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ABSTRACT

The Apprentices’ Tower of Hanoi

by

Cory Braden Howell Ball

The Apprentices’ Tower of Hanoi is introduced in this thesis. Several bounds are found

in regards to optimal algorithms which solve the puzzle. Graph theoretic properties

of the associated state graphs are explored. A brief summary of other Tower of Hanoi

variants is also presented.
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2 The Sierpiński Triangle[5] . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The Reve’s Puzzle[7] . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 16|34|52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 AH0
∼= Trivial Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 AH1
∼= K3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 AH2
∼= SD(1) = Star of David Graph [20] . . . . . . . . . . . . . . . 47

8 The graph AH3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 The graph AH3 with selected vertices. . . . . . . . . . . . . . . . . . 50

9



1 CLASSICAL TOWER OF HANOI

In this thesis we intend to study a variant of the Tower of Hanoi. The Tower of

Hanoi was first published under the original French title La Tour D’Hanöı in 1883

by Professor N. Claus. This was a pen name of French number theorist François

Édouard Anatole Lucas [16].

1.1 The Legend

Upon creation of the Tower of Hanoi, Lucas penned a legend to describe his puzzle.

Later, the legend was further illustrated by Henri de Parville, whose story was then

translated by W. W. R. Ball as given below [13].

It was said that in the Indian City of Benares, beneath a dome which

marked the centre of the world, there was to be found a brass plate in

which were set three diamond needles, “each a cubit high and as thick as

the body of a bee.” It was also said that God had placed sixty-four discs

of pure gold on one of these needles at the time of Creation. Each disc

was said to be of different size, and each was said to have been placed

so that it rested on top of another disc of greater size, with the largest

resting on the brass plate at the bottom and the smallest at the top. This

was known as the Tower of Brahma.

Within the temple there were said to be priests whose job it was to transfer

all the gold discs from their original needle to one of the others, without

ever moving more than one disc at a time. No priest could ever place any
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disc on top of a smaller one, or anywhere else except on one of the needles.

When the task had been completed, and all sixty-four discs had been

successfully transferred to another needle, it was suggested that the tower,

temple, and Brahmins alike will crumble into dust, and with a thunder-

clap the world will vanish [1].

1.2 Rules

Supposing the legend were true we may like to know how long it will take for the

universe to end. Let us now examine the rules. The Tower of Hanoi is a mathematical

puzzle consisting of three pegs and n discs with distinct diameter. In the initial state

the puzzle has the n discs placed on an origin peg in descending diametric order.

In other words, the disc with largest diameter is on the bottom and the diameters

strictly decrease so that the smallest is on top.

The objective is to move the n discs to a destination peg while at the same time

obeying three rules. The rules are as follows:

1. The player may move only one disc at a time. When carried out, this is consid-

ered to be one move.

2. Only the top disc of a given peg may be moved.

3. (The Divine Rule) No disc shall be placed atop a disc of smaller diameter.

We also need the definition of auxiliary peg and the definition of solved. An

auxiliary peg is any peg which is neither the origin peg nor the destination peg. The

puzzle is said to be solved when all discs are placed on the destination peg.

11



1.3 An Optimal Algorithm

Upon release of the puzzle, Lucas included a conjecture about the number of

moves required in an optimal algorithm for the Tower of Hanoi with sixty-four discs

[16].

Claim 1. [16] An optimal algorithm for the Tower of Hanoi with sixty-four discs

requires 18446744073709551615 moves. Supposing each move takes one second it will

take more than five billion centuries to solve the puzzle.

Let us examine this claim. First we must define optimal algorithm. In terms of

the Tower of Hanoi, an optimal algorithm is one in which the least number of moves

are required to solve the puzzle. Denote the number of moves in an optimal algorithm

by Mn.

Most people who have attempted the puzzle on a small number of discs notice a

recursive algorithm by which the puzzle may be solved. This consists of moving the

top n − 1 discs to the auxiliary peg, then moving the largest disc to the destination

peg, and finally moving the remaining n − 1 discs to the destination peg. This

recursive algorithm has been shown to be optimal by D. Wood in 1981 [23]. The key

to showing the optimality is showing the largest disc may be moved only once in an

optimal algorithm.

Lemma 1.1. [23] The largest disc is moved only once in an optimal algorithm for

the Tower of Hanoi.

Theorem 1.2. [23] An optimal solution to The Tower of Hanoi with n discs consists

of twice the number of moves for n − 1 discs plus one additional move. That is,
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Mn = 2Mn−1 + 1.

While this is an optimal algorithm it would be difficult to examine Lucas’ claim

by recursion. It is with this in mind that we consider the following.

Corollary 1.3. Mn = 2n − 1.

Proof. From Theorem 1.2, Mn = 2Mn−1 + 1. Also, it is clear that M1 = 1. Let us

proceed by induction on n. M1 = 1 = 21 − 1. So, the base case holds. Now let us

assume the claim holds for n. That is, Mn = 2Mn−1 + 1 = 2n − 1. Now consider

Mn+1 = 2Mn + 1. By hypothesis,

Mn+1 = 2Mn + 1 = 2(2Mn−1 + 1) + 1 = 2(2n − 1) + 1 = 2(2n)− 2 + 1 = 2n+1 − 1.

Hence, the claim follows by induction. Q.E.D.

We may now consider Lucas’ claim. We will use the optimal algorithm.

Mn = 2n − 1 =⇒ M64 = 264 − 1 = 18446744073709551615. (1)

So, the number of moves is correct. If, as the legend says, we assume one move is made

every second, then we can conclude it would take more than five billion centuries, as

Lucas claimed.

1.4 Hanoi Graphs

Of great interest to those who study Tower of Hanoi problems are the correspond-

ing graphs. Hanoi Graphs, denoted Hn
3 , are graphs whose vertex set consists of all

possible states of the puzzle, and two vertices are adjacent in Hn
3 if and only if one

state could be obtained from another in a single move [19].
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Let us suppose the discs are distinctly labeled 1, 2, . . . , n with larger discs being

assigned greater numbers. When listing an arrangement, we shall list discs left to

right to represent top to bottom. Also a vertical bar will separate the pegs.

For example, if we have one disc, then there are three possible states. The first,

1||, where the disc is on the first peg. Another, |1|, where the disc is on the second

peg. Finally, ||1, where the disc is on the destination peg. In general, the initial state

will be 12 . . . n||. Other states include but are not limited to n|12 . . . n− 1| and

|12 . . . n− 1|n. The final state is ||12 . . . n.

Example 1.4. The Hanoi Graph for the Tower of Hanoi with 2 discs has vertex set

V (H2
3 ) = {12||, 1|2|, 1||2, 2|1|, 2||1, |12|, |1|2, |2|1, ||12}. The edge set is

E(H2
3 ) ={(12||)(1|2|), (12||)(1||2), (1|2|)(1||2), (1|2|)(|2|1), (1|2|)(|12|), (1||2)(|1|2),

(1||2)(||12), (2|1|)(2||1), (2|1|)(|1|2), (2||1)(|2|1), (|12|)(|2|1), (|1|2)(||12)}.

The graph can be seen in Figure 1.

Figure 1: H2
3

A subgraph of a graph G is a graph comprised of only vertices and edges from the
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edge set of G [2]. An isomorphism is a one to one and onto mapping that preserves

the structure of the set, i.e., a bijective homomorphism [8]. A complete graph, denoted

Kn, has n vertices and all possible adjacencies between these vertices[2].

Proposition 1.5. Each Hn
3 , where n ≥ 1, contains a K3 subgraph.

Proof. There are only three possible states for the Tower of Hanoi with one disc.

Each of which can be attained by a single move from the other. Hence, H1
3
∼= K3.

Moreover, H1
3 is clearly a subgraph of Hn

3 . Q.E.D.

