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ABSTRACT

A Hierarchical Graph for Nucleotide Binding Domain 2

by

Samuel Kakraba

One of the most prevalent inherited diseases is cystic fibrosis. This disease is caused

by a mutation in a membrane protein, the cystic fibrosis transmembrane conductance

regulator (CFTR). CFTR is known to function as a chloride channel that regulates

the viscosity of mucus that lines the ducts of a number of organs. Generally, most

of the prevalent mutations of CFTR are located in one of two nucleotide binding do-

mains, namely, the nucleotide binding domain 1 (NBD1). However, some mutations

in nucleotide binding domain 2 (NBD2) can equally cause cystic fibrosis. In this work,

a hierarchical graph is built for NBD2. Using this model for NBD2, we examine the

consequence of single point mutations on NBD2. We collate the wildtype structure

with eight of the most prevalent mutations and observe how the NBD2 is affected by

each of these mutations.
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1 INTRODUCTION

In this chapter, we discuss the roles of proteins, the importance of structure related

to the function of a protein, and how a single point mutation in the protein sequence

can prevent the protein from undertaking the normal functions. A brief note on

mathematical models of protein to characterize functions is also presented in this

chapter.

1.1 Roles of Protein

Proteins, as large complex molecules play very important roles in the body. Each

protein performs a specific function in the cells. Foreign invaders such as bacteria,

viruses among others, are defended from the body by specialized proteins called an-

tibodies. Proteins like myosin and actin (known as contractile proteins) function in

muscle contraction and movement. Other form of proteins are enzymes. Enzymes

(often referred to as catalysts) like lactase break down the sugar lactose found in milk

while pepsin is a digestive enzyme in the stomach that breaks down proteins in food.

Some proteins also serve hormonal functions. Oxytocin, insulin and somatotrogin are

examples of hormonal proteins. These forms of proteins are called messenger proteins.

They are specialized in helping to coordinate certain bodily activities. Illustratively,

somatotropin is a growth hormone that stimulates protein production in muscle cells

while insulin is noted to regulate glucose metabolism through controlling blood-sugar

concentration. Contractions in females during childbirth (useful for safe labor) are

stimulated by oxytocin [11, 47, 29, 13, 3, 6]. Proteins like collagen, elastin and keratin

are often termed structural proteins. They are fibrous and provide support. Connec-
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tive tissues like ligaments and tendons, derive their support from elastin and collagen,

while protective coverings like beaks, horns, quills and feathers obtain their strength

from keratin. Specialized proteins known as transport proteins carry other proteins

and compounds throughout the body. Hemoglobin, found in red blood cells is a typ-

ical example of a transport protein. Transportation of oxygen from the lungs to all

tissues and cells as well as carriage of carbon dioxide (a metabolic waste product)

back to the lungs for excretion from the body are all functions of hemoglobin. When

our bodies need energy in the absence or depletion of carbohydrates, energy from

proteins is obtained for use by the body, by the degradation of proteins into their

component amino acids and subsequently, oxidization processes analogous to glucose

take place, thereby creating energy for the body [11, 47, 29, 33, 13, 3, 6].

1.2 Importance of Structure Related to the Function

Polymer-sequences, made up of several amino acids, form proteins. With the ex-

ception of proline, each amino acid has the same fundamental structure, differing only

in the side-chain, designated the R-group. Research has found that protein chain is

estimated to have approximately in the range of 50 to 2000 amino acid residues. Dur-

ing the process of chemical combination of amino acids, water molecule is lost. The

peptide chain then forms after the water molecule is lost. Therefore, a peptide chain

is made up of the residues of amino acid or amino acid residues. In view of this, each

unit of protein is called an amino acid residue. Proteins have four (4) structural levels

namely; primary, secondary, tertiary and quaternary structure. The linear sequence

or order of covalently-linked specific amino acids in the polypeptide chain is the pri-

11



mary structure of a protein. By well-established standards, the primary structure of

a protein is thought of to start from the amino-terminal (N) end to the carboxyl-

terminal (C) end. The unique sequence of a protein accounts for the structure and

function of that protein. The primary structure of each protein is unique, owing to

both the different ordering or arrangement of the amino acids in the polypeptide and

the total number of amino acids constituting the protein molecule. The secondary

structure of protein is defined by the patterns of hydrogen bonds between backbone

amino and carboxyl groups. A secondary structure of a protein pertains to the fold-

ing of a polypeptide chain. The folding of the polypeptide chain results in either an

alpha helix, beta strand or a random coil structure, which characterize the secondary

structure of protein. Nucleic acids like the clover leaf structure of tRNA is a typical

example of secondary structure of protein [5]. By tertiary structure of a protein, we

refer to the protein’s three-dimensional structure by complete folding of the sheets

and helices of a secondary structure. The tertiary structure is held in position by

hydrophobic and hydrophilic interactions [3, 6, 2, 5]. Figure 1 depicts the primary,

secondary, tertiary and quaternary structure of protein.
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Figure 1: Protein Structure Showing all Four Levels of Protein, Pearson Inc.,(2010)

The process by which the protein structure takes on its functional shape or con-

formation is termed as protein folding. Protein folding is a physical process by which

a polypeptide folds into its characteristic and functional three-dimensional structure

from random coil [17]. Before protein folding takes place, each protein portrays or

exists as an unfolded polypeptide or random coil when translated from a sequence

of mRNA to a linear chain of amino acids. The unfolded polypeptide or random

coil is unstable (long-lasting) three-dimensional structure. The interaction between

amino acids forms a well-defined three dimensional structure which is termed the

folded protein. Amino acids interact with each other to produce a well-defined three-

dimensional structure, the folded protein termed as native state. The amino acid

sequence or order dictates what type of three-dimensional structure results from the

protein folding. The process of protein folding starts by the N-terminus of the protein

folding while the C-terminal portion of the protein is still undergoing synthesis by the

ribosome. These processes occur concurrently. Specialized proteins called chaperones

are known to assist in the folding of other proteins. The shape, size and function of
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a particular protein are determined by the three-dimensional structure of the protein

in question. Figure 2 shows different proteins folding into diverse shapes that are

function-specific.

Figure 2: Protein Folding [12]

Mutation is the permanent change of the structure of a gene. Mutations result

in a variant form of structure of genes that may be passed onto future generations

of the organism. Unfortunately, some mutations damage the DNA structure thereby

significantly changing the genetic information. Mutations can be accounted for by

several factors. Errors that arise in DNA replication or from the damaging effects

of mutagens, such as chemicals and radiation, which react with DNA and change

the structures of individual nucleotides, can lead to mutations. Illustratively, during

DNA replication, an organic base may be paired incorrectly within the newly forming

strand, or some extra organic bases may be built into its structure. Alternatively,

some portions or sections of DNA strands may be moved to other regions of the

molecule, or deleted, or even attached to other chromosomes. Should either be the

case, it results in the genetic information being changed. The molecular structure of a

protein constructed from this new genetic information that results from this mutation,

14



will likely be faulty and either malfunctioning, or not function at all, in some extreme

cases. Most mutations that occur are point mutations. It is well established fact

that point mutations are known to replace one nucleotide with another; even though

other forms of mutations involve insertion or deletion of one or a few nucleotides.

