)(13). 

Analog data from the force plate were sampled at 1000 Hz (DAQCard-6063E, 

National Instruments), amplified and low-pass filtered at 16 Hz (Transducer Techniques, 

Temecula, CA). Force-time traces were digitally filtered using a 2nd order Butterworth 

low-pass filter at 10 Hz and analyzed using a custom LabVIEW program (LabVIEW 

2010, National Instruments). 

Force-time curve analysis 

The following variables were measured from the force time curve generated 

during each IMTP: peak force (PF), force at 50ms (F50), force at 90ms (F90), force at 

200ms (F200), impulse 0-50ms (IMP50), impulse 0-90ms (IMP90), and impulse 0-200 

(IMP200). From the vertical jumps: jump height (JH), PF, peak velocity (PV), peak 
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power (PP), force at peak power (F@PP), velocity at peak power (V@PP) were the 

variables extracted from the force-time curve.  

Statistical analysis 

Prior to all statistical analyses, data were screened for within session test-retest 

reliability, outliers and normality. Reliability was assessed using intraclass correlation 

(ICC), a paired t-test and coefficient of variation (CV), confidence interval (CI) was 

reported. A paired t-test in conjunction with a Bonferroni adjustment was used to avoid 

the inflation of type I error was used to analyze differences between the bent and 

upright positions (8). The following descriptors for the effect size were used: 0-0.2 as 

trivial, 0.2-0.6 as small, 0.6-1.2 as moderate, 1.2-2.0 as large and 2.0-4.0 as very large 

(4). Pearson’s product moment correlations were used for estimation of relationships 

between each pull variable and jumping variables, for both pulling positions and both 

jumps (SJ and CMJ). A Fisher’s r to Z transformation was used (14) to check for any 

statistical differences among correlations (21). In addition, the total number of 

correlations for each position was used to check if there was a position that had a 

higher percent of higher correlations.  

Results 

 The IMTP variables PF, F50, F90, F200, RFD200, IMP200 for both pulling 

positions were considered adequately reliable for later analysis – ICC values ranging 

from 0.93-0.99 for upright position and 0.78-0.96 for bent position and, group CV from 

22.7-35.6% and 19.8-36.5%, respectively, CI are presented in table 2. The CV between 

trials show lower percentages for all variables for the upright position (2.3% to 11.8%) 
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than bent position (4.2% to 17.3%) (figure 2). Jump Height, PF, PP and F@PP were 

reliable in both jumps for further analysis (ICC 0.72-0.98, group CV 11.2-18.1%, CV 

between trials 2.1-12.0%); however, PV and V@PP were reliable only for the CMJ (CMJ 

ICC 0.957-0.958, group CV 7.0-7.7%, CV between trials 1.7-1.8%, SJ ICC 0.58-0.65, 

group CV 6.8-6.9%, CV between trials 4.7-5.3% CI presented in table 3). 

The upright position produced statistically greater means for the selected 

variables with small to moderate effect size (table 2). Descriptive values of SJ and CMJ 

are presented on table 3. The two positions produced mostly strong correlations (table 

4); there was no significant differences among all correlations between different pulling 

positions to dynamic performance of jumps (Fisher’s r to Z transformation) (table 5). The 

upright position had higher correlations values for 55% of the total correlations against 

41.7% of the bent position. 

 

Table 3.2.Descriptive data of PF, F50, F90, F200, RFD200 and IMP200 for bent and 

upright position on the Isometric Mid-Thigh Pull Test. 

Positions PF (N) F50 (N) F90 (N) F200 (N) RFD200 

(N·s-1) 

IMP200 

(N·s) 

Bent 3410 1546 1846 2386 5127 380 

 ±687 ±313 ±405 ±482 ±1671 ±79 

CI 3158 – 

3662  

1431 – 

1661  

1697 – 

1995  

2209 – 

2563  

4514 – 

5740  351 – 409  

Upright 4090* 1695* 2130* 2831* 6911* 435* 

 ±977 ±428 ±597 ±762 ±2455 ±117 

CI 3732 – 

4448  

1538 – 

1852  

1910 – 

2349  

2551 – 

3111  

6010 – 

7812  392 – 478  

Effect 

Size 0.81 0.40 0.56 0.70 0.85 0.56 

CI: 90% Confidence Interval, PF: Peak force, F50: force at 50ms, F90: force at 90ms, 
F200: force at 200ms, RFD200: rate of force development from 0 to 200ms, IMP200: 
impulse from 0 to 200ms. * p<0.008 between upright and bent positions.  
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Figure 3.2. Coefficient of variation between trials with 90% confidence limits. 

PF – Peak force, F50 – force at 50ms, F90 – force at 90ms, F200 – force at 200ms, RFD200 – 
average rate of force development 0- 200ms, IMP200 – impulse at 200ms. 

 

Table 3.3. Descriptive data of JH, PF, PP, F@PP, PV and V@PP for Squat and 

Countermovement Jumps. 

Jumps JH (m) PF (N) PP (W) F@PP (N) PV (m·s-1) V@PP 

(m·s-1) 

SJ 0.29 1857 4179 1760   

 ±0.05 ±273 ±751 ±254   

CI 27.2 – 

30.8 

1757 - 

1957 

3903 – 

4455  

1667 – 

1853    

CMJ 0.34 1927 4401 1739 2.8 2.5 

 ±0.05 ±226 ±713 ±246 ±0.2 ±0.2 

CI 32.2 – 

35.8  

1844 - 

2010 

4139 – 

4663  

1649 – 

1829  

2.72 – 

2.87 

2.43 – 

2.57  

CI: 90% Confidence Interval, JH: Jump height, PF: peak force, PP: peak power, F@PP: 
force at peak power, PV: peak velocity, V@PP: velocity at peak power. 
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Table 3.4.Correlations of force variables between upright and bent position.  
   Upright 

  PF F50 F90 F200 RFD200 IMP200 

 

 

Bent 

PF .86      

F50  .92     

F90   .88    

F200    .92   

RFD200     .76  

IMP200      .93 

PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, RFD200: 
rate of force development from 0 to 200ms, IMP200: impulse from 0 to 200ms. 
 

 

 

Table 3.5. Correlations of force variables of the IMTP two positions (bent and upright) to 

dynamic performance variables of Squat Jump and Countermovement Jump. 

  Squat Jumps Countermovement Jumps 

  JH PF PP F@PP JH PF PV PP F@PP V@PP 

 

 

Bent 

 

PF 0.08 0.62* 0.53* 0.63* 0.08 0.62* 0.08 0.54* 0.58* 0.06 

F50 0.56* 0.69* 0.79* 0.74* 0.38 0.68* 0.31 0.82* 0.77* 0.26 

F90 0.53* 0.73* 0.78* 0.77* 0.39 0.70* 0.32 0.82* 0.77* 0.26 

F200 0.46* 0.72* 0.75* 0.76* 0.37 0.64* 0.28 0.76* 0.70* 0.25 

RFD200 0.19 0.46* 0.42 0.49* 0.23 0.35 0.16 0.40 0.36 0.16 

Imp200 0.53* 0.72* 0.78* 0.77* 0.40 0.69* 0.32 0.82* 0.76* 0.27 

 

 

Upright 

PF 0.24 0.62* 0.61* 0.65* 0.19 0.53* 0.18 0.60* 0.59* 0.16 

F50 0.58* 0.71* 0.81* 0.76* 0.47* 0.59* 0.40 0.82* 0.69* 0.38 

F90 0.58* 0.68* 0.76* 0.72* 0.51* 0.51* 0.42 0.78* 0.64* 0.40 

F200 0.53* 0.62* 0.71* 0.67* 0.44* 0.49* 0.35 0.70* 0.59* 0.34 

RFD200 0.37 0.40 0.46* 0.45* 0.37 0.25 0.26 0.44* 0.33 0.26 

Imp200 0.57* 0.66* 0.76* 0.71* 0.49* 0.53* 0.40 0.76* 0.63* 0.38 

PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, RFD200: 
rate of force development from 0 to 200ms, IMP200: impulse from 0 to 200ms, JH: Jump 
height, PP: peak power, F@PP: force at peak power, PV: peak velocity, V@PP: velocity 
at peak power, *correlation is significant (p<0.05). 
 