A walk of length n in a graph is an alternating sequence of vertices and edges,

v0,e0,v1,e1,v2,. . ., vn−1,en−1,vn, which begins and ends with vertices. A trail is a walk

with no repeated edges. A path is a trail with no repeated vertices. A u− v path is

a path that begins at vertex u and ends at vertex v [11].

Now we define connected for vertices and graphs. Two vertices u and v in a graph

G are connected if G contains a u − v path. A graph G is connected if every two

vertices of G are connected [2].

Proposition 1.6. [13] Hn
3 is connected.

Next we will define graph distance and geodesic. The distance from a vertex u to

a vertex v in a connected graph is the minimum of the lengths of the u− v paths in

the graph, denote this d(u, v) [2].

Proposition 1.7. [13] The distance from the vertex representing the initial state, vi,

to the vertex representing the final state, vf , is the number of moves required in an

optimal algorithm to solve the Tower of Hanoi.
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Corollary 1.8. [13] d(vi, vf ) = 2n − 1 = Mn = 2Mn−1 + 1.

Let us now define coloring, chromatic number, and edge chromatic number. A

proper coloring (or simply, a coloring) of a graph is an assignment of colors to the

vertices, such that adjacent vertices have different colors [3]. The smallest number

of colors in any coloring of a graph G is called the chromatic number of G, denote

this χ(G) [3]. The edge chromatic number, or chromatic index, is the least number

of colors needed to color the edges of a graph G so that no two adjacent edges are

assigned the same color. This is denoted χ1(G) or χ′(G) [10].

Proposition 1.9. [13] For n ≥ 1, χ(Hn
3 ) = 3 = χ′(Hn

3 ).

We now consider domination in Hanoi Graphs. A vertex is said to dominate itself

and all adjacent vertices [2]. Furthermore, a set of vertices is a dominating set if

every vertex of a graph is dominated by at least one vertex in the set [2]. Finally, the

domination number, denoted γ(G), is the minimum cardinality among the dominating

sets of G [2].

Proposition 1.10. [13] The domination number of a Hanoi Graph is

γ(Hn
3 ) =

1

4
(3n + 2 + (−1)n).

Let us now consider the symmetries of Hanoi Graphs. An automorphism is an

isomorphism mapping a set to itself [14]. Also, the automorphism group, denoted

Aut(G), of a group G is the set of all automorphisms of G [9]. Lastly, if A is the set

of all natural numbers less than or equal to n, then the set of all permutations of A

is called the symmetric group of degree n and is denoted by Sn [9].
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Proposition 1.11. [13] For n ∈ N, Aut(Hn
3 ) ∼= S3

∼= ST , where ST is the symmetric

group formed by the vertex set, T n.

The symmetries can best be seen by considering the fractal structure which the

graphs take. This structure is known as The Sierpiński Triangle or Sierpiński’s Gasket

which is shown in Figure 2 [17].

Figure 2: The Sierpiński Triangle[5]
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2 TOWER OF HANOI VARIANTS

Over the years several variations on the classical Tower of Hanoi have been con-

sidered. Most such variants involve either breaking the Divine Rule or considering

additional pegs. A Tower of Hanoi Variant is any variant that consists of discs and

pegs, such that discs may be placed on pegs. Additionally the following rules must

be obeyed:

1. Pegs are distinguishable.

2. Discs are distinguishable.

3. Discs are on pegs all the time except for moves.

4. One or more discs can be moved from only the top of a stack.

5. Given an initial distribution of discs among pegs and a goal distribution among

pegs, find a shortest sequence of moves that transfers discs from the initial state

to the final state obeying any added rules [13].

2.1 The Reve’s Puzzle

Figure 3: The Reve’s Puzzle[7]

18



The first and perhaps most famous variant is The Reve’s Puzzle which is illustrated

in Figure 3. As given by Henry Dudeney in The Canterbuy Puzzles And Other Curious

Problems :

The Reve was a wily man and something of a scholar. As Chaucer tells us,

“There was no auditor could of him win,” and “there could no man bring

him in arrear.” The poet also noticed that “ever he rode the hindermost

of the route.” This he did that he might the better, without interruption,

work out the fanciful problems and ideas that passed through his active

brain. When the pilgrims were stopping at a wayside tavern, a number

of cheeses of varying sizes caught his alert eye; and calling for four stools,

he told the company that he would show them a puzzle of his own that

would keep them amused during their rest. He then placed eight cheeses

of graduating sizes on one of the end stools, the smallest cheese being at

the top, as clearly shown in the illustration. “This is a riddle,” quoth he,

“that I did once set before my fellow townsmen at Baldeswell, that is in

Norfolk, and, by Saint Joce, there was no man among them that could

rede it aright. And yet it is withal full easy, for all that I do desire is

that, by the moving of one cheese at a time from one stool unto another,

ye shall remove all the cheeses to the stool at the other end without ever

putting any cheese on one that is smaller than itself. To him that will

perform this feat in the least number of moves that be possible will I give a

draught of the best that our good host can provide.” To solve this puzzle

in the fewest possible moves, first with 8, then with 10, and afterwards

19



with 21 cheeses, is an interesting recreation [7].

Proposition 2.1. The Reve’s Puzzle is a Tower of Hanoi variant with four pegs.

In the included solutions Dudeney claims, “The 8 cheeses can be removed in 33

moves, 10 cheeses in 49 moves, and 21 cheeses in 321 moves.” Dudeney provides a

method by which the reader may find these results, but does not prove its optimality

[7].

While an optimal algorithm is easy to establish for the classical Tower of Hanoi,

it is not the case for the general Reve’s Puzzle. In fact, this is still an open problem.

However, we may still check the particular solutions given by Dudeney.

The idea of Hanoi graphs may be naturally extended to this puzzle. They will be

denoted Hn
4 . In particular the Reve has given H8

4 , H10
4 , and H21

4 . So, a geodesic from

the vertex representing the initial state, vi, to the vertex representing the final state,

vf , is the minimum number of moves.

One can employ a breadth-first search to find d(vi, vf ). Due to symmetries in the

puzzle, the search need only consider three levels at a time, and it may stop when any

other perfect state has been met [13]. Using such a method Korf found the minimum

number of moves for the Reve’s Puzzle up to 31 discs [15]. In doing so Dudeney’s

claims were proved. These are given in Table 1.
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Table 1: The Minimum Number of Moves for n ∈ [31] for the Reve’s Puzzle [15]
n Mn n Mn

1 1 17 193
2 3 18 225
3 5 19 257
4 9 20 289
5 13 21 321
6 17 22 385
7 25 23 449
8 33 24 513
9 41 25 577
10 49 26 641
11 65 27 705
12 81 28 769
13 97 29 897
14 113 30 1025
15 129 31 1153
16 161

2.2 Frame-Stewart

A natural extension to the Tower of Hanoi is to consider any number of discs on

any number of pegs. The problem was first formally proposed by B. M. Stewart in

1939, as Problem 3918 in the American Mathematical Monthly as follows:

Given a block in which k pegs and a set of n washers, no two alike in size,

and arranged on one peg so that no washer is above a smaller washer.

What is the minimum number of moves in which the n washers can be

placed on another peg, if the washers must be moved one at a time, subject

always to the condition that no washer be placed on a smaller washer [21]?

This is clearly a variant as we follow the exact same rules as the Tower of Hanoi

and the Reve’s Puzzle, but have k distinct pegs rather than 3 or 4, respectively. Since
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finding an optimal algorithm for the Reve’s Puzzle is an open problem, certainly the

n discs on k pegs variant is an open problem. There is, however, a “presumed optimal

algorithm,” which was introduced by J. S. Frame and edited by Stewart two years

after the problem was proposed [22].