Figure 3 depicts how a mutation might change the structure of the DNA molecule

[13, 3, 6, 2, 5, 17, 19].

Figure 3: Effect of Mutation on the Structure of DNA, [9, 8]

Scientists like biologists, in particular computational biologists still battle with

the seemingly incomprehensible thought of how mutations in the gene can cause spe-

cific change in structure and in the long run prevent the protein from undertaking its

normal function (cause the protein to dysfunction), despite all the efforts to under-

stand the complexities in systems biology being made. That is to say, not so much

understanding has been gained on how a domain of the protein can be significantly
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affected by a mutation in some part of the said domain. In this thesis, a mathematical

model using graph theory to help predict the effect of a mutation on a protein known

to cause a disease, namely cystic fibrosis, is presented. It is hypothesized that graph

theory can be used to measure change in a protein domain caused by a mutation and

therefore assist us in our examination of how the protein domain in which a mutation

occurs will respond to the respective mutation. Even though Knisley et al. [36] were

the only people to use a a hierarchical graph as a mathematical model for the study

of effect of mutation on the NBD1 for CFTR, their model was only for NBD1. Cur-

rently, no literature exists on using theoretical nested graphs in studying the effect of

mutations on the protein structure in NBD2, thereby begging researchers to investi-

gate further. Despite that most mutations do occur in NBD1, a number of them also

occur in NBD2. There are seventeen mutations in the LSGGQ sequence and Walker

B motif of NBD1 which cause CF, while there are four mutations in respective re-

gion of NBD2. Authenticated research has found out that whereas there is only one

mutation in the Walker A motif of NBD1 causing cystic fibrosis, we have as many as

five of these mutations taking place in NBD2. In view of the the fact that mutations

that results in cystic fibrosis can equally occur in NBD2, it is appropriate to make

an effort to gain understanding on how mutations in NBD2 can impact significantly

on NBD2 [36, 32, 44, 37, 34, 38, 23]. In this thesis, we present a mathematical model

for NBD2 of CFTR, using graph theory to help study how NBD2 is affected by a

mutation known to cause cystic fibrosis.
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1.3 A Mathematical Model of Protein to Characterize Functions

Modeling plays a key role in all aspects of life. By way of definition, a model is

any simplification, substitute or stand-in for what we are really studying or predict-

ing . Scientists use models to gain a better understanding of systems that cannot

be studied in real life or that would be too complicated to study. Models are used

because they are convenient substitutes, the way that a recipe is a convenient aid

in cooking. The main aim of systems biology is to make the interactions of cellular

components in a systemic manner to be understandable to the intelligent mind. In-

terestingly, theoretically and practically, mathematical modeling plays a crucial role

integrating and testing models. Illustratively, modeling of biological systems permit

us to simulate the way in which such systems work or function and respond (react)

to some treatments, test or stimuli. Obviously, it is much easier to undertake such

tests by use of models than performing such tests on living organisms or systems

all the time. When results from model prove useful and workable for a particular

test (or treatment/conditions or stimuli), we can then apply the result in a real life

setting. Models are also convenient to use for instances where we can never directly

test otherwise in real life [24, 26, 22].

In the past, several scientists used physical and chemical properties in modeling

of biological systems in an attempt to characterize functions. Although the principles

of graph theory were earlier used in the study of fields like computer networks and

telecommunication, transportation services such as airline reservation, electrical en-

gineering among others, it was not until recently that the field of graph theory found

its place in modeling biological systems. In particular, graph-theoretic models have
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proven to be an indispensable mathematical tools for investigating protein structure,

folding, and to characterize protein function [30]. In this way, by the use of graph-

theoretic models, meaningful insight into protein structures is being gained. In this

thesis, we use a graph-theoretic model to build a hierarchical graph for NBD2 and use

it to examine the impact of cystic fibrosis causing-mutations on the NBD2. Knisley

et al. built a nested graph for NBD1 and used it to predict the effect of mutations

on NBD1. Details of the work of Knisley et al. are discussed in the literature review.

Even though the method of this research is analogous to that used by Knisley et al.,

two main differences exist between this work and their work. Knisley et al. were

concerned with cystic fibrosis causing-mutations in NBD1 and it’s resulting impact

on NBD1. However, in this thesis, we are concerned with mutations that results

in cystic fibrosis in NBD2. In view of this, we build a hierarchical or nested graph

and use it to examine the impact of mutations that cause cystic fibrosis on NBD2.

Another difference arises from the improved molecular descriptors that will be used

to build the nested graph for NBD2. We will restrict ourselves to the mutations that

occur in the part of the protein that we model in this work [36] .

18



2 GRAPH-THEORETIC MODELS OF PROTEINS

This chapter addresses some basic terms and definitions in graph theory that is

essential to this work. The chapter also reviews literature on graph-theoretic models

relevant to this research.

2.1 Terms and Definition of Graph Theory

Graph theory is a branch of discrete mathematics. In discrete mathematics, ob-

jects such as integers, graphs, and statements of logic are studied. Irrespective of

the fact that the history of graph theory may be specifically traced to 1735, when

the Swiss mathematician, Leonhard Euler, solved the Königsberg bridge problem.

Unlike many branches of mathematics that date back to time immemorial, graph

theory is new since the most parts has been developed since 1890. Below are some

standard definitions in graph theory that are useful for this thesis. These definitions

and discussion below are discernible from [26, 22, 46, 27, 16].

A Graph, G is a finite nonempty set V of objects called vertices (the singular

is vertex ) together with a possibly empty set E of 2- element subsets of V called

edges. Links and lines are synonymous to edges while points and nodes can be used

in place of vertices. By way of convention, we write G = (V(G),E(G)) to mean that

a graph G has vertex set V (G) and edge set E(G). We consider only simple graphs

in this work. By simple graphs, we refer to graphs with no multiple edges or loops.

Initially though, graphs were called linkages by some mathematicians until James

Joseph Sylvester (1814-1897) introduced the idea of graphs in place of linkages. The

order of a graph G denoted by n(G) is the total number of vertices in graph G.
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The size of a graph denoted by m(G) refers to the number of edges or links in the

graph G. The degree of a vertex υ in a graph G is the number of edges in G that

are adjacent to vertex υ. In other words, the degree of υ is the number of vertices

in its neighborhood N(υ). Similarly, the degree of υ is the number of edges that are

incident to υ. We refer to the largest degree among the vertices of graph G as the

maximum degree and call the least or smallest degree among the vertices of graph G

as the minimum degree. We denote the maximum degree of a graph G by ∆(G) and

represent the minimum degree of a graph G by δ(G).

The eccentricity e(υ) of a vertex in a connected graph G is the distance between υ

and a vertex farthest from υ in G. The greatest eccentricity among the eccentricities

of all vertices of G is called the diameter diam(G), while the smallest eccentricity

among all the eccentricities of the vertices of G is called the radius rad(G).