 

 

 



41 
 

Discussion 

 One of the main findings in this study was the statistical differences in PF, F50, 

F90, F200, IMP200 results between upright and slightly bent positions. The upright 

position showed higher values in all variables compared to bent position with small to 

moderate effect sizes (9). The noted differences in force production capacity between 

the two positions tested in the present study offer insight into the need for standardizing 

body position during the IMTP test. If body position is not standardized, then it is 

possible that the data generated during the IMTP test could impact the maximal force 

generated during the test and cause challenges for interpretation of test results from 

different studies.  

The differences noted in the present study may partially explain the current 

discrepancies found in the scientific literature when comparing data collected in different 

laboratories (7,17,18,22). In contrast to the present findings, Comfort et al. (2015) 

reported no difference in force production when comparing IMTP positions.  However, 

Comfort et al. (2015) tested various positions (nine positions in a day), although the 

positions were randomized, the high number of trials, possibly inducing fatigue, may 

also be one of the reasons why the force levels were lower than the results of this study. 

 However, despite the upright position producing higher force related values, the 

two positions did not impact the correlations with jump variables. Thus, if the athletes 

are already being monitored using a bent position, apparently there is no need to 

change to an upright position when aiming to correlate with vertical jump. Nevertheless, 

it should be noted that the upright position had a higher percentage of greater 

correlation with the jump variables than the bent position.  
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In addition, the upright position generally produced higher ICCs and lower values 

for CV between trials for all variables (PF, F50, F90, F200, RFD 200 and IMP200), 

appearing to be more reliable when retesting, hence the upright position may be the 

preferred position when using the IMTP for researches and athlete monitoring that are 

to be implemented. This position should be considered because other than showing 

higher values in a large number of variables presented in this study, and the tendency 

of producing large correlations for most variables, it is similar to the power position in 

weightlifting movements (1,7,13). Also, it represents a position that many athletes use in 

producing powerful movements such as tackling (e.g. Rugby, American Football), 

jumping, sprinting and change of direction (1). A mechanical advantage (better 

leverages) occurs for the upright position favoring higher vertical force application.  

Large (0.50-0.69) correlations were found between isometric PF and dynamic 

PF, PP, F@PP for both jumps; large and very large (0.70-0.89) correlations were shown 

between isometric values of F50, F90, F200, IMP200 and dynamic performance of JH, 

PF, PP and F@PP for both static and countermovement jumps. The lack of statistical 

significant correlation between JH and isometric PF values agree with other findings 

(12,20,23,24). One possible reason for that might be the time to achieve peak force for 

IMTP being longer than time to apply forces for the jumps.  

The present study indicates that measurements using the upright position can be 

a superior to the bent position. Therefore, it is suggested that the upright position should 

be used in monitoring athlete tests. Additionally the data indicate that when using IMTP 

tests, not only Peak Force values should be used, but also RFD and force values at 
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shorter periods (50, 90, 200ms) in order to provide a more complete picture of athlete 

performance.  

Practical Applications  

These findings support the idea that strength characteristics (force, impulse, 

RFD) measurements derived from the isometric mid-thigh pull should correlate well with  

jumping performance, not only jumping height but also with dynamic peak force, peak 

power and force at peak power. Additionally, coaches and sport scientists should 

regularly examine early periods of the force-time curve during isometric and dynamic 

performance as these values can provide a broader more complete picture of the 

athletes’ capabilities. Hence, strength coaches should continue focusing on strength 

and power resistance exercises to enhance dynamic, field performance of jumping and 

sprinting.  Furthermore, the upright pull testing position appears to provide superior 

results, particularly for force and RFD values.  
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Abstract 

Strength tests have great value for coaches, however to compare different athletes with 

different body sizes might need data normalization. The purpose of this study was to 

analyze which method of data normalization for isometric mid-thigh pull (IMTP) force 

variables best correlates to squat jump (SJ) performance. One hundred and forty eight 

athletes participated in this study (age 20.3±1.3y, height 176±10cm, and weight 

75.4±13.1 kg). The athletes completed a standardized warm-up, and then performed a 

SJ (starting at 90° knee angle measured by a goniometer before trials) on a force-plate, 

followed by an IMTP test. The IMTP force variable (peak force, force at 50ms, 90ms, 

200ms and impulse from 0-200ms) data were normalized with the following methods: 

body mass (BM) ratio, force minus BM, allometric scale, Ford’s height scale and Sinclair 

Coefficient scale. Non-normalized data and normalized data were correlated to SJ 

performance variables (jump height, PF, peak power, peak velocity, force at peak 

power, velocity at peak power). Non-normalized correlation values presented overall 

higher grouped data (55% to 100% higher correlation values) than other methods of 

normalization. Therefore, IMTP absolute variables have positive moderate to large 

correlations to SJ performance and there is no need to normalize data when correlating 

both variables. 

 

Key-words: Testing, Strength, dynamic performance 
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Introduction 

Due to the importance of strength as a primary biomotor ability, many coaches 

and sport scientists perform tests that are specifically designed to give insight into 

athletes strength capacities (7,23). Physical performance tests, such as the Isometric 

Mid-thigh Pull (IMTP) and vertical jumps, have been used to assess muscle function, 

evaluate success of training and rehabilitation, evaluate performance capabilities for 

sport and provide normative data for groups of subjects (1,11,14,16,24). However, a 

number of factors, including body size, may exert a confounding effect on the evaluation 

of the relationship of these tests results.  

Typically individuals who have an higher absolute body mass (BM) are often 

stronger (absolute values) than their lighter counterparts (2,11,16,19,20,22). Because of 

this inter-individual difference, it is very difficult to compare strength levels between 

different individuals of divergent sizes. One strategy to deal with this phenomenon is to 

use a normalization procedure to allow athletes to be compared to another one. 

However, lack of normalization or inconsistency in normalization methods can be found 

in the scientific literature  when examining strength tests (1,13,14). Even though there is 

limited data looking at the effect of normalization there are several methodologies that 

have been proposed as tools for normalization of strength test results (3,14,16,24).  

In the current scientific literature, several normalization methods have been 

presented including: ratio scaling (i.e. dividing by bodymass), allometric scaling with 

body mass (i.e. accounting for dimensionality), and allometrically scaling with the use of 

body height (8,13,14,24). Even though there are several methods suggested for 

normalization in the scientific literature to the authors’ knowledge there is a lack of 
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studies using normalization methods with the IMTP.  Specifically, there are a minimal 

number of studies, which examine the impact of normalization on the relationship of 

IMTP variables to sports performance assessments such as the vertical jump.   

Therefore, the aim of this study was to determine if the normalization method 

impacts the relationship between IMTP force-time curve data and squat jump (SJ) 

performance. 

Methods 

Experimental approach to the problem 

This study was designed to analyze normalization methods for IMTP force 

variables in relation to maximal vertical jump (VJ) performance. Maximal isometric 

strength was selected as it provides efficient measures of maximal strength in a variety 

of populations (10,17,18), and also it is possible to trace force for each moment of the 

force-time curve. The SJ was selected because it is commonly used to assess VJ 

performance (21,25) without using a stretch-shortening cycle. A cross-sectional study 

using SJ and IMTP were performed on the same day (fig. 1) aiming to see the 

relationship between force data and normalization between tests. The athletes had 

anthropometric values measured and then performed a standard warmup followed by 

SJ tests and IMTP. 

 
Figure 4.1. Study design. 
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Participants 

Seventy-five male athletes and seventy-three females athletes (age 20.3±1.3y, 

height 176±10cm, and weight 75.4±13.1 kg) participated in this study. The participants 

were Division I NCAA student athletes from several sports: baseball, soccer, basketball, 

track and field, tennis, softball, volleyball. All athletes were informed of testing 

procedures previous to the start the testing. Testing was part of a regular athlete 

monitoring program performed just before the beginning of their competitive season and 

the athletes were already familiarized with testing that they had performed in previous 

years. The process was performed according to procedures outlined by the University 

Institutional Review Board. 

Procedures 

All athlete testing occurred on one day. This testing included: hydration, body 

weight measurement, unloaded and loaded SJs and IMTP testing.  Upon arrival, 

athletes underwent a standardized warm-up: 25 jumping jacks, followed by 1 set of 5 

reps of the dynamic mid-thigh pulls with an unloaded bar (20 kg), and 3x5 with either a 

60 kg (for males) or 40 kg (for females) – previous unpublished data indicates that 

would be an average of 60 to 70% of the power clean for this population. Jumps were 

completed on force plates (91 cm x 45.5 cm Roughdeck HP, Rice Lake, WI) while 

ground reaction force data were collected at sampling frequency of 1,000 Hz.  