Conjecture 2.2. (Frame-Stewart Conjecture [22]) F n
p = T (n, p) = 2T (k, p) + T (n−

k, p−1) choosing k to give the minimum value, where F n
p is a Frame-Stewart number

and T (n, p) is the minimum number of moves required to complete the puzzle. In other

words, the number of moves required to transfer all n discs to one of the p− 1 other

towers is the number required to transfer the top k discs to a tower that is not the

destination peg. Then, without disturbing the peg that now contains the top k discs,

transfer the remaining n − k discs to the destination peg, using only the remaining

p − 1 pegs, taking T (n − k, p − 1) moves. Finally transfer the top k discs to the

destination peg, taking T (k, p) moves.

This conjecture has been attempted and believed to have been proven by several

mathematicians. Yet there are logical gaps in all known such attempts to prove the

conjecture. Most such efforts are similar to the original Frame-Stewart paper [13].

2.3 Bottle-Neck Tower

In 1981, D. Wood created a variant of the Tower of Hanoi in which the Divine

Rule is relaxed. Precisely, for k ≥ 1: If disc j is placed higher than disc i on the same

peg, then j − i ≤ k. This is played on 3 pegs [23].

In 2006, Dinitz and Solomon proved an optimal algorithm in which the top n− 1

discs are moved to the auxiliary peg, then disc n is moved to the destination peg, and
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finally the n− 1 discs are moved to the destination peg [6].

2.4 Sinner’s Tower and Santa Claus’ Tower

The Sinner’s Tower and Santa Claus’ Tower were introduced in a 2007 paper by

Chen, Tian, and Wang [4]. In the Sinner’s variant the objective is the same as the

classical Tower of Hanoi, but the divine rule may be violated k times. In other words

at most k times a disc may be placed directly on top of smaller disc [4].

Denote the minimum number of moves needed to complete the Sinner’s variant as

S(n, k). Let

g(n, k) =


2n− 1 : n ≤ k + 2
4n− 2k − 5 : k + 2 ≤ n ≤ 2k + 2
2n−2k + 6k − 1 : 2k + 2 ≤ n

for all n and k, S(n, k) = g(n, k) [4].

In the Santa Claus’ variant for a number d when a disc x is put on a pile of other

discs, before the move, discs smaller than x can only occur at the top up to d − 1

positions in that pile, but none of them can be of size less than or equal to x− d. Let

C(n, d) denote the minimum number of moves to complete Santa Claus’ Tower. Let

n− 1 = dq + r, where 1 ≤ r ≤ d. Then, C(n, d) = 1 + d(2q+1 − 2) + r2q+1 [4].
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3 THE APPRENTICES’ TOWER OF HANOI

3.1 The Legend

As with Lucas, we will construct a legend to describe our variant. The priests

who work at the Tower of Hanoi have been doing so since the dawn of time. As such

they have become quite old and tired. It is with this in mind that they have decided

to train a new generation of priests to take over the transfer of the golden discs.

As we are all well aware, the youth of today is quite lazy and does not understand

the need for all these so-called rules. So, if left to their own accord, the young

apprentices would tend to ignore the rules for the transfer process.

However, the apprentices are under the watchful eyes of the vigilant priests whose

sworn duty is to ensure the established and sacrosanct laws of Brahma are obeyed.

The wise old priests can keep track of how many golden discs are moved at once, and

ensure only the top golden disc may be moved.

Unfortunately, with age comes poor eye-sight. Thus, so long as the stacks only

have one misplaced golden disc per diamond needle, the vigilant priests will not notice.

Does this spell doom for us all?

3.2 The Rules

The Apprentices’ Tower of Hanoi is a Tower of Hanoi variant allowing the player

to “sin,” meaning break the divine rule exactly once on each tower at any given time.

Thus, on each peg there is at most one place in which a larger disc is on top of a

smaller disc. After which discs must decrease in size. A configuration is regular if

24



only smaller discs are on top of larger discs. A configuration is perfect if all discs are

on a single peg.

The objective of The Apprentices’ Tower of Hanoi is the same as the classical

Tower of Hanoi, i.e., to start with a perfect configuration with an n regular stack on

peg-1 and conclude with a perfect configuration with an n regular stack on peg-3.

3.3 Labeling

As before, suppose the discs are distinctly labeled 1, 2, . . . , n with larger discs

being assigned greater numbers. When listing an arrangement, we shall list discs left

to right to represent top to bottom.

On each of the three pegs, the discs may be in one of the following states:

i) Empty(E)- There are no discs on the peg.

ii) Regular(R)- There is at least one disc on the peg. The discs conform to the

Divine Rule (i.e., no larger disc is atop a smaller disc and thus, the permutation

is strictly increasing). In particular, k regular, if top disc (left disc in notation)

has value k.

iii) Sinful(S)- There are at least two discs on the peg, the discs violate the divine rule

in exactly one place. In other words, there is exactly one fall in the associated

permutation. In particular, k sinful if top disc has value k.

Hence, any “allowed” configuration can be put into one of the following categories in

Table 2:
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Table 2: Allowed Configurations
Configuration Configuration
E, E, E (possible only when n=0) S, E, E
R, E, E (Perfect Regular Configuration) S, S, E
S, R, E R, R, E
S, S, S S, S, R
S, R, R R, R, R

Example 3.1. Consider 16|34|52 seen in Figure 4. Here we have an R, R, S config-

uration, which due to symmetry is an S, R, R from above.

The Example 3.1 is shown in Figure 4.

Figure 4: 16|34|52
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4 QUEST FOR AN OPTIMAL ALGORITHM

As with all variants of the Tower of Hanoi we seek an optimal algorithm. In

general the number of moves required to transfer n discs in regular order from peg-1

to peg-3 in regular order allowing si sins on peg-i will be denoted Sn(s1, s2, s3). So the

traditional Tower of Hanoi can be solved in Sn(0, 0, 0) moves, and the Apprentices’

Tower of Hanoi can be solved in Sn(1, 1, 1) moves. Unless otherwise noted we will

assume Sn = Sn(1, 1, 1).

Observation 4.1. S1 = 1, S2 = 3, and S3 = 5.

For S1 = 1 simply move the largest disc to the destination. For S2 = 3 move the

top disc to the auxiliary peg. Then, move the largest disc to the target peg. Finally,

move the disc from the auxiliary peg to the target peg. For S3 = 5 move the top disc

to the auxiliary peg. Then, move the next disc to the auxiliary peg. Next, move the

top disc to the target peg. Then, move the top disc of the auxiliary peg to the target

peg. Lastly, move the disc from the auxiliary peg to the target peg.

Theorem 4.2. Sn ≥ 2n− 1 for all n.

Proof. Solving the puzzle requires the largest disc be moved to the destination peg.

In order to move the largest disc, the origin peg must contain only the largest disc.

So the top n − 1 discs must be moved from the origin peg. This requires at least

n−1 moves. The largest disc must eventually be placed on the destination peg. This

requires at least one move. Lastly, the n− 1 discs must be placed on the destination

peg. Hence, Sn ≥ n− 1 + 1 + n− 1 = 2n− 1. Q.E.D.
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Theorem 4.3. The number of moves required to solve an n disc Apprentices’ Tower

of Hanoi with an optimal algorithm is less than or equal to 2n − 1.

Proof. The number of moves to solve the classical Tower of Hanoi is 2n − 1. If we

ignore the ability to sin, then we are reduced to the classical Tower of Hanoi. Thus

Sn ≤ 2n − 1. Q.E.D.

This bound is sharp for n ≤ 2. Since we can solve The Apprentices’ Tower with

three discs in five moves, as given above, this is not an optimal algorithm.

Theorem 4.4. The largest disc in a stack of regular order may be moved only if all

other discs are first moved.

Proof. A disc cannot be moved while other discs are on top of it, and the largest disc is

on the bottom. Thus, the largest disc in a regular stack must be moved last. Q.E.D.

Theorem 4.5. The minimum number of moves required to move n discs to another

peg in regular order is equal to the minimum number of moves required to return them

in regular order.