A vertex υ in a graph G is said to dominate itself and each of its neighbors, that

is υ dominates the vertices in its closed neighbourhood N[υ]. A set S of vertices of

graph G is a dominating set of G if every vertex of G is dominated by at least one

vertex of S. In other words, a set S of vertices of a graph G is a dominating set

if every vertex in V (G) − S is adjacent to at least one vertex in S. The minimum

cardinality among the dominating sets of G is called the domination number of G

and is represented by γ(G).

We will denote the adjacency matrix of the graph G by A(G). The adjacency

matrix of graph G denoted by A(G) and given by A(G) =


1 if υiυj ∈ E(G)

0 otherwise

where υiυj denotes an edge in G. The Laplacian matrix of the weighted graph is

20



given by L(G) = D(G)− A(G).

A scalar λ is called an eigenvalue of the n× n matrix A if, there is a nontrivial

solution x of Ax = λx. Such an x is called an eigenvector corresponding to the

eigenvalue λ.

Atomic number is defined as the number of protons in the nucleus of an atom.

Atomic number determines the chemical properties of an element and its place in the

periodic table. Conforming to accepted standards, the atomic number is represented

with the symbol Z.

Total weighted degree is the summation of weights assigned to each vertex in the

weighted graph denoted by dwt. The domination number of the weighted graph is

called weighted domination number and is denoted by γw(G).

Weighted eccentricity, ew(G): This is the set containing eccentricity of each vertex

in the weighted graph, G. We term the minimum number in this set, as the weighted

radius, radw(G) of the weighted graph. The maximum value among the set containing

the eccentricity of each vertex in the weighted graph of G is termed the weighted

diameter and denoted by diamw(G). Normalized eccentricity of the weighted graph

denoted by ewn(G) refers to the sum of the eccentricity of each vertex divided by

order of the weighted graph (number of vertices in the weighted graph).

Weighted adjacency matrix, Aw(G) is the adjacency matrix of the weighted graph

while weighted diagonalized matrix, Dw(G) is the diagonalised matrix of the weighted

graph. We use weighted Laplacian matrix to represent the Laplacian matrix of the

weighted graph and denote it by Lw(G). From the standard definition of Laplacian

matrix, it follows that:
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Lw(G) = Dw(G) −Aw(G)

A scalar λwi is called the weighted eigenvalue of the n× n matrix A obtained

from the weighted graph, if there is a nontrivial solution x of Ax = λx. Such an

x is called an eigenvector corresponding to the eigenvalue λwi. The maximum value

among the eigenvalues of the weighted graph is denoted by λwmax, and called the

maximum weighted eigenvalue while the minimum value among the eigenvalues, de-

noted by λwmin of the weighted graph is called the minimum weighted eigenvalue of

the weighted graph.

2.2 A Survey of Graph Models in the Literature

A survery of graph-theoretic models in the literature reveals interesting work done

over the past years. Some literature related to this thesis work is discussed below. Gil

Amitai, Arye Shemesh, Einat Sitbon, Maxim Shklar and Dvir Netanely [21] in their

work on Network Analysis of Protein Structures Identifies Functional Residues devel-

oped a method for changing protein structures into interaction graphs for the residue.

They used CSU program to find all inter-atomic contacts for each protein chain. They

then incoperated the atomic contacts found for each amino acid residue. Edges repre-

sented interaction between residues while vertices represented the connected residue

of RIG. The interactions took a number of things into consideration, including back-

bone peptide bonds as well as non-covalent bonds (such as hydrogen and hydrophobic

interactions). In their quest to gain a meaningful insight into protein structures, pro-

tein structures were also drawn from the Protein Data Bank dataset. During the

examination of their structural set, the method that was explained by Thornton et
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al.,[18] was used. The structure set used in their work was without similar (homol-

ogous) pairs and took into consideration all six top-level enzyme classification (EC)

numbers. With the use of the the NACCESS program, they successfully computed the

residue relative accessibility. PyMol program was used to exemplify protein structures

[46, 20, 39]. Samudrala and Mouth used clique-finding algorithm of a graph-theoretic

model in their attempt to investigate the side chain conformational space in a com-

parative modeling of proteins. Weighted vertices and edges were used in their work.

With the exception of vertices that were from the same side chain and those that gave

rise to steric clushes, edges were drawn between all nodes in the graph considered for

the study. With the use of appropriate interaction scales for weighted edges between

the nodes that thrived on algorithms that found the cliques in the graph, weighted

edges were obtained for edges in the graph. Upon the constructing of the entire graph,

computations involving finding clique numbers were employed to find all the maximal

set of completely connected vertices. Depending on the vertex and edge weights, a

rating scale was adopted that was representative of the computed clique scores. This

algorithm was employed in building a comparative model for the side chains, segments

of main-chain and mix and match between different homologues in context sensitive

manner [27, 16, 45]. By way of vertex-weighted hierarchical (nested) graph, Knisley

et al.[36], successfully modeled NBD1 of CFTR for the study of effect of mutations

that cause cystic fibrosis in NBD1. Like Samudrala and Mouth, the graph-theoretic

model (nested graph) built by Knisley et al. for NBD1 was weighted graph. By way

of explanation of nested graph, if a conceptual graph G1 is nested inside a concept

C, it means that: either G1 is directly part of the referent of C or G1 is directly part
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of the referent of a concept C2 which is nested inside C. To start with, they built a

graph-theoretic model for each of twenty main amino acids. The backbone and cen-

tral carbon atom were denoted by a single vertex . A vertex represented each of the

atoms in the respective amino acid residue structure. The estimated integer value of

the mass of the respective atom stood in as the weight of the vertices in the residue.

Interestingly, the edges of the weighted graph-theoretic model symbolized molecular

bonds. Because the hydrogen atom was common among each of the amino acid struc-

tures, their work did not give consideration to the hydrogen atom found in the amino

acids. Couple of respective vectors of descriptors obtained from some graph theoretic

measures included weighted domination, weighted diameter, circumference. Charac-

teristic of the work of Knisley et al. was the eight subsequence partitions which they

denoted by S1, S2, S3, S4, S5, S6, S7, S8, that was appropriate for the sequence of

CFTR that matched up to the NBD1. The secondary structures of protein served as

the guiding rule in determining the eight subsequences mentioned above, such that

each subsequence had only one kind of secondary structure. In other words, each of

the eight subsequence could only contain a beta strand or an alpha helix, or a loop.

No subsequence contained more than one of those secondary structures. In this work,

our partitioning will equally be guided by the secondary sequence as did Knisley et

al. The graph-theoretic model for NBD1 CFTR by Knisley et al. had edges that

depended on the closeness of measure with the distance end point being determined

by a threshold distance between any two residue of each subdomain. Noteworthy

also is the fact that that three layers were characteristic features of the hierarchical

graph for NBD1 of CFTR with the lowest level having an assemblage of twenty small
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vertex-weighted graphs, with each depicting one of the twenty typical amino acids. A

group of eight graphs with their vertices weighted in which each vertex was a depic-

tion of an amino acid found at the middle level of the hierarchical graph for NBD1

of CFTR. The combinatorial descriptors of the amino acid graphs at the lowest level

served as the weights assigned to the vertices of each of the eight midlevel graphs. The

weighted graph at the highest level was a pictorial description of the NBD1. Each

of the vertices at the highest level of the graph stood in for one and only one of the

subdomains Gi with the attributed weights obtained from the vertex-weighted graphs

of each subdomain Gi. Using a measure of nearness or distance (proximity measure)

of 8 angstroms, the vertices were connected. That is to say that, two vertices in the

midlevel graph were connected with an edge if they are 8 angstroms from each other.