Athletes completed warm-up and familiarization trials before maximal effort jump 

and loads (0kg, 20kg) at 50 and 75% of perceived maximal effort. In an effort to 

diminish any performance contributions coming from an arm swing, unloaded trials were 
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completed while athletes held a PVC pipe just beneath the 7th cervical vertebrae behind 

the neck. During loaded conditions, a 20 kg weightlifting bar was used. Loaded jump 

conditions were included to simulate fatiguing situations as well as to quantify athlete 

responses to an external load (15). 

A 90o knee angle was used as the starting position for the SJ. This angle was 

measured previously with a goniometer. After the athletes stood on the force plate, they 

were instructed to assume the “ready position,” by descending to the 90o knee angle, 

previously measured. This position was held for 2-3 seconds and then the athlete was 

instructed to jump. A successful SJ included no observable countermovement on the 

force trace registered by computer; if a countermovement occurred, the athlete would 

perform an additional jump. Athletes completed two successful jumps for each load 

condition and the average was used for data analysis. Rest between jump trials was 

approximately one minute. 

The IMTP was chosen for the evaluation of strength because it is a multiple joint 

assessment that has been shown to relate to jumping performance (5,10). This test took 

place in a power rack that is custom-designed and incorporates a dual force plate setup 

(two 91 cm x 45.5 cm Roughdeck HP, Rice Lake, WI). The sampling frequency for all 

ground reaction force data was set at 1,000 Hz. Individual bar heights were set which 

corresponded to a knee angle of 125±5º and the trunk at the upright position, similar to 

the second pulling position from weightlifting exercises (4).  In order to ensure grip with 

the bar was maintained during all trials the athlete’s used standard weightlifting straps 

and were further reinforced with the use of athletic tape in accordance with previously 

published research (Haff et al. 1997). Prior to the performance of all maximal effort 
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trials, warm-up trials of 50 and 75% of perceived effort was completed. During maximal 

effort trials, athletes were instructed to “pull as fast and as hard as possible” in order to 

maximize the rate of force development (RFD) and maximum force (10). Two trials were 

completed and data was averaged for analysis. Similar to the SJ, an observable 

countermovement on force-trace for the IMTP would render the trial unsuccessful, and 

the athletes would do another pull. If the PF was different from trial 1 by values greater 

than 250 N, another trial was also performed (15). 

Analog data from the force plate were sampled at 1,000 Hz (DAQCard-6063E, 

National Instruments), amplified and low-pass filtered at 16 Hz (Transducer Techniques, 

Temecula, CA). All force-time curves were digitally filtered using a 4th order Butterworth 

low-pass filter at 40 Hz and analyzed using a custom LabView program (LabView 2010, 

National Instruments). 

Analysis 

The ground reaction force data from IMTP, such as Peak Force (PF), Force at 

50ms (F50), Force at 90ms (F90), Force at 200ms (F200) and Impulse from 0-200ms 

(IMP200), were collected and then analyzed in six different ways: non-scaled (raw force 

values), force values minus body mass in Newtons (N), scaled to body mass (F divided 

by BM), allometric scale (F/BM2/3), ford’s height scale (F/Height2.16), Sinclair value scale 

(force times Sinclair coefficients for the Olympiad 2013-2016). Those values were 

correlated (Pearson’s correlation) with jumping performance: Jump Height (JH) –

calculated by flight time; jumping PF, peak velocity (PV), peak power (PP), force at peak 

power (F@PP) and velocity at peak power (V@PP) were the variables extracted from 

the force-time curve. The correlations were categorized according to Hopkins (2002), as 
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0.0-0.1 trivial, 0.1-0.3 small, 0.3-0.5 moderate, 0.5-0.7 large, 0.7-0.9 very large, and 0.9-

1.0 nearly perfect. A comparison of correlations, Fisher’s test r to Z transformation, was 

used to check for any statistical differences among correlations. The total number of 

correlations for each method was used to check if any method had a higher percent of 

higher correlations than the non-normalized method. Prior to statistical analysis, data 

were screened for within session test-retest reliability, outliers and normality. Reliability 

was assessed using ICCs and CV, 90% of CI was reported. 

Results 

Values of JH, PF, PV, PP, F@PP and V@PP, for the two conditions of SJ, were 

considered adequately reliable for analysis (ICC ranging from 0.92-0.99, CV between 

trials 2.9-7.7% and group CV from 10.4-30.0%). The IMTP values of PF, F50, F90, 

F200 and IMP200 without normalization and normalized were considered reliable – ICC 

0.90-0.99, CV between trials 3.1-10.0% and group CV 21.5-31.2%, the data for Force 

values minus the BM which had higher group CV 29.8-55.8%. There were no statistical 

differences between the two trails for any of the variables collected.  The high CV 

values were expected due to having a large non-homogenous group. 

Descriptive data for the SJ and pulls are presented in tables 1 and 2. The 

correlations between IMTP values – non-scaled, values minus BM, scaled to BM, 

allometric scale, Height scale, and Sinclair scale, to all SJ variables showed higher 

values for non-normalized method (tables 3 through 8). The non-normalized method 

presented overall higher correlations values, when grouped 67% of all correlations from 

non-normalized were higher than the data subtracting the body mass force, 100% than 
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the normalizing by dividing per BM, 93% higher than the allometric scale, 100% higher 

than Ford’s height and 55% higher than the Sinclair coefficient scale.   

Table 4.1. Descriptive data from Squat Jumps. 

  JH (m) PF (N) PV (m·s-1) PP (W) F@PP (N) 
V@PP 
(m·s-1) 

 Mean 0.29 1606.7 2.55 3500.1 1522.0 2.28 
SJ 
0Kg SD (±) 0.07 395.4 0.28 1016.3 363.9 0.24 

 CI 
0.28 -
0.30  

1552.9 - 
1660.5 2.51 - 2.59 

3361.8 - 
3638.4 

1472.5 - 
1571.5 2.25 - 2.31 

 Mean 0.22 1735.4 2.26 3449.7 1659.5 2.06 
SJ 
20Kg SD (±) 0.06 401.8 0.29 1036.9 376.4 0.25 

 CI 
0.21 - 
0.23 

1680.7 - 
1790.0 2.22 - 2.30 

3308.6 - 
3590.8 

1608.3 - 
1710.7 2.03 - 2.09 

Note: SJ: Squat jump, CI: 90%Confidence interval, JH: Jump height, PP: peak power, 
F@PP: force at peak power, PV: peak velocity, V@PP: velocity at peak power. 

 
Table 4.2. Descriptive data from the isometric mid-thigh pulls, non-normalized and 
normalized methods. 
  PF (N) F50 (N) F90 (N) F200 (N) IMP 200 (N·s) 

Non-
normalized 

Mean 3606.4 1175.3 1507.1 2349.3 320.2 
SD (±) 943.6 309.5 471.0 703.0 93.3 

CI 
3478.0    – 
3734.7  

1133.2 – 
1217.4 

1443.0 – 
1571.2 

2253.6 – 
2444.9 307.5 – 332.9 

Subtracted 
BM 

Mean 2867.1 436.0 767.8 1609.9 322.0 
SD (±) 855.5 243.3 405.4 628.5 125.7 

CI 
2750.7 – 
2983.5 

402.9 – 
469.1 

712.6 – 
822.9 

1524.4 – 
1695.4 304.9 – 339.1 

Divided by 
BM 

Mean 47.7 15.6 19.9 31.0 4.2 
SD (±) 8.6 3.1 4.8 6.9 0.9 

CI 46.5 – 48.8 15.2 – 16.0 19.2 – 20.6 
30.0 – 
31.9 4.0 – 4.3  

Allometric 

Mean 201.0 65.6 83.9 130.8 17.8 
SD (±) 39.3 13.6 21.5 31.1 4.1 

CI 
195.6 – 
206.3 63.7 – 67.4 81.0 – 86.8 

126.6 – 
135.0 17.2 – 18.4 

Ford's 
Height 

Mean 1058.9 346.3 443.0 688.9 94.1 
SD (±) 222.1 79.8 122.2 168.9 23.3 

CI 
1028.7 – 
1089.1 

335.4 –
357.2 

426.4 – 
459.6 

665.9 – 
711.9 90.9 – 97.3 

Sinclair 
Coefficient 

Mean 4480.6 1461.5 1871.9 2917.6 397.7 
SD (±) 1004.1 337.1 524.1 769.5 102.3 

CI 
4344.0 – 
4617.2 

1415.6 – 
1507.4 

1800.6 – 
1943.2 

2812.9 – 
3022.3 383.8 – 411.6 

Note: CI: 90%Confidence Interval, Peak force, F50: force at 50ms, F90: force at 90ms, 
F200: force at 200ms, IMP200: impulse from 0 to 200ms. 