Proof. By definition Sn is the minimum number of moves required to move a regular

stack of n discs to another peg in regular order. So, reversing this sequence of moves

will be the minimum number required to return the discs. Q.E.D.

Theorem 4.6. The number of moves required to move a stack of n discs in any order

to another peg in another order is the same as the minimum number of moves required

to return them.
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Proof. Reversing the sequence of moves will be the minimum number required to

return the discs. Otherwise we have a contradiction with the assumption that we

have used the minimum number of moves to begin with. Q.E.D.

Theorem 4.7. The number of moves required to solve an n disc Apprentices’ Tower

of Hanoi with an optimal algorithm is less than or equal to 2Sn−2 + 3.

Proof. First, move the top n− 2 discs to the auxiliary peg, taking Sn−2 moves. Next,

move disc n − 1 to the auxiliary peg, taking one move. Now, move disc n to the

destination peg, taking one move. Then, move disc n − 1 to the destination peg,

taking one move. Lastly, reverse and mirror the Sn−2 initial moves in order to place

the top n− 2 discs on the destination peg. This gives a total of

Sn−2 + 1 + 1 + 1 + Sn−2 = 2Sn−2 + 3

moves. Thus, Sn ≤ 2Sn−2 + 3. Q.E.D.

This bound is sharp for S3 = 2S3−2+3 = 2+3 = 5. As n gets larger, it is presumed

the bound is no longer sharp and will exponentially diverge. Table 3 provides a list

for small n.

Table 3: 2Sn−2 + 3
n 2Sn−2 + 3
1 1
2 3
3 5
4 9
5 13
6 21
7 29
8 45
9 61
10 93
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Theorem 4.8. The number of moves required to solve an n disc Apprentices’ Tower

of Hanoi with an optimal algorithm obeys

Sn ≤ 2Sn−k(1, 1, 1) + 2Sk−1(1, 1, 0) + 1,

where we choose k to minimize the right side of the inequality.

Proof. Consider the following algorithm:

1. Move n−k discs to the auxiliary peg in a regular order. This takes Sn−k(1, 1, 1)

moves.

2. Move k−1 discs to the auxiliary peg in a regular order. This takes Sk−1(1, 1, 0)

moves.

3. Move disc n to the destination peg. This takes one move.

4. Move k−1 discs from the auxiliary peg to the destination peg by mirroring and

reversing the Sk−1(1, 1, 0) moves.

5. Move n − k discs from the auxiliary peg to the destination peg by mirroring

and reversing the Sn−k(1, 1, 1) moves. This takes Sn−k moves.

So, we have a total of

Sn−k(1, 1, 1) + Sk−1(1, 1, 0) + 1 + Sk−1(1, 1, 0) + Sn−k(1, 1, 1)

= 2Sn−k(1, 1, 1) + 2Sk−1(1, 1, 0) + 1

moves. Q.E.D.
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The floor function rounds the input down to the nearest integer. It is denoted

bxc. Table 4 provides a list for 2Sn−k(1, 1, 1) + 2Sk−1(1, 1, 0) + 1 where k =
⌊
n
2

⌋
.

Table 4: 2Sn−k(1, 1, 1) + 2Sk−1(1, 1, 0) + 1
n 2Sn−k(1, 1, 1) + 2Sk−1(1, 1, 0) + 1 k =

⌊
n
2

⌋
1 1 0
2 3 1
3 5 1
4 9 2
5 13 2
6 17 3
7 25 3
8 29 4
9 37 4
10 45 5

The following notation is used heavily in the following theorems. Let S ′n denote

the number of moves required to move an n regular stack allowing for sinful order.

Let S ′′n denote the minimum number of moves required to move an n sinful stack

allowing for sinful order. Let S ′′′n denote the minimum number of moves required to

move an n sinful stack to regular order given that it was created using S ′′n moves.

Theorem 4.9. The number of moves required to solve an n disc Apprentices’ Tower

of Hanoi with an optimal algorithm obeys Sn ≤ 2S ′n−1 + 1 for all n ∈ N.

Proof. Let us consider the following sequence of moves.

1. Move n− 1 discs to the auxiliary peg in a sinful order. This takes S ′n−1 moves.

2. Move disc n to the destination peg.

3. Move n− 1 discs to the destination peg by reversing and mirroring the original

S ′n−1 moves. This takes Sn−1 moves.
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The total of this sequence is S ′n−1 + 1 + S ′n−1 = 2S ′n−1 + 1. Q.E.D.

Theorem 4.10. The number of moves required to solve an n disc Apprentices’ Tower

of Hanoi with an optimal algorithm obeys

Sn ≤ 2Sk−1(1, 0, 1) + 2S ′n−k(1, 1, 1) + 2S ′′n−k(1, 1, 0) + 1.

Proof. Consider the following sequence of moves:

1. Move the top n − k discs to the destination peg in a sinful order. This takes

S ′n−k moves.

2. Move the next k−1 to the auxiliary peg in regular order. This takes Sk−1(1, 0, 1)

moves.

3. Move the n − k discs from the destination peg to the auxiliary peg in sinful

order. This takes S ′′n−k(1, 1, 0) moves.

4. Move disc n to the the destination peg. This takes one move.

5. Move the top n−k discs from the auxiliary peg to the origin peg into the sinful

order from step 1. This takes S ′′n−k(1, 1, 0) moves by symmetry.

6. Move the k − 1 discs from the auxiliary peg to the destination peg in regular

order. This takes Sk−1(1, 0, 1) moves.

7. Move the n−k discs from the origin peg to the destination peg in regular order.

This takes S ′n−k.
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So, in total there are

S ′n−k + Sk−1(1, 0, 1) + S ′′n−k(1, 1, 0) + 1 + S ′′n−k(1, 1, 0) + Sk−1(1, 0, 1) + S ′n−k

moves.

Whence,

Sn ≤ 2Sk−1(1, 0, 1) + 2S ′n−k(1, 1, 1) + 2S ′′n−k(1, 1, 0) + 1.

Q.E.D.

Theorem 4.11. The number of moves required to move a stack of n discs from a peg

to another, S ′n ≤ 2S ′n−2 + 2.

Proof. Consider the following sequence of moves:

1. Move the top n− 2 discs to the auxiliary peg in a sinful order. This takes S ′n−2

moves.

2. Move disc n− 1 to the destination peg. This takes one move.

3. Move the top n − 2 discs from the auxiliary peg to the destination peg. Place

these in regular order by symmetry. This takes S ′n−2 moves.

4. Move disc n to the the destination peg. This takes one move.

Therefore, S ′n ≤ 2S ′n−2 + 2. Q.E.D.

Thus far we have assumed the largest disc only moves once. Now we will look at

what happens if the largest disc moves more than once.

Theorem 4.12. The largest disc can be moved only if among the other pegs there is

an empty or regular stack.
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Proof. The largest disc can be moved atop an empty or regular stack. If the stack is

sinful, then the largest disc cannot be placed atop the stack else we break the divine

rule twice. Q.E.D.

Theorem 4.13. If the largest disc is moved twice, then for optimality we require the

destination peg or the auxiliary peg to have a stack of regular order for the first.

Proof. By Theorem 4.12, we know the peg the largest disc is moved to is empty or

has a regular stack. If the peg is empty and we plan to move the largest disc twice,

then this is not an optimal move as we would then just have to move the other n− 1

discs atop it. Thus, the stack to which the largest disc is to be moved must be

regular. Q.E.D.

Theorem 4.14. If the largest disc is moved twice, then

Sn ≤ 2Sn−k(1, 1, 1) + 3Sk−1(1, 0, 1) + 2.

Proof. Consider the following sequence of moves:

1. Move the top n − k discs to the auxiliary peg in a regular order. This takes

Sn−k moves.

2. Move the next k − 1 discs to the destination peg in regular order. This takes

Sk−1(1, 0, 1) moves.

