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ABSTRACT

The Number of Zeros of a Polynomial in a Disk as a Consequence of Coefficient

Inequalities with Multiple Reversals

by

Derek Bryant

In this thesis, we explore the effect of restricting the coefficients of polynomials on

the bounds for the number of zeros in a given region. The results presented herein

build on a body of work, culminating in the generalization of bounds among three

classes of polynomials. The hypotheses of monotonicity on each class of polynomials

were further subdivided into sections concerning r reversals among the moduli, real

parts, and both real and imaginary parts of the coefficients.
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1 INTRODUCTION

Both the theoretical and applied branches of the mathematical community benefit

greatly from research in the field of zeros of polynomials. In particular, the problem

of counting zeros has been the subject of study for many mathematicians, and its dif-

ficulty has led to the creation of several other fields. In practice, a common technique

is to apply restrictions on the coefficients to lessen the difficulty of finding zeros to

a manageable degree. Like several fields of mathematics, this field owes much of its

early history to Gauss, with his body of work leading to Gauss becoming known by

contemporaries as ‘Analysis Incarnate’ (see page 440 of [3].)

While Gauss’ and Cauchy’s work developed in the early 19th century [8], it was

not until the early 20th century that a Japanese mathematician by the name of

Soichi Kakeya developed a result simultaneously with the Swedish mathematician

Gustaf Hjalmar Eneström [13] that placed a bound on the location of the zeros of

a polynomial having real, positive, and monotonically increasing coefficients. The

Eneström-Kakeya Theorem, as it came to be known, concerns the location of zeros

of a polynomial with monotonically increasing real coefficients. This theorem is the

first we explore, but first we will state a few definitions.

For z ∈ C, if z = a+ib with a, b ∈ R, the modulus of z is denoted |z| and is defined

as |z| =
√
a2 + b2. Further, we denote the argument of z as arg(z), and it represents

the angle between the positive real axis to the line joining the point z to the origin.

In addition, we denote the real part of z as Re(z) = a and the imaginary part of z

as Im(z) = b. Finally, we say a function f : G → C, where G is an open connected

subset of C, is analytic if f is continuously differentiable on G.
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Theorem 1.1. (Eneström-Kakaya) [16] For polynomial p(z) =
∑n

j=0 ajz
j, if the

coefficients satisfy 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all the zeros of p lie in |z| ≤ 1.

Like many, Aziz and Mohammad [2] worked with the locations of zeros of an

analytic function f(z) =
∑∞

j=0 ajz
j, where Re(aj) = αj and Im(aj) = βj. They

imposed the condition 0 < α0 ≤ tα1 ≤ · · · ≤ tkαk ≥ tk+1αk+1 ≥ · · · , along with a

similar condition on the βj’s [2]. Shields denoted this restriction on the coefficients

as a “flip at k,” where the monotonicity of the coefficients changes from increasing to

decreasing [17]. In Chapter 2, we impose a generalization of this reversal condition on

the coefficients of polynomials in order to count the number of zeros in a prescribed

region.

As did Shields [17], we now put forth the idea of counting zeros of a polynomial

which Titchmarsh’s Number of Zeros Theorem used to obtain a bound on the number

of zeros in a certain region.

Theorem 1.2. (Titchmarsh’s Number of Zeros Theorem) [18]

Let f be analytic in |z| < R. Let |f(z)| ≤M in the disk |z| ≤ R and suppose f(0) 6= 0.

Then for 0 < δ < 1, the number of zeros of f(z) in the disk |z| ≤ δR is less than

1

log 1/δ
log

M

|f(0)|
.

A proof of Theorem 1.2 is given by Shields on pages 9-10 of [17]. This theorem

forms the basis of our research, since we are always able to relate back to Titchmarsh’s

result to obtain the number of zeros in a given region. Given a specific hypothesis on

these coefficients, our work is to seek a specific value of M so that we obtain a better

bound on the number of zeros of the polynomials with given coefficients. Note that
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our proofs will rely on Theorem 1.2, but they also rely on the Maximum Modulus

Theorem.

Theorem 1.3. Maximum Modulus Theorem (page 165 of [18]) If G is a region

and f : G → C is an analytic function such that there is a point a ∈ G with

|f(a)| ≥ |f(z)| for all z ∈ G, then f is constant.

Before we begin, there should be a discussion on what others have researched

concerning the number of zeros of a polynomial using Titchmarsh-type results. Re-

search in the field of mathematics concerning the counting of the number of zeros in

a specific region is still very much active, with papers being published as recently as

2013 [9].

Mohammad used a special case of Theorem 1.2 by putting a restriction on the

coefficients of a polynomial similar to that of Theorem 1.1 in order to prove the

following:

Theorem 1.4. [14] Let p(z) =
∑n

j=0 ajz
j be such that 0 < a + 0 ≤ a1 ≤ · · · ≤ an.

Then the number of zeros in |z| ≤ 1
2

does not exceed

1 +
1

log 2
log

(
an
a0

)
.

Dewan weakened the hypothesis of Theorem 1.4 in her dissertation work, and

proved the following two results for polynomials with complex coefficents:

Theorem 1.5. [7] Let p(z) =
∑n

j=0 ajz
j be such that |arg(aj)− β| ≤ α ≤ π/2 for all

1 ≤ j ≤ n and some real α and β, and 0 < |a0| ≤ |a1| ≤ · · · ≤ |an|. Then the number

of zeros of p in |z| ≤ 1
2

does not exceed

1

log 2
log
|an|(cosα + sinα + 1) + 2 sinα

∑n−1
j=0 |aj|

|a0|
.
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Theorem 1.6. [7] Let p(z) =
∑n

j=0 ajz
j where Re(aj) = αj and Im(aj) = βj for all

j and 0 < α0 ≤ α1 ≤ · · · ≤ an−1 ≤ an, then the number of zeros of p in |z| ≤ 1
2

does

not exceed

1 +
1

log 2
log

αn +
∑n

j=0 |βj|
α0

.

Theorems 1.5 and 1.6 were generalized by Pukhta, who found the number of zeros

in |z| ≤ δ, for some 0 < δ < 1 [15]. The next theorem, due to Pukhta, concerns a

monotonicity condition on the moduli of the coefficients.

Theorem 1.7. [15] Let p(z) =
∑n

j=0 ajz
j be such that |arg(aj) − β| ≤ α ≤ π/2 for

all 1 ≤ j ≤ n and some real α and β, and 0 < |a0| ≤ |a1| ≤ · · · ≤ |an|. Then the

number of zeros of p in |z| ≤ δ, 0 < δ < 1, does not exceed

1

log 1/δ
log
|an|(cosα + sinα + 1) + 2 sinα

∑n−1
j=0 |aj|

|a0|
.

Pukhta also proved a result involving a monotonicity condition on only the real

part of the coefficients [15]. As noted by Shields [17], there was a slight typographical

error in the statement of the result as it appeared in print, though the proof was

correct. The correct statement of the theorem is as follows:

Theorem 1.8. [15] Let p(z) =
∑n

j=0 ajz
j be such that |arg(aj) − β| ≤ α ≤ π/2 for

all 1 ≤ j ≤ n and some real α and β, and 0 < α0 ≤ α1 ≤ · · · ≤ αn. Then the number

of zeros of p in |z| ≤ δ, 0 < δ < 1, does not exceed

1

log 1/δ
log

2
(
αn +

∑n
j=0 |βj|

)
|a0|

.

Aziz and Zargar [1] together introduced the idea of imposing an inequality on

both the even and odd indices for the coefficients of a polynomial separately. Cao
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and Gardner [4] impose conditions on the real parts of the coefficients and gave a

result restriction the location of the zeros of a polynomial. In the same paper, Cao

and Gardner gave a hypothesis with restriction on the real and imaginary parts of

the coefficients, splitting them into even and odd indices.

We will reproduce the three major results of [17] in their entirety here, leaving it

up to the reader to look up those cited in future sections. Note that these results on

moduli restrictions are cases of those we will explore throughout this thesis; we are

using the hypotheses in these results and generalizing them.

Theorem 1.9. [9] Let P (z) =
∑n

j=0 ajz
j where for some t > 0 and some 0 ≤ k ≤ n,

0 < |a0| ≤ |a1| t1 ≤ |a2| t2 ≤ · · · ≤ |ak| tk ≥ |ak+1| tk+1 ≥ · · · ≥ |an−1| tn−1 ≥ |an| tn

and | arg(aj)− β| ≤ α ≤ π
2

for 1 ≤ j ≤ n for some α, β ∈ R. Then for 0 < δ < 1, the

number of zeros of P (z) in the disk |z| ≤ δt is less than

l

log 1/δ
log

M

|a0|
,

where

M = |a0|t(1− cosα− sinα) + 2|ak|tk+1 cosα

+|an|tn+1(1 + sinα− cosα) + 2 sinα
n−1∑
j=0

|aj|tj+1.

Theorem 1.10. [10] Let P (z) =
∑n

j=0 ajz
j where for some t > 0 and some nonneg-

ative integers k and `,

0 6= |a0| ≤ |a2| t2 ≤ |a4| t4 ≤ · · · ≤ |a2k| t2k ≥ |a2k+2| t2k+2 ≥ · · ·
∣∣a2bn/2c∣∣ t2bn/2c

|a1| ≤ |a3t2| ≤ |a5t4| ≤ · · · ≤ |a2`−1t2`−2| ≥ |a2`+1t
2`| ≥ · · · |a2b(n+1)/2c−1t

2bn/2c|
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Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt is less than

l

log 1/δ
log

M

|a0|
,

where

M = (|a0|t2 + |a1|t3 + |an−1|tn+1 + |an|tn+2)(1− cosα− sinα)

+2 cosα(|a2k|t2k+2 + |a2`−1|t2`+1) + 2 sinα
n∑
j=0

|aj|tj+2.

Theorem 1.11. [11] Let P (z) = a0 +
∑n

j=µ ajz
j where |a0| 6= 0 and for some t > 0

and some k with µ ≤ k ≤ n,

|aµ| tµ ≤ · · · ≤ |ak−1| tk−1 ≤ |ak| tk ≥ |ak+1| tk+1 ≥ · · · ≥ |an−1| tn−1 ≥ |an| tn

and | arg(aj) − β| ≤ α ≤ π
2

for 1 ≤ j ≤ n for µ ≤ j ≤ n and for some real α and β.

Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt is less than

l

log 1/δ
log

M

|a0|
,

where

M = 2|a0|t+ |aµ|tµ+1(1− cosα− sinα) + 2|ak|tk+1 cosα

+|an|tn+1(1− sinα− cosα) + 2 sinα
n∑
j=µ

|aj|tj+1.

Notice that in Theorem 1.9, Theorem 1.10, and Theorem 1.11, there is only one

reversal, with such a reversal occurring at k, k and s, and k respectively. Chattopad-

hyay, Das, Jain, and Konwar introduced the concept of multiple reversals [6]. In

particular, observe Theorem 2 from [6], which introduced the concept upon which

this thesis builds, here reproduced nearly exactly as it appeared in print.
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Theorem 1.12. (Theorem 2 from [6]) Let p(z) =
∑n

j=0 anz
j, be a polynomial of

degree n. If Re (aj) = αj, Im (aj) = βj, for j = 0, 1, 2, . . . , n and for certain non-

negative integers k1, k2, . . . , kp; r1, r2, . . . , rq and for certain t > 0

α0 ≤ α1t
1 ≤ . . . ≤ αk1t

k1 ≥ αk1+1t
k1+1 ≥ . . . ≥ αk2t

k2 ≤ αk2+1t
k2+1 ≤ . . .