55 
 

 

 

Table 4.3. Correlations between Squat Jump Performance variables and non-scaled 
Isometric Mid-Thigh Pull data. 

Variable 
Isometric Mid-Thigh Pull 

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

SJ0 JH (m) 0.43** 0.37** 0.40** 0.49** 0.44** 
SJ0 PF (N) 0.51** 0.31** 0.28** 0.43** 0.35** 
SJ0 PV 
(m·s-1) 0.42** 0.35** 0.37** 0.44** 0.41** 
SJ0 PP (W) 0.56** 0.36** 0.35** 0.50** 0.42** 
SJ0 F@PP 
(N) 0.50** 0.31** 0.28** 0.42** 0.35** 
SJ0 V@PP 
(m·s-1) 0.43** 0.36** 0.38** 0.44** 0.41** 
      
SJ20 JH (m) 0.55** 0.48** 0.51** 0.60** 0.56** 
SJ20 PF (N) 0.48** 0.28** 0.25** 0.39** 0.32** 
SJ20 PV 
(m·s-1) 0.50** 0.41** 0.43** 0.51** 0.47** 
SJ20 PP 
(W) 0.56** 0.36** 0.34** 0.50** 0.41** 
SJ20 F@PP 
(N) 0.48** 0.27** 0.24** 0.39** 0.31** 
SJ20 V@PP 
(m·s-1) 0.50** 0.40** 0.42** 0.50** 0.46** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, **correlation is significant 
(p<0.01). 
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Table 4.4. Correlations between Squat Jump Performance variables and Isometric Mid-
Thigh Pull data subtracted by body mass force. 

Variable 
Isometric Mid-Thigh Pull 

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

SJ0 JH (m) 0.45** 0.36** 0.40** 0.51** 0.51** 
SJ0 PF (N) 0.48** 0.12# 0.16* 0.37** 0.37** 
SJ0 PV 
(m·s-1) 0.44** 0.35** 0.37** 0.45** 0.45** 
SJ0 PP (W) 0.54** 0.20* 0.25** 0.46** 0.46** 
SJ0 F@PP 
(N) 0.48** 0.11# 0.16 0.36** 0.36** 
SJ0 V@PP 
(m·s-1) 0.44** 0.34** 0.37** 0.45** 0.45** 
      
SJ20 JH (m) 0.55** 0.42** 0.47** 0.60** 0.60** 
SJ20 PF (N) 0.46** 0.09# 0.13 0.34** 0.34** 
SJ20 PV 
(m·s-1) 0.51** 0.36** 0.40** 0.51** 0.51** 
SJ20 PP 
(W) 0.55** 0.20* 0.25** 0.46** 0.46** 
SJ20 F@PP 
(N) 0.46** 0.09# 0.13 0.33** 0.33** 
SJ20 V@PP 
(m·s-1) 0.50** 0.36** 0.39** 0.50** 0.50** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, *correlation is significant 
(p<0.05), **correlation is significant (p<0.01), # different than non-scaled (p<0.05). 
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Table 4.5. Correlations between Squat Jump Performance variables and Isometric Mid-
Thigh Pull divided by body mass (ratio scaling). 

Variable 
Isometric Mid-Thigh Pull 

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

SJ0 JH (m) 0.40** 0.29** 0.34** 0.47** 0.40** 
SJ0 PF (N) 0.25**# -0.01# 0.02# 0.18*# 0.08# 
SJ0 PV 
(m·s-1) 0.40** 0.28** 0.32** 0.41** 0.37** 
SJ0 PP (W) 0.34** 0.08# 0.11# 0.29**# 0.19*# 
SJ0 F@PP 
(N) 0.25** -0.02# 0.01# 0.17*# 0.07# 
SJ0 V@PP 
(m·s-1) 0.39** 0.27** 0.31** 0.40** 0.36** 
      
SJ20 JH (m) 0.43** 0.31**# 0.38** 0.50** 0.44** 
SJ20 PF (N) 0.24**# -0.03# -0.01# 0.15# 0.05# 
SJ20 PV 
(m·s-1) 0.43** 0.28** 0.33** 0.43** 0.38** 
SJ20 PP 
(W) 0.35**# 0.08# 0.12# 0.29** 0.19*# 
SJ20 F@PP 
(N) 0.24**# -0.04# -0.01# 0.15# 0.05# 
SJ20 V@PP 
(m·s-1) 0.42** 0.27** 0.32** 0.42** 0.37** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, *correlation is significant 
(p<0.05), **correlation is significant (p<0.01), # different than non-scaled (p<0.05). 
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Table 4.6. Correlations between Squat Jump Performance variables and Isometric Mid-
Thigh Pull allometric scaled. 

Variable 
Isometric Mid-Thigh Pull 

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

SJ0 JH (m) 0.45** 0.35** 0.38** 0.50** 0.44** 
SJ0 PF (N) 0.37** 0.12# 0.13 0.29** 0.20* 
SJ0 PV 
(m·s-1) 0.44** 0.33** 0.36** 0.44** 0.41** 
SJ0 PP (W) 0.46** 0.20* 0.21** 0.39** 0.29** 
SJ0 F@PP 
(N) 0.37** 0.12# 0.12 0.28** 0.19* 
SJ0 V@PP 
(m·s-1) 0.43** 0.33** 0.35** 0.43** 0.40** 
      
SJ20 JH (m) 0.52** 0.41** 0.45** 0.57** 0.51** 
SJ20 PF (N) 0.36** 0.10 0.09 0.26** 0.16* 
SJ20 PV 
(m·s-1) 0.49** 0.36** 0.38** 0.49** 0.44** 
SJ20 PP 
(W) 0.47** 0.20* 0.21** 0.39** 0.29** 
SJ20 F@PP 
(N) 0.36** 0.09# 0.09 0.25** 0.16 
SJ20 V@PP 
(m·s-1) 0.48** 0.35** 0.38** 0.48** 0.43** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, *correlation is significant 
(p<0.05), **correlation is significant (p<0.01), # different than non-scaled (p<0.05). 
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Table 4.7. Correlations between Squat Jump Performance variables and Isometric Mid-
Thigh Pull scaled to height. 

Variable 
Isometric Mid-Thigh Pull 

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

SJ0 JH (m) 0.31** 0.21** 0.28** 0.40** 0.33** 
SJ0 PF (N) 0.38** 0.14 0.14 0.30** 0.21* 
SJ0 PV 
(m·s-1) 0.30** 0.20* 0.25** 0.35** 0.30** 
SJ0 PP (W) 0.41** 0.16*# 0.18* 0.35** 0.25** 
SJ0 F@PP 
(N) 0.37** 0.13 0.12 0.28** 0.19* 
SJ0 V@PP 
(m·s-1) 0.31** 0.20* 0.26** 0.34** 0.30** 
      
SJ20 JH (m) 0.40**# 0.29**# 0.36** 0.49** 0.41**# 
SJ20 PF (N) 0.36** 0.11 0.10 0.26** 0.17* 
SJ20 PV 
(m·s-1) 0.38** 0.25** 0.30** 0.41** 0.34** 
SJ20 PP 
(W) 0.42** 0.16# 0.18* 0.36** 0.25** 
SJ20 F@PP 
(N) 0.36** 0.11 0.10 0.26** 0.17* 
SJ20 V@PP 
(m·s-1) 0.37** 0.24** 0.29** 0.40** 0.34** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, *correlation is significant 
(p<0.05), **correlation is significant (p<0.01), # different than non-scaled (p<0.05). 
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Table 4.8. Correlations between Countermovement Jump Performance variables and 
Isometric Mid-Thigh Pull scaled to Sinclair coefficient. 