3. Move the largest disc to the auxiliary peg. This takes one move.

4. Move the k− 1 discs from the destination peg to the origin peg. Place these in

regular order by symmetry. This takes Sk−1(1, 0, 1) moves.
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5. Move disc n to the the destination peg. This takes one move.

6. Move the k−1 discs from the origin peg to the destination peg in regular order.

This takes Sk−1(1, 0, 1) moves.

7. Move the n− k discs from the auxiliary peg to the destination peg in a regular

order. This takes Sn−k moves.

In total this is

Sn−k + Sk−1(1, 0, 1) + 1 + Sk−1(1, 0, 1) + 1 + Sk−1(1, 0, 1) + Sn−k

= 2Sn−k(1, 1, 1) + 3Sk−1(1, 0, 1) + 2

moves. Q.E.D.

Theorem 4.15. If the largest disc is moved twice, then

Sn ≤ 2Sn−k(1, 1, 1) + 2S ′k−1(1, 0, 1) + Sk−1(1, 0, 1) + 2.

Proof. Consider the following sequence of moves:

1. Move the top n − k discs to the auxiliary peg in a regular order. This takes

Sn−k moves.

2. Move the next k − 1 discs to the destination peg in sinful order. This takes

S ′k−1(1, 0, 1) moves.

3. Move the largest disc to the auxiliary peg. This takes one move.

4. Move the k− 1 discs from the destination peg to the origin peg. Place these in

regular order by symmetry. This takes S ′k−1(1, 0, 1) moves.
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5. Move disc n to the the destination peg. This takes one move.

6. Move the k−1 discs from the origin peg to the destination peg in regular order.

This takes Sk−1(1, 0, 1) moves.

7. Move the n− k discs from the auxiliary peg to the destination peg in a regular

order. This takes Sn−k moves.

In total this is

Sn−k + S ′k−1(1, 0, 1) + 1 + S ′k−1(1, 0, 1) + 1 + Sk−1(1, 0, 1) + Sn−k

= 2Sn−k(1, 1, 1) + 2S ′k−1(1, 0, 1) + Sk−1(1, 0, 1) + 2

moves. Q.E.D.

Theorem 4.16. If the largest disc is moved twice, then

Sn ≤ 2Sn−k(1, 1, 1) + S ′k−1(1, 0, 1) + S ′′k−1(1, 0, 1) + S ′′′k−1(1, 0, 1) + 2.

Proof. Consider the following sequence of moves:

1. Move the top n − k discs to the auxiliary peg in a regular order. This takes

Sn−k moves.

2. Move the next k − 1 discs to the destination peg in sinful order. This takes

S ′k−1(1, 0, 1) moves.

3. Move the largest disc to the auxiliary peg. This takes one move.

4. Move the k− 1 discs from the destination peg to the origin peg. Place these in

sinful order. This takes S ′′k−1(1, 0, 1) moves.
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5. Move disc n to the the destination peg. This takes one move.

6. Move the k−1 discs from the origin peg to the destination peg in regular order.

This takes S ′′′k−1(1, 0, 1) moves.

7. Move the n− k discs from the auxiliary peg to the destination peg in a regular

order. This takes Sn−k moves.

In total this is

Sn−k + S ′k−1(1, 0, 1) + 1 + S ′′k−1(1, 0, 1) + 1 + S ′′′k−1(1, 0, 1) + Sn−k

= 2Sn−k(1, 1, 1) + S ′k−1(1, 0, 1) + S ′′k−1(1, 0, 1) + S ′′′k−1(1, 0, 1) + 2

moves. Q.E.D.
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5 AHn GRAPH PROPERTIES

As with all variants of the Tower of Hanoi, we can generate a family graphs where

the states of the puzzle form the vertex set and the moves between them form the

edge set. Let AHn be the graph associated with the Apprentices’ Tower of Hanoi

with n discs, where the vertices represent the states of the puzzle, and there is an

edge between two vertices if and only if the states are separated by a single move.

Theorem 5.1. The associated graph AHn is a subgraph of AHN for all N ≥ n.

Proof. Clearly, if n = N , then the claim follows immediately. So, let N > n and

consider the puzzle with N discs. Ignore the ability to move disc n+ 1. This creates

the puzzle with n discs. Q.E.D.

5.1 The Number of Vertices

Let us now determine the number of states in the Apprentices’ Tower of Hanoi.

First let [k] denote the set of all natural numbers less than or equal to k. So on any

peg, with k discs, we have a a permutation on [k] in which there is at most one fall.

In other words there may be only one greater number to the left of a lesser number

in the vertex notation on a particular peg for a state.

Lemma 5.2. [18] The number of permutations on [k] in which there is at most one

fall is given by 2k − k.

In this section, we make use of the Multinomial Theorem.
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Theorem 5.3. (Multinomial Theorem [12])

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

) ∏
1≤t≤m

xktt .

Theorem 5.4. The number of states of the Apprentices’ Tower of Hanoi, and thus,

the number of vertices in the associated graph, is given by

n(AHn) =
∑

λ1+λ2+λ3=n
λi≥0

(
n

λ1, λ2, λ3

)
(2λ1 − λ1)(2λ2 − λ2)(2λ3 − λ3). (2)

Proof. We count this in (n+1)(n+2)
2

disjoint exhaustive classes.

The (λ1, λ2, λ3)th set is the set of all configurations in which λ1 discs are on peg 1,

λ2 discs are on peg 2, and λ3 discs are on peg 3.

The number of configurations in this set can be counted by:

1. Choosing λ1 discs, λ2 discs, and λ3 discs to place on pegs 1, 2, and 3, respectively.

There are
(

n
λ1,λ2,λ3

)
ways to do this.

2. Arranging the λ1 discs on peg 1 such that there is at most one fall.

There are 2λ1 − λ1 ways to do this by Lemma 5.2.

3. Arranging the λ2 discs on peg 2 such that there is at most one fall.

There are 2λ2 − λ2 ways to do this by Lemma 5.2.

4. Arranging the λ3 discs on peg 1 such that there is at most one fall.

There are 2λ3 − λ3 ways to do this by Lemma 5.2.

So, there are
(

n
λ1,λ2,λ3

)
(2λ1 − λ1)(2λ2 − λ2)(2λ3 − λ3) configurations in set (λ1, λ2, λ3)

by the Multiplication Principle. Ergo, by the Addition Principle,

n(AHn) =
∑

λ1+λ2+λ3=n
λi≥0

(
n

λ1,λ2,λ3

)
(2λ1 − λ1)(2λ2 − λ2)(2λ3 − λ3). Q.E.D.
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Corollary 5.5. The number of states of The Apprentices’ Tower of Hanoi is given

by

n(AHn) = 6n − 3n · 5n−1 + 3n(n− 1)4n−2 − n(n− 1)(n− 2)3n−3. (3)

Proof. First expansion yields

∑
λ1+λ2+λ3=n

λi≥0

(
n

λ1, λ2, λ3

)
(2λ1 − λ1)(2λ2 − λ2)(2λ3 − λ3)

=
∑

λ1+λ2+λ3=n
λi≥0

(
n

λ1, λ2, λ3

)
(2λ1+λ2+λ3 − 2λ1+λ2λ3 − 2λ1+λ3λ2

− 2λ2+λ3λ1 + λ1λ22
λ3 + λ1λ32

λ2 + λ2λ32
λ1 − λ1λ2λ3).

The Multinomial Theorem gives

(x+ y + z)n =
∑

λ1+λ2+λ3=n
λi≥0

(
n

λ1, λ2, λ3

)
xλ1yλ2zλ3 .

Consider

∂

∂x
(x+ y + z)n = n(x+ y + z)n−1 =

∑
λ1+λ2+λ3=n

λi≥0

(
n

λ1, λ2, λ3

)
λ1x

λ1−1yλ2zλ3 .

Choose x = 1, y = 2, and z = 2 to obtain

n5n−1 =
∑

λ1+λ2+λ3=n
λi≥0

(
n

λ1, λ2, λ3

)
λ12

λ2+λ3 .

