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ABSTRACT

On Properties of rw-Regular Graphs

by

Franklina Samani

If every vertex in a graph G has the same degree, then the graph is called a regular

graph. That is, if deg(v) = r for all vertices in the graph, then it is denoted as an

r-regular graph. A graph G is said to be vertex-weighted if all of the vertices are

assigned weights. A generalized definition for degree regularity for vertex-weighted

graphs can be stated as follows: A vertex-weighted graph is said to be rw-regular if

the sum of the weights in the neighborhood of every vertex is rw . If all vertices are

assigned the unit weight of 1, then this is equivalent to the definition for r-regular

graphs. In this thesis, we determine if a graph has a weighting scheme that makes

it a weighted regular graph or prove no such scheme exists for a number of special

classes of graphs such as paths, stars, caterpillars, spiders and wheels.
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1 INTRODUCTION

In this thesis we study a mathematical construction known as a graph. A graph

G consists of a finite set of vertices V (G) called the vertex set, an edge set E(G), and

a relation that associates one edge with two vertices called the endpoints of the edge.

Figure 1 is an example of a graph with 5 vertices and 6 edges.

Figure 1: House graph

For the purposes of this thesis, we will assume that all graphs presented are simple,

i.e. no loops (edges whose endpoints are equal), no multiple edges (more than one

edge that has the same endpoints) [27]. An edge uv in G implies u is adjacent to v and

the edge uv is said to be incident to the vertices u and v ( u and v are the endpoints

of the edge uv). The set of all vertices adjacent to u is called the neighborhood of u.

If every vertex in the graph has the same degree, then the graph is called a regular

graph. That is, if deg(v) = r for all vertices in the graph, then the graph is denoted

as an r-regular graph. A large volume of work has been done in relation to regular

graphs, some of which include [1, 7, 12, 15, 16, 25].

10



A graph G is said to be weighted if all of the vertices are assigned non negative

integers called weights. In this thesis, we define what we call a weighted-regular graph.

First, we generalize the definition of the degree of a vertex in a vertex-weighted graph

as follows: the weighted degree of a vertex v is the sum of the weights of its neighbors

and is denoted by degw(v) =
∑

u∈N(v) w(u) where w(u) is the assigned weight of u in

G. If every vertex in the graph has the same weighted degree, then the graph is called

a weighted-regular graph. That is, if degw(v) = a for all vertices in the graph, then it

is denoted as an aw-regular graph. Necessarily, all regular graphs can be considered

weighted-regular graphs if each vertex has an understood weight of 1. In this thesis,

we determine if a graph has a weighting scheme that makes it a weighted regular

graph or prove no such scheme exists for a number of special classes of graphs.

For example, consider the graph in Figure 1. The graph in Figure 1 is not a regular

graph since some of the vertices have degree 2 and some have degree 3. However, the

vertex weighted graph in Figure 2 is a 8w-regular graph.

0

5 3

5 3

Figure 2: An 8w-regular House graph

Not all graphs allow a weighting scheme that produces an aw-regular graph. For
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instance, the graph in Figure 3 does not allow a weighting scheme that produces an

aw-regular graph.

u v

x

l1 l2

a a

Figure 3: A graph which is not weighted-regular

Observe that the two support vertices u and v are assigned weights a each, for

otherwise degw(l1) 6= a and degw(l2) 6= a. However since degw(x) = w(u) + w(v), it

implies degw(x) = a + a = 2a and since a = degw(l1) = degw(l2) 6= degw(x) = 2a, the

graph does not allow a weighting scheme which makes it weighted-regular.

To determine if an arbitrary graph allows a weighting scheme is beyond the scope

of this thesis. In this thesis, we determine if a vertex weighting scheme that results

in a weighted regular graph exists for selected families of graphs. For example, the

graph in Figure 4 is a tree that is weighted regular.
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0 a a 0

0

0

0

0

Figure 4: An example of an aw − regular graph

Observe that the support vertices are assigned a weight of a, thus resulting in

degw(v) = a for all v ∈ V . This implies that there exist a non trivial weighting

scheme which makes the graph weighted regular.

In order to continue our discussion, we now define the necessary terms that we

use to prove our results on selected families of graphs.

A leaf vertex is a vertex which has a degree of one and a support vertex is defined

as a vertex with a leaf in its neighborhood.A path in G is a walk in which no vertex

is repeated. A graph G is said to be connected if for all u, v ∈ V (G), there is a uv

path. Particularly, a path on n vertices is denoted as Pn. A path Pn is therefore a

graph of order n and size n − 1 with vertices denoted as v1, v2, v3, ......, vn and edges

vivi+1 for i = 1, 2, 3, .....n− 1.

The length of a path with endpoints u and v is the number of edges between u

and v on a particular path from u to v. Figure 5 is an example of a graph of length

4. Thus, a path Pn has length n− 1.

13



u v

Figure 5: Path of length 4 (P4)

A cycle is a u− v path with u = v. A cycle on n vertices is denoted as Cn.A tree

denoted as T is an acyclic connected graph, i.e. it has no cycles [10] . A caterpillar

tree as defined by Gordon and Breach [21] is a tree with the property that the removal

of its leaves(vertices of degree one) results in a path. The caterpillar is made up of

two types of vertices, namely the leaves (vertices of degree one) and vertices which

are in the neighborhood of the leaves which we will refer to as support vertices.