Variable 
Isometric Mid-Thigh Pull 

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

SJ0 JH (m) 0.47** 0.39** 0.42** 0.53** 0.47** 
SJ0 PF (N) 0.44** 0.21* 0.20* 0.36** 0.27** 
SJ0 PV 
(m·s-1) 0.46** 0.38** 0.39** 0.47** 0.44** 
SJ0 PP (W) 0.52** 0.29** 0.28** 0.45** 0.36** 
SJ0 F@PP 
(N) 0.44** 0.20* 0.19* 0.34** 0.26** 
SJ0 V@PP 
(m·s-1) 0.46** 0.37** 0.39** 0.46** 0.43** 
      
SJ20 JH (m) 0.56** 0.48** 0.50** 0.61** 0.56** 
SJ20 PF (N) 0.42** 0.18* 0.16* 0.32** 0.23** 
SJ20 PV 
(m·s-1) 0.53** 0.42** 0.43** 0.52** 0.48** 
SJ20 PP 
(W) 0.52** 0.29** 0.28** 0.45** 0.36** 
SJ20 F@PP 
(N) 0.42** 0.17* 0.16 0.31** 0.23** 
SJ20 V@PP 
(m·s-1) 0.52** 0.41** 0.42** 0.51** 0.47** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, *correlation is significant 
(p<0.05), **correlation is significant (p<0.01). 
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Discussion 

 As expected, statistically relevant correlations were found among IMTP force 

variables and SJ performances. All non-normalized values of the IMTP positively 

correlated with JH, PF, PV, PP, F@PP and V@PP for the SJ. These correlations were 

individually very similar or combined as a group (percentage values) higher than any 

other method of IMTP normalization data. A few higher non-statistical individual value 

correlations occurred when deducting the BM force (IMTP minus BM), in addition, the 

total number of correlations of this normalization presented just 33% of correlations 

higher than non-normalized, and thus these might not be the best representation for a 

better analysis. Another normalization that had similar individual correlations and it was 

the closest percentage of overall correlations (45% vs 55%) to non-normalized data was 

the Sinclair coefficient. Although not all values were higher, no correlation showed a 

great discrepancy. This normalization could be of interest especially because the IMTP 

Test was designed to mimic the second pull of the clean movement of weightlifting 

(9,10), and the Sinclair coefficient is derived from weightlifting competitions. 

 This study aimed to investigate and normalize different variables from the IMTP 

test, not just the absolute PF, because during the explosive act of jumping there is little 

time to apply forces, not being possible to achieve maximal forces. Thus, instantaneous 

forces during early phases of the pull (50, 90, 200ms) are important to jumping 

performance, especially when the athletes have little time to produce peak force and 

peak power (6,15). Thus, analyzing these phases were also an important part of this 

study showing positive correlations between these forces and SJ performance. 
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 The majority of the normalizations had positive statistically significant correlations 

between force values and dynamic performance of jumps. The non-normalized data 

shows that the force values presented on this study have moderate (r=0.31) to large 

(r=0.60) correlations with SJ performance. This is an important finding for indicating that 

measurement of strength is an important variable to consider when monitoring athletes. 

Thus, strength would appear to be especially important when targeting dynamic 

performance and can be a guideline for aspects that might be important to train when 

aiming to increase performance on squat jumps. 

  

Practical Applications 

This study is important for strength coaches and sport scientist regarding the 

importance of strength and forces in the early phases of the force-time curve in the 

IMTP related to the dynamic performance of jumping. These relationships can serve as 

guides for specific types of strength training, such as basic and explosive resistance 

training, aiming at performance enhancement. Another application for the sport scientist 

to consider is that the most used methods of normalizing data did not result in better 

values for correlations between IMTP and SJ. Thus, when analyzing strength values no 

normalization may be needed for SJ performance. 
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Abstract 

Vertical Jumps and strength tests are important tools used by many coaches to monitor 

and track athletes performance capacity. However, when comparing athletes with 

different body dimensions data normalization might be needed. This study aimed to 

analyze which method of data normalization for isometric mid-thigh pull (IMTP) force-

time curve variables results in the best correlations to countermovement jump (CMJ) 

performance. Seventy-five male athletes and seventy-three females athletes (age 

20.3±1.3y, height 176±10cm, and weight 75.4±13.1 kg) participated in this study. They 

performed a standardized warm-up, followed by a CMJ on a force-plate, and IMTP test. 

The IMTP force variables (peak force, force at 50ms, 90ms, 200ms and impulse from 0-

200ms) data were normalized in the following methods: body mass (BM) ratio, force 

minus BM, allometric scale, Ford’s height scale and with the Sinclair Coefficient scale. 

CMJ performance variables, such as jump height, PF, peak power, peak velocity, force 

at peak power, velocity at peak power, were correlated to non-normalized data and 

normalized data. Non-normalized correlation values presented overall higher grouped 

data (52% to 100% higher values) than other methods of normalization. Therefore, 

IMTP absolute variables have positive moderate to very large correlations to CMJ 

performance and there is no need to normalize data when correlating both variables. 

Key-words: Testing, Strength, dynamic performance 

 

 

 



67 
 

Introduction 

Testing of physical abilities has been widely popular and extensively used to 

assess muscle function, provide normative values for various groups of participants, 

evaluate the success of training, and evaluate the performance for sport- and work-

related activities (1,15,31). One test that is commonly used in the literature to evaluate 

lower body power is the vertical jump (VJ) because it is a simple, quick, reliable 

minimum fatigue producing test of explosiveness (18). The VJ is highly correlated with 

other fundamental explosive movements performed in sports and with the maximum 

strength of the lower extremity (6,27,28). 

Maximal strength tests are another worthwhile tool for monitoring athletes (23).  

The use of isometric tests examining peak force (PF) and force related variables are 

becoming extensively used by coaches to track their athletes’ performance and monitor 

their training progress (3,4,7,11,12). One intervening factor that may influence strength 

levels is the athletes’ size.  Athletes with a larger body mass (BM) tend to have a 

greater amount of lean BM and this increase in lean BM often allows for a greater ability 

to express high levels of force (2,13,20,24,25,29). The impact of body size on force 

production makes it more difficult to compare athletes of differing sizes.   Additionally, 

as athletes change their body mass during a season there may be difficulties in 

comparing the athlete progress over time. Another important consideration is that when 

strength is increased in conjunction with increased body mass improvements in 

performance in activities like vertical jumps may not be evident.   

In order to be able to compare an athletes’ performance during a season or 

between different athletes who have different body sizes (mass and height) several 
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methods for normalizing results have been suggested.  For example, ratio scaling, 

allometric scale, scaling by height, and the use of the Sinclair formula have all been 

suggests as methods for normalizing performance data (9,15,16,31). 

While several methods of normalization have been proposed in the scientific 

literature, there is little data on how normalized performance data interrelate.  Therefore, 

the aim of this study is to investigate several commonly used methods for normalizing 

IMTP force variables and determine their relationship to countermovement jump (CMJ) 

performance. 

Methods 

Experimental approach to the problem 

This study was designed to analyze normalization methods for IMTP force 

variables in relation to maximal Vertical Jump (VJ) performance. Maximal isometric 

strength was selected as it provides an efficient measures of maximal strength in a 

variety of populations (12,21,22), and also it is possible to trace force at each moment 

of the force-time curve. The CMJ was selected because it is commonly used to assess 

VJ performance (27,33). A cross-sectional study with CMJ and IMTP were performed 

on the same day (fig. 1) aiming to see the relationship between force data and 

normalization between tests. The athletes had anthropometric values measured and 

then performed a standard warmup followed by CMJ tests and IMTP. 
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Figure 5.1. Study design. 

 

Participants  

Seventy-five male athletes and seventy-three females athletes (age 20.3±1.3y, 

height 176±10cm, and weight 75.4±13.1 kg) participated in this study. Subjects were D1 

NCAA student athletes from several sports: baseball, soccer, basketball, track and field, 

tennis, softball, and volleyball. All participants were familiarized with the testing 

methods, they were informed of testing procedures previous to the start the testing. 

Testing was part of a regular athlete monitoring program performed just before the 

beginning of their competitive season and the athletes were already familiarized with 

testing that they had performed on previous years. The process was performed 

according to procedures outlined by the University Institutional Review Board. 

Procedures 

All athlete testing occurred on a single day of testing. This testing included: 

hydration, body composition (body weight, stature and body fat percentage), unloaded 

and loaded CMJs and IMTP testing. Upon arrival, athletes underwent a standardized 

warm-up of 25 jumping jacks, followed by 1x5 mid-thigh pulls with an unloaded bar (20 

kg), and 3x5 with either  60 kg (for males) or 40 kg (for females) – previous unpublished 

data indicates that would be an average of 60 to 70% of power clean for this population 
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. Jumps were completed on force plates (91 cm x 45.5 cm Roughdeck HP, Rice Lake, 

WI) while data were sampled at 1,000 Hz.  

Athletes completed general warm-up and specific trials warm-up before maximal 

effort CMJ at 50% and 75% of perceived maximal effort. In an effort to diminish any 

performance contributions coming from an arm swing, unloaded trials were completed 

while athletes held a PVC pipe just beneath the 7th cervical vertebrae behind the neck. 