Now consider,

∂

∂x

∂

∂y
(x+ y + z)n = n(n− 1)(x+ y + z)n−2

=
∑

λ1+λ2+λ3=n
λi≥0

(
n

λ1, λ2, λ3

)
λ1λ2x

λ1−1yλ2−1zλ3 .
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Choose x = 1, y = 1, and z = 2 to obtain

n(n− 1)4n−1 =
∑

λ1+λ2+λ3=n
λi≥0

(
n

λ1, λ2, λ3

)
λ1λ22

λ3 .

Finally, consider

∂

∂x

∂

∂y

∂

∂z
(x+ y + z)n = n(n− 1)(n− 2)(x+ y + z)n−3

=
∑

λ1+λ2+λ3=n
λi≥0

(
n

λ1, λ2, λ3

)
λ1λ2λ3x

λ1−1yλ2−1zλ3−1.

Choose x = y = z = 1 to obtain

n(n− 1)(n− 2)3n−3 =
∑

λ1+λ2+λ3=n
λi≥0

(
n

λ1, λ2, λ3

)
λ1λ2λ3.

Hence, by substituting into Equation 3 we have

n(AHn) =
∑

λ1+λ2+λ3=n
λi≥0

(
n

λ1, λ2, λ3

)
(2λ1 − λ1)(2λ2 − λ2)(2λ3 − λ3)

= 6n − 3n5n−1 + 3n(n− 1)4n−2 − n(n− 1)(n− 2)3n−3.

Q.E.D.

Since this is an exponential of order 6n we should expect the number of vertices

to grow rapidly. Table 5 gives a list of small values of n(AHn).
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Table 5: n(AHn) for small n.
n n(AHn)
0 1
1 3
2 12
3 57
4 300
5 1701
6 10206
7 63825
8 411096
9 2702349
10 17992506
11 120543561
12 808224372
13 5400815829
14 35868103734
15 236354531841
16 1544182760496
17 10001335837725
18 64233753928722
19 409298268016761
20 2589206145139596

We now classify the degree of all vertices based upon the states they represent.

The degree of a vertex, deg(v), is the number of edges incident on the vertex. Thus,

here deg(v) is the number of possible moves from a given state v.

Theorem 5.6. A vertex v in AHn has degree 0 if and only if it represents an E,E,E

configuration.

Proof. Assume deg(v) = 0. Then we may not move any discs. If any of the pegs are

not empty, then we may move at least of disc to two locations. Hence, a contradiction.

Therefore, all pegs are empty.
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Now let us assume the converse that all pegs are empty. Clearly, nothing can be

moved as there is nothing to be moved. Q.E.D.

Theorem 5.7. A vertex v in AHn has degree 2 if and only if it represents a perfect

configuration or an S,E,E configuration.

Proof. Let v represent a state where all discs are on the same peg. Without loss of

generality, assume they are on the first peg. The only choices available are to move

the top disc to the auxiliary peg or to move the destination peg. Hence, deg(v) = 2.

Now, let us assume deg(v) = 2. Assume to the contrary that all discs are not

on the same peg. If one of the pegs were empty, then we could move either of the

two top discs to the empty peg or move the smaller of the two atop the larger. This

stipulation gives three options. So, assume none of the pegs are empty. Then, we

have at least three options, moving the smallest atop either of the larger two discs or

moving the medium disc atop the largest. Hence, a contradiction.

Q.E.D.

Corollary 5.8. There are 3(2n − n) vertices of degree 2 in AHn.

Proof. A vertex v in AHn has degree 2 if and only if it represents a state where all

discs are on the same peg, by Theorem 5.7. Furthermore, by Lemma 5.2 there are

2n−n such patterns on a peg. Since there are three pegs it follows from the Addition

Principle that there are 3(2n − n) degree 2 vertices in AHn. Q.E.D.

Theorem 5.9. If a vertex v in AHn represents an R,R,E configuration, then deg(v) =

4.

43



Proof. Suppose v in AHn represents an R,R,E configuration. Accordingly, we may

move either of the two top discs to either of the two other pegs. Therefore, deg(v) =

4. Q.E.D.

Theorem 5.10. If a vertex v in AHn represents an S,S,E configuration, then deg(v) =

3.

Proof. Suppose v in AHn represents an S,S,E configuration. Then, we may move

either of the two top discs to the empty peg. Furthermore, we may move the smaller

of the two top discs atop the larger. Hence, deg(v) = 3. Q.E.D.

Theorem 5.11. If a vertex v in AHn represents an S,R,E configuration, then deg(v) =

4 or deg(v) = 3.

Proof. Assume v represents an S,R,E configuration. If the top disc of the sinful stack

is larger than the top disc of the regular stack, then we may move either of two discs

to either of the other two pegs. So, deg(v) = 4. If the top disc of the sinful stack is

smaller than the top disc of the regular stack, then we may not move the top disc of

the regular stack to the top of the sinful stack. So, deg(v) = 3. Q.E.D.

Theorem 5.12. If a vertex v in AHn represents an S,S,S configuration, then deg(v) =

3.

Proof. Let v represent an S,S,S configuration. Then we may move the smallest of the

top discs to either of the two other pegs. We may move the middle of the discs atop

the largest. The largest disc may not move. Ergo, deg(v) = 3. Q.E.D.

Theorem 5.13. If a vertex v in AHn represents an S,S,R configuration, then deg(v) =

3, deg(v) = 4, or deg(v) = 5.
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Proof. Let v represent an S,S,R configuration. First, consider the case where the

largest of the top discs is on the regular stack. In this case, we may move either of

the other two top discs atop the largest disc. Furthermore, we may move the smallest

disc atop the medium disc. Thus, deg(v) = 3.

Now, consider the case where the medium top disc is on the regular stack. In this

case, we may move either of the other two top discs atop the medium disc. Moreover,

we may move the smallest disc atop the largest disc, or we may move the medium

disc atop the largest disc. Hence, deg(v) = 4.

Finally, consider the case where the smallest top disc is on the regular stack.

In this case, we may move either of the other two top discs atop the smallest disc.

Furthermore, we may move the smallest disc atop the largest disc, we may move the

medium disc atop the largest, or we may move the smallest disc atop the medium

disc. Therefore, deg(v) = 5. Q.E.D.

Theorem 5.14. If a vertex v in AHn represents an S,R,R configuration, then deg(v) =

4, deg(v) = 5, or deg(v) = 6.

Proof. Let v represent an S,R,R configuration. First, consider the case where the

largest of the top discs is on the sinful stack. In this case, any of the top discs may

be moved to the top of the other pegs. So, deg(v) = 6.

Next, consider the case where the smallest of the top discs is on the sinful stack.

In this case, neither of the other two top discs may be placed on the sinful stack.

However, any of the other moves are legal. Hence, deg(v) = 4.

Finally, consider the case where the medium top disc is on the sinful stack. In

this case, the only move that is not allowed is to move the largest disc to the top of
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the sinful stack. Thus, deg(v) = 5. Q.E.D.

Theorem 5.15. If a vertex v in AHn represents an R,R,R configuration, then deg(v) =

6.

Proof. Assume a vertex v in AHn represents an R,R,R configuration. Then, we may

move any of the three top discs to the top of the other stacks. There are 6 ways to

do this. Hence, deg(v) = 6. Q.E.D.

5.2 Figures of AHn for n ≤ 3

The following section contains the AHn graphs for n ≤ 3. They are shown in

order such that n is increasing. The graphs are shown in Figures 5, 6, 7, and 8.

||

Figure 5: AH0
∼= Trivial Graph

1||

|1| ||1

Figure 6: AH1
∼= K3
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1|2|

1||2|1|2

2|1|

2||1 |2|1

||21

|12|

21||

||12

|21|

12||

Figure 7: AH2
∼= SD(1) = Star of David Graph [20]
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Figure 8: The graph AH3.