A star graph, Si (with i being the order of the graph) is an acyclic graph in which

one vertex has degree i−1 and the rest have degree 1. A double star graph as defined

in [11] is a graph consisting of the union of two stars S1,m and S1,m together with

an edge joining their centers. A spider graph is a tree with at most one vertex of

degree greater than one called the center. A lobster is a tree with the property that

the removal of its leaves produces a caterpillar [5]. A wheel graph Wn is a graph of

order n formed by connecting a vertex (sometimes called the central vertex) of degree

n − 1 to every vertex on a cycle of length n − 1. A fan graph is a graph formed by

connecting a vertex v to all vertices on a path Pn. A complete bipartite graph Km,n

is a bipartite graph with every vertex in one partite set connected to every vertex in

the other partite set, and no two vertices in the same partite set are connected.
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1.1 Background

Graph theory is the study of properties of graphs in several fields such as math-

ematics and computer science. Several problems of interest in the world today can

be represented by graphs. In the year 1736, a Swiss mathematician Leonhard Euler

(1707 - 1783) solved the famous Königsberg bridge and that was the birth of graph

theory.

A lot of research has been done on edge weighted graphs, however very little

research has been done on vertex weighted graphs and hence this has become a

growing area of research in graph theory. There are examples such as [19] where

vertex weights are studied. However, a thorough literature search did not reveal any

work resembling weighted-regular graphs.

Graceful labeling is one of the areas of graph theory where vertices are assigned

a numerical values known as vertex weight. Many researchers such as Brankovic [8]

and Edwards [9] have done a lot of work on graceful graphs. Several other researchers

such as [2, 3, 4, 6, 13, 14, 17, 18, 20, 22, 23, 24, 26, 28] have also done some work

where numerical values are assigned to vertices.

In this thesis, we determine if a vertex weighting scheme that results in a weighted

regular graph exists for selected families of graphs. In particular, we determine if

selected trees such as paths, caterpillars and spiders have a weighting scheme which

make them weighted-regular. We also answer this question with respect to cycles,

complete bipartite graphs, wheels and fans.
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2 RESULTS ON TREES

We will start by proving a very useful proposition that we use in determining

whether or not a tree is weighted-regular.

Proposition 2.1 If a graph G contains two vertices of degree 1, u and v, such that

the distance d(u, v) = 4, then the graph does not have a nontrivial weighting scheme

which makes it weighted regular.

Proof Assume the graph G is an aw-regular graph. We need to show that there

exists a vertex x in the graph where degw(x) 6= a. Let u and v be vertices that are

leaves such that d(u, v) = 4. Let s, y, z be the vertices between u and v as shown in

Figure 6.

u s y z v

b1

c1

bn

cn

Figure 6: A Tree with d(u, v) = 4

Then since u and v are leaves, they have just one neighbor each. Let a be the

weight assigned to all the support vertices, then since s and z are support vertices;

they will each be assigned a weight of a. Now as shown in Figure 6: vertex y has at
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least two neighbors, s and z, that are support vertices. So the degree weight of y will

be the sum of the assigned weights of its neighbors which include the assigned weights

of s and z. This implies the degree weight of y is at least twice the weight of a support

vertex. Thus, degw(y) ≥ w(s) + w(z) and since since a 6= 0, then degw(y) ≥ a + a .

So, degw(y) ≥ 2a > a.

This is a contradiction since a = degw(u) = degw(v) 6= degw(y) = 2a.

�

Proposition 2.1 is very useful in the determination of the weighted regularity of

several other graphs such as a caterpillar and a lobster. Below are examples where

Proposition 2.1 are used.

Example 2.2 Let G9 be a caterpillar with 9 vertices (Refer to Figure 7). Let the

support vertices (v1, v2, v3, v4) have weights 3 each. Thus, w(vi) = 3 for i = 1, 2, 3, 4.

This implies that degw(vi) = 3 for i = 5, 6, 7, 8, 9 (the leaves). So for the graph to be

weighted regular, the degree weight of each vertex must be the same. Thus degw(v)

has to be equal to 3 for all v ∈ V .

v1 v2 v3 v4

v5 v6

v9

v7 v8

3 3 3 3

Figure 7: Example of a Caterpillar with k = 4
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Observe that there are two leaves, say v5 and v7, such that d(v5, v7) = 4. Then

clearly by Proposition 2.1 this graph does not have a weighting scheme which makes it

weighted regular. This is because degw(v2) ≥ w(v1) +w(v3) = 3 + 3 = 6 6= degw(v5) =

3.