β0 ≤ β1t
1 ≤ . . . ≤ βk1t

k1 ≥ βk1+1t
k1+1 ≥ . . . ≥ βk2t

k2 ≤ βk2+1t
k2+1 ≤ . . .

(with inequalities getting reversed at p indices k1, k2, . . . , kp in the first inequality

and αnt
n being the last term in the first inequality, and similarly, inequalities getting

reversed at p indices r1, r2, . . . , rp in the second inequality and βnt
n being the last

term in the second inequality), then all the zeros of p(z) lie in

R1 ≤ |z| ≤ R2,

14



where

R1 = min

(
t2|a0|
M1

, t

)
=
t2|a0|
M1

=
t2|a0|
M ′

1

R2 = max

(
M2

|an|
,
1

t

)
,

M1 = tM ′
1

M ′
1 = −

{
α0 + (−1)p+1αnt

n +

p∑
u=1

(−1)uαkut
ku

}

−

{
β0 + (−1)p+1βnt

n +

p∑
u=1

(−1)uβkut
ku

}
+ |an| tn,

M2 = −α0t
n−1 + (−1)p+1αnt+ (t2 + 1)

p∑
u=1

(−1)uαkut
n−ku−1

+(t2 − 1)

p∑
u=0

{
(−1)u+1

ku+1−1∑
m=ku+1

αmt
n−m−1

}

−β0tn−1 + (−1)p+1βnt+ (t2 + 1)

q∑
s=1

(−1)sβrst
n−rs−1

+(t2 − 1)

q∑
s=0

{
(−1)s+1

rs+1−1∑
v=rs+1

βvt
n−v−1

}
+ |a0|tn+1,

k0 = r0 = 0,
kp+1 − rq+1 = n.

It is Theorem 1.12 that provided the motivation for this thesis, allowing us to

apply the idea of multiple reversals to each of the theorems explored by Shields in

[17]. Namely, applying such an idea to Theorem 1.9 gave rise to our Theorem 2.1,

making Theorem 1.9 a corollary.

In Chapter 3, we extend the hypotheses to count the number of zeros of a polyno-

mial by considering the moduli, real, as well as real and imaginary restrictions of the

even and odd indexed coefficients, given some numbers of reversals on the different

coefficients.

In Chapter 4, we study a class of polynomials with a gap between the leading

coefficient and the following nonzero coefficient, denoting the class of all such poly-

15



nomials as Pn,µ, where each polynomial is of the form P (z) = a0 +
∑n

j=µ ajz
j. During

their study of Bernstein-type inequalities, Chan and Malik [5], introduced this class

of polynomials. It should be noted that Pn,1 = Pn, the class of all polynomials of

degree n.
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2 A MONOTONICITY CONDITION ON ALL OF THE COEFFICIENTS WITH

A NUMBER OF REVERSALS

In this chapter, we investigate the effect of placing a monotonicity condition on

all the coefficients, assuming 1 ≤ r < n reversals among the coefficients. In Section

2.1, we impose the condition on the moduli of the coefficients, in the manner of

Dewan for locations of zeros [7]. In Section 2.2, we split the coefficients into the real

and imaginary parts, placing a monotonicity restriction on only the real part, in the

manner of Pukhta’s generalization of Theorem 1.6 [15]. In Section 2.3, we consider

the monotonicity restriction on both the real and imaginary parts of the coefficients.

2.1 Restrictions on the Moduli of the Coefficients Given r Reversals

In this section, we impose the condition on the moduli of the coefficients, assuming

r reversals. These polynomials are related to results like Theorem 1.7 with mono-

tonicity flips at each kj, where 1 ≤ j ≤ r. Note that we consider only those coefficients

in the sector | arg(aj)−β| ≤ α ≤ π
2

for 1 ≤ j ≤ n for some α, β ∈ R. The visualization

of this is displayed in Figure 1, with each aj represented by a yellow dot, and α and

β are as shown. Please note that this is only an example of one arrangement of the

α and β values.
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Figure 1: View of a specific sector.

Theorem 2.1. Let P (z) =
∑n

j=0 ajz
j where for some t > 0 and some 0 < k1 < k2 <

· · · < kr < n,

0 < |a0| ≤ |a1| t1 ≤ |a2| t2 ≤ · · · ≤ |ak1 | tk1 ≥ |ak1+1| tk1+1 ≥ · · · ≥ |ak2| tk2 ≤ · · ·

and | arg(aj) − β| ≤ α ≤ π
2

for 1 ≤ j ≤ n for some α, β ∈ R with r ∈ N, 1 ≤ r < n

the number of reversals. Then for 0 < δ < 1, the number of zeros of P (z) in the disk

18



|z| ≤ δt is less than

1

log 1/δ
log

Mr

|a0|
,

where

Mr = |a0|t(1− cosα− sinα) + 2 cosα
r∑

h=1

(−1)h+1 |akh| tkh+1

+|an|tn+1(1 + sinα + (−1)r cosα) + 2 sinα
n−1∑
j=0

|aj|tj+1.

Notice that when r = 1 in Theorem 2.1, it reduces to Theorem 1.9, a main result

in [9]. Further, with t = 1 in Theorem 2.1, we obtain:

Corollary 2.1. Let P (z) =
∑n

j=0 ajz
j with 0 < k1 ≤ k2 ≤ · · · ≤ kr < n,

0 < |a0| ≤ |a1| ≤ |a2| ≤ · · · ≤ |ak1| ≥ |ak1+1| ≥ · · · ≥ |ak2| ≤ · · ·

and | arg(aj) − β| ≤ α ≤ π
2

for 1 ≤ j ≤ n for some α, β ∈ R with r ∈ N, 1 ≤ r ≤ n

the number of reversals. Then for 0 < δ < 1, the number of zeros of P (z) in the disk

|z| ≤ δt is less than

1

log 1/δ
log

Mr

|a0|
,

where

Mr = |a0|(1− cosα− sinα) + 2 cosα
r∑

h=1

(−1)h+1 |akh |

+|an|(1 + sinα + (−1)r cosα) + 2 sinα
n−1∑
j=0

|aj|.

For r = 2 and if each aj is real and positive (that is, α = 0) then Corollary 2.1

reduces to the following:

Corollary 2.2. Let P (z) =
∑n

j=0 ajz
j with 0 < k1 ≤ k2 < n,

0 < |a0| ≤ |a1| ≤ |a2| ≤ · · · ≤ |ak1| ≥ |ak1+1| ≥ · · · ≥ |ak2| ≤ |ak2+1| ≤ · · · ≤ |an|
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and | arg(aj) − β| ≤ α = 0 for 1 ≤ j ≤ n for some β ∈ R. Then for 0 < δ < 1, the

number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

(
2
|ak1| − |ak2|+ |an|

|a0|

)
.

Example 2.1. Consider the polynomial P (z) = 1 + 50z + 45z2 + 1000z3. Since we

have a0 = 1, ak1 = 50, and ak2 = 45, there are two reversals. Note that P (z) = 0 when

z ≈ −0.0202024 and z ≈ 0.0123988±0.222138i. With δ = 0.021, Corollary 2.2 implies

that the number of zeros in |z| ≤ δ = 0.021 is less than 1
log(1/0.021)

log 2(50−45+1000)
1

≈

1.97, which implies that P has at most one zero in |z| ≤ 0.021, and P has exactly one

zero in this region. Therefore, this example shows that Corollary 2.2 is sharp (that

is, best possible) for certain examples.

Example 2.2. Consider the polynomial P (z) = 1 + 50z + 45z2 + 10000z3. Since we

have a0 = 1, ak1 = 50, and ak2 = 45, there are two reversals. Note that P (z) = 0

when z ≈ −0.0189603 and z ≈ 0.00723016 ± 0.0722627i. With δ = 0.0726235,

Corollary 2.2 implies that the number of zeros in |z| ≤ δ = 0.073 is less than

1
log(1/0.073)

log 2(50−45+10000)
1

≈ 3.784, which implies that P has at most three zeros

in |z| ≤ 0.073, and P has exactly three zeros in this region. In this example it has

been shown that in particular cases our results can be used to locate zeros.

Before we begin the proof of Theorem 2.1, we need a lemma previously shown by

Govil and Rahman as well as a statement of the Maximum Modulus Theorem.

Lemma 2.1. [12] Let z, z′ ∈ C with |z| ≥ |z′|. Suppose that | arg(z∗)−β| ≤ α ≤ π/2

for z∗ ∈ {z, z′} and for some real α and β. Then

|z − z′| ≤ (|z| − |z′|) cosα + (|z|+ |z′|) sinα.
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Proof of Theorem 2.1. Consider

F (z) = (t− z)P (z) = (t− z)
n∑
j=0

ajz
j

=
n∑
j=0

(ajtz
j − ajzj+1) =

n∑
j=0

ajtz
j −

n∑
j=0

ajz
j+1

= a0t+
n∑
j=1

ajtz
j −

n∑
j=1

(aj−1z
j)− anzn+1

= a0t+
n∑
j=1

[(ajt− aj−1)zj]− anzn+1.

For |z| = t we have:

|F (z)| ≤ |a0|t+
n∑
j=1

|ajt− aj−1|tj + |an|tn+1

≤ |a0|t+

k1∑
j=1

|(−1)0(ajt− aj−1)|tj +

k2∑
j=k1+1

|(−1)1(ajt− aj−1)|tj + · · ·

+
n∑

j=kr+1

|(−1)r(ajt− aj−1)|tj + |an|tn+1

= |a0|t+

k1∑
j=1

|(−1)0(ajt− aj−1)|tj +
r−1∑
h=1

(
kh+1∑

j=kh+1

|(−1)h(ajt− aj−1)|tj
)

+
n∑

j=kr+1

|(−1)r(ajt− aj−1)|tj + |an|tn+1 := S.