The CMJ testing consisted of the athletes dropping to self-selected depths before 

jumping. Athletes completed two jumps for each load condition (0kg and 20kg) the 

average was used for data analysis. During loaded conditions, a 20 kg weightlifting bar 

was used. Loaded jump conditions were included to simulate fatiguing situations as well 

as to quantify athlete responses to an external load (17). Rest between jump trials was 

roughly one minute. 

The IMTP was chosen for evaluation of strength because of its relationship to 

numerous sporting movements. This assessment was performed in a power rack that 

was custom-designed (Sorinex Inc., Irmo, SC) and incorporated two force plates (two 

91 cm x 45.5 cm Roughdeck HP, Rice Lake, WI) that allow for limb to limb comparisons 

to be performed. All force time curve data was sampled a 1,000 Hz in order to ensure 

the Niquist Law was adhered to. Positioning in the IMTP was individually determined 

resulting in an upright trunk position and an average knee angle of 125±5º in 

accordance with previously published literature (12). Based upon the work of Haff et al. 

(1997) all IMTP assessments were performed with the use of standard weightlifting 

straps in conjunction with athletic tape in order to ensure that grip on the bar was 

maintained during the entire pulling motion. Prior to the initiation of each maximal effort 
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trial, specific warm-up trials were performed at 50% and 75% of perceived effort. During 

the maximal effort trials each athlete was instructed to “pull as fast and as hard as 

possible” in in order to ensure that a high rate of force development (RFD) and 

maximum force were achieved (Haff et al. 1997). Two trials were completed and data 

were averaged for analysis. A countermovement greater than 200 N at the initiation of 

the IMTP would render the trial unsuccessful, requiring an additional trial. An additional 

trial was also required if the athlete had a difference higher than 250 N on peak force 

between pulls (17). Rest between IMTP trials was greater than one minute. 

Analog data from the force plate were amplified and low-pass filtered at 16 Hz 

(Transducer Techniques, Temecula, CA). Force-time curves were digitally filtered using 

a 4th order Butterworth low-pass filter at 40 Hz and analyzed using a custom LabView 

program (LabView 2010, National Instruments). 

Analysis 

The data from IMTP force time curve analysis included the PF, Force at 50ms 

(F50), Force at 90ms (F90), Force at 200ms (F200) and Impulse from 0-200ms 

(IMP200).  All force time curve data were analyzed with the use of six different 

normalization procedures, including: a) non-scaled (raw force values), b) force values 

minus body mass in Newtons (N), c) Body Mass ratio scaling - scaled to body mass (F 

divided by BM), d) allometric scale (F/BM2/3), e) Ford’s height scale (F/Height2.16), d) 

Sinclair value scale (force times Sinclair coefficients for the Olympiad 2013-2016).  

Vertical jump force time curve analyses were used to determine the  Jump Height 

(JH), jumping PF, peak velocity (PV), peak power (PP), force at peak power (F@PP) 

and velocity at peak power (V@PP). According to previous research, the performance 
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of rapid body movements (jumps included) is not likely to require normalization for body 

size (16), and that is supported by Markovic and Jaric (2007) indicating that vertical 

jumps can be considered as a body size-independent index of muscle power (19). 

All IMTP data were correlated (Pearson’s Product Moment correlation) with the 

performance measured collected during the CMJ. The correlations were categorized, 

according to Hopkins (2002), as 0.0-0.1 trivial, 0.1-0.3 small, 0.3-0.5 moderate, 0.5-0.7 

large, 0.7-0.9 very large, and 0.9-1.0 nearly perfect. A comparison of correlations, 

Fisher’s r to Z transformation, was used to check for any statistical differences among 

correlations (30). The total number of correlations for each method was used to check if 

any method had a higher percent of higher correlations than the non-normalized 

method. Prior to statistical analysis, data were screened for within session test-retest 

reliability, outliers and normality. Reliability was assessed using ICCs and CV, the 90% 

of CI was reported. 

Results 

Values of JH, PF, PV, PP, F@PP and V@PP, for the two trials of CMJ, were 

considered adequately reliable for analysis (ICC ranging from 0.88-0.99, CV between 

trials 3.1-4.6% and group CV from 10.3-27.2%). The IMTP values of PF, F50, F90, 

F200 and IMP200 without normalization and normalized were also considered reliable – 

ICC 0.90-0.99, CV between trials 3.1-10.0% and group CV 21.5-31.2 %, the data for 

Force values minus the BM which had higher group CV 29.8-55.8%. There was no 

statistical differences between the above cited variables between the two trials 

performed, the high CV values are expected and they are due to having a large non-

homogenous group. 
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Descriptive data for the CMJ and pulls are shown in tables 1 and 2. Correlations 

between each IMTP values – non-scaled, values minus BM, scaled to BM, allometric 

scale, Height scale, and Sinclair scale, to all CMJ variables presented, in general, 

higher correlation values for the non-normalized method (tables 3 to 8). The non-

normalized method also presented overall higher correlations values, when grouped 

75% of all correlations from non-normalized were higher than the data subtracting the 

body mass force, 100% than the normalizing by dividing per BM, 93% higher than the 

allometric scale, 100% higher than Ford’s height and 52% higher than the Sinclair 

coefficient scale.  

  

Table 5.1. Descriptive data from Countermovement Jumps. 

  JH (m) PF (N) PV (m·s-1) PP (W) F@PP (N) V@PP (m·s-1) 
 Mean 0.32 1783.3 2.67 3822.2 1564.5 2.42 
CMJ 
0Kg SD (±) 0.07 378.6 0.29 1030.7 321.6 0.25 

 CI 
0.31 - 
0.33 

1731.8 - 
1834.8 2.63 - 2.71 

3682.0 - 
3962.4 

1520.7 - 
1608.3 2.38 - 2.45 

 Mean 0.24 1907.0 2.36 3785.5 1733.8 2.15 
CMJ 
20Kg SD (±) 0.06 361.9 0.28 1031.7 318.0 0.25 

 CI 
0.23 -
0.25 

1857.7 - 
1956.2 2.32 - 2.40 

3645.1 - 
3925.9 

1690.5 - 
1777.1 2.12 - 2.18 

Note: CMJ: Countermovement jump, CI: 90%Confidence interval, JH: Jump height, PP: 
peak power, F@PP: force at peak power, PV: peak velocity, V@PP: velocity at peak 
power. 
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Table 5.2. Descriptive data from the isometric mid-thigh pulls, non-normalized and 
normalized methods. 
  PF (N) F50 (N) F90 (N) F200 (N) IMP 200 (N·s) 

Non-
normalized 

Mean 3606.4 1175.3 1507.1 2349.3 320.2 
SD (±) 943.6 309.5 471.0 703.0 93.3 

CI 
3478.0    – 
3734.7  

1133.2 – 
1217.4 

1443.0 – 
1571.2 

2253.6 – 
2444.9 307.5 – 332.9 

Subtracted 
BM 

Mean 2867.1 436.0 767.8 1609.9 322.0 
SD (±) 855.5 243.3 405.4 628.5 125.7 

CI 
2750.7 – 
2983.5 

402.9 – 
469.1 

712.6 – 
822.9 

1524.4 – 
1695.4 304.9 – 339.1 

Divided by 
BM 

Mean 47.7 15.6 19.9 31.0 4.2 
SD (±) 8.6 3.1 4.8 6.9 0.9 

CI 46.5 – 48.8 15.2 – 16.0 19.2 – 20.6 
30.0 – 
31.9 4.0 – 4.3  

Allometric 

Mean 201.0 65.6 83.9 130.8 17.8 
SD (±) 39.3 13.6 21.5 31.1 4.1 

CI 
195.6 – 
206.3 63.7 – 67.4 81.0 – 86.8 

126.6 – 
135.0 17.2 – 18.4 

Ford's 
Height 

Mean 1058.9 346.3 443.0 688.9 94.1 
SD (±) 222.1 79.8 122.2 168.9 23.3 

CI 
1028.7 – 
1089.1 

335.4 –
357.2 

426.4 – 
459.6 

665.9 – 
711.9 90.9 – 97.3 

Sinclair 
Coefficient 

Mean 4480.6 1461.5 1871.9 2917.6 397.7 
SD (±) 1004.1 337.1 524.1 769.5 102.3 

CI 
4344.0 – 
4617.2 

1415.6 – 
1507.4 

1800.6 – 
1943.2 

2812.9 – 
3022.3 383.8 – 411.6 

Note: CI: 90%Confidence Interval, Peak force, F50: force at 50ms, F90: force at 90ms, 
F200: force at 200ms, IMP200: impulse from 0 to 200ms. 
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Table 5.3. Correlations between Countermovement Jump Performance variables and 
non-scaled Isometric Mid-Thigh Pull data. 