5.3 Graph Invariants

A graph is planar if it can be drawn in the plane in such a way that no edge

crosses another. Recall a complete graph, denoted Kn, has n vertices and all possible

adjacencies between these vertices. A complete bipartite graph, denoted Kn,m, is a

graph whose vertices can be partitioned into two subsets V1 and V2 such that no edge

has both incident vertices in the same subset, and every possible edge that could

make adjacent vertices in different subsets is part of the graph. A subdivision of an
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edge uv with vertices u, v gives a graph containing one new vertex w, and with an

edge set replacing uv by two new edges, uw and wv. A subdivision of a graph G is a

graph resulting from the subdivision of edges in G. An induced subgraph of a graph G

is a subset of the vertex set of G and the set of edges such that both vertices incident

to the edges are in the aforementioned vertex subset.

Let us now consider the planarity of AHn. Clearly from above, AH1 and AH2 are

planar. However, we must further examine the planarity of AH3.

Theorem 5.16. (Kuratowski’s Theorem [2]) A graph G is planar if and only if G

contains no subgraph that is a subdivision of a K5 or K3,3.

Theorem 5.17. The graph AHn for n ≥ 3 is non-planar.

Proof. Let n ≥ 3. AH3 contains a subgraph that is a subdivision of K3,3. To ob-

tain this form the induced subgraph with the shaded vertices in Figure 9 below, i.e.,

23|1|, 23||1, 3|21|, |21|3, 3|2|1, 3|1|2, 3||21, 3|12|, 2|1|3, |12|3, 3||12, |3|21, 12||3, 2|3|1, 2||13,

1|2|3, |23|1, |2|13, 21||3, 1|3|2, 1|23|, 12|3|, |3|12, 21|3|. Furthermore, AH3 is a subgraph

of AHn, by Theorem 5.1. So, AHn contains a subgraph that is a subdivision of K3,3.

Therefore, by Kuratowski’s Theorem AHn is non-planar. Q.E.D.
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Figure 9: The graph AH3 with selected vertices.

Theorem 5.18. [2] A connected graph is Eulerian if and only if every vertex has

even degree.

Theorem 5.19. The graph AHn is not Eulerian for n ≥ 3.

Proof. Consider AHn for n ≥ 3. There exists a vertex of odd degree by Theorem 5.11

Hence, AHn is not Eulerian. Q.E.D.

Recall a proper coloring (or simply, a coloring) of a graph is an assignment of colors

to the vertices, such that adjacent vertices have different colors [3]. The smallest

number of colors in any coloring of a graph G is called the chromatic number of G,

denote this χ(G) [3].
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Theorem 5.20. The chromatic number for the graph AHn is 3 for all n ≥ 1.

Proof. Clearly, Hn is a subgraph of all AHn. Hence, χ(AHn) ≥ χ(Hn) = 3. Now,

color the Hn subgraph using a proper coloring. Suppose pegs 1, 2, and 3 have m,`,

and q discs, respectively. Then any other configuration with m, `, and q discs on pegs

1, 2, and 3, respectively, may be put in the same color class, as no two of these states

are adjacent. Since one of these configurations has all regular stacks, it follows AHn

has the same number of color classes as Hn. Q.E.D.

The maximum degree of a vertex in a graph G is denoted ∆(G).

Theorem. (Vizing’s Theorem [2]) For any graph G, ∆(G) ≤ χ′(G) ≤ ∆(G).

Theorem 5.21. For the graph AHn, 6 ≤ χ′(AHn) ≤ 7.

Proof. The maximum degree of any vertex in AHn is 6. Therefore, from Vizing’s

Theorem 6 ≤ χ′(AHn) ≤ 7. Q.E.D.
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6 GENERALIZING THE APPRENTICES’ TOWER OF HANOI

Suppose the eye-sight of the priests was a variable and there are p pegs. So,

instead of allowing one sin per peg they allowed si for i ∈ [p] sins on a given peg, and

suppose each of the pegs were watched by different priests. This of course creates a

more general puzzle than before.

For example, we shall denote The Apprentices’ Tower of Hanoi with the usual

ability to sin once per peg at any given time, as (s1, s2, s3) = (1, 1, 1). The ability to

sin once only on the origin peg shall be denoted (s1, s2, s3) = (1, 0, 0). Similarly, the

ability to sin once only on the auxiliary peg (s1, s2, s3) = (0, 1, 0).

Moreover, were we to consider the ability to sin three times on the origin peg,

twice on the auxiliary, and once on the destination peg, then it would be denoted

(s1, s2, s3) = (3, 2, 1). In general one could consider p pegs with n discs and si for

i ∈ [p] sins on a given peg as (s1, s2, . . . , si, . . . , sp).

6.1 si sins

First we shall consider the puzzle with three pegs and an arbitrary number of sins.

Theorem 6.1. The number of moves required to solve the puzzle is atleast 2n − 1,

i.e., Sn(s1, s2, s3) ≥ 2n− 1 for all n.

Proof. Solving the puzzle requires the largest disc be moved to the destination peg.

In order to move the largest disc, the origin peg must contain only the largest disc.

So the top n − 1 discs must be moved from the origin peg. This requires at least

n−1 moves. The largest disc must eventually be placed on the destination peg. This
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requires at least one move. Lastly, the n− 1 discs must be placed on the destination

peg. Hence, Sn ≥ n− 1 + 1 + n− 1 = 2n− 1. Q.E.D.

Theorem 6.2. Sn(s1, s2, s3) = Sn(s3, s2, s1)

Proof. By definition Sn(s1, s2, s3) is the minimum number of moves required to move

a regular stack of n discs to another peg in regular order. So, reversing this sequence

of moves will be the minimum number required to return the discs. Q.E.D.

Theorem 6.3. The number of moves required to solve an n disc Apprentices’ Tower of

Hanoi with an optimal algorithm obeys Sn ≤ 2Sn−k(s1, s3, s2)+2Sk−1(s1, s3, s2−1)+1,

where we choose k to minimize the right side of the inequality.

Proof. Consider the following algorithm:

1. Move n−k discs to the auxiliary peg in a regular order. This takes Sn−k(s1, s3, s2)

moves.

2. Move k−1 discs to the auxiliary peg in a regular order. This takes Sk−1(s1, s3, s2−

1) + 1 moves.

3. Move disc n to the destination peg. This takes one move.

4. Move k−1 discs from the auxiliary peg to the destination peg by mirroring and

reversing the Sk−1(s1, s3, s2 − 1) + 1 moves. This takes Sk−1 moves.

5. Move n − k discs from the auxiliary peg to the destination peg by mirroring

and reversing the Sn−k(s1, s3, s2) moves. This takes Sn−k moves.
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So, we have a total of Sn−k(s1, s3, s2) + Sk−1(s1, s3, s2− 1) + 1 + Sk−1(s1, s3, s2− 1) +

Sn−k(s1, s3, s2) = 2Sn−k(s1, s3, s2) + 2Sk−1(s1, s3, s2 − 1) + 1 moves. Q.E.D.

Theorem 6.4. If n ≤ 2, then Sn(s1, s2, s3) = 2n− 1.

Proof. Assume n = 2. Move the top disc to the auxiliary peg. Then move the

remaining disc to the destination peg. Lastly, move the disc from the auxiliary peg

to the destination peg. Q.E.D.

Theorem 6.5. If s2 ≥ n− 2, then Sn(s1, s2, s3) = 2n− 1.

Proof. Move the top n− 1 discs from the origin peg to the auxiliary peg. Then move

the largest disc to the destination peg. Lastly, mirror and reverse the first n−1 moves

so that we have an n regular stack on the destination peg. Q.E.D.

6.2 p pegs

We now consider p pegs with n discs and si for i ∈ [p] sins on a given peg. Denote

the minimum number of moves required to solve this variant, i.e., move a regular

stack on peg 1 to a regular stack on peg 2, as Sn(s1, s2, . . . , si, . . . , sp).