Their nested graph for NBD1 is shown in Figure 4.
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Figure 4: Nested Graph-Theoretic Model for NBD1 by Knisley et al.[36]

In an attempt to examine the impact on the NBD1 on occurance of mutations,

Knisley et al.[36] selected 8 diseases associated with some mutations in the Cystic

Fibrosis Mutation Databank that occur in NBD1 after gathering a set of measures

for Wildtype NBD1. With these chosen mutations to be included in the model, a set

of graph-theoretic measures for each mutation was captured following the procedure

described below. Overall structural impact of a single mutation on the NBD1 was

captured by effecting a change in the interrelated residue level. One and only one

subdomain Si is aroused by the change that occurred in the interdependent residue

level. An online protein folding server called I-TASSER was used to obtain the new
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subdomain Gi of the affected subdomain.Illustratively, Figure 5 depicts G2 that con-

taining F508 and the graph with the predicted structural changes upon a consequence

of deleting F508.

Figure 5: Subdomain graph of G2 with 508F and without 508F , [36]

Using new set of combinatorial descriptors, Knisley et al. had a dendrogram

clustering for the mutations to ascertain how the various studied mutations clustered

themselves along the wildtype mutation. This thesis work extends the approach in

[36] to building a hierarchical graph for nucleotide binding domain 2. The difference

however arises from the improved descriptors that will be used.
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3 GRAPHICAL INVARIANTS AS AMINO ACID DESCRIPTORS

A discussion of how invariants of a weighted differ from invariants as applied to

unweighted graph is presented in this chapter. The chapter also throws more light

on how some combinatorial descriptors or molecular descriptors for the first 20 most

essential amino acids were computed. Tables of values for several computed molecular

descriptors for these amino acids are also found in this chapter.

3.1 Explanation of Graph Invariants

It is a well established practice in mathematics that we associate numbers with

mathematical objects in various ways. Illustratively, a determinant (a number) is as-

sociated with a matrix, degree (a number) is associated with a polynomial, dimension

(number) is associated with a space, length (a number) is associated with a vector

among others. Several numeric values can also be associated with graphs as well. Usu-

ally, such numbers or descriptors are called graph invariants. Properties or measures,

numbers (descriptors) that are associated with graphs are called “graph invariants” if

these numbers or descriptors (quantitative values) are invariant, invariable, constant,

changeless, or unchanging under graph isomorphisms: each is a function f , such that

f(G1) = f(G2) whenever graphs G1 and G2 are isomorphic graphs. An isomorphism

s from graph G into H is a bijective mapping: that is, s : V (G) → V (H) and that

preserves adjacency: that is u ∼ v if and only if s(u) ∼ s(v). In other words, two

graphs G1 and G2 are said to be isomorphic, if they have the same number of ver-

tices, the same number of edges, the same degrees for corresponding vertices, the same

number of connected components, the same size of largest clique and smallest circle,
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the same number of loops and that adjacency relationship is preserved and so on. In

a nutshell, graph invariant is a property, quantitative measure or number assigned to

a graph, that is preserved under an isomorphism. Some examples of graph invariants,

include the number of vertices (termed the order of the graph), the number of edges

(called size of the graph), edge chromatic number (the minimum number of colours

needed to color the edges of the graph such that no two adjacent edges have the same

colors), genus number, clique number, domination number among others are found

below. Figure 6 is an illustrative example of computations from standard definitions

of some graph invariants.

Figure 6: Graph to Illustrate Some Standard Definitions

The vertex set of the graph in Figure 6 is {1,2,3,4}, edge set is {a,b,c,d,e}, order

of the graph (number of vertices in the graph) is 4, Size of the graph (number of

edges in the graph) is 5, degree of vertex(1) as the number of vertices adjacent to

(shares edges with) vertex(1) is 3. The minimum cardinality among the dominating

set is called the domination number of the graph. Dominating sets are S1, S2 and
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S3 where S1 is {vertex(1)}, S2 is {Vertex(4)}, S3 is {Vertex(2), Vertex(3)}. It can

be seen from the above that sets S1 and S2 have the minimum cardinality with the

cardinality being 1, hence the domination number of the graph, denoted by γ(G) is

1. In other words, to dominate the graph, we need to select only one vertex either

vertex(4) or vertex(1).

3.2 Molecular Descriptors or Combinatorial Descriptors of Amino Acids

Following earlier successful efforts to model proteins as network with graphs by

Knisely et al., and other researches in computational biology and bioinformatics

[36, 40], we build a graph-theoretic model for each of the amino acids and then as-

sign quantitative values (molecular descriptors) for each of them. The procedures for

finding the molecular descriptors are consistent with all amino acids. While Haynes

et al., introduced the use of the domination number of a graph to quantitatively

describe a biomolecule [31], Knisley et al., in earlier work on NBD1 [36] and pre-

dicting protein-protein interaction [34] used the domination number, coupled with

other graph invariants, as a numerical assignment to the amino acid residue struc-

tures and built a predictive model for protein-ligand binding affinity. Irrespective

of the fact that both of these were successful, the authors were very quick to note

the flaw of graphical invariants as molecular descriptors when examining weighted

graphs. As it has always been the case when graph invariants are considered, the

weights of the vertices are taken to be one. No wonder these measures or estimates

are termed invariants since they are invariant or unchanging or changeless under iso-

morphism. This fact is highly incompatible with weighted graph. As noted by Knisley
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et al.[36, 35], and as in the case of weighted graphs studied in this work, we need to

modify the definition of graph invariants. If we incorporate the vertex weights for

two graphs with isomorphic non-weighted structures, the “invariants” computed for

these two graphs will no longer be invariants but will vary considerably based on the

weights assigned. With this fact in view, the measures or descriptors we define, al-

though derived from well-established graphical invariants or standard definitions are

no longer invariant under isomorphism, since the weights of the vertices are factored

into the definition of the measure. Henceforth, we have adopted the term molecular

descriptors or combinatorial descriptors for these values in this work. An illustrative

example of a weighted graph with computed molecular descriptors is shown in Figure

7 from definitions adopted by the researcher.

Figure 7: Graph to Illustrate Some Adopted Definitions

The weight of each vertex is indicated (calculated by the number of adjacent

vertices to that vertex). The eccentricity of a vertex (u) in a graph is the maximum
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distance away from the farthest vertex (k) in the graph. The minimum eccentricity

is called a radius but since we are dealing with weighted graphs, we will call it

weighted radius. We shall also use weighted eccentricity since we are working with

weighted graphs. Se denotes the eccentricity sequence of the graph-theoretic model

of Argine. Weighted eccentricity sequence, Se = {12, 12, 12, 10, 9, 8, 7, 6}, average

weighted eccentricity = (12+12+12+12+10+9+8+7+6)/8 = 9.5, weighted diameter,

D = maximum value in Se = 12, weighted radius, r = Minimum value in Se = 6,

average weighted degree = 1.75 (obtained by adding the all weighted degree and

dividing by number of vertices). Graph-theoretic model for each of the amino acid

using their atomic numbers as weights were obtained and molecular descriptors were

obtained for each of the amino acids. Figure 8 depicts a graph-theoretic model based

on atomic number assignment as weights to each of the vertices in Tryptophan.