Variable 
Isometric Mid-Thigh Pull  

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

CMJ0 JH 
(m) 0.43** 0.33** 0.35** 0.46** 0.40** 
CMJ0 PF 
(N) 0.71** 0.62** 0.59** 0.66** 0.64** 
CMJ0 PV 
(m·s-1) 0.70** 0.57** 0.55** 0.65** 0.61** 
CMJ0 PP 
(W) 0.71** 0.61** 0.57** 0.64** 0.62** 
CMJ0 
F@PP (N) 0.42** 0.32** 0.33** 0.43** 0.38** 
CMJ0 
V@PP  
(m·s-1) 0.41** 0.31** 0.31** 0.42** 0.37** 
      
CMJ20 JH 
(M)  0.51** 0.44** 0.46** 0.57** 0.51** 
CMJ20 PF 
(N) 0.72** 0.65** 0.60** 0.67** 0.65** 
CMJ20 PV 
(m·s-1) 0.70** 0.58** 0.56** 0.65** 0.62** 
CMJ20 PP 
(N) 0.71** 0.61** 0.57** 0.64** 0.62** 
CMJ20 
F@PP 0.53** 0.43** 0.43** 0.53** 0.48** 
CMJ20 (N) 
V@PP  
(m·s-1) 0.52** 0.42** 0.42** 0.52** 0.47** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, **correlation is significant 
(p<0.01). 
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Table 5.4. Correlations between Countermovement Jump Performance variables and 
Isometric Mid-Thigh Pull data subtracted by body mass force. 

Variable 
Isometric Mid-Thigh Pull 

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

CMJ0 JH 
(m) 0.45** 0.30** 0.33** 0.47** 0.47** 
CMJ0 PF 
(N) 0.66** 0.38**# 0.44**# 0.58** 0.58** 
CMJ0 PV 
(m·s-1) 0.66** 0.37**# 0.43** 0.59** 0.59** 
CMJ0 PP 
(W) 0.66** 0.34**# 0.41**# 0.55** 0.55** 
CMJ0 
F@PP (N) 0.43** 0.29** 0.31** 0.44** 0.44** 
CMJ0 
V@PP  
(m·s-1) 0.42** 0.28** 0.30** 0.43** 0.43** 
      
CMJ20 JH 
(M)  0.52** 0.39** 0.43** 0.57** 0.57** 
CMJ20 PF 
(N) 0.68** 0.41**# 0.45**# 0.59** 0.59** 
CMJ20 PV 
(m·s-1) 0.67** 0.39**# 0.44** 0.59** 0.59** 
CMJ20 PP 
(N) 0.66** 0.35**# 0.41**# 0.55** 0.55** 
CMJ20 
F@PP 0.53** 0.37** 0.40** 0.53** 0.53** 
CMJ20 (N) 
V@PP  
(m·s-1) 0.52** 0.36** 0.38** 0.52** 0.52** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200:: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, **correlation is significant 
(p<0.01), # different than non-scaled (p<0.05). 
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Table 5.5. Correlations between Countermovement Jump Performance variables and 
Isometric Mid-Thigh Pull divided by body mass (ratio scaling). 

Variable 

 

Isometric Mid-Thigh Pull 

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

CMJ0 JH 
(m) 0.40** 0.23** 0.27** 0.41** 0.33** 

CMJ0 PF 
(N) 0.31**# 0.17*# 0.22**# 0.31**# 0.26**# 

CMJ0 PV 
(m·s-1) 0.36**# 0.17*# 0.23**# 0.34**# 0.28**# 

CMJ0 PP 
(W) 0.27**# 0.11# 0.17*# 0.25**# 0.20*# 

CMJ0 
F@PP (N) 0.39** 0.24** 0.26** 0.39** 0.32** 

CMJ0 
V@PP  
(m·s-1) 0.38** 0.22** 0.25** 0.38** 0.31** 

      
CMJ20 JH 

(M)  0.42** 0.30** 0.35** 0.48** 0.41** 
CMJ20 PF 

(N) 0.32**# 0.19*# 0.23**# 0.31**# 0.27**# 
CMJ20 PV 

(m·s-1) 0.38**# 0.20*# 0.25**# 0.36**# 0.30**# 
CMJ20 PP 

(N) 0.29**# 0.13# 0.18*# 0.25**# 0.21**# 
CMJ20 
F@PP 0.43** 0.27** 0.30** 0.43** 0.36** 

CMJ20 (N) 
V@PP  
(m·s-1) 0.43** 0.27** 0.29** 0.42** 0.35** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, *correlation is significant 
(p<0.05), **correlation is significant (p<0.01), # different than non-scaled (p<0.05). 
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Table 5.6. Correlations between Countermovement Jump Performance variables and 
Isometric Mid-Thigh Pull allometric scaled. 

Variable 
Isometric Mid-Thigh Pull 

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

CMJ0 JH 
(m) 0.44** 0.29** 0.32** 0.45** 0.38** 

CMJ0 PF 
(N) 0.50**# 0.37**# 0.38**# 0.47**# 0.43**# 

CMJ0 PV 
(m·s-1) 0.53** 0.35**# 0.37**# 0.48**# 0.43**# 

CMJ0 PP 
(W) 0.48**# 0.33**# 0.34**# 0.42**# 0.38**# 

CMJ0 
F@PP (N) 0.43** 0.29** 0.30** 0.43** 0.36** 

CMJ0 
V@PP  
(m·s-1) 0.42** 0.27** 0.29** 0.42** 0.35** 

      
CMJ20 JH 

(M)  0.49** 0.38** 0.41** 0.54** 0.47** 
CMJ20 PF 

(N) 0.52**# 0.39**# 0.39**# 0.47**# 0.44**# 
CMJ20 PV 

(m·s-1) 0.54**# 0.37**# 0.38**# 0.49**# 0.44**# 
CMJ20 PP 

(N) 0.49**# 0.34**# 0.34**# 0.42** 0.39**# 
CMJ20 
F@PP 0.50** 0.36** 0.37** 0.49** 0.43** 

CMJ20 (N) 
V@PP  
(m·s-1) 0.50** 0.35** 0.36** 0.48** 0.42** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, **correlation is significant 
(p<0.01), # different than non-scaled (p<0.05). 
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Table 5.7. Correlations between Countermovement Jump Performance variables and 
Isometric Mid-Thigh Pull scaled to height. 

Variable 
Isometric Mid-Thigh Pull 

PF F50 F90 F200 IMP200 

CMJ0 JH 
(m) 0.30** 0.15 0.21* 0.35** 0.26** 

CMJ0 PF 
(N) 0.52**# 0.38**# 0.39**# 0.49**# 0.44**# 

CMJ0 PV 
(m·s-1) 0.49**# 0.31**# 0.34**# 0.46**# 0.39**# 

CMJ0 PP 
(W) 0.49**# 0.33**# 0.35**# 0.44**# 0.39**# 

CMJ0 
F@PP (N) 0.31** 0.18* 0.21** 0.35** 0.27** 

CMJ0 
V@PP  
(m·s-1) 0.29** 0.15 0.19* 0.33** 0.25** 

      
CMJ20 JH 

(M)  0.36**# 0.25**# 0.31** 0.44** 0.36** 
CMJ20 PF 

(N) 0.54**# 0.41**# 0.40**# 0.49**# 0.46**# 
CMJ20 PV 

(m·s-1) 0.49**# 0.33**# 0.35**# 0.47**# 0.40**# 
CMJ20 PP 

(N) 0.51**# 0.35**# 0.35**# 0.44** 0.40**# 
CMJ20 
F@PP 0.38** 0.24**# 0.28** 0.41** 0.33** 

CMJ20 (N) 
V@PP  
(m·s-1) 0.37** 0.22**# 0.26** 0.39** 0.31** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, *correlation is significant 
(p<0.05), **correlation is significant (p<0.01), # different than non-scaled (p<0.05). 
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Table 5.8. Correlations between Countermovement Jump Performance variables and 
Isometric Mid-Thigh Pull scaled to Sinclair coefficient. 