Then by Lemma 2.1 with z = ajt and z′ = aj−1 when

1 ≤ j ≤ k1
k2 + 1 ≤ j ≤ k3
k4 + 1 ≤ j ≤ k5

...
kr + 1 ≤ j ≤ n if r is even
kr−1 + 1 ≤ j ≤ kr if r is odd
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and with z = aj−1 and z′ = ajt when

k1 + 1 ≤ j ≤ k2
k3 + 1 ≤ j ≤ k4
k5 + 1 ≤ j ≤ k6

...
kr−1 + 1 ≤ j ≤ kr if r is even
kr + 1 ≤ j ≤ n if r is odd,

we have for r ∈ N with 2 ≤ r ≤ n,

S ≤ |a0|t+

k1∑
j=1

{
|(−1)0(|ajt| − |aj−1|) cosα + (|aj−1|+ |ajt|) sinα

}
tj

+
r−1∑
h=1

(
kh+1∑

j=kh+1

{
|(−1)h(|ajt| − |aj−1|) cosα + (|aj−1|+ |ajt|) sinα

}
tj

)

+
n∑

j=kr+1

{|(−1)r(|ajt| − |aj−1|) cosα + (|aj−1|+ |ajt|) sinα} tj + |an|tn+1

= |a0|t+ |an|tn+1 +

k1∑
j=1

(−1)0(|aj|tj+1 − |aj−1|tj) cosα

+
r−1∑
h=1

(
kh+1∑

j=kh+1

(−1)h(|aj|tj+1 − |aj−1|tj) cosα

)

+
n∑

j=kr+1

(−1)r(|aj|tj+1 − |aj−1|tj) cosα +

k1∑
j=1

(|aj−1|tj + |aj|tj+1) sinα

+
r−1∑
h=1

(
kh+1∑

j=kh+1

(|aj−1|tj + |aj|tj+1) sinα

)
+

n∑
j=kr+1

(|aj−1|tj + |aj|tj+1) sinα

:= S ′

Remark 2.1. Note the summations including a sinα term may be collected as

S =
n∑
j=1

(|aj−1|tj + |aj|tj+1) sinα.
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Then we have

S = (|a0|t+ |a1|t2) sinα + (|a1|t2 + |a2|t3) sinα + (|a2|t3 + |a3|t4) sinα

+ · · ·+ (|an−2|tn−1 + |an−1|tn) sinα + (|an−1|tn + |an|tn+1) sinα

= |a0|t sinα + (|a1|t2 + |a1|t2) sinα + (|a2|t3 + |a2|t3) sinα + (|a3|t4 + |a3|t4) sinα

+ · · ·+ (|an−1|tn + |an−1|tn) sinα + |an|tn+1 sinα

= |a0|t sinα + 2 sinα
n−1∑
j=1

|aj|tj+1 + |an|tn+1 sinα.

Remark 2.2. Now consider

C0 =

k1∑
j=1

(−1)0(|aj|tj+1 − |aj−1|tj) cosα =
(
|ak1|tk1+1 − |a0|t1

)
cosα,

since it is clearly a telescoping sum. By the same logic, for 1 ≤ h ≤ r − 1, each

Ch =

kh+1∑
j=kh+1

(−1)h(|aj|tj+1 − |aj−1|tj) cosα = (−1)h
(
|akh+1

|tkh+1+1 − |akh|tkh+1
)

cosα.

Finally, we have

Cr =
n∑

j=kr+1

(−1)r(|aj|tj+1 − |aj−1|tj) cosα = (−1)r
(
|an|tn+1 − |akr |tkr+1

)
cosα.

Adding each of these r + 1 sums together gives

C = C0 +
r−1∑
h=1

Ch + Cr

so that we have

C =
(
|ak1|tk1+1 − |a0|t1

)
cosα

+ (−1)1
(
|ak2|tk2+1 − |ak1|tk1+1

)
cosα

+ (−1)2
(
|ak3|tk3+1 − |ak2|tk2+1

)
cosα

+ (−1)3
(
|ak4|tk4+1 − |ak3|tk3+1

)
cosα + · · ·

+ (−1)r
(
|an|tn+1 − |akr |tkr+1

)
cosα.

Observe that the |a0|t and |an|tkn+1 terms have nothing to pair with, but each

other term appears twice in the sum. Further, terms with odd indices have positive
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sign, whereas terms with even indices have negative sign. Then we have that

C = (−1)r|an|tkn+1 cosα + 2 cosα

(
r∑

h=1

(−1)h+1|akh|tkh+1

)
− |a0|t cosα.

Then using Remarks 2.1 and 2.2, we may rewrite S ′ as

S ′ = |a0|t+ C + S + |an|tn+1

= |a0|t+ (−1)r|an|tkn+1 cosα + 2 cosα

(
r∑

h=1

(−1)h+1|akh|tkh+1

)
− |a0|t cosα

+|a0|t sinα + 2 sinα
n−1∑
j=1

(|aj|tj+1) + |an|tn+1 sinα + |an|tn+1

= |a0|t(1− cosα− sinα) + 2 cosα
r∑

h=1

(−1)h+1 |akh | tkh+1

+ |an|tn+1(1 + sinα + (−1)r cosα) + 2 sinα
n−1∑
j=0

|aj|tj+1

= Mr.

Now F (z) is analytic in |z| ≤ t and |F (z)| ≤ Mr for |z| = t. So by Theorem 1.2

and the Maximum Modulus Theorem, the number of zeros of F (and hence of P ) in

|z| ≤ δt is less than or equal to

1

log 1/δ
log

Mr

|a0|
.

The theorem follows.

2.2 Restrictions on the Real Part of the Coefficients Given r Reversals

In this section, we force a restriction of the monotonicity only on the real part of

the coefficients, along with a t condition and reversals at each k1, k2, . . . , kr. With our

number of zeros result in mind, we again seek a different Mr value. First, we show

Theorem 2.2:
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Theorem 2.2. Let P (z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0 and some 0 < k1 ≤ k2 ≤ · · · ≤ kr < n,

0 < α0 ≤ α1t
1 ≤ α2t

2 ≤ · · · ≤ αk1t
k1 ≥ αk1+1t

k1+1 ≥ · · · ≥ αk2t
k2 ≤ · · ·

with r ∈ N, 1 ≤ r < n the number of reversals. Then for 0 < δ < 1, the number of

zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

Mr

|a0|
,

where

Mr = (|α0| − α0)t+ 2
r∑
j=1

(−1)j+1αkj t
kj+1 + (|αn|+ (−1)rαn)tn+1 + 2

n∑
j=0

|βj|tj+1.

Note that for r = 1, we have a result of Gardner and Shields, which appeared in

[9]. Now for t = 1 in Theorem 2.2, we obtain:

Corollary 2.3. Let P (z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤

n. Suppose that for some 0 < k1 < k2 < · · · < kr < n,

0 < α0 ≤ α1 ≤ α2 ≤ · · · ≤ αk1 ≥ αk1+1 ≥ · · · ≥ αk2 ≤ · · ·

with r ∈ N, 1 ≤ r < n the number of reversals. Then for 0 < δ < 1, the number of

zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

Mr

|a0|
,

where

Mr = (|α0| − α0) + 2
r∑
j=1

(−1)j+1αkj + (|αn|+ (−1)rαn) + 2
n∑
j=0

|βj|.
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Further, let r = 2 and βj = 0 for all 0 ≤ j ≤ n in Corollary 2.3 to obtain:

Corollary 2.4. Let P (z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj for

0 ≤ j ≤ n. Suppose that for some 0 < k1 ≤ k2 < n, we have

0 < α0 ≤ α1 ≤ α2 ≤ · · · ≤ αk1 ≥ αk1+1 ≥ · · · ≥ αk2 ≤ · · · ≤ αn

Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

Mr

|a0|
,

where

Mr = (|α0| − α0) + 2(αk1 − αk2) + (|αn|+ αn).

Proof of Theorem 2.2. As in the proof of Theorem 2.1,

F (z) = (t− z)P (z)

= (|α0|+ i|β0|) +
n∑
j=1

[(αj + tβj)t− (αj−1 + iβj−1)]z
j

−(αn + iβn)zn+1

= (|α0|+ i|β0|) +
n∑
j=1

(αjt− αj−1)zj + i
n∑
j=1

(βjt− βj−1)zj

−(αn + iβn)zn+1.

For |z| = t we have

|F (z)| ≤ (|α0|+ |β0|)t+
n∑
j=1

|αjt− αj−1|tj

+
n∑
j=1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1
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= (|α0|+ |β0|)t+

k1∑
j=1

((−1)0(αjt− αj−1))tj

+

k2∑
j=k1+1

((−1)1(αjt− αj−1))tj + · · ·

+
n∑

j=kr+1

((−1)r(αjt− αj−1))tj +
n−1∑
j=1

|βj|tj+1

+|βn|tn+1 + |β0|t+
n−1∑
j=1

|βjtj+1 + (|αn|+ |βn|)tn+1

= |α0|t+

k1∑
j=1

((−1)0(αjt− αj−1))tj

+

k2∑
j=k1+1

((−1)1(αjt− αj−1))tj + · · ·

+
n∑

j=kr+1

((−1)r(αjt− αj−1))tj + 2
n∑
j=0

|βj|tj+1 + |αn|tn+1

= S.

Note now that each summation involving α has its terms cancel and pair as in

Remark 2.2 in Theorem 2.1. Then we have

S = |α0|t+ (−1)rαnt
n+1 + 2

(
r∑
j=1

(−1)j+1αkj t
kj+1

)
− α0t

+2
n∑
j=0

|βj|tj+1 + |αn|tn+1

= (|α0| − α0)t+ 2
r∑
j=1

(−1)j+1αkj t
kj+1 + (|αn|+ (−1)rαn)tn+1 + 2

n∑
j=0

|βj|tj+1

= Mr.

The result now follows as in the proof of Theorem 2.1.

Note that Theorem 2.2 does not impose any condition on the imaginary parts of

the coefficients. However, if we have a monotonicity condition on the imaginary part

as well, we can further refine it, as we do in the next section.
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2.3 Restrictions on the Real and Imaginary Parts of the Coefficients Given r, ρ

Reversals

In this section, we consider results stemming from the placement of restrictions

on both the real and imaginary parts of the coefficients. The real and imaginary

parts have reversals at kj and lm respectively, where 1 ≤ j ≤ r and 1 ≤ m ≤ ρ. Note

that r is the number of reversals among the real parts of the coefficients and ρ is the

number of reversals among the imaginary parts of the coefficients. To begin, observe

Theorem 2.3:

Theorem 2.3. Let P (z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0 and some 0 < k1 ≤ k2 ≤ · · · ≤ kr < n,

0 < α0 ≤ α1t
1 ≤ α2t

2 ≤ · · · ≤ αk1t
k1 ≥ αk1+1t

k1+1 ≥ · · · ≥ αk2t
k2 ≤ · · ·

and for some 0 ≤ `1 ≤ `2 ≤ · · · ≤ `r ≤ n,

0 < β0 ≤ β1t
1 ≤ β2t

2 ≤ · · · ≤ β`1t
`1 ≥ β`1+1t

`1+1 ≥ · · · ≥ β`2t
`2 ≤ · · ·

with r ∈ N, 1 ≤ r < n the number of reversals for the real part of aj and with

ρ ∈ N, 1 ≤ ρ < n the number of reversals for the imaginary part of aj. Then for

0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M[r,ρ]

|a0|
,

where
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M[r,ρ] = (|α0| − α0 + |β0| − β0)t+ 2

(
r∑
j=1

(−1)j+1αkj t
kj+1

)

+2

(
ρ∑
j=1

(−1)j+1β`j t
`j+1

)
+ (|αn|+ (−1)rαn + |βn|+ (−1)ρβn)tn+1.