Figure 8: Graph-Theoretic Model for Tryptophan

Molecular descriptors or combinatorial descriptors can be computed by a similar

approach by assigning the atomic number as weights in the graph theoretic model as

depicted in Figure 8 for the graph-theoretic model for Tryptophan.
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3.3 Table of Molecular Descriptors for the 20 Most Essential Amino Acids

Tables 1-3 give some molecular descriptors for the 20 most essential amino acids

computed from graph theoretic models of each of these amino acids based on defini-

tions adopted for this study by the researcher.

Table 1: Molecular Descriptors of the 20 Most Essential Amino Acids

Molecule Symbol d1 d2 d3 d4 d5 d6 d7 d8
Arginine R 8.00 7.00 12.00 6.00 8.120 6.00 12.00 1.50
Histidine H 7.00 6.00 14.00 6.000 6.71 6.000 9.00 2.00
Lysine K 6.00 5.00 10.00 4.00 7.00 5.00 9.00 1.667

Aspartic Acid D 5.00 4.00 8.00 4.00 5.17 3.00 6.00 1.60
Glutamic Acid E 6.00 5.00 10.00 5.00 6.00 4.00 8.00 1.667

Serine S 3.00 2.00 4.00 2.00 1.670 2.00 3.00 1.333
Threonine T 4.00 3.00 6.00 3.00 3.250 1.00 4.00 1.50
Asparagine N 5.00 4.00 8.00 4.00 5.00 3.00 6.00 1.60
Glutamine Q 6.00 5.00 10.00 4.00 5.860 4.00 8.00 1.667
Cysteine C 3.00 2.00 4.00 2.00 2.33 1.00 3.00 1.333
Glycine G 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Proline P 4.00 4.00 8.00 4.00 4.00 4.00 4.000 2.00
Alanine A 2.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00

Isoleucine I 5.00 4.00 8.00 4.00 3.25 3.00 6.00 1.600
Valine V 4.00 3.00 6.00 3.00 3.25 1.00 4.00 1.50

Leucine L 5.00 4.00 8.00 4.00 5.00 3.00 6.00 1.60
Methionine M 5.00 4.00 8.00 4.00 5.40 3.00 7.00 1.60

Phenylalaine F 8.00 8.00 14.00 6.00 7.00 6.000 11.000 1.750
Tyrosine Y 9.00 9.00 18.00 7.00 8.88 6.000 13.000 2.000

Tryptophan W 11.00 12.00 24.00 8.00 11.10 9.000 14.000 2.182
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Table 2: Molecular Descriptors of the 20 Most Essential Amino Acids Continued 1

Molecule Symbol d9 d10 d11 d12 d13 d14 d15 d16
Arginine R 12.499 -4.307 3.500 -2.590 19.00 31.444 20.00 38.00
Histidine H 12.876 -3.721 4.286 -1.185 15.00 23.10 18.00 31.00
Lysine K 10.363 -3.151 3.00 -0.536 12.00 24.50 18.00 31.00

Aspartic Acid D 11.539 -4.178 3.20 0.528 12.00 16.40 12.00 20.00
Glutamic Acid E 11.530 -3.425 3.333 -0.538 12.00 21.00 14.00 26.00

Serine S 5.00 1.00 2.00 2.00 6.00 13.33 8.00 20.00
Threonine T 9.928 -3.928 3.00 3.00 6.00 12.40 8.00 14.00
Asparagine N 11.539 -4.178 3.20 0.528 12.00 16.50 14.00 20.00
Glutamine Q 12.207 -4.255 3.333 -1.043 12.00 21.167 15.00 24.00
Cysteine C 6.243 -2.243 2.00 2.00 6.00 16.670 12.00 22.00
Glycine G 0.00 0.00 0.00 0.00 1.00 3.50 1.00 6.00
Proline P 12.00 -4.00 4.00 4.00 12.00 12.00 12.00 12.00
Alanine A 2.00 0.00 1.00 2.00 6.00 6.00 6.00 6.00

Isoleucine I 10.851 -6.085 1.80 -1.517 12.00 15.60 12.00 18.00
Valine V 9.928 -3.928 3.00 3.00 6.00 10.50 6.00 12.00

Leucine L 11.029 -4.729 3.20 1.052 12.00 15.60 12.00 18.00
Methionine M 9.49 -2.812 2.80 0.678 18.00 27.20 18.00 34.00

Phenylalaine F 14.851 -4.801 4.25 -1.672 18.00 23.25 18.00 24.00
Tyrosine Y 12.868 -4.793 4.333 -2.054 18.00 27.78 20.00 38.00

Tryptophan W 13.511 -6.324 4.00 -2.576 24.00 27.50 18.00 36.00
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Table 3: Molecular Descriptors of the 20 Most Essential Amino Acids Continued 2

Molecule Symbol d17 d18 d19 d20 d21 d22
Arginine R 45.00 5.00 23.343 0.00 10.667 4.20
Hisitidine H 47.00 4.70 24.243 -1.734 10.400 1.605

Lysine K 37.00 6.17 22.739 -0.179 10.167 1.372
Aspartic Acid D 34.00 6.80 28.634 0.00 10.40 2.969
Glutamic Acid E 40.00 6.67 28.731 0.00 10.667 1.822

Serine S 22.00 7.33 20.00 0.00 8.667 6.00
Threonine T 27.00 5.40 23.819 -4.227 9.00 6.00
Asparagine N 33.007 6.60 27.708 0.00 10.00 3.00
Glutamine Q 39.00 6.50 27.831 0.00 10.50 1.849
Cysteine C 28.00 9.33 28.00 0.00 11.333 6.00
Glycine G 7.00 3.50 7.00 0.00 3.50 0.00
Proline P 24.00 6.00 24.00 0.00 12.00 12.00
Alanine A 12.00 6.00 12.00 0.00 6.00 0.00

Isoleucine I 30.00 6.00 24.841 -1.641 9.60 3.373
Valine V 24.007 6.00 24.00 0.00 9.00 6.00

Leucine L 30.00 6.00 25.021 0.00 9.60 3.113
Methionine M 40.00 8.00 31.344 0.00 13.60 2.656

Phenylalaine F 48.00 6.00 26.993 0.00 12.00 2.026
Tyrosine Y 56.00 6.22 28.252 -0.96 12.222 1.599