Example 2.3 Let L be a lobster with two legs of length two, each connected to a

vertex v2 on the central path (v1, v2, v3, v4) (Refer to Figure 8). Let the support vertices

(v5, v6, v3, v7, v8) have weights 5 each. Thus, w(vi) = 5 for i = 3, 5, 6, 7, 8. This implies

that degw(vi) = 5 for i = 9, 10, 11, 12, 13 (the leaves). So for the graph to be weighted

regular, the degree weight of each vertex must be the same. Thus degw(v) has to be

equal to 5 for all v ∈ V .

v1 v2 v3 v4

v5

v9

v6

v10

v8

v11

v12 v7

v13

5 5

5

5

5

Figure 8: Example of a Lobster graph
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Observe that there are two leaves, say v6 and v8,such d(v6, v8) = 4. Then clearly by

Proposition 2.1 this graph does not have a weighting scheme which makes it weighted

regular. This is because degw(v2) ≥ w(v6) + w(v3) + w(v8) = 5 + 5 + 5 = 15 6=

degw(v9) = 5.

Several other graphs with d(x, y) = 4 are also known not to have a nontrivial

weighting scheme which makes it weighted regular as a result of Proposition 2.1.

Theorem 2.4 For a path of order n greater than 1, there exists a weighting scheme

that makes the path aw − regular except for paths of order n ≡ 1 (mod 4).

Proof Let Pn be a path on n vertices. Let v1, v2, v3, ......., vn be the vertices on the

path. Then w(v2) = w(vn−1) = a since v2 and vn−1 are support vertices. This implies

that degw(v1) = degw(vn) = a. So since w(v2) = a, it implies that w(v4) = 0, for

otherwise degw(v3) 6= a. This implies that w(v6) = a, for otherwise degw(v5) 6= a.
...

So we have that;

w(vi) =

{
a if i ≡ 2 (mod 4)
0 if i ≡ 0 (mod 4)

Case 1: Paths of order n ≡ 1 (mod 4).

Since n ≡ 1 (mod 4), it implies that n − 1 ≡ 0 (mod 4). Therefore w(vn−1) = 0

and this contradicts the hypothesis that w(vn−1) = a. Also w(vn−1) can not be 0

since that implies that degw(vn) = 0 6= degw(v1) = a.

�

Case 2: Paths of order n ≡ 2 (mod 4).
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Since n ≡ 2 (mod 4), it implies that w(n) = a. Also since w(vn−1) = a, it implies that

w(vn−3) = 0, for otherwise degw(vn−2) 6= a. So since n ≡ 2 (mod 4) =⇒ n − 1 ≡ 1

(mod 4) =⇒ n− 2 ≡ 0 (mod 4) =⇒ n− 3 ≡ 3 (mod 4). So we have:

w(vi) =

{
a if i ≡ 1 (mod 4)
0 if i ≡ 3 (mod 4)

Therefore degw(v) = a for all v ∈ V .

�

Example 2.5 Consider a path on 6 vertices (P6).

Let w(vi) =


5 if i ≡ 2 (mod 4)
0 if i ≡ 0 (mod 4)
5 if i ≡ 1 (mod 4)
0 if i ≡ 3 (mod 4)

Then we have w(v2) = w(v6) = 5 = w(v1) = w(v5) and w(v3) = w(v4) = 0.

V1 V2 V3 V4 V5 V6

5 5 0 0 5 5

Figure 9: A 5w-regular P6

Therefore degw(v) = 5 for all v ∈ V . Hence the path is 5w-regular.

Case 3: Paths of order n ≡ 3 (mod 4).

Since n ≡ 3 (mod 4), it implies that n−1 ≡ 2 (mod 4). Therefore w(vn−1) = a. Now,

w(v1) can either be 0 or a. Without loss of generality let w(v1) = a. This implies

that w(v3) = 0, for otherwise degw(v2) 6= a. So we have

w(vi) =

{
a if i ≡ 1 (mod 4)
0 if i ≡ 3 (mod 4)

Therefore degw(v) = a for all v ∈ V .

20



�

Example 2.6 Consider a path on 7 vertices (P7).

Let w(vi) =


3 if i ≡ 2 (mod 4)
0 if i ≡ 0 (mod 4)
3 if i ≡ 1 (mod 4)
0 if i ≡ 3 (mod 4)

Then, w(v2) = w(v6) = 3 = w(v1) = w(v5) and w(v4) = 0 = w(v3) = w(v7).

V1 V2 V3 V4 V5 V6 V7

3 3 0 0 3 3 0

Figure 10: A 3w-regular P7

Therefore degw(v) = 3 for all v ∈ V . Hence the path is 3w-regular.

Case 4: Paths of order n ≡ 0 (mod 4).

Since n ≡ 0 (mod 4), it implies that w(n) = 0. Also since w(vn−1) = a, it implies that

w(vn−3) = 0, for otherwise degw(vn−2) 6= a. So since n ≡ 0 (mod 4) =⇒ n − 1 ≡ 3

(mod 4) =⇒ n− 2 ≡ 2 (mod 4) =⇒ n− 3 ≡ 1 (mod 4).

So we have w(vi) =

{
a if i ≡ 3 (mod 4)
0 if i ≡ 1 (mod 4)

Therefore degw(v) = a for all v ∈ V .

�

Example 2.7 Consider a path on 8 vertices (P8).

Let w(vi) =


6 if i ≡ 2 (mod 4)
0 if i ≡ 0 (mod 4)
6 if i ≡ 3 (mod 4)
0 if i ≡ 1 (mod 4)

Then w(v2) = w(v6) = 6 = w(v3) = w(v7) and w(v4) = w(v8) = 0 = w(v1) = w(v5).
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V1 V2 V3 V4 V5 V6 V7 V8

0 6 6 0 0 6 6 0

Figure 11: A 6w-regular P8

Therefore degw(v) = 6 for all v ∈ V . Hence the path is 6w-regular.