Proof of Theorem 2.3. As in the proof of Theorem 2.2,

F (z) = (t− z)P (z)

= (|α0|+ i|β0|+
n∑
j=1

(αjt− αj−1)zj + i
n∑
j=1

(βjt− βj−1)zj

−(αn + iβn)zn+1

For |z| = t we have

|F (z)| ≤ (|α0|+ |β0|)t+
n∑
j=1

|αjt− αj−1|tj

+
n∑
j=1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1

= (|α0|+ |β0|)t+

k1∑
j=1

((−1)0(αjt− αj−1))tj +

k2∑
j=k1+1

((−1)1(αjt− αj−1))tj

+ · · ·+
n∑

j=kr+1

((−1)r(αjt− αj−1))tj +

`1∑
j=1

((−1)0(βjt− βj−1))tj

+

`2∑
j=`1+1

((−1)1(βjt− βj−1))tj + · · ·+
n∑

j=`ρ+1

((−1)ρ(βjt− βj−1))tj

+(|αn|+ |βn|)tn+1

= S.

Note now that each summation involving α has its terms cancel and pair as in

Remark 2.2 in Theorem 2.1, with the same being said for each summation involving

β. Then we have
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S = (|α0|+ |β0|)t+ (−1)rαnt
n+1 + 2

(
r∑
j=1

(−1)j+1αkj t
kj+1

)
− α0t

+(−1)ρβnt
n+1 + 2

(
ρ∑
j=1

(−1)j+1β`j t
`j+1

)
− β0t+ (|αn|+ |βn|)tn+1

= (|α0| − α0 + |β0| − β0)t+ 2

(
r∑
j=1

(−1)j+1αkj t
kj+1

)
− α0t

+2

(
ρ∑
j=1

(−1)j+1β`j t
`j+1

)
+ (|αn|+ (−1)rαn + |βn|+ (−1)ρβn)tn+1

= M[r,ρ].

The result now follows as in the proof of Theorem 2.1.

When r = ρ = 1, Theorem 2.3 reduces to Theorem 2 in [9]. With t = 1 in

Theorem 2.3, we have the following:

Corollary 2.5. Let P (z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤

n. Suppose that for some 0 < k1 ≤ k2 ≤ · · · ≤ kr < n,

0 < α0 ≤ α1 ≤ α2 ≤ · · · ≤ αk1 ≥ αk1+1 ≥ · · · ≥ αk2 ≤ · · ·

and for some 0 ≤ `1 ≤ `2 ≤ · · · ≤ `r ≤ n,

0 < β0 ≤ β1 ≤ β2 ≤ · · · ≤ β`1 ≥ β`1+1 ≥ · · · ≥ β`2 ≤ · · ·

with r ∈ N, 1 ≤ r < n the number of reversals for the real part of aj and with

ρ ∈ N, 1 ≤ ρ < n the number of reversals for the imaginary part of aj. Then for

0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M[r,ρ]

|a0|
,

where
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M[r,ρ] = (|α0| − α0 + |β0| − β0) + 2

(
r∑
j=1

(−1)j+1αkj

)

+2

(
ρ∑
j=1

(−1)j+1β`j

)
+ (|αn|+ (−1)rαn + |βn|+ (−1)ρβn).

In this chapter, we investigated the effect of placing a monotonicity condition on

all the coefficients, assuming 1 ≤ r < n reversals among the coefficients. In Section

2.1, we imposed the condition on the moduli of the coefficients, in the manner of

Dewan for locations of zeros [7]. In Section 2.2, we split the coefficients into the real

and imaginary parts, placing a monotonicity restriction on only the real part, in the

manner of Pukhta’s generalization of Theorem 1.6 [15]. In Section 2.3, we considered

the monotonicity restriction on both the real and imaginary parts of the coefficients.
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3 A MONOTONICITY CONDITION ON THE COEFFICIENTS OF EVEN

POWERS AND COEFFICIENTS OF ODD POWERS OF THE VARIABLE

WITH A NUMBER OF REVERSALS

In this chapter, we explore similar types of restrictions of the coefficients of the

polynomial as before, but in addition we impose the monotonicity condition on the

even and odd indexed coefficients separately, as did Cao and Gardner [4] for the

locations of zeros. There are several possibilities for corollaries in this chapter, so

most are omitted with a note that they can all be obtained through standard algebra.

3.1 Restrictions on the Moduli of the Coefficients Given r1, r2 Reversals

In this section, we consider the moduli of the coefficients with reversals considered

separately for both the even and odd indices. As usual, we seek an M value so that

we may use Theorem 1.2. As a notational choice, we use a superscript e to denote

even coefficients and a superscript o to denote those coefficients that are odd.

Theorem 3.1. Let P (z) =
∑n

j=0 ajz
j where for some t > 0, for some 0 = 2ke0 <

2ke1 < · · · < 2ker1 < 2ker1+1 = 2bn/2c we have

0 < |a0| ≤ t2|a2| ≤ t4|a4| ≤ · · · ≤ t2k
e
1 |a2ke1 | ≥ t2k

e
1+1|a2ke1+1| ≥ · · ·

≥ t2k
e
2 |a2ke2 | ≤ t2k

e
2+1|a2ke2+1| ≤ · · · ≤ t2k

e
3 |a2ke3 | ≥ · · ·

(with inequalities reversed at indices 2ke1, 2k
e
2, . . . , 2k

e
r1

and t2bn/2c|a2bn/2c| is the last

term in the inequality), and for some 1 = 2ko0 − 1 < 2ko1 − 1 < · · · < 2kor2 − 1 <

2kor2+1 − 1 = 2b(n+ 1)/2c − 1 we have

|a1| ≤ t2|a3| ≤ t4|a5| ≤ · · · ≤ t2k
o
1−2|a2ko1−1| ≥ t2k

o
1 |a2ko1+1| ≥ · · ·
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≥ t2k
o
2−2|a2ko2−1| ≤ t2k

p
2 |a2ko2+1| ≤ · · · ≤ t2k

o
3−2|a2ko3−1| ≥ · · ·

(with inequalities reversed at indices 2ko1 − 1, 2ko2 − 1, . . . , 2kor2 − 1 and

t2b(n+1)/2c−2|a2b(n+1)/2c−1| is the last term in the inequality). Also suppose |arg(aj)−

β| ≤ α ≤ π/2 for 1 ≤ j ≤ n and some real α and β. Then for 0 < δ < 1 the number

of zeros of P (z) in the disk |z| ≤ δt is less than

1

log(1/δ)
log

(
M

|a0|

)
where

M = (|a0|t2 + |a1|t3)(1− sinα− cosα) + (|an−1|tn+1 + |an|tn+2)(1− sinα)

+(−1)r1|a2bn/2c|t2bn/2c+2 cosα + (−1)r2|a2b(n+1)/2c−1|t2b(n+1)/2c+1 cosα

+2 sinα
n∑
j=0

|aj|tj+2 + 2 cosα

r1∑
j=1

(−1)j+1|a2kej |t
kej+2

+2 cosα

r2∑
j=1

(−1)j+1|a2koj−1|t
koj+1.

When r1 = r2 = 1, Theorem 3.1 reduces to Theorem 1.10, which is a main result

in [10]. Let t = 1 to obtain the following:

Corollary 3.1. Let P (z) =
∑n

j=0 ajz
j where for some 0 = 2ke0 < 2ke1 < · · · < 2ker1 <

2ker1+1 = 2bn/2c we have

0 < |a0| ≤ t2|a2| ≤ t4|a4| ≤ · · · ≤ t2k
e
1 |a2ke1 | ≥ t2k

e
1+1|a2ke1+1| ≥ · · ·

≥ t2k
e
2 |a2ke2 | ≤ t2k

e
2+1|a2ke2+1| ≤ · · · ≤ t2k

e
3 |a2ke3 | ≥ · · ·

(with inequalities reversed at indices 2ke1, 2k
e
2, . . . , 2k

e
r1

and t2bn/2c|a2bn/2c| is the last

term in the inequality), and for some 1 = 2ko0 − 1 < 2ko1 − 1 < · · · < 2kor2 − 1 <

2kor2+1 − 1 = 2b(n+ 1)/2c − 1 we have

|a1| ≤ t2|a3| ≤ t4|a5| ≤ · · · ≤ t2k
o
1−2|a2ko1−1| ≥ t2k

o
1 |a2ko1+1| ≥ · · ·
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≥ t2k
o
2−2|a2ko2−1| ≤ t2k

p
2 |a2ko2+1| ≤ · · · ≤ t2k

o
3−2|a2ko3−1| ≥ · · ·

(with inequalities reversed at indices 2ko1 − 1, 2ko2 − 1, . . . , 2kor2 − 1 and

t2b(n+1)/2c−2|a2b(n+1)/2c−1| is the last term in the inequality). Also suppose |arg(aj)−

β| ≤ α ≤ π/2 for 1 ≤ j ≤ n and some real β. Then for 0 < δ < 1 the number of

zeros of P (z) in the disk |z| ≤ δt is less than

1

log(1/δ)
log

(
M

|a0|

)
where

M = (|a0|+ |a1|)(1− sinα− cosα) + (|an−1|+ |an|)(1− sinα)
+(−1)r1|a2bn/2c| cosα + (−1)r2 |a2b(n+1)/2c−1| cosα

+2 sinα
n∑
j=0

|aj|+ 2 cosα

[
r1∑
j=1

(−1)j+1|a2kej |+
r2∑
j=1

(−1)j+1|a2koj−1|

]
.

Further, consider the case when the coefficients are real and positive, we may take

α = 0 in Corollary 3.1 to obtain:

Corollary 3.2. Let P (z) =
∑n

j=0 ajz
j have real positive coefficients where for some

0 = 2ke0 < 2ke1 < · · · < 2ker1 < 2ker1+1 = 2bn/2c we have

0 < a0 ≤ t2a2 ≤ t4a4 ≤ · · · ≤ t2k
e
1a2ke1 ≥ t2k

e
1+1a2ke1+1 ≥ · · ·

≥ t2k
e
2a2ke2 ≤ t2k

e
2+1a2ke2+1 ≤ · · · ≤ t2k

e
3a2ke3 ≥ · · ·

(with inequalities reversed at indices 2ke1, 2k
e
2, . . . , 2k

e
r1

and t2bn/2c|a2bn/2c| is the last

term in the inequality), and for some 1 = 2ko0 − 1 < 2ko1 − 1 < · · · < 2kor2 − 1 <

2kor2+1 − 1 = 2b(n+ 1)/2c − 1 we have

a1 ≤ t2a3 ≤ t4a5 ≤ · · · ≤ t2k
o
1−2a2ko1−1 ≥ t2k

o
1a2ko1+1 ≥ · · ·
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≥ t2k
o
2−2a2ko2−1 ≤ t2k

p
2a2ko2+1 ≤ · · · ≤ t2k

o
3−2a2ko3−1 ≥ · · ·

(with inequalities reversed at indices 2ko1 − 1, 2ko2 − 1, . . . , 2kor2 − 1 and

t2b(n+1)/2c−2|a2b(n+1)/2c−1| is the last term in the inequality). Then for 0 < δ < 1

the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log(1/δ)
log

(
M

a0

)
where

M = (an−1 + an) + (−1)r1a2bn/2c + (−1)r2a2b(n+1)/2c−1

+2

[
r1∑
j=1

(−1)j+1a2kej +

r2∑
j=1

(−1)j+1a2koj−1

]
.