Tryptophan W 68.00 5.667 29.778 0.211 12.75 2.044

The molecular descriptors of combinatorial descriptors in the Tables 1, 2, 3 were

computed from a graph-theoretic model based on weighted degree and assignment of

atomic numbers as degrees of each vertex. Keys: d1 = number of vertices (order

of the graph), d2 = number of edges (size of the graph), d3 = total weighted degree

of the graph (obtained by adding all the weights of all the vertices), d4 = weighted

domination number, d5 = average eccentricity, d6 =radius (minimum eccentricity),

d7 = diameter (maximum eccentricity), d8 = average weighted degree (total degree
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divided by the number of vertices), d9 = maximum eigenvalue of the weighted Lapla-

cian matrix of the graph, d10 = minimum eigenvalue of the weighted Laplacian matrix

of the graph, d11 = Average eigenvalue of the Laplacian matrix of the the graph, d12

= second smallest eigenvalue of the Laplacian matrix of the graph. Using the atomic

numbers as weights of vertices in the graph theoretic model of each of the amino

acids, we obtain the following descriptors in Tables 2-3: d13 = weighted domination

number using the atomic number, d14 = average weighted eccentricity based on the

the atomic number, d15 = weighted radius based on the atomic number (minimum

eccentricity), d16 = weighted diameter based on the atomic number (maximum ec-

centricity), d17 = total weighted atomic number of the graph (obtained by summing

all the atomic number of each of the vertices in the graph), d18 = average weighted

atomic number or degree based on atomic number in the graph. Descriptors d19

through d22 in the Tables 1, 2 and 3 were obtained from weighted Laplacian matrix,

d19 = weighted maximum eigenvalue based on atomic number, d20 = weighted min-

imum eigenvalue based on the atomic numbers, d21 = weighted average eigenvalue

based on the atomic numbers, and d22 = weighted second smallest eigenvalue of the

weighted Laplacian matrix.
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4 THE HIERARCHICAL/ NESTED GRAPH MODEL OF NBD2

A discussion on cystic fibrosis and CFTR is presented in this chapter. The dis-

cussion includes the prevalence of cystic fibrosis, how the disease comes about, snf

how cystic fibrosis affects the function of several organs as well. How a single point

mutation in the NBD2 of CFTR has such structural consequences for the domain

is well elaborated in this chapter. The chapter also offers explanation to how we

modeled NBD2 with a hierarchical graph.

4.1 Cystic Fibrosis and CFTR

One of the most prevalent inherited diseases is cystic fibrosis. This disease is

caused by a mutation in a membrane protein, the cystic fibrosis transmembrane con-

ductance regulator (CFTR) [11]. The most prevalent genetic disorder among the Cau-

casian population (Europe, North America, among others) is cystic fibrosis. Available

statistics from Cystic Fibrosis Foundation indicates that about 30, 000 people (adults

and children) in the United States and 70, 000 worldwide have cystic fibrosis with

1000 new cases diagnosed each year in United State of America [7]. People who have

CF inherited a defective gene. A single point mutation in the CFTR protein causes

cystic fibrosis (CF). When a severe mutation occurs in CFTR protein, this can affect

the transportation of water and salt thereby causing the mucus that found in the tube

of several organs like the lungs, pancreas and reproductive organs to thicken. When

the mucus thickens resulting from severe mutation in CFTR protein, this harbors in-

fections especially respiratory infections occurring with several clinical consequences

including the malfunctioning of these organs. Even though the two major systems af-
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fected are the lungs and the gastrointestinal tract, several other organs of the human

body such as pancreas, reproductive organs, liver, gall bladder, salivary gland and the

colon are affected, due to occurrence of a mutation in this membrane protein. Even

though more than one thousand nine hundred different mutations of CFTR, with

various levels of severity of clinical consequence are reported, an estimated 5% of the

Caucasian population are affected by mutation in the CFTR [7]. Despite the large

number of reported mutations of CFTR, the deletion of phenylalanine at position

508 (∆F508) occurs in more than 90% of the CF population, while substitution of

Lysine with Asparagine at position 1303 (N1303K) accounts for estimated 2.5% of all

the CF population. The N1303K as a mutation, is linked with defective protein pro-

cessing and results in the absence CFTR on the surface, its subsequent effect on the

entire protein domain. N1303K mutation results in one of the more severe phenotypes

[7, 48, 1, 10, 28]. Irrespective of the fact that there have been substantial advances

in science and medical researches, we still lack an adequate understanding of how

just a single point mutation in this membrane protein can have such a devastating

effect on this protein domain. Currently, no literature exists on using graph-theoretic

model (nested graph) in studying the effect of single point mutation on the NBD2.

In view of this, this work is the first literature on using a graph-theoretic model for

NBD2 of CFTR to study the effect of a single point mutation on NBD2. In this

study, a mathematical model using graph theory to exam the impact of a single point

mutation known in NBD2 to cause cystic fibrosis is presented. We compare the wild

type structure with eight of the most prevalent mutations. Using the graph-theoretic

model for NBD2, we can gain a meaningful insight into how NBD2 is affected by an
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occurrence of a single point mutation in this domain protein. In other words, by way

of hierarchical graph, we sort to probe into how a single point mutation of NBD2 of

CFTR can affect the structure and function of this protein domain, NBD2.

4.2 The Model for Nucleotide Binding Domain 2 (NBD2)

If two vertices share an edge, they are adjacent. In real life application, this can

describe a affiliation or association among alike entities. For example, we might say

that if two people stay about 8 miles apart, then they are neighbors or friends. In

which case, in the graph-theoretic model, an edge will be incident to these two people.

An immediacy or simply proximity graph is created where the vertices harmonize or

coincides with objects (amino acids) should they be within a given distance from one

another, the said vertices under consideration are said to be adjacent. The 3GD7

[14] file from the Protein Data Bank [15] was used. Using the amino acid sequence,

NBD2 was enclosed and captured with the subsequence 1209 − 1394. Partition or

stratification of the amino acids into even smaller subdomains was obtained from

this. The subdomains notably S1, S2, S3, S4, S5, S6, S7, S8, and S9 are sequences

of amino acids that differ on the existence of alpha helices and beta strands within

their structure. The subdomains mostly differ in length from 10 to 18 amino acids

with the exception of cases where there were unique reasons to violate this length.

Tables 4 and 5 explain our partitioning and reasoning employed for the choice of this

partition. From the subdomain, a proximity graph, with a threshold of 8 angstroms,

was created. The procedure employed in the study is analogous to that used by

Knisley et al. their work on NBD1 [36]. However, the differences arise from the
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improved molecular descriptors (graph invariants) used for this study and the fact

that our graph-theoretic model is for NBD2, instead of NBD1. Besides, the mutations

studied in this work are all found in NBD2 whiles Knisley et al. concerned themselves

with mutations in NBD1.