Proposition 2.8 Every star has a non trivial weighting scheme which makes it

weighted regular and this is unique.

Proof Let Sn+1 be a star graph of order n+ 1. Let vn+1 be the central vertex and vi

for i = 1, 2, .., n be the vertices of degree 1. So since vn+1 is adjacent to all the other

vertices, its degree weight will be the sum of the weights of all the other vertices. Let

degw(vn+1) =
∑n

i=1w(vi) = a . This implies that
∑n

i=1 w(vi) = w(vn+1), for otherwise

degw(vi) 6= a for i = 1, 2, ...., n. Therefore degw(vi) = a for all v ∈ V . Hence Sn+1 is

aw-regular.

�

Example 2.9 Let S9 be a star graph of order 9. Then vn+1 = v9 for n = 8. Let

w(v1) = 2, w(v2) = 3, w(v3) = 0, w(v4) = 2, w(v5) = 8, w(v6) = 1, w(v7) = 4, w(v8) =

1. Therefore degw(v9) =
∑8

i=1w(vi) = 21. This implies that w(v9) = 21. Therefore

degw(vi) = 21 for all v ∈ V . Hence the star graph S9 is 21w-regular (Refer to Figure

12).
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v9v1 v2

v3

v4

v5

v6

v7

v8

21

0

1

3

1

2

2

8 4

Figure 12: A 21w-regular star graph (S9)

Theorem 2.10 Every double star has a non trivial weighting scheme which makes

it weighted regular and this weighting scheme is unique.

u v
a a

0

0

0

0

0

0

0

0

0

0

Figure 13: Example of Weighted Regular Double Star of order 12

Proof Let T be a double star of order n. Let u and v be the central vertices of the

two stars that are connected by an edge. Notice that u and v are support vertices and
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the only two vertices with degree greater than 1, thus the remaining n−2 vertices are

leaves since they have degrees 1. Assign a weight of a to each of vertices u and v since

they are support vertices. Also a weight of 0 is assigned to the remaining vertices

(Refer to Figure 13). Observe that this nontrivial weighting scheme makes the double

star weighted regular and hence we can conclude that there exist a weighting scheme

which makes the double star weighted-regular.

�

We will now consider a particular type of spider with a fixed leg of length 2.

Let G2 be a spider with a fixed leg of length 2 and the number of remaining legs

equal to k. We will call the central vertex x and the paths from x, the legs of the

spider. Also, let l be a path of length 2 with u1 and u2 the leaf and support vertices

respectively on paths l.

p = number of paths of length ≡ 1 (mod 4)

q = number of paths of length ≡ 2 (mod 4)

s = number of paths of length ≡ 3 (mod 4)

t = number of paths of length ≡ 0 (mod 4)

This implies that p + q + s + t = k.

Proposition 2.11 G2 has a nontrivial weighting scheme which makes it weighted-

regular if k = t, thus p = q = s = 0.

Proof Let w(u2) = a where a 6= 0. This implies that degw(u1) = a. Thus graph G2

must be aw − regular. Let P = {v1, v2, ..., vn} be a path of length h where h ≡ 0

(mod 4). This implies that w(vh−1) = a for all k legs. Note that this implies that

w(vh−3) = 0, for otherwise degw(vh−2) 6= a. So we have:
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w(vh−1) = a =⇒ w(vh−3) = 0 =⇒ w(vh−5) = a =⇒ · · · =⇒ w(v1) = 0. Let

u2 = b. Then this implies w(x) = a − b, otherwise degw(u2) = w(x) + w(u1) 6= a.

Notice that the weights of v1, v2, v3, v4 are 0, b, a, a − b respectively. Therefore since

the degw(v) = a for all v ∈ V , graph G2 is aw − regular.

�

Example

Let the weight a = 4 and the weight b = 1.

3

0

1

4

3

0 1 4 3 0 1 4 3
4

1

Figure 14: A 4w − regular G2 graph

Proposition 2.12 G2 has a nontrivial weighting scheme which makes it weighted-

regular if k = p, thus q = s = t = 0.

Proof Let w(u2) = a where a 6= 0. This implies that degw(u1) = a. Thus graph

G2 must be aw − regular. Let P = {v1, v2, ..., vn} be a path of length h + 1 where
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h + 1 ≡ 1 (mod 4). This implies that w(vh) = a for all k legs. Note that this implies

that w(vh−2) = 0, for otherwise degw(vh−1) 6= a. So we have:

w(vh) = a =⇒ w(vh−2) = 0 =⇒ w(vh−4) = a =⇒ · · · =⇒ w(v2) = 0. Then this

implies w(x) = a, otherwise degw(u1) = w(x) + w(u2) 6= a. And since w(x) = a =⇒

w(u1) = 0, otherwise degw(u2) 6= a. Notice that the wights of v1, v2, v3, v4 are a, b, b, a

respectively, and this weighting pattern is repeated on all p legs. Therefore since the

degw(v) = a + b for b = 0. It implies that degw(v) = a for all v ∈ V , so graph G2 is

aw − regular.