Example 3.1. Consider the polynomial P (z) = 1 + 1z + 2z2 + 2z3 + 1z4 + 1z5 +

1000z6 + 2z7. Since we have a0 = 1, a2ko1−1 = 1, a2ke1 = 2, a2ko2−1 = 2, a2ke2 = 1, an−2 =

1, an−1 = 1000, and an = 2, we may let t = 1, r1 = 2, and r2 = 2 in Corollary 3.2 to

see that M = (1000 + 2) + 1000 + 2 + 2((2− 1) + (2− 1)) = 2008. Then the number

of zeros of P (z) in the disk |z| ≤ 0.336 is less than 1
log 1/0.336

log 2008
1
≈ 6.98. Since the

roots of P are z ≈ −499.999, z ≈ −0.26664±0.151029i, z ≈ −0.0144517±0.307263i,

and z ≈ 0.280592± 0.183883i, it is obvious that the bound is sharp for this example,

since six of the roots of P lie within |z| ≤ 0.336.

Proof of Theorem 3.1. Consider

G(z) = (t2 − z2)P (z) = a0t
2 + a1t

2z +
n∑
j=2

(ajt
2 − aj−2)zj − an−1zn+1 − anzn+2.
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For |z| = t, we have

|G(z)| ≤ |a0|t2 + |a1|t3 +
n∑
j=2

|ajt2 − aj−2|tj + |an−1|tn+1 + |an|tn+2

= |a0|t2 + |a1|t3 + |an−1|tn+1 + |an|tn+2

+

2ke1∑
j=2
j even

|ajt2 − aj−2|tj +

2ko1−1∑
j=3
j odd

|ajt2 − aj−2|tj

+

2ke2∑
j=2ke1+2
j even

|ajt2 − aj−2|tj +

2ko2−1∑
j=2ko1+1
j odd

|ajt2 − aj−2|tj + · · ·

+

2bn/2c∑
j=2ker1+2

j even

|ajt2 − aj−2|tj +

2b(n+1)/2c−1∑
j=2kor2+1

j odd

|ajt2 − aj−2|tj

= S.

Then by Lemma 2.1,

S ≤ |a0|t2 + |a1|t3 + |an−1|tn+1 + |an|tn+2

+

2ke1∑
j=2
j even

{(−1)0(|aj|t2 − |aj−2|) cosα + (|aj|t2 + |aj−2|) sinα)}tj

+

2ko1−1∑
j=3
j odd

{(−1)0(|aj|t2 − |aj−2|) cosα + (|aj|t2 + |aj−2|) sinα)}tj

+

2ke2∑
j=2ke1+2
j even

{(−1)1(|aj|t2 − |aj−2|) cosα + (|aj|t2 + |aj−2|) sinα)}tj

+

2ko2−1∑
j=2ko1+1
j odd

{(−1)1(|aj|t2 − |aj−2|) cosα + (|aj|t2 + |aj−2|) sinα)}tj + · · ·

+

2bn/2c∑
j=2ker1+2

j even

{(−1)r1(|aj|t2 − |aj−2|) cosα + (|aj|t2 + |aj−2|) sinα)}tj

+

2b(n+1)/2c−1∑
j=2kor2+1

j odd

{(−1)r2(|aj|t2 − |aj−2|) cosα + (|aj|t2 + |aj−2|) sinα)}tj

= S ′.
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So then we have that

S ′ ≤ |a0|t2 + |a1|t3 + |an−1|tn+1 + |an|tn+2

+

2ke1∑
j=2
j even

(−1)0(|aj|tj+2 − |aj−2|tj) cosα +

2ke1∑
j=2
j even

(|aj|tj+2 + |aj−2|tj) sinα

+

2ke2∑
j=2ke1+2
j even

(−1)1(|aj|tj+2 − |aj−2|tj) cosα +

2ke2∑
j=2ke1+2
j even

(|aj|tj+2 + |aj−2|tj) sinα + · · ·

+

2bn/2c∑
j=2ker1+2

j even

(−1)r1(|aj|tj+2 − |aj−2|tj) cosα +

2bn/2c∑
j=2ker1+2

j even

(|aj|tj+2 + |aj−2|tj) sinα

+

2ko1−1∑
j=3
j odd

(−1)0(|aj|tj+2 − |aj−2|tj) cosα +

2ko1−1∑
j=3
j odd

(|aj|tj+2 + |aj−2|tj) sinα

+

2ko2−1∑
j=2ko1+1
j odd

(−1)1(|aj|tj+2 − |aj−2|tj) cosα +

2ko2−1∑
j=2ko1+1
j odd

(|aj|tj+2 + |aj−2|tj) sinα + · · ·

+

2b(n+1)/2c−1∑
j=2kor2+1

j odd

(−1)r1(|aj|tj+2 − |aj−2|tj) cosα +

2b(n+1)/2c−1∑
j=2kor2+1

j odd

(|aj|tj+2 + |aj−2|tj) sinα

= S ′′.

Then by Remarks 1 and 2 in the proof of Theorem 2.1, we have that

S ′′ = |a0|t2 + |a1|t3 + |an−1|tn+1 + |an|tn+2 + (|a2ke1 |t
2ke1+2 − |a0|t2) cosα

+(|a2ke1 |t
2ke1+2 − |a2ke2 |t

2ke2+2) cosα + · · ·
+(−1)r1(|a2bn/2c|t2bn/2c+2 − |a2ker1 |t

2ker1+2) cosα + (|a2ko1−1|t
2ko1+1 − |a1|t3) cosα

+(|a2ko1−1|t
2ko1+1 − |a2ko2−1|t

2ko2+1) cosα + · · ·
+(−1)r2(|a2b(n+1)/2c−1|t2b(n+1)/2c+1 − |a2kor2−1|t

2kor2+1)

+|a0|t2 sinα + |an|tn+2 sinα + |a1|t3 sinα + |an−1|tn+1 sinα + 2 sinα
n−2∑
j=2

|aj|tj+2

= (|a0|t2 + |a1|t3)(1− sinα− cosα) + (|an−1|tn+1|+ |an|tn+2)(1− sinα)

+(−1)r1|a2bn/2c|t2bn/2c+2 cosα + (−1)r2|a2b(n+1)/2c−1|t2b(n+1)/2c+1 cosα

+2 sinα
n∑
j=0

|aj|tj+2 + 2 cosα

[
r1∑
j=1

(−1)j+1|a2kej |t
kej+2 +

r2∑
j=1

(−1)j+1|a2koj−1|t
koj+1

]
= M.

The theorem follows as in the proof of Theorem 2.1.
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3.2 Restrictions on the Real Part of the Coefficients Given r1, r2 Reversals

In this section, we put the restriction on the real part of the coefficients only as

in Chapter 2, adding also the even and odd restriction on the coefficients.

Theorem 3.2. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0, and some 0 = 2ke0 < 2ke1 < · · · < 2ker1 < 2ker1+1 =

2bn/2c, we have

0 < α0 ≤ t2α2 ≤ t4α4 ≤ · · · ≤ t2k
e
1α2ke1

≥ t2k
e
1+1α2ke1+1 ≥ · · ·

≥ t2k
e
2α2ke2

≤ t2k
e
2+1α2ke2+1 ≤ · · · ≤ t2k

e
3α2ke3

≥ · · ·

(with inequalities reversed at indices 2ke1, 2k
e
2, . . . , 2k

e
r1

and t2bn/2cα2bn/2c is the last

term in the inequality), and for some 1 = 2ko0 − 1 < 2ko1 − 1 < · · · < 2kor2 − 1 <

2kor2+1 − 1 = 2b(n+ 1)/2c − 1 we have

α1 ≤ t2α3 ≤ t4α5 ≤ · · · ≤ t2k
o
1−2α2ko1−1 ≥ t2k

o
1α2ko1+1 ≥ · · ·

≥ t2k
o
2−2α2ko2−1 ≤ t2k

p
2α2ko2+1 ≤ · · · ≤ t2k

o
3−2α2ko3−1 ≥ · · ·

(with inequalities reversed at indices 2ko1 − 1, 2ko2 − 1, . . . , 2kor2 − 1 and

t2b(n+1)/2c−2α2b(n+1)/2c−1 is the last term in the inequality). Then for 0 < δ < 1

the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log(1/δ)
log

(
M

|a0|

)
where

M = (|α0|+ 2|β0| − α0)t
2 + (|α2| − α1 + 2|β1|)t3 + (|αn−1|+ |βn−1|)tn+1

+(|αn|+ |βn|)tn+2 + (−1)r1α2bn/2ct
2bn/2c+2 + (−1)r2α2b(n+1)/2c−1t

2b(n+1)/2c+1

+2

(
r1∑
j=1

(−1)j+1α2kej
t2k

e
j+2

)
+ 2

(
r2∑
j=1

(−1)j+1α2koj−1t
2koj+1

)
+ 2

(
n∑
j=2

|βj|tj+2

)
.
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When r1 = r2 = 1, Theorem 3.2 reduces to Gardener and Shields Theorem 2.3 in

[10] Now for t = 1 in Theorem 3.2,

Corollary 3.3. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that for some 0 = 2ke0 < 2ke1 < · · · < 2ker1 < 2ker1+1 = 2bn/2c, we have

0 < α0 ≤ α2 ≤ α4 ≤ · · · ≤ α2ke1
≥ α2ke1+1 ≥ · · · ≥ α2ke2

≤ α2ke2+1 ≤ · · · ≤ α2ke3
≥ · · ·

(with inequalities reversed at indices 2ke1, 2k
e
2, . . . , 2k

e
r1

and t2bn/2cα2bn/2c is the last

term in the inequality), and for some 1 = 2ko0 − 1 < 2ko1 − 1 < · · · < 2kor2 − 1 <

2kor2+1 − 1 = 2b(n+ 1)/2c − 1 we have

α1 ≤ α3 ≤ α5 ≤ · · · ≤ α2ko1−1 ≥ α2ko1+1 ≥ · · · ≥ α2ko2−1 ≤ α2ko2+1 ≤ · · · ≤ α2ko3−1 ≥ · · ·

(with inequalities reversed at indices 2ko1 − 1, 2ko2 − 1, . . . , 2kor2 − 1 and

t2b(n+1)/2c−2α2b(n+1)/2c−1 is the last term in the inequality). Then for 0 < δ < 1

the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log(1/δ)
log

(
M

|a0|

)
where

M = (|α0|+ 2|β0| − α0) + (|α2| − α1 + 2|β1|) + (|αn−1|+ |βn−1|)
+(|αn|+ |βn|) + (−1)r1α2bn/2c + (−1)r2α2b(n+1)/2c−1

+2

(
r1∑
j=1

(−1)j+1α2kej

)
+ 2

(
r2∑
j=1

(−1)j+1α2koj−1

)
+ 2

(
n∑
j=2

|βj|

)
.