Variable 
Isometric Mid-Thigh Pull 

PF (N) F50 (N) F90 (N) F200 (N) IMP200 (N·s) 

CMJ0 JH 
(m) 0.48** 0.35** 0.36** 0.49** 0.42** 

CMJ0 PF 
(N) 0.60** 0.49** 0.48** 0.56** 0.53** 

CMJ0 PV 
(m·s-1) 0.62** 0.47** 0.47** 0.57** 0.53** 

CMJ0 PP 
(W) 0.59** 0.46**# 0.45** 0.53** 0.50** 

CMJ0 
F@PP (N) 0.46** 0.34** 0.34** 0.46** 0.40** 

CMJ0 
V@PP  
(m·s-1) 0.45** 0.33** 0.33** 0.45** 0.39** 

      
CMJ20 JH 

(M)  0.54** 0.45** 0.46** 0.58** 0.52** 
CMJ20 PF 

(N) 0.62** 0.52**# 0.49** 0.57** 0.54** 
CMJ20 PV 

(m·s-1) 0.63** 0.49** 0.48** 0.58** 0.54** 
CMJ20 PP 

(N) 0.60**# 0.47**# 0.45** 0.53** 0.50** 
CMJ20 
F@PP 0.55** 0.43** 0.43** 0.54** 0.49** 

CMJ20 (N) 
V@PP  
(m·s-1) 0.55** 0.43** 0.42** 0.53** 0.48** 

Note: PF: Peak force, F50: force at 50ms, F90: force at 90ms, F200: force at 200ms, 
IMP200: impulse from 0 to 200ms, JH: Jump height, PP: peak power, F@PP: force at 
peak power, PV: peak velocity, V@PP: velocity at peak power, **correlation is significant 
(p<0.01), # different than non-scaled (p<0.05). 
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Discussion 

 These results indicates the importance of strength values, peak force and 

instantaneous forces, particularly at the beginning of the IMTP force-time curve, which 

have positive correlations to vertical jump performance ranging from moderate (r=0.31) 

to very large (r=0.72). In addition, the non-normalized data presented generally a higher 

number of high correlations than the normalized values, ranging from 52% to 100% of 

the total correlations compared. 

The normalization by Sinclair Coefficient showed slightly higher correlation 

values than some of the non-normalized data; it was not the majority of the overall 

correlations (43% vs 52%), thus probably not leading to the best way of normalizing 

IMTP data for VJ performance. However, it is an interesting way of analysis because it 

is a non-linear normalization, and shows that being heavier might lead to being stronger 

and producing a better performance on the CMJ. Another point to consider is that the 

Sinclair Coefficient is a value derived from weightlifting results, and the IMTP was in 

part created with one of the intentions to mimic the second pull of the weightlifting 

movements, power position (10,12).  

 Normalizing IMTP force data by the simple BM ratio showed at their best some 

positive moderate effect correlations with CMJ. Comfort & Pearson (2014) and 

Nedeljkovic et al., (2009) report similar findings showing that simple BM ratio for 

strength tests does not seem to be the best way of normalizing strength and power tests 

(1RM) aiming dynamic performance (sprints). These findings may partially be explained 

by differences between the distribution of muscle mass to body fat ratios (5).  

Additionally, increases in BM ratio distribution between muscle and fat mass is not 
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consistent. Therefore, the BM ratio does not seem to be a good way of normalization 

the IMTP when attempting to correlate it to CMJ performance. The use of different 

normalization procedures might partially explain the different findings found in the 

scientific literature in regard to relationships between the IMTP and performance.  For 

example, Thomas et al., (2015), used BM ratio and did not finding significant 

correlations between IMTP and impulse.  Conversely, Kraska et al. (2009) and Stone et 

al. (2005) both found significant correlations between IMTP and impulse when using 

allometric scaling for data normalization. 

Nedeljkovic et al., (2009) also indicated that an allometric scale for normalization 

could be beneficial.  However, it is important to note that the exponent of 0.67(2/3 of 

BM) might be inaccurate due to weight and inertia of the limbs, which are producing 

external work during the test. Our findings showed positive and mostly moderate 

correlations, however normalizing these data for VJ does not seem to be a better 

approach than non-normalized data. Perhaps adjusting the allometric values would yield 

better results. However, Nedeljkovic et al., (2009) suggested the use of an allometric 

scale with higher allometric exponents would result in overvaluing the BM allometric 

scale value and result in a scaling impact on performance being artificially inflated.  

Nedeljkovic et al., (2009) also used subject’s height to normalize data, but like 

our findings, results of their study indicate that this method is not the best way of 

normalizing data. In the present study, the normalization of data by height with the 

methods of Ford et al., (2000) and Stone et al., (2005), both of which used a specific 

population of weightlifters in which the groups were heterogeneous (all weight classes 

and both sexes). Although we also had a heterogeneous population in this study, the 
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correlation values were lower than non-normalized data and this might have occurred 

because height differences between subjects were not large enough. 

There are several limitations regarding body composition (size, gender, fat, 

muscle mass, muscle cross-sectional area, limbs size) (16), which makes it difficult to 

use a single normalization test. Therefore, studying the effects of body size on 

performance produces in general, a weak to moderate effect (15,18,26); it is generally 

believed that the problem originates from a relatively narrow scale of human body sizes 

(16,26). The different IMTP normalized values presented on this study did not show 

consistently superior correlations than non-normalized values when correlating with 

dynamic VJ performance. Therefore, using non-normalized values for IMTP force 

values analyses is simpler and might be more, or as effective as any of the most used 

normalizations when targeting VJ performance. 

 

Practical Applications 

This study shows the relationships of strength especially in the early phases of 

the force-time curve in the IMTP related to the dynamic performance of jumping. This 

finding could lead strength coaches to use appropriate basic, explosive strength and 

power exercises when targeting improved performances for jumping. Data normalization 

for IMTP and CMJ does not show better correlations values than the absolute numbers, 

thus no normalization is necessarily needed for IMTP when correlating it to dynamic 

CMJ performance, which agrees with previous studies correlating IMTP and 

weightlifting performance (4). 
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CHAPTER 6 

SUMMARY AND FUTURE RESEARCH 

The purpose of this dissertation was to evaluate differences between distinct 

position on the IMTP and if pulling position results in the correlations of the IMTP to 

dynamic performance of jumping. In addition, this dissertation also aimed to investigate if 

there is a normalization method for the data collected with the IMTP that could impact the 

correlate of the test with the SJ and CMJ. Particularly, the first study compared force 

variables of two different pulling positions (slightly bent and upright trunk position) on the 

IMTP. The upright position showed statistically significant higher values for PF, F50, F90, 

F200, RFD200 and IMP200 than bent position and greater reliability. However, when 

correlating those values to VJ performance, there was no statistical difference between 

positions correlations to JH, dynamic PF, PP, PV, F@PP and V@PP of SJ and CMJ. The 

second and third studies had similar goals to evaluate if there is a normalization method 

that better fits the IMTP force values when correlating to VJ performance. The second 

article revealed that the non-normalized data showed moderate to large effects when 

correlating IMTP force variables to SJ performance, neither BM ratio, allometric scale, 

Ford’s height scale or Sinclair Coefficient scale repeatedly showed higher value 

correlations than the non-normalized values. The third study correlated the IMTP values 

and its normalized values just described to CMJ, the results show higher correlations to 

non-normalized IMTP values and correlations ranging from moderate to very large. 

Therefore, there is no need to have data normalization when correlating IMTP force 

values and VJ performance. 

 



88 
 

Practical Applications 

Strength and explosive dynamic performance tests are being commonly used in 

research and testing for athletic population. The IMTP has become a popular test in the 

scientific field, for higher values in the early phase of force-time curve and PF, the 

suggested position for this test is upright torso (145° hip angle) and knees bent at 125°. 

In addition, there is no need to normalize the IMTP data when aiming to correlate to VJ, 

both SJ and CMJ. Practical implications from this dissertation to the sport suggest that 

the stronger the athlete, especially at early phases on the IMTP force-time curve, greater 

the chances of performing better at VJ tests. 

Future Research 

The first study showed higher force values and greater reliability for the upright 

position than the bent position, but these changes did not present differences among 

correlations to vertical jump performance. However, that was a cross-sectional study, a 

longitudinal study with strength training should increase force values and change dynamic 

performance, so future researches can aim to analyze these changes and check if, over 

time and training, the changes that might occur in the relationships between ITMP 

positions and VJ performance. The studies 2 and 3 showed that the most common data 

normalizations for body size did not present consistently better results than the values 

non-normalized, thus future researches aiming correlations between IMTP and VJ do not 

need normalization for IMTP force values. 
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