�

Example 2.13 Let the weight a = 3 and b = 0.

3 0

0

3

3

0

0 0 3 3 0 0 3 3 0

3

0

Figure 15: A 3w − regular G2 graph
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Proposition 2.14 There does not exist a nontrivial weighting scheme that makes G2

regular if k = q, thus p = s = t = 0.

Proof Let w(u2) = a where a 6= 0. This implies that degw(u1) = a. Thus graph

G2 must be aw − regular. Let P = {v1, v2, ..., vn} be a path of length h + 2 where

h+2 ≡ 2 (mod 4). This implies that w(vh+1) = a for all k legs. Note that this implies

that w(vh−1) = 0, for otherwise degw(vh) 6= a. So we have:

w(vh+1) = a =⇒ w(vh−1) = 0 =⇒ w(vh−3) = a =⇒ · · · =⇒ w(v1) = a. Now, since

u2 and v1 are both neighbors of x, it implies that degw(x) = w(u2) +w(v1) = a+ a =

2a. So degw(x) 6= a and thus a contradiction. Therefore graph G2 does not have a

nontrivial weighting scheme which makes it weighted-regular when k = q.

�

Proposition 2.15 G2 has a nontrivial weighting scheme which makes it weighted-

regular if k = s, thus p = q = t = 0.

Proof Let w(u2) = a where a 6= 0. This implies that degw(u1) = a. Thus graph

G2 must be aw − regular. Let P = {v1, v2, ..., vn} be a path of length h + 3 where

h+3 ≡ 3 (mod 4). This implies that w(vh+2) = a for all k legs. Note that this implies

that w(vh) = 0, for otherwise degw(vh+1) 6= a. So we have:

w(vh+2) = a =⇒ w(vh) = 0 =⇒ w(vh−2) = a =⇒ · · · =⇒ w(v2) = a. Then this

implies w(x) = 0, otherwise degw(u1) = w(x) + w(u2) 6= a and degw(v1) = w(x) +

w(v2) 6= a. So since w(x) = 0, it implies that w(u1) = a, otherwise degw(u2) 6= a.

Notice that the weights of v1, v2, v3, v4 are b, b, a, a respectively, and this weighting

pattern is repeated on all s legs. Therefore since the degw(v) = a + b for b = 0. It

implies that degw(v) = a for all v ∈ V , hence graph G2 is aw − regular.
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Example 2.16 Let the weight a = 5 and the weight b = 0.

0
0

5

5

0

0

5

5

0 5 5 0 0 5 5 0 0 5 5

5

5

Figure 16: A 5w − regular G2 graph

Proposition 2.17 G2 has a nontrivial weighting scheme which makes it weighted-

regular if k = t + p, thus p = s = 0.

Proof We know from Proposition 2.12 that w(x) = a since G2 has legs of length

1(mod 4) and we have p of such legs. So using the weight assignment pattern in

Propositions 2.11 and 2.12 for legs t and p respectively where b = 0: we have degw(v) =

a for every v ∈ V , hence graph G2 has a nontrivial weighting scheme which makes

it aw − regular. Therefore since the degw(v) = a + b for b = 0. It implies that

degw(v) = a for all v ∈ V , hence graph G2 is aw-regular.
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Example 2.18 Let the weight a = 4 and the weight b = 0.

4

0

0

4

4

0 0 4 4 0

4

0

Figure 17: A 4w − regular G2 graph

Proposition 2.19 G2 has a nontrivial weighting scheme which makes it weighted-

regular if k = t + s, thus p = q = 0.

Proof We know from Proposition 2.14 that w(x) = 0 since G2 has legs of length

3(mod 4) and we have s of such legs. Let w(x) = 0 = b, then w(u2) = a for

otherwise degw(u1) 6= a. Also since w(x) = b, let w(u1) = a − b, for otherwise

degw(u2) = w(x) + w(u1) 6= a. Notice that v1, v2, v3, v4 have weights b, a − b, a, b

where b = 0, on all k legs. Thus, this is the repeated weighting pattern on all k legs.

Note that b = 0, for otherwise degw(vh + 3) 6= a since w(vh + 2) = a− b for all s legs

(legs of length ≡ 3 (mod 4)). Therefore degw(v) = a for all v ∈ V , hence G2 has a

nontrivial weighting scheme which makes it weighted regular when k = t + s.
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Example 2.20 Let the weight a = 4 and and the weight b = 0.

0
0

3

3

0

0 3 3 0 0 3 3

3

3

Figure 18: A 3w − regular G2 graph

Proposition 2.21 G2 does not have a nontrivial weighting scheme which makes it

weighted-regular if k = p + s, thus q = t = 0.

Proof By Proposition 2.12, we know that the presence of legs of length P ≡ 3 (mod

4) in G2 implies that w(x) = 0, however by Proposition 2.12 we have that w(x) = a

since G2 also has legs of length P ≡ 1 (mod 4). So since w(x) can not satisfy the

weight requirements on both legs, there is a contradiction. Therefore we can conclude

that there does not exist a nontrivial weighting scheme which makes G2 weighted-

regular when k = p + s.