Further, for 0 ≤ j ≤ n let each βj = 0 and let r1 = r2 = 2 in Corollary 3.3 to

obtain:
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Corollary 3.4. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj, Im(aj) = βj = 0 for

0 ≤ j ≤ n. Suppose that for some 0 = 2ke0 < 2ke1 < 2ke2 < 2ke3 = 2bn/2c, we have

0 < α0 ≤ α2 ≤ α4 ≤ · · · ≤ α2ke1
≥ α2ke1+1 ≥ · · · ≥ α2ke2

≤ α2ke2+1 ≤ · · · ≤ α2bn/2c

and for some 1 = 2ko0 − 1 < 2ko1 − 1 < 2ko2 − 1 < 2ko3 − 1 = 2b(n+ 1)/2c − 1 we have

α1 ≤ α3 ≤ α5 ≤ · · · ≤ α2ko1−1 ≥ α2ko1+1 ≥ · · · ≥ α2ko2−1 ≤ α2ko2+1 ≤ α2b(n+1)/2c−1.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log(1/δ)
log

(
M

|a0|

)
where

M = (|α0| − α0) + (|α2| − α1) + |αn−1|
+|αn|+ α2bn/2c + α2b(n+1)/2c−1
+2(α2ke1

− α2ke2
) + 2(α2ko1−1 − α2ko2−1).

Proof of Theorem 3.2. Consider

G(z) = (t2 − z2)P (z) = a0t
2 + a1t

2z +
n∑
j=2

(ajt
2 − aj−2)zj − an−1zn+1 − anzn+2.

For |z| = t, we have

G(z) ≤ (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3 +
n∑
j=2

|αjt2 − αj−2|tj

+
n∑
j=2

(|βj|t2 + |βj−2|)tj + (|αn−1|+ |βn−1|)tn+1

+(|αn|+ |βn|)tn+2
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= (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3 + (|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

+

2bn/2c∑
j=2
j even

|αjt2 − αj−2|tj +

2b(n+1)/2c∑
j=3
j odd

|αjt2 − αj−2|tj

+

2bn/2c∑
j=2
j even

(|βj|t2 + |βj−2|tj) +

2bn+1
2
c∑

j=3
j odd

(|βj|t2 + |βj−2|tj)

= (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3 + (|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

+

2ke1∑
j=2
j even

(−1)0(αjt
j+2 − αj−2tj) +

2ko1−1∑
j=3
j odd

(−1)0(αjt
j+2 − αj−2tj)

+

2ke2∑
j=2ke1+2
j even

(−1)1(αjt
j+2 − αj−2tj) +

2ko2−1∑
j=2ko1+1
j odd

(−1)1(αjt
j+2 − αj−2tj) + · · ·

+

2bn
2
c∑

j=2ker1+2

j even

(−1)r1(αjt
j+2 − αj−2tj) +

2bn+1
2
c−1∑

j=2kor2+1

j odd

(−1)r2(αjt
j+2 − αj−2tj)

+

2bn/2c∑
j=2
j even

|βj|t2 +

2bn/2c∑
j=2
j even

|βj−2|tj +

2bn+1
2
c∑

j=3
j odd

|βj|t2 +

2bn+1
2
c∑

j=3
j odd

|βj−2|tj

= (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3 + (|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

+(α2ke1
t2k

e
1+2 − α0t

2) + (α2ko1−1t
2ko1+1 − α1t

3)
+(α2ke1

t2k
e
1+2 − α2ke2

t2k
e
2+2) + (α2ko1−1t

2ko1+1 − α2ko2−1t
2ko2+1) + · · ·

+(−1)r1(α2bn
2
ct

2bn
2
c+2 − α2ker1

t2k
e
r1

+2) + (−1)r2(α2bn+1
2
c−1t

2bn+1
2
c+1 − α2kor2

t2k
o
r2

+1)

+|β0|t2 + |β1|t3 − |β2bn
2
c|t2b

n
2
c+2 − |β2bn+1

2
c−1|t2b

n+1
2
c+1

= (|α0|+ 2|β0| − α0)t
2 + (|α2| − α1 + 2|β1|)t3 + (|αn−1|+ |βn−1|)tn+1

+(|αn|+ |βn|)tn+2 + (−1)r1α2bn/2ct
bn/2c+2 + (−1)r2α2b(n+1)/2c−1t

b(n+1)/2c+1

+2

(
r1∑
j=1

(−1)j+1α2kej
t2k

e
j+2

)
+ 2

(
r2∑
j=1

(−1)j+1α2koj−1t
2koj+1

)
+ 2

(
n∑
j=2

|βj|tj+2

)
= M.

The theorem follows as in the proof of Theorem 2.1.
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3.3 Restrictions on the Real and Imaginary Parts of the Coefficients

Given r1, r2, r3, r4 Reversals

In this section, we place restrictions on the real and imaginary part of the coeffi-

cients as we did in Section 2.3 , yet we also impose the restriction of even and odd

indices on the coefficients. This gives four restrictions in the hypotheses: on even

indexed and real coefficients, on even indexed and imaginary coefficients, on odd in-

dexed and real coefficients, as well as on odd indexed and imaginary coefficients. Due

to the restrictions, this section produces several corollaries. We do not list them all,

but again we note how we can easily obtain the remaining corollaries with standard

algebra.

Theorem 3.3. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0, and some 0 = 2ker0 < 2ker1 < · · · < 2kerr1 < 2ker2r1+1 =

2bn/2c and some 0 = 2kei0 < 2kei1 < · · · < 2keir1 < 2keir1+1 = 2bn/2c, we have

0 < α0 ≤ t2α2 ≤ t4α4 ≤ · · · ≤ t2k
er
1 α2ker1

≥ t2k
er
1 +1α2ker1 +1 ≥ · · ·

≥ t2k
er
2 α2ker2

≤ t2k
er
2 +1α2ker2 +1 ≤ · · · ≤ t2k

er
3 α2ker3

≥ · · ·

and

0 < β0 ≤ t2β2 ≤ t4β4 ≤ · · · ≤ t2k
ei
1 β2kei1 ≥ t2k

ei
1 +1β2kei1 +1 ≥ · · ·

≥ t2k
ei
2 β2kei2 ≤ t2k

ei
2 +1β2kei2 +1 ≤ · · · ≤ t2k

ei
3 β2kei3 ≥ · · ·

(with inequalities reversed at indices 2ke1, 2k
e
2, . . . , 2k

e
r1

and t2bn/2cα2bn/2c or t2bn/2cβ2bn/2c

is the last term in the inequality,) and for some 1 = 2kor0 − 1 < 2kor1 − 1 < · · · <

2korr2 − 1 < 2korr2+1 − 1 = 2b(n + 1)/2c − 1 and some 1 = 2koi0 − 1 < 2koi1 − 1 < · · · <
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2koir2 − 1 < 2koir2+1 − 1 = 2b(n+ 1)/2c − 1 we have

α1 ≤ t2α3 ≤ t4α5 ≤ · · · ≤ t2k
or
1 −2α2kor1 −1 ≥ t2k

or
1 α2kor1 +1 ≥ · · ·

≥ t2k
or
2 −2α2kor2 −1 ≤ t2k

or
2 α2kor2 +1 ≤ · · · ≤ t2k

or
3 −2α2kor3 −1 ≥ · · ·

and

β1 ≤ t2β3 ≤ t4β5 ≤ · · · ≤ t2k
oi
1 −2β2koi1 −1 ≥ t2k

oi
1 β2koi1 +1 ≥ · · ·

≥ t2k
oi
2 −2β2koi2 −1 ≤ t2k

oi
2 β2koi2 +1 ≤ · · · ≤ t2k

oi
3 −2β2koi3 −1 ≥ · · ·

(with inequalities reversed at indices 2ko1 − 1, 2ko2 − 1, . . . , 2kor2 − 1 and

t2b(n+1)/2c−2α2b(n+1)/2c−1 or t2b(n+1)/2c−2β2b(n+1)/2c−1 is the last term in the inequal-

ity). Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less

than

1

log(1/δ)
log

(
M

|a0|

)
where

M = (|α0| − α0 + |β0| − β0)t2 + (|α1| − α1 + |β1| − β1)t3 + (|αn−1|+ |βn−1|)tn+1

+(|αn|+ |βn|)tn+2 + (−1)r1α2bn/2ct
bn/2c+2 + (−1)r2α2b(n+1)/2c−1t

b(n+1)/2c+1

+(−1)r3β2bn/2ct
bn/2c+2 + (−1)r4β2b(n+1)/2c−1t

b(n+1)/2c+1

+2

(
r1∑
j=1

(−1)j+1α2kerj
t2k

er
j +2

)
+ 2

(
r2∑
j=1

(−1)j+1α2korj −1t
2korj +1

)

+2

(
r3∑
j=1

(−1)j+1β2keij t
2keij +2

)
+ 2

(
r4∑
j=1

(−1)j+1β2koij −1t
2koij +1

)
.

Proof of Theorem 3.3. Consider

G(z) = (t2 − z2)P (z) = a0t
2 + a1t

2z +
n∑
j=2

(ajt
2 − aj−2)zj − an−1zn+1 − anzn+2.
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For |z| = t, we have

G(z) ≤ (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3 +
n∑
j=2

|αjt2 − αj−2|tj

+
n∑
j=2

(|βj|t2 + |βj−2|)tj + (|αn−1|+ |βn−1|)tn+1

+(|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3 + (|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

+

2bn/2c∑
j=2
j even

|αjt2 − αj−2|tj +

2b(n+1)/2c∑
j=3
j odd

|αjt2 − αj−2|tj

+

2bn/2c∑
j=2
j even

(|βj|t2 + |βj−2|tj) +

2bn+1
2
c∑

j=3
j odd

(|βj|t2 + |βj−2|tj)

= (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3 + (|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

+

2ker1∑
j=2
j even

(−1)0(αjt
j+2 − αj−2tj) +

2kor1 −1∑
j=3
j odd

(−1)0(αjt
j+2 − αj−2tj)

+

2ker2∑
j=2ker1 +2
j even

(−1)1(αjt
j+2 − αj−2tj) +

2kor2 −1∑
j=2kor1 +1
j odd

(−1)1(αjt
j+2 − αj−2tj) + · · ·

+

2bn
2
c∑

j=2kerr1+2

j even

(−1)r1(αjt
j+2 − αj−2tj) +

2bn+1
2
c−1∑

j=2korr2+1

j odd

(−1)r2(αjt
j+2 − αj−2tj)

+

2kei1∑
j=2
j even

(−1)0(βjt
j+2 − βj−2tj) +

2koi1 −1∑
j=3
j odd

(−1)0(βjt
j+2 − βj−2tj)

+

2kei2∑
j=2kei1 +2
j even

(−1)1(βjt
j+2 − βj−2tj) +

2koi2 −1∑
j=2koi1 +1
j odd

(−1)1(βjt
j+2 − βj−2tj) + · · ·

+

2bn
2
c∑

j=2keir3+2

j even

(−1)r1(βjt
j+2 − βj−2tj) +

2bn+1
2
c−1∑

j=2koir4+1

j odd

(−1)r2(βjt
j+2 − βj−2tj)
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= (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3 + (|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

+(α2ker1
t2k

er
1 +2 − α0t

2) + (α2kor1 −1t
2kor1 +1 − α1t

3)
+(α2ker1

t2k
er
1 +2 − α2ker2

t2k
er
2 +2) + (α2kor1 −1t

2kor1 +1 − α2kor2 −1t
2kor2 +1) + · · ·

+(−1)r1(α2bn
2
ct
bn
2
c+2 − α2kerr1

t2k
er
r1

+2) + (−1)r2(α2bn+1
2
c−1t

bn+1
2
c+1 − α2korr2

t2k
or
r2

+1)

+(β2kei1 t
2kei1 +2 − β0t2) + (β2koi1 −1t

2koi1 +1 − β1t3)
+(β2kei1 t

2kei1 +2 − β2kei2 t
2ke2+2) + (β2koi1 −1t

2koi1 +1 − β2koi2 −1t
2koi2 +1) + · · ·

+(−1)r3(β2bn
2
ct
bn
2
c+2 − β2keir3 t

2keir3+2) + (−1)r4(β2bn+1
2
c−1t

bn+1
2
c+1 − β2koir4 t

2koir4+1)

= (|α0| − α0 + |β0| − β0)t2 + (|α1| − α1 + |β1| − β1)t3 + (|αn−1|+ |βn−1|)tn+1

+(|αn|+ |βn|)tn+2 + (−1)r1α2bn/2ct
2bn/2c+2 + (−1)r2α2b(n+1)/2c−1t

2b(n+1)/2c+1

+(−1)r3β2bn/2ct
bn/2c+2 + (−1)r4β2b(n+1)/2c−1t

b(n+1)/2c+1

+2

(
r1∑
j=1

(−1)j+1α2kerj
t2k

er
j +2

)
+ 2

(
r2∑
j=1

(−1)j+1α2korj −1t
2korj +1

)

+2

(
r3∑
j=1

(−1)j+1β2keij t
2keij +2

)
+ 2

(
r4∑
j=1

(−1)j+1β2koij −1t
2koij +1

)
= M.