Theorem 6.6. If p ≥ n+ 1, then Sn(s1, s2, . . . , si, . . . , sp) = 2n− 1.

Proof. Let p ≥ n + 1. Move the top disc on the origin peg to the first empty peg.

Repeat this n−1 times so that the first n pegs have precisely one disc. Since p ≥ n+1

it follows that the destination peg is empty. Move the largest disc to the last peg.

Mirror and reverse the n− 1 initial moves so that we have a regular of n discs on peg

p.

Therefore, Sn(s1, s2, . . . , si, . . . , sp) = n− 1 + 1 + n− 1 = 2n− 1. Q.E.D.
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Theorem 6.7. If
∑p−1

i=2 (si + 1) ≥ n− 1, then Sn(s1, s2, . . . , si, . . . , sp) = 2n− 1.

Proof. Let
∑p−1

i=2 (si + 1) ≥ n − 1. Move the top s2 + 1 discs to peg 2. Then move

the top s3 + 1 discs to peg 3. Repeat this for all i ∈ {2, 3, . . . , p − 1} until the the

largest disc is the only remaining disc on the first peg. Move the largest disc to the

destination peg. Then mirror and reverse the initial n− 1 moves. Q.E.D.

Corollary 6.8. If
∑p−1

i=2 si + p ≥ n+ 1, then Sn(s1, s2, . . . , si, . . . , sp) = 2n− 1.

Proof. Examine the sum.

p−1∑
i=2

(si + 1) =

p−1∑
i=2

si +

p−1∑
i=2

1

=

p−1∑
i=2

si + p− 2.

Thus,
∑p−1

i=2 si+p−2 ≥ n−1 if and only if
∑p−1

i=2 si+p ≥ n+1. Whence,
∑p−1

i=2 si+p ≥

n+ 1, implies Sn(s1, s2, . . . , si, . . . , sp) = 2n− 1. Q.E.D.

6.3 General Graphs

We will now examine graphs representing the generalized Apprentices’ Tower of

Hanoi. Let AHn(s1, s2, . . . , si, . . . , sp) denote the generalized Apprentices’ Tower of

Hanoi graphs corresponding to n discs, p pegs, and si sins per peg. We shall assume

n ≥ 1 otherwise all graphs are the null graph, i.e., the graph with zero vertices.

Theorem 6.9. The graph AHn(s1, s2, . . . , si, . . . , sp) contains a Kp subraph.

Proof. The top disc may be moved to any of the p pegs. Q.E.D.

Theorem 6.10. If p ≥ 5, then AHn(s1, s2, . . . , si, . . . , sp) is non-planar.
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Proof. The graph will contain a K5 subgraph. Q.E.D.

Theorem 6.11. If p ≥ 3, n ≥ 3, and |{si|si ≥ 1}| ≥ 3, then AHn(s1, s2, . . . , si, . . . , sp)

is non-planar.

Proof. Let p ≥ 3, n ≥ 3, and |{si|si ≥ 1}| ≥ 3. Thus, AHn(s1, s2, . . . , si, . . . , sp)

contains an AH3 subgraph which is non-planar. Q.E.D.

Theorem 6.12. For the graph AHn, χ(AHn(s1, s2, . . . , si, . . . , sp)) ≥ p.

Proof. AHn(s1, s2, . . . , si, . . . , sp) contains a complete subgraph on p vertices. Q.E.D.

Theorem 6.13. For the graph AHn, ∆(AHn(s1, s2, . . . , si, . . . , sp)) ≥ p− 1.

Proof. The top disc may be moved from any peg to the p− 1 other pegs. Q.E.D.

Theorem 6.14. For the graph AHn, ∆(AHn(s1, s2, . . . , si, . . . , sp)) ≤ p(p− 1).

Proof. At most all p pegs will be non-empty. The top disc on each of these pegs

may be moved to at most p − 1 other discs. Giving a total of p(p − 1) possible

moves. Q.E.D.

Corollary 6.15. For the graph AHn, p− 1 ≤ χ′(AHn(s1, s2, . . . , si, . . . , sp)) ≤ p(p−

1) + 1

Proof. Follows immediately from Vizing’s Theorem and Theorems 6.13 and 6.14.

Q.E.D.

The minimum degree of a vertex in a graph G is denoted δ(G).

Theorem 6.16. For the graph AHn, δ(AHn(s1, s2, . . . , si, . . . , sp)) ≥ p− 1.
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Proof. At any point in the puzzle each peg has a top disc or is empty. Thus, there

is a smallest top disc. This smallest top disc may be moved to any of the other

p− 1 pegs. Other discs may be moved as well. Ergo, δ(AHn(s1, s2, . . . , si, . . . , sp)) ≥

p− 1. Q.E.D.

Theorem 6.17. For the graph AHn, δ(AHn(s1, s2, . . . , si, . . . , sp)) = p− 1.

Proof. From Theorem 6.16, δ(AHn(s1, s2, . . . , si, . . . , sp)) ≥ p − 1. Furthermore, in

each puzzle the initial state offers p− 1 available moves. Therefore,

δ(AHn(s1, s2, . . . , si, . . . , sp)) = p− 1

. Q.E.D.

Theorem 6.18. When p is even, AHn(s1, s2, . . . , si, . . . , sp) is not Eulerian.

Proof. Let p be even. Then, p− 1 is odd. From Theorem 6.17,

δ(AHn(s1, s2, . . . , si, . . . , sp)) = p− 1

. Thus, AHn(s1, s2, . . . , si, . . . , sp)) contains a vertex of odd degree.

Hence, AHn(s1, s2, . . . , si, . . . , sp) is not Eulerian. Q.E.D.

Theorem 6.19. If n > si for some i ∈ [p], then AHn(s1, s2, . . . , si, . . . , sp) is not

Eulerian.

Proof. Let n > si. Then, there is an arrangement of discs such that ith peg has

the maximum number of sins, and on another peg there is a regular stack with the

remaining discs. Clearly nothing may be moved to the ith peg. So, the top disc of

the regular stack may be moved to p− 2 pegs. While the top disc of the ith peg may
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be moved to p− 1 pegs. Thus, in total there are 2p− 3 possible moves. So, there is

a vertex of odd degree in AHn(s1, s2, . . . , si, . . . , sp). Ergo, AHn(s1, s2, . . . , si, . . . , sp)

is not Eulerian. Q.E.D.
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7 FURTHER QUESTIONS

This section will contain a list of questions related to the Apprentices’ Tower of

Hanoi. It will also contain some questions related the Tower of Hanoi in general that

I would like to see answered. Where I have some insight, a conjecture will accompany

the question.

Question 1. What is an optimal algorithm for solving the Apprentices’ Tower of

Hanoi? What are its properties?

Conjecture 7.1. An optimal algorithm for solving the Apprentices’ Tower of Hanoi

requires the largest disc to move only once.

Conjecture 7.2. An optimal algorithm for solving the Apprentices’ Tower of Hanoi

requires 2S ′n−1 + 1 moves. (Note that this follows immediately from Conjecture 7.1.)

Question 2. What is an optimal algorithm for solving the generalized Apprentices’

Tower of Hanoi? What are its properties?

Question 3. What is the domination number for AHn, i.e., γ(AHn)?

Question 4. Is AHn Hamiltonian?

Conjecture 7.3. The graph AHn is not Hamiltonian.

Question 5. What are the topological properties of AHn?

Question 6. What is the automorphism group of AHn?
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Question 7. Given a graph G, is it possible to create a “non-trivial” Tower of Hanoi

variant corresponding to G? That is, a version dissimilar to having a peg corre-

sponding to each vertex and allowing moves only between pegs representing adjacent

vertices.

Question 8. Is there a way to have a computer generate the graphs based on the rule

set of a Tower of Hanoi variant?
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