�
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3 OTHER FAMILIES OF GRAPHS

In this chapter we are going to consider graphs either than trees. In particular,

we will consider cycles, fan graphs, wheel graphs and bipartite graphs.

Theorem 3.1 Let Cn be a cycle on n vertices. Then Cn has a nontrivial weighting

scheme which makes it weighted regular only if n ≡ 0 (mod 4).

Proof Let Cn be a cycle with n vertices. Also let a, b, c be the assigned weights for

v1, v2, v3 respectively. Then degw(v2) = w(v1) + w(v3) = a + c. So,

w(v5) = a, for otherwise degw(v4) 6= a + c.

w(v7) = c, for otherwise degw(v6) 6= a + c.

...

This implies that w(vi) =

{
a if i ≡ 1 (mod 4)
c if i ≡ 3 (mod 4)

Case 1: Consider n ≡ 1 (mod 4).

Since n ≡ 1 (mod 4), then w(vn) = a. This implies that b = c, for otherwise

degw(v1) 6= a + c. So w(v2) = c, and this implies w(v4) = a for otherwise degw(v3) 6=

a + c. Also, w(v6) = c for otherwise degw(v5) 6= a + c. So we have,

w(vi) =

{
a if i ≡ 0 (mod 4)
c if i ≡ 2 (mod 4)

Now, since n ≡ 1 (mod 4) =⇒ n−1 ≡ 0 (mod 4) =⇒ n−2 ≡ 3 (mod 4) =⇒ n−3 ≡ 2

(mod 4). Therefore w(vn−1) = a since i = n − 1 ≡ (0mod4). This implies that

degw(vn) = w(v1) + w(vn−1) = a + a = 2a 6= a + c. Hence Cn for n ≡ 1 (mod 4) is

not weighted regular.

�
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Case 2: Consider n ≡ 2 (mod 4).

Since n ≡ 2 (mod 4) =⇒ n− 1 ≡ 1 (mod 4). So, w(vn−1) = a. Therefore degw(vn) =

w(v1) + w(vn−1) = a + a = 2a 6= a + c. Hence Cn for n ≡ 2 (mod 4) is not weighted

regular.

�

Case 3: Consider n ≡ 3 (mod 4).

Since n ≡ 3 (mod 4) =⇒ w(vn) = c. This implies that b = c, for otherwise degw(v1) 6=

a + c. Therefore w(v2) = c. Then,

w(v4) = c, for otherwise degw(v3) 6= a + c.

w(v6) = a, for otherwise degw(v5) 6= a + c.

...

So we have that w(vi) =

{
a if i ≡ 2 (mod 4)
c if i ≡ 0 (mod 4)

Now, since n ≡ 3 (mod 4) =⇒ n − 1 ≡ 2 (mod 4) =⇒ n − 2 ≡ 1 (mod 4) =⇒

n − 3 ≡ 0 (mod 4). So w(vn−1) = a since i = n − 1 ≡ 2 (mod4) and therefore

degw(vn) = w(v1) + w(vn−1) = a + a = 2a 6= a + c. Hence Cn for n ≡ 3(mod4) does

not have a weighting scheme which makes it weighted regular.

�

Case 4: Consider n ≡ 0 (mod 4).

Since n ≡ 0 (mod 4) =⇒ n−1 ≡ 3 (mod 4), therefore w(vn−1) = c =⇒ w(vn−3) =

a. The weight of v4 has to be either a or c, for otherwise degw(v3) 6= a + c. Without

loss of generality, let w(v4) = c. This implies that w(v2) = b = a. Also,
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w(v6) = a for otherwise degw(v5) 6= a + c.

w(v8) = c, for otherwise degw(v7) 6= a + c.

...

So we have w(vi) =

{
a if i ≡ 2 (mod 4)
c if i ≡ 0 (mod 4)

}
Therefore degw(v) = a + c for all v ∈ V , hence we can conclude that there exist a

nontrivial weighting scheme which makes Cn for n ≡ 0 (mod 4) weighted regular.

�

Theorem 3.2 Let F4 be a fan graph on 4 vertices. Then there exist a nontrivial

weighting scheme which makes F4 weighting regular.

Proof Let v1, v2, v3, v4 be the 4 vertices with degrees 2, 3, 2, 3 respectively (Refer to

Figure 19).

v4

v1

v2

v3

Figure 19: A Fan graph on 4 vertices (F4)

Then, degw(v4) = w(v1) + w(v2) + w(v3) and degw(v1) = w(v2) + w(v4). Since

degw(v1) = degw(v4), it implies that w(v4) = w(v1) + w(v3) (1). degw(v2) =

w(v1) +w(v3) +w(v4). So since degw(v2) = degw(v1), it implies that w(v2) = w(v1) +

w(v3) (2). So from equations (1) and
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(2), we have w(v2) = w(v4). degw(v3) = w(v2) +w(v4). So since degw(v3) = degw(v2),

it implies that w(v2) = w(v1) + w(v3). Therefore, w(v1) = w(v2) − w(v3). So since

degw(v) = 2w(v4) for all v ∈ V , then there exist a nontrivial weighting scheme which

makes F4 weighted regular.