The theorem follows as in the proof of Theorem 2.1.

Note that if r1 = r2 = 1, then Theorem 3.3 reduces to Gardner and Shields

Theorem 2.7 in [10].

In this chapter, we explored similar types of restrictions of the coefficients of the

polynomial as before, but in addition we imposed the monotonicity condition on the

even and odd indexed coefficients separately, as did Cao and Gardner [4] for the

locations of zeros.
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4 A MONOTONICITY CONDITION ON THE COEFFICIENTS OF

POLYNOMIALS WITH A GAP WITH A NUMBER OF REVERSALS

In this chapter, we again consider the same three types of hypotheses on the

coefficients of a polynomial as before: namely those concerning the monotonicity of

the moduli, real parts, as well as real and imaginary parts of the coefficients. Unlike

before, we now consider such restrictions on the class of polynomials denoted Pn,µ.

Polynomials of this class have a gap between the leading coefficient and the preceding

nonzero coefficient, which has an index of µ. These polynomials are typically studied

for their connection with Bernstein-type inequalities [5], and we obtain a number of

new results for this class of polynomials. Symbolically, we say a polynomial P ∈ Pn,µ

if it is of the form

P (z) = a0 +
n∑
j=µ

ajz
j

with µ ∈ N, µ ≥ 2, z ∈ C, and for k ∈ N, each ak is a coefficient of the polynomial P

with a1 = a2 = · · · = aµ−1 = 0.

4.1 Restrictions on the Moduli of the Coefficients Given r Reversals

In this section, we consider the Pn,µ class of polynomials with the same restriction

as in section 2.1. As before, we initially only restrict the real part of the coefficients,

and we are seeking a bound on Mr to count the number of zeros using Theorem 1.2.

Theorem 4.1. Let P (z) = a0 +
∑n

j=µ ajz
j where for some t > 0 and some 0 < k1 <

k2 < · · · < kr < n,

|aµ| tµ ≤ · · · ≤ |ak1| tk1 ≥ |ak1+1| tk1+1 ≥ · · · ≥ |ak2| tk2 ≤ · · ·
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and | arg(aj) − β| ≤ α ≤ π
2

for µ ≤ j ≤ n for some α, β ∈ R with r ∈ N, 1 ≤ r < n

the number of reversals with a0 6= 0 and

|a1| = |a2| = · · · = |aµ−1| = 0.

Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

Mr

|a0|
,

where

Mr = 2|a0|t+ |aµ|tµ+1(1 + sinα− cosα) + 2 sinα

(
n−1∑

h=µ+1

|aj|tj+1

)

+|an|tn+1(1 + sinα + (−1)r cosα) + 2 cosα

(
r∑

h=1

(−1)h+1|akh|tkh+1

)
.

Proof of Theorem 4.1. Consider

F (z) = (t− z)P (z)

= (t− z)

(
a0 +

n∑
j=µ

ajz
j

)

= a0(t− z) +
n∑
j=µ

ajtz
j −

n∑
j=µ

ajz
j+1

= a0(t− z) +
n∑
j=µ

ajtz
j −

n+1∑
j=µ+1

aj−1z
j

= a0(t− z) + aµtz
µ +

n∑
j=µ+1

(ajt− aj−1)zj − anzn+1.

For |z| = t we have

|F (z)| ≤ 2|a0|t+ |aµ|tµ+1 +
n∑

j=µ+1

|ajt− aj−1|tj − |an|tn+1
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= 2|a0|t+ |aµ|tµ+1 +

k1∑
j=µ+1

|(−1)0(ajt− aj−1)|tj

+

k2∑
j=k1+1

|(−1)1(ajt− aj−1)|tj + · · ·

+
n∑

j=kr+1

|(−1)r(ajt− aj−1)|tj + |an|tn+1

= S.

Then by Lemma 2.1 with z = ajt and z′ = aj−1 when

1 ≤ j ≤ k1
k2 + 1 ≤ j ≤ k3
k4 + 1 ≤ j ≤ k5

...
kr + 1 ≤ j ≤ n if r is even

kr−1 + 1 ≤ j ≤ kr if r is odd

and with z = aj−1 and z′ = ajt when

k1 + 1 ≤ j ≤ k2
k3 + 1 ≤ j ≤ k4
k5 + 1 ≤ j ≤ k6

...
kr + 1 ≤ j ≤ n if r is odd

kr−1 + 1 ≤ j ≤ kr if r is even

we have for r ∈ N with 2 ≤ r < n,
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S ≤ 2|a0|t+ |aµ|tµ+1 +

k1∑
j=µ+1

{
|(−1)0(|ajt| − |aj−1|) cosα + (|aj−1|+ |ajt|) sinα

}
tj

+
r−1∑
h=1

(
kh+1∑

j=kh+1

{
|(−1)h(|ajt| − |aj−1|) cosα + (|aj−1|+ |ajt|) sinα

}
tj

)

+
n∑

j=kr+1

{|(−1)r(|ajt| − |aj−1|) cosα + (|aj−1|+ |ajt|) sinα} tj + |an|tn+1

= 2|a0|t+ |aµ|tµ+1 +

k1∑
j=µ+1

(−1)0(|aj|tj+1 − |aj−1|tj) cosα

+
r−1∑
h=1

(
kh+1∑

j=kh+1

(−1)h(|aj|tj+1 − |aj−1|tj) cosα

)

+
n∑

j=kr+1

(−1)r(|aj|tj+1 − |aj−1|tj) cosα +

k1∑
j=1

(|aj−1|tj + |aj|tj+1) sinα

+
r−1∑
h=1

(
kh+1∑

j=kh+1

(|aj−1|tj + |aj|tj+1) sinα

)
+

n∑
j=kr+1

(|aj−1|tj + |aj|tj+1) sinα

+|an|tn+1

:= S ′.

So we note that by Remark 1.2 from the proof of Theorem 2.1 that the sum C of

the cosα terms is

C = (−1)r|an|tn+1 cosα + 2 cosα

(
r∑

h=1

(−1)h+1|akh|tkh+1

)
− |aµ|tµ+1 cosα.

By Remark 1.1, the sum S of the sinα terms is

S = |an|tn+1 sinα + 2 sinα

(
n−1∑

h=µ+1

|aj|tj+1

)
+ |aµ|tµ+1 sinα.

Then

49



S ′ = 2|a0|t+ |aµ|tµ+1 + C + S + |an|tn+1

= 2|a0|t+ |aµ|tµ+1 + (−1)r|an|tn+1 cosα + 2 cosα

(
r∑

h=1

(−1)h+1|akh|tkh+1

)

−|aµ|tµ+1 cosα + |an|tn+1 sinα + 2 sinα

(
n−1∑

h=µ+1

|aj|tj+1

)
+ |aµ|tµ+1 sinα

+|an|tn+1

= 2|a0|t+ |aµ|tµ+1(1 + sinα− cosα) + 2 sinα

(
n−1∑

h=µ+1

|aj|tj+1

)

+|an|tn+1(1 + sinα + (−1)r cosα) + 2 cosα

(
r∑

h=1

(−1)h+1|akh|tkh+1

)
= Mr.

The theorem follows as in the proof of Theorem 2.1.

When r = 1, this reduces to Corollary 1.11 in [11]. Further, let t = 1 and let

α = 0, thereby considering only the real, positive parts of the coefficients. We obtain

the following corollary:

Corollary 4.1. Let P (z) = a0 +
∑n

j=µ ajz
j have real nonnegative coefficients where

for some 0 < k1 < k2 < · · · < kr < n,

αµ ≤ · · · ≤ αk1 ≥ αk1+1 ≥ · · · ≥ αk2 ≤ · · ·

and with r ∈ N, 1 ≤ r < n the number of reversals, a0 6= 0, and

a1 = a2 = · · · = aµ−1 = 0.

Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

Mr

a0
,

where
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Mr = 2a0 + an(1 + (−1)r) + 2

(
r∑

h=1

(−1)h+1akh

)
.

Example 4.1. Consider the polynomial P (z) = 1 + 1z2 + 2z3 + z4 + 100z5 + z6.

Note that we may apply Corollary 4.3 with µ = 2 and r = 3. First, note that we

have a0 = 1, aµ = 1, ak1 = 2, ak2 = 1, ak3 = 100, with an = 1. Then we may find

that M3 = 2(1) + (1)(0) + 2((2) − (1) + (100)) = 204. Then the number of zeros in

the disk |z| ≤ δ = 0.403 is less than 1
log 1/0.403

log 204
1
≈ 5.851, implying that there

are less than or equal to five zeros in the region. This bound is sharp, since the six

zeros of P (z) are z ≈ −99.9902, z ≈ −0.402938, z ≈ −0.11113 ± 0.380903i, and

z ≈ 0.307698± 0.250946i, five of which lie in |z| ≤ 0.403.

4.2 Restrictions on the Real Part of the Coefficients Given r Reversals

In this section, we place a monotonicity restriction on the real part of the coeffi-

cients only for the polynomials in the class Pn,µ.