Table 4: Subdomain, Subsequence, Amino Acid Sequence

Subdomain Subsequence Amino Acid Seqennce
S1 1209..1224 QMTVKDLTAKYTEGGN
S2 1225..1238 AILENISFSISPGQ
S3 1239..1261 RVGLLGRTGSGKSTLLSAFLRLL
S4 1262..1277 NTEGEIQIDGVSWDSI
S5 1278..1305 TLEQWRKAFGVIPQKVFIFSGTFRKNLD
S6 1306..1324 PNAAHSDQEIWKVADEVGL
S7 1325..1340 RSVIEQFPGKLDFVLV
S8 1341..1364 DGGCVLSHGHKQLMCLARSVLSKA
S9 1365..1391 KILLLDEPSAHLDPVTYQIIRRTLKQA

Table 5: Subdomain, Subsequence, Reason

Subdomain Subsequence Reason
S1 1209..1224 beta strand, binding site, turn, bend
S2 1225..1238 binding site, beta strand, turn
S3 1239..1261 beta strand, binding site, turn, bend, alpha-helix
S4 1262..1277 bend, beta strand, turn
S5 1278..1305 binding site, alpha helix, bend, turn, beta strand
S6 1306..1324 turn, bend, alpha helix
S7 1325..1340 bend, turn, alpha helix, beta strand, 3/10 -alpha helix
S8 1341..1364 turn, bend, alpha helix, beta strand
S9 1365..1391 alpha helix, beta strand, bend

Figure 9 depicts the midlevel graphs for corresponding to subdomain S5, and S4

at Threshold of 8 angstroms.
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Figure 9: Midlevel Graph for Subdomain S5 (on left) and S4 (on right)

The graph in Figure 10 is the hierarchical or nested graph for Nucleotide Binding

Domain 2 (NBD2) of Cystic Fibrosis Transmembrane Conductance.

Figure 10: Hierarchical Graph for NBD2

The edges of the NBD2 of CFTR Graph, or commonly referred to as the domain
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graph G (refer to Figure 10), are based on an immediacy or closeness measure where

the distance end points are decided on basis that if two vertices (two residues of each

subdomain) are 8 angstroms away from each other, they are connected with an edge

otherwise no edge, otherwise no edge is connected between them. The hierarchical

graph for NBD2 of CFTR is symbolized by 3 layers. For the lowest level graph,

we have a set of 20 small vertex-weighted graphs, denoting the 20 most main amino

acids as depicted in Figure 10. Characteristic of the middle level graph is nine vertex-

weighted graphs Gi, with each vertex denoting an amino acid while the weights of

the vertices are the combinatorial descriptors or molecular descriptors (invariants) of

the amino acid graphs at the lower level. At the top level graph, there are vertex-

weighted graph G that exemplify the nucleotide binding domain NBD2. Each of the

vertices represent one of the subdomain graphs Gi. It is interesting to note that

the weights assigned to these vertices are derived from the vertex-weighted graph-

theoretic descriptors adopted by the researcher for this work. First, each vertex in

the lower level graph was assigned a weight based on the number of vertices incident

to it. We computed eaw, to the nearest 2 decimal place the nearest hundredth, where

eaw is the weighted average eccentricity of each vertex in the amino acid. The sum

of vertex weights from a vertex u to another vertex v farthest from u determined the

weighted eccentricity. The sum excluded the weight of the vertex under consideration

since in a simple graph, no vertex is adjacent to itself or there is no self-loop. A list

of all weighted eccentricity was obtained for each amino acid in the lower level graph.

The weighted average eccentricity was found by summing all the weighted eccentricity

of each of the vertex in the lower level graph and dividing by the total number of
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vertices (order of the graph) . Second, each vertex in the midlevel graph (labelled

as domain substructure in Figure 10) was assigned eaw computed from first step

described above. Cw, to the nearest 2 decimal place, was computed for the midlevel

graph, where Cw is the total weighted circumference of the midlevel graph. Third,

there were 9 vertices in the top level graph (domain graph) depicted in Figure 10.

Each vertex in the top level graph represents one and only one subdomain graph

(midlevel graph). Cw (described above) that corresponds to each vertex in the top

level graph was assigned. Upon the assignment of Cw to each vertex, the weights (d1)

of each vertex was computed by the summing all Cw of its adjacent vertices. Several

combinatorial algorithms like total weight (sum of all weights), average weight (sum

of weights of the top level graph divided by the number of vertices) were obtained.

Weighted adjacency matrix was found for each of the vertices in the top level graph.

Suppose the top level graph had only two vertices u and v, and u is adjacent to v

in the top level graph, v had a weight of 4.12 while u is of weight 6.19, then their

weighted adjacency matrix, T is given as T =

(
0 4.12

6.19 0

)
.

Other molecular descriptors (measures) like weighted connectivity (obtained by

summing all entries on each row of the adjacency matrix, for each of the vertices of the

top level graph were also found and incorporated into the molecular descriptors for

the top level graph). These weights obtained for the top level graph are the molecular

weights or descriptor (invariants) for the wildtype domain graph.
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5 THE EFFECT OF SINGLE-POINT MUTATIONS ON NBD2 AS SHOWN BY

THE MODEL

How our model is used in studying the effect of a single point mutation on the

NBD2 is explained in this chapter. The chapter also presents some brief discussion

on existing knowledge of some mutations in NBD2 and how they associate with cystic

fibrosis. A dendrogram clustering of single point mutations resulting from application

of single point mutation on our model is enshrined in this chapter. Discussion of our

results is equally presented in this chapter.

5.1 Some Known Mutation in NBD2 and Association with Cystic Fibrosis

Existing body of knowledge of mutations in NBD2 based on cystic fibrosis, CF

[41, 25, 40, 43] puts the following mutations into the categories in the Table 6.

Table 6: Classification of Mutations Based on Cystic Fibrosis [41, 25, 40, 43]

Mutation CF
Wildtype No
Y1212G Mild
G1271E Mild
S1347R Mild
I1234V Mild
D1270N Mild
V1212W Mil
S1235R Mild
N1303K Severe
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5.2 Application of a Single Point Mutation on the Model for NBD2

Using the model built for NBD2, we can study the effect of single point mutation

on the entire protein domain. The weights obtained for the top level graph are the

molecular weights or descriptor (invariants) for the wildtype domain graph. Since

the purpose of building a hierarchical graph for NBD2 is to use the graph to study

the effect on the entire domain (NBD2) when a single point mutation takes place, in

an attempt to capture the effect of each mutation on the top level graph, the entire

process was repeated one at a time for each of these single point mutations (Y 1212G,

G1271E, S1347R, I1234V , D1270N , V 1212W , S1235R and N1303K) and result-

ing molecular or combinatorial descriptors (measures or invariants) computed earlier,

were recalculated for midlevel graph and subsequently the top level graph. Differ-

ent set of graph theoretic measures were obtained for each mutation. Illustratively,

suppose we examine subdomain 5: the midlevel graph that contains this mutation is

shown in Figure 11. After mutation N1303K occurs, Asparagine replaces Lysine at

position 1303. The structure of the midlevel graph does not change, but the vertex

weights for the corresponding vertex at position 1303 changes due to the substitution

of Lysine with Asparagine. Eight different mutations of CFTR were used for this

study, as can be seen in the Results section. These changes both take place in the

midlevel graph and the top level graphs and help to find the resulting structural effect

of each of these single point mutations. A dendrogram depicting the clustering of the

various mutations mentioned above together with the wildtype is shown in the results.