�

Example 3.3 Let w(v2) = w(v4) = 7 and w(v3) = 2, then w(v1) = 7− 2 = 5.

v4

v1

v2

v3

7

5

7

2

Figure 20: A 14w-regular Fan Graph

Clearly, degw(v) = 14 for all v ∈ V hence the graph is a 14w-regular graph.

Theorem 3.4 Let F5 be a fan graph on 5 vertices. Then there exists a nontrivial

weighting scheme which makes F5 weighting regular.

Proof Let v1, v2, v3, v4, v5 be the 5 vertices with degrees 2, 3, 3, 2, 4 respectively (Refer

to Figure 21).
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v5

v1

v2

v3

v4

Figure 21: A Fan graph on 5 vertices (F5)

The degw(v5) = w(v1) + w(v2) + w(v3) + w(v4) and degw(v1) = w(v2) + w(v5).

Since degw(v1) = degw(v5), it implies that,

w(v5) = w(v1)+w(v3)+w(v4) (1). degw(v2) =

w(v1) + w(v3) + w(v5). Since degw(v2) = degw(v5), it implies that,

w(v5) = w(v2) + w(v4) (2). So from

equations (1) and (2), we have w(v2) = w(v1) + w(v3) (3). degw(v4) =

w(v3) + w(v5). Since degw(v4) = degw(v1), it implies that,

w(v2) = w(v3) (4). So from

(3) and (4), we have w(v1) = 0. degw(v3) = w(v2)+w(v4)+w(v5). So since degw(v3) =

degw(v1), it implies that w(v4) = 0. So from equation (1) and the fact that w(v1) =

0 = w(v4), we have w(v5) = w(v3) (5). So by

transitivity, we have w(v2) = w(v5) and this implies that w(v2) = w(v3) = w(v5).
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Therefore since degw(v) = 2w(v2) for all v ∈ V , then there exist a nontrivial weighting

scheme which makes F5 weighted regular.

�

Example 3.5 Let w(v2) = w(v3) = w(v5) = 3 and w(v1) = w(v2) = 0.

v5

v1

v2

v3

v4

3

0

3

3

0

Figure 22: A 6w-regular Fan Graph

Clearly, degw(v) = 6 for all v ∈ V hence the graph is a 6w-regular graph.

Theorem 3.6 Let F6 be a fan graph on 6 vertices. Then there does NOT exist a

nontrivial weighting scheme which makes F6 weighting regular.

Proof Let v1, v2, v3, v4, v5, v6 be the 6 vertices with degrees 2, 3, 3, 3, 2, 5 respectively

(Refer to Figure 26). We need to show that the degree weights are equal for all the

vertices in the graph.
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v6

v1

v2

v3

v4

v5

Figure 23: A Fan graph on 6 vertices (F6)

We have degw(v6) = w(v1) + w(v2) + w(v3) + w(v4) + w(v5) and degw(v1) =

w(v2) + w(v6). Since degw(v1) = degw(v6), it implies that

w(v6) = w(v1)+w(v3)+w(v4)+w(v5) (1). degw(v2) =

w(v1) + w(v3) + w(v6). Since degw(v2) = degw(v5), it implies that,

w(v6) = w(v2) +w(v4) +w(v5) (2). So from

equations (1) and (2), we have w(v2) = w(v1) +w(v3) (3). degw(v5) = w(v4) +

w(v6). Since degw(v5) = degw(v1), it implies that

w(v4) = w(v2) (4). So, since

w(v2) = w(v4) from equations (2) and (4), we have w(v6) = w(v5). degw(v4) = w(v3)+

w(v5) + w(v6). However since degw(v4) = degw(v2), it implies that w(v5) = w(v1) .
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degw(v3) = w(v2) + w(v4) + w(v6). However since degw(v3) = degw(v5), it implies

w(v2) = 0. Therefore w(v4) = 0 by equation (4) and hence w(v3) = −w(v1) by equa-

tion (3). Clearly, w(v5) = degw(v1) = degw(v2) = degw(v3) = degw(v5) = degw(v6) 6=

degw(v4) = 2w(v5) +w(v3). Hence the graph F6 does not have a nontrivial weighting

scheme which makes it weighted regular.

�

Theorem 3.7 Let F7 be a fan graph on 7 vertices. Then there exist a nontrivial

weighting scheme which makes F7 weighting regular.

Proof Let v1, v2, v3, v4, v5, v6, v7 be the 7 vertices with degrees 2, 3, 3, 3, 3, 2, 6 respec-

tively (Refer to Figure 24).

v7

v1

v2

v3

v4

v5

v6

Figure 24: A Fan graph on 7 vertices (F7)
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degw(v7) = w(v1) +w(v2) +w(v3) +w(v4) +w(v5) +w(v6) and degw(v1) = w(v2) +

w(v7). However since degw(v1) = degw(v7), it implies that w(v7) = w(v1) + w(v3) +

w(v4)+w(v5)+w(v6). degw(v2) = w(v1)+w(v3)+w(v7). So since degw(v2) = degw(v1),

it implies that,

w(v2) = w(v1)+w(v3) (1). degw(v3) =

w(v2)+w(v4)+w(v7). So since degw(v3) = degw(v1), it implies w(v4) = 0. degw(v6) =

w(v5) + w(v7). So since degw(v6) = degw(v1), it implies w(v5) = w(v2). degw(v5) =

w(v4)+w(v6)+w(v7). So since degw(v5) = degw(v6), it implies w(v5) = w(v4)+w(v6).