Theorem 4.2. Let P (z) = a0 +
∑n

j=µ+1 ajz
j where Re aj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some t > 0 and some 0 < k1 < k2 < · · · < kr < n,

αµt
µ ≤ · · · ≤ αk1t

k1 ≥ αk1+1t
k1+1 ≥ · · · ≥ αk2t

k2 ≤ · · ·

with r ∈ N, 1 ≤ r < n the number of reversals and α1 = α2 = · · · = αµ−1 = 0. Then

for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

Mr

|a0|
,
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where

Mr = 2|α0 + β0|t+ (|αµ| − αµ)tµ+1 + 2

(
r∑
j=1

(−1)j+1αkj t
kj+1

)

+(|αn|+ (−1)rαn)tn+1 + 2
n∑

j=µ+1

|βj|tj+1

Note that with r = 1 in Theorem 4.2, we obtain Corollary 1.11, which appears in

[11]. For t = 1 in Theorem 4.2, we obtain:

Corollary 4.2. Let P (z) = a0 +
∑n

j=µ+1 ajz
j where Re aj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some 0 < k1 < k2 < · · · < kr < n,

αµ ≤ · · · ≤ αk1 ≥ αk1+1 ≥ · · · ≥ αk2 ≤ · · ·

with r ∈ N, 1 ≤ r < n the number of reversals and α1 = α2 = · · · = αµ−1 = 0. Then

for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

Mr

|a0|
,

where
Mr = 2|α0 + β0|+ (|αµ| − αµ) + (|αn|+ (−1)rαn)

+2

(
r∑
j=1

(−1)j+1αkj

)
+ 2

n∑
j=µ+1

|βj|

Further, let each βj = 0 where 0 ≤ j ≤ n with r = 2 in Corollary 4.3 to obtain:

Corollary 4.3. Let P (z) = a0 +
∑n

j=µ+1 ajz
j where Re aj = αj and Im aj = βj = 0

for µ ≤ j ≤ n. Suppose that for some 0 < k1 < k2 < n,

αµ ≤ · · · ≤ αk1 ≥ αk1+1 ≥ · · · ≥ αk2 ≤ · · · ≤ αn

with α1 = α2 = · · · = αµ−1 = 0. Then for 0 < δ < 1, the number of zeros of P (z) in

the disk |z| ≤ δt is less than

1

log 1/δ
log

M2

|a0|
,
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where

M2 = 2|α0|+ (|αµ| − αµ) + (|αn|+ αn) + 2(αk1 − αk2).

Proof of Theorem 4.2. As in the proof of Theorem 4.1,

F (z) = (t− z)P (z) = (|α0|+ i|β0|)(t− z) + (αµ + iβµ)tzµ

+
n∑

j=µ+1

[(αj + tβj)t− (αj−1 + iβj−1)]z
j − (αn + iβn)zn+1

= (|α0|+ i|β0|)(t− z) + (αµ + iβµ)tzµ) +
n∑

j=µ+1

(αjt− αj−1)zj

+i
n∑

j=µ+1

(βjt− βj−1)zj − (αn + iβn)zn+1.

For |z| = t we have

|F (z)| ≤ 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1

n∑
j=µ+1

|αjt− αj−1|tj

+
n∑

j=µ+1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1

+

k1∑
j=µ+1

((−1)0(αjt− αj−1))tj

+

k2∑
j=k1+1

((−1)1(αjt− αj−1))tj + · · ·

+
n∑

j=kr+1

((−1)r(αjt− αj−1))tj

+

(
n∑

j=µ+1

|βj|t+ |βj−1|

)
tj + (|αn|+ |βn|)tn+1
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= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

k1∑
j=µ+1

((−1)0(αjt− αj−1))tj

+

k2∑
j=k1+1

((−1)1(αjt− αj−1))tj + · · ·

+
n∑

j=kr+1

((−1)r(αjt− αj−1))tj

+

(
n∑

j=µ+1

|βj|t+ |βj−1|

)
tj + (|αn|+ |βn|)tn+1

= S.

Note now that each summation involving α has its terms cancel and pair as in

Remark 2.2 in Theorem 2.1. In addition, the terms involving β pair as in Remark 2.1

in Theorem 2.1 Then we have

S = 2|α0 + β0|t+ (|αµ|+ |βµ|)tµ+1 + (−1)rαnt
n+1 + 2

(
r∑
j=1

(−1)j+1αkj t
kj+1

)

−αµtµ+1 + |βn|tn+1 + 2
n−1∑
j=µ+2

|βj|tj+1 + |βµ|tµ+1 + (|αn|+ |βn|)tn+1

= 2|α0 + β0|t+ (|αµ| − αµ)tµ+1 + 2

(
r∑
j=1

(−1)j+1αkj t
kj+1

)

+(|αn|+ (−1)rαn)tn+1 + 2
n∑

j=µ+1

|βj|tj+1

= Mr.

The result now follows as in the proof of Theorem 2.1.

4.3 Restrictions on the Real and Imaginary Parts of

the Coefficients Given r, ρ Reversals

In this section, we place the monotonicity restriction on both the real and imagi-

nary parts of the coefficients for polynomials of the class Pn,µ.
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Theorem 4.3. Let P (z) = a0 +
∑n

j=µ+1 ajz
j where Re aj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some t > 0 and some 0 < k1 < k2 < · · · < kr < n, we

have a0 6= 0 and

αµt
µ ≤ · · · ≤ αk1t

k1 ≥ αk1+1t
k1+1 ≥ · · · ≥ αk2t

k2 ≤ · · ·

and for some 0 < `1 < `2 < · · · < `r < n,

βµt
µ ≤ · · · ≤ β`1t

`1 ≥ β`1+1t
`1+1 ≥ · · · ≥ β`2t

`2 ≤ · · ·

with r ∈ N, 1 ≤ r < n the number of reversals for the real part of aj and with

ρ ∈ N, 1 ≤ ρ < n the number of reversals for the imaginary part of aj and α1 = α2 =

· · · = αµ−1 = 0 and β1 = β2 = · · · = βµ−1 = 0. Then for 0 < δ < 1, the number of

zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M[r,ρ]

|a0|
,

where

M[r,ρ] = 2|α0 + β0|t+ (|αµ| − αµ + |βµ| − βµ)tµ+1 + 2

(
r∑
j=1

(−1)j+1αkj t
kj+1

)

+(|αn|+ (−1)rαn + |βn|+ (−1)ρβn)tn+1 + 2

(
ρ∑
j=1

(−1)j+1β`j t
`j+1

)
.

Proof of Theorem 4.3. As in the proof of Theorem 4.2,

F (z) = (t− z)P (z) = (|α0|+ i|β0|)(t− z) + (αµ + iβµ)tzµ

+
n∑

j=µ+1

[(αj + tβj)t− (αj−1 + iβj−1)]z
j − (αn + iβn)zn+1

= (|α0|+ i|β0|)(t− z) + (αµ + iβµ)tzµ +
n∑

j=µ+1

(αjt− αj−1)zj

+i
n∑

j=µ+1

(βjt− βj−1)zj − (αn + iβn)zn+1.
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For |z| = t we have

|F (z)| ≤ 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +
n∑

j=µ+1

|αjt− αj−1|tj

+
n∑

j=µ+1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 + (|αn|+ |βn|)tn+1

+

k1∑
j=µ+1

((−1)0(αjt− αj−1))tj +

k2∑
j=k1+1

((−1)1(αjt− αj−1))tj + · · ·

+
n∑

j=kr+1

((−1)r(αjt− αj−1))tj +

(
n∑

j=µ+1

|βj|t+ |βj−1|

)
tj

= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 + (|αn|+ |βn|)tn+1

+

k1∑
j=µ+1

((−1)0(αjt− αj−1))tj +

k2∑
j=k1+1

((−1)1(αjt− αj−1))tj + · · ·

+
n∑

j=kr+1

((−1)r(αjt− αj−1))tj +

`1∑
j=µ+1

((−1)0(βjt− βj−1))tj

+

`2∑
j=`1+1

((−1)1(βjt− βj−1))tj + · · ·+
n∑

j=`r+1

((−1)r(βjt− βj−1))tj

= S.

Note now that each summation involving α or β has its terms cancel and pair as in

Remark 2.2 in Theorem 2.1. Then we have

S = 2|α0 + β0|t+ (|αµ|+ |βµ|)tµ+1 + (−1)rαnt
n+1 + 2

(
r∑
j=1

(−1)j+1αkj t
kj+1

)

−αµtµ+1 + (−1)ρβnt
n+1 + 2

(
ρ∑
j=1

(−1)j+1β`j t
`j+1

)
− βµtµ+1 + (|αn|+ |βn|)tn+1

= 2|α0 + β0|t+ (|αµ| − αµ + |βµ| − βµ)tµ+1 + 2

(
r∑
j=1

(−1)j+1αkj t
kj+1

)

+(|αn|+ (−1)rαn + |βn|+ (−1)ρβn)tn+1 + 2

(
ρ∑
j=1

(−1)j+1β`j t
`j+1

)
= M[r,ρ].

The result now follows as in the proof of Theorem 2.1.
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If r = ρ = 1 we obtain Gardner and Shields Theorem 2.5 in [10]. If t = 1 in

Theorem 4.3, we obtain:

Corollary 4.4. Let P (z) = a0 +
∑n

j=µ+1 ajz
j where Re aj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some 0 < k1 < k2 < · · · < kr < n,

αµ ≤ · · · ≤ αk1 ≥ αk1+1 ≥ · · · ≥ αk2 ≤ · · ·

and for some 0 < `1 < `2 < · · · < `r < n,

βµ ≤ · · · ≤ β`1 ≥ β`1+1 ≥ · · · ≥ β`2 ≤ · · ·

with r ∈ N, 1 ≤ r < n the number of reversals for the real part of aj and with

ρ ∈ N, 1 ≤ ρ < n the number of reversals for the imaginary part of aj and α1 = α2 =

· · · = αµ−1 = 0 and β1 = β2 = · · · = βµ−1 = 0. Then for 0 < δ < 1, the number of

zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M[r,ρ]

|a0|
,

where

M[r,ρ] = 2|α0 + β0|+ (|αµ| − αµ + |βµ| − βµ) + 2

(
r∑
j=1

(−1)j+1αkj

)

+(|αn|+ (−1)rαn + |βn|+ (−1)ρβn) + 2

(
ρ∑
j=1

(−1)j+1β`j

)

In this chapter, we again considered the same three types of hypotheses on the

coefficients of a polynomial as before: namely those concerning the monotonicity

of the moduli, real parts, as well as real and imaginary parts of the coefficients.

Unlike before, we consider in this chapter such restrictions on the class of polynomials

denoted Pn,µ, which was defined in the introduction.
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5 CONCLUSION

In this thesis, we considered three different classes of polynomials in the same

manner as Shields [17]. Where his results were restricted only to one reversal in

each instance, our results were generalized to allow up to n− 1 reversals among the

coefficients. Each of our restrictions on the coefficients were placed on our polynomials

in order to count the number of zeros in a prescribed region. We used Titchmarsh’s

result in the conclusion of each proof, which allowed us access to formulæ that rely

only on a subset of the given coefficients. In each of the classes of polynomials, namely

those with a monotonicity condition on all the coefficients, those with a monotonicity

condition on the coefficients of even powers and coefficients of odd powers of the

variable, and those with a monotonicity condition on the coefficients of polynomials

with a gap. We have given an example showing our results can yield best possible

bounds on the number of zeros of a polynomial in a certain region.

In conclusion, we mention that a similar proof technique could be applied to

analytic functions, provided the coefficients in the power series of the analytic function

satisfy the appropriate hypothesis. This could be the focus of future research.
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