Below is a table of values of some combinatorial descriptors or molecular descriptors

of the top level graph after performing each the mutations (one mutation at a time).
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Table 7: Top Level Graph Molecular Descriptors for Single Point Mutations

Mutation t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
Wildtype 4.42 2.99 4.93 0.90 8.12 13.95 7.66 18.31 13.20 24.60
Y1219G 4.33 2.90 4.49 0.82 7.37 13.65 6.67 18.00 13.11 24.43
V1212W 3.15 3.60 5.14 0.92 8.23 13.61 6.39 19.24 11.93 24.15
I1234V 4.67 2.99 4.93 0.90 8.10 14.20 7.90 18.30 13.44 24.85
S1235R 3.09 2.99 4.93 0.91 8.18 12.62 6.40 18.38 11.94 23.27
G1271E 4.04 2.99 4.93 0.91 8.23 13.57 7.40 18.55 13.06 23.99
S1347R 4.42 2.99 5.19 0.91 8.18 14.21 7.66 18.64 13.27 24.98
N1303K 4.44 3.01 4.95 0.91 8.14 14.01 7.68 18.35 13.22 27.95
D1270N 4.53 2.99 4.93 0.91 8.23 14.06 7.89 18.54 13.54 24.71

Keys for Table 7:

t1 = average of non-zero numbers in column 3 of the weighted adjacency matrix,

t2 = average of non-zero numbers in column 4 of the weighted adjacency matrix,

t3 = average of non-zero numbers in column 9 of the weighted adjacency matrix,

t4 = average weighted degree of the top level graph (divided by thousand), t5 =

total weighted degree of the top level graph (divided by thousand), t6 = weighted

connectivity for row 1 of the weighted adjacency matrix (obtained by summing all the

numbers on row 1), t7 = weighted connectivity for row 2 of the weighted adjacency

matrix, t8 =weighted connectivity for row 3 of the weighted adjacency matrix, t9 =

weighted connectivity for row 4 of the weighted adjacency matrix, and t10 = weighted

connectivity for row 5 of the weighted adjacency matrix.
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5.3 Clustering of Single Point Mutations/ Results of Single Point Mutations

The R statistical Software [4] was used to cluster the mutations using the molec-

ular descriptors (combinatorial descriptors) for the top level graph when the single

point mutations were performed. The single linkage function in R was used for our

hierarchical clustering because it is less biased. The dendrogram clusters (shown in

Figure 13) the wildtype mutation and other mutations using the combinatorial or

molecular descriptors from Table 6.

Figure 11: Clustering of Mutations, Output from R [4]

5.4 Discussion of Results

The N1303K mutation is one of the known mutations in NBD2 that causes cystic

fibrosis. The evidence that the substitution of N with K at position 1303 leads to
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variation in the arrangement of the molecule when folded in the lab has baffled re-

searchers in their attempt to explain why the molecule does not fold appropriately in

the cell. N1303K is said to be linked to pancreatic insufficiency cystic fibrosis[42, 8].

Our results (refer to Figure 11) show that the resulting structural effects of N1303K

are expressively distinct from the wildtype. Also, it is obvious from our results that

the difference between the wildtype and domain graphs caused by mutations like

I1234V , S1345R and D1270N are less significant. More so, our results lead to a

conclusion that Y 1219G, G1271E, V 1212W and S1235R are also considerably dis-

tinct from wildtype, even though they all belong to one bigger cluster. Our results

call for the need for further investigations. For instance, thought provoking questions

like, under what circumstance would N1303K match up to or mirror wildtype? In

other words, what graph-theoretic or combinatorial descriptors of the graph contain-

ing N1303K would result in a graph that is very similar to wildtype or will cause

the clustering of N1303K along the wildtype or other mild mutations? Answers to

such questions are of paramount importance to us since it can lead us to gain a useful

discernment into line of action for design of a molecule that can correct this specific

mutation associated with cystic fibrosis.
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6 CONCLUSION

In this chapter, we link our findings to existing body of knowledge on graph-

theoretic models, main results are highlighted with appropriate recommendations

made as to further researches. A summary of the entire work is also presented in this

chapter.

6.1 Linking Findings to Existing Literature on Graph-Theoretic Models

The study was successful at building a graph-theoretic model for NBD2 and sub-

sequently using the graph in examining the impact of single-point mutations on the

NBD2 of CFTR. This work, though the first on a graph-theoretic model for NBD2 of

CFTR, adds up to existing literature on graph-theoretic models for studying biologi-

cal systems. Knowledge regarding the consequences of N1303K and other mutations

is essential for drug design to treat cystic fibrosis. Like Knisley et al. [36], the results

of this study point to the direction that graph-theoretic modeling holds a great po-

tential as equipment in the search for appropriate design of drugs for the treatment of

cystic fibrosis. Our findings indicate the existence of an obvious correlation between

the molecular descriptors or combinatorial descriptors (invariants) of the proximity

graphs of several respective clusters and their mutations.It can be argued that this is

not a mere happening since functional similarities are evident from structural simi-

larities.

6.2 Future Research Directions/ Open Problems

With the results of this study in view, the following questions can be asked:
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• What is responsible for this observed relationship between these respective clus-

ters?

• Why does N1303K cluster separately?

• Can similar graph-theoretic modeling approach be applied to study all other

mutation-causing diseases and possibly suggest line of action for drug design

for those diseases?

Questions such as these are worth considering as regards the problem at hand, and

are relevant to ongoing research in computational biology. Similar graph-theoretic

models can be built for all other mutation causing diseases to gain a meaningful

insight into them and possibly suggest the line of drug design in treatment of those

diseases.

6.3 Summary

One of the most prevalent inherited diseases among Caucasians is cystic fibrosis.

This disease is caused by a mutation in a membrane protein, the cystic fibrosis trans-

membrane conductance regulator (CFTR). CFTR is known to function as a chloride

channel that regulates the viscosity of mucus that lines the ducts of a number of

organs. Generally, most of the prevalent mutations of CFTR are located in one of

two nucleotide binding domains, namely, the nucleotide binding domain 1 (NBD1).

However, some mutations in nucleotide binding domain 2 (NBD2) can equally cause

cystic fibrosis. In view of the fact that currently, there exists no literature on build-

ing a graph-theoretic model for NBD2 and using the using graph-theoretic model in

50



studying the effect of single point mutation on the NBD2, this work becomes the first

in this direction. A mathematical model using graph theory to exam the impact of

a single point known in NBD2 to cause cystic fibrosis is presented in this research

work. In this work, a model for NBD2 is built using a hierarchical graph. With the

use of this model for NBD2, we examine the impact or consequence of single point

mutations on NBD2. For each atom in the structure of an amino acid residue, we

symbolize it by a vertex in the lowest level of the graph. As regards the residues,

we represent them by vertices in the midlevel grpah. The subdomain vertices are

each represented by a vertex in the toplevel graph of NBD2. Using this model for

NBD2, we examine the impact or consequence of single point mutations on NBD2.

We collate the wild type structure with eight of the most prevalent mutations and

observe how the NBD2 is affected by each of these mutations. A meaningful insight

into the profound structural effect of a single point mutation on the NBD2 is gained

using the nested graph for NBD2.
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