Therefore w(v5) = w(v6) since w(v4) = 0. degw(v4) = w(v3) +w(v5) +w(v7). So since

degw(v4) = degw(v6), it implies,

w(v3) = 0 (2). So from

equations (1) and (2), we have w(v1) = w(v2). This implies that w(v1) = w(v2) =

w(v5) = w(v6). Therefore without loss of generality, degw(v) = w(v5) + w(v6) for all

v ∈ V . Hence there exist a nontrivial weighting scheme which makes F7 weighted

regular.

�

Example 3.8 Let w(v1) = w(v2) = w(v5) = w(v6) = 2 and w(v3) = w(v4) = 0. This

implies that w(v7) = 6.
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Figure 25: A 8w-regular Fan Graph

Clearly, degw(v) = 8 for all v ∈ V hence the graph is a 8w-regular graph.

OPEN CONJECTURE : A fan graph, Fn, has a nontrivial weighting scheme which

makes it weighted regular when n ≡ 0, 1, 3 (mod 4), however for n ≡ 2 (mod 4), Fn

is not weighted regular.

Theorem 3.9 A wheel graph, Wn+1, for n ∈ N has a nontrivial weighting scheme

which makes them weighted regular.

Proof Let Wn+1 be a wheel graph with cardinality n + 1 and vn+1 be the central

vertex with degree n. This implies that there will be n vertices with degree 3 each.

Assign the degree 3 vertices (v1, v2, v3, v4, ...., vn) weights a, b, a, b, ....... This implies
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that degw(vn+1) = ia + jb where i and j are the number of assigned weights a and b

respectively.

Note that i + j = n. So we need to show that degw(v) = ia + jb for all v ∈ V .

Observe that degw(v2) = w(v1) + w(v3) + w(vn+1) = a + a + w(vn+1). However, since

degw(v2) has to be equal to the degw(vn+1), we have a + a + w(vn+1) = ia + jb.

This implies that, w(vn+1) = (i− 2)a+ jb (1). There-

fore degw(v2) = ia+jb. Also, degw(v3) = w(v2)+w(v4)+w(vn+1) = b+b+w(vn+1) =

2b + w(vn+1). However since degw(v3) has to be equal to degw(vn+1) = degw(v2), we

have 2b + w(vn+1) = ia + jb. This implies that

w(vn+1) = ia + (j − 2)b (2). So from

equations (1) and (2), we have (i − 2)a + jb = ia + (j − 2)b. This implies a = b.

Therefore without loss of generality, w(vn+1) = (i− 2 + j)a = (i+ j− 2)a = (n− 2)a.

This implies degw(v) = na = (i + j)a = ia + jb for all v ∈ V and thus Wn+1 is

weighted regular.

�

Example 3.10 Let w(vi) = 3 for i=1,2,3,4. Then w(v5) = (4− 2)3 = 6.
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Figure 26: A 12w-regular Wheel Graph (W4+1)

Clearly, degw(v) = 12 for all v ∈ V hence the graph is a 12w-regular graph.

Theorem 3.11 A complete bipartite graph Km,n has a nontrivial weighting scheme

which makes it weighted regular.

Proof Let Km,n be a complete bipartite graph with partite sets A and B. Then

|A| = m and |B| = n and thus |V | = m + n. So for all v ∈ V ; degw(v) =
∑

w(vi)

for vi ∈ B and i = 1, 2, ..., n. Assign weights to ui ∈ A for i = 1, 2, ...,m such that∑
u∈Aw(ui) =

∑
v∈B w(vi). Therefore clearly Km,n is weighted regular.

�

Note that the above theorem is true for both equal(m = n) and unequal(m 6= n)

partite sets.

Example 3.12 Let the weights of vi ∈ B for i = 1, 2, 3, 4, 5 be 7, 2, 5, 3, 0 respectively.

Then the degw(ui) = 17 for all ui ∈ A. Also let the weights of ui ∈ A for i = 1, 2, 3

be 8, 2, 7 respectively.
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Figure 27: A 17w-regular Bipartite Graph

Clearly, degw(v) = 17 for all v ∈ V hence the graph is a 17w-regular graph.
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4 CONCLUSION

is a large volume of work on regular graphs in the field of graph theory. On the

other hand, a review of the literature did not reveal a substantial amount of work on

vertex weighted graphs. Only a few topics such as graceful labellings employed vertex

weights. In this thesis, we utilize vertex weights to generalized regularity of graphs.

All regular graphs are trivially vertex weighted regular graphs, however, a graph that

is not necessarily regular can be vertex weighted regular.

Vertex weighted graphs have numerous application in contemporary science. It is

therefore important to know if there exist a weighting scheme that will make a graph

a vertex weighted regular graph. We address this question for a number of families

of graphs such as paths,stars, spider and the wheel graph.

A problem for further study will be to “weight-regularize” other families of graphs

such as bipartite graphs, friendship graphs etc.
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