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ABSTRACT

Distance-2 Domatic Numbers of Graphs

by

Derek Kiser

The distance d(u, v) between two vertices u and v in a graph G equals the length of a

shortest path from u to v. A set S of vertices is called a distance-2 dominating set if

every vertex in V \ S is within distance-2 of at least one vertex in S. The distance-2

domatic number is the maximum number of sets in a partition of the vertices of G

into distance-2 dominating sets. We give bounds on the distance-2 domatic number

of a graph and determine the distance-2 domatic number of selected classes of graphs.
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1 INTRODUCTION

1.1 Introduction to Graph Theory

A graph G = (V,E) is made up of a finite nonempty set V and a possibly empty

set E. The elements of V are referred to as vertices and the elements of E, two

element subsets of V, are referred to as edges. The number of vertices, |V |, in a graph

is known as the order of G, and the number of edges, |E|, is known as the size of G.

The letters n and m are typically used to denote the order and size respectively of a

graph. An edge denoted by uv, represents adjacent vertices u and v.

The graphs we consider are finite, undirected, have edges that must join two

vertices, and the maximum number of edges allowed to join two vertices is one.

The open neighborhood of a vertex v ∈ V is the set N(v) = {u |uv ∈ V } of vertices

adjacent to v. Each vertex in u ∈ N(v) is called a neighbor of v. The degree of a

vertex v is deg(v) = |N(v)|. The minimum and maximum degrees of any vertex in

a graph G are denoted δ(G) and ∆(G), respectively. A vertex v ∈ V is called an

isolated vertex if it has no neighbors, that is, deg(v) = 0. A vertex with exactly

one neighbor is called a leaf, and its neighbor is called a support vertex. The closed

neighborhood of a vertex v ∈ V is the set N [v] = N(v) ∪ {v}. The open neighborhood

of a set S ⊆ V of vertices is N(S) =
⋃
v∈S N(v), while the closed neighborhood of a

set S is the set N [S] =
⋃
v∈S N [v]. The S-private neighborhood of a vertex v ∈ S

is the set pn[v, S] = N [v] \ N [S \ {v}]; vertices in the set pn[v, S] are called private

neighbors of v (with respect to S).

A walk in a graph G is a sequence of vertices starting with a vertex u and ending
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at a vertex v, where the consecutive vertices in the walk are adjacent in G. A walk

in a graph G such that no vertex is repeated is referred to as a path. The distance

d(u, v) between two vertices u and v in a graph G equals the length of a shortest path

from u to v. Two vertices u and v in a graph are connected if the graph contains a

path between u and v. A graph G itself is said to be connected if every two vertices

of G are connected.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H

is a subgraph of a graph G and either V (H) is a proper subset of V (G) or E(H) is a

proper subset of E(G), then H is a proper subgraph of G. For a nonempty subset S

of V (G), the subgraph G[S] of G induced by S has S as its vertex set and two vertices

u and v are adjacent in G[S] if and only if u and v are adjacent in G. A subgraph H

of a graph G is called an induced subgraph if there is a nonempty subset S of V (G)

such that H = G[S]. A connected subgraph H of a graph G is a component of G if

H is not a proper subgraph of any connected subgraph of G.

The complement G of a graph G is a graph with the vertex set V (G) where two

vertices are adjacent in G if and only if they are not adjacent in G.

The eccentricity of a vertex v of a connected graph G is the distance between

v and the vertex farthest from v in G. The diameter of G denoted diam(G) is the

largest eccentricity of the vertices of a graph G, while the radius of G is the smallest

eccentricity of the vertices.

A path Pn is a graph of order n and size n− 1 with vertices denoted v1, v2, ..., vn

and edges vivi + 1 for i = 1, 2, ..., n − 1. A cycle Cn is a graph of order and size n

with vertices denoted v1, v2, ..., vn and edges vivi+1 for i = 1, 2, ..., n− 1 and v1vn. A

9



Figure 1: G4,5 = P4 × P5

grid Gr,c is a cartesian product of two paths Pr × Pc (where the cartesian product

K = G1×G2 has vertex set V (K) = V (G1)×V (G2) and vertices (u1, v1) and (u2, v2)

in V (K) are adjacent if and only if either u1 = u2 and v1v2 ∈ E(G2) or v1 = v2 and

u1u2 ∈ E(G1). An example of a G3,4 is given in Figure 1.

A complete graph Kn is a graph in which every two distinct vertices are adjacent.

A graph G is a complete bipartite graph Km,n if V (G) can be partitioned into two sets

U and W so that uw is an edge of G if and only if u ∈ U and w ∈ W .

A vertex coloring of a graph G is an assignment of colors to the vertices of G where

one color is assigned to each vertex. Vertex colorings in which adjacent vertices are

colored differently are known as a proper vertex coloring. A k-coloring is a coloring

in which each color used is one of k colors. A graph G is k-colorable if there exists a

coloring of G from a set of k colors. The minimum positive integer k for which G is

k-colorable is the chromatic number of G, denoted χ(G).

10



2 DOMINATION

2.1 Introduction to Domination

A set S is a dominating set of a graph G if N [S] = V , that is, for every v ∈ V ,

either v ∈ S or v ∈ N(u) for some vertex u ∈ S. The minimum cardinality of a

dominating set in a graph G is called the domination number and is denoted γ(G).

A dominating set of minimum cardinality is called a γ-set. A dominating set that

contains no dominating set as a proper subset is called a minimal dominating set.

A set S of vertices in a graph G is independent if no two vertices in S are adjacent.

A set S of vertices in a graph G is said to be an independent dominating set of G if

S is both a dominating and independent set of G.

A set S is a total dominating set of a graph G if N(S) = V , that is, every v ∈ V

is adjacent to at least one vertex in S. The total domination number γt(G) is the

minimum cardinality of a total dominating set of G, and a total dominating set of

minimum cardinality is called a γt-set.

The domatic number d(G) is the maximum number of sets in a partition of V (G)

into dominating sets, and the total domatic number dt(G) is the maximum number

of sets in a partition of V (G) into total dominating sets.

Figure 4 provides an example of a dominating set of a graph G, a minimum

dominating set of the same graph, and a partition of V (G) into the maximum number

dominating sets, where the different colored vertices represent different dominating

sets in the partition.
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Figure 2: Modified Houses

2.2 Domination and Domatic Number Background

The origin of a dominating set or more precisely a minimum dominating set is

credited to one Carl Friedrich de Jaenisch. In 1862 he proposed the question of

determining the minimum number of queens needed to dominate every square on

a standard chess board [2]. In the late 1800’s chess players were also studying the

following three questions

1. What is the minimum number of other chess pieces which are necessary to

dominate every square of an n×n board? Other examples of a minimum dominating

set.

2. What is the minimum number of mutually nonattacking chess pieces needed

to dominate every square of an n × n board? An example of an independent set of

minimum cardinality.

3. What is the maximum number of chess pieces which can be placed on an n×n

chessboard in such a way that no two of them dominate each other? An example of

12



an independent set of maximum cardinality [6].

These three questions received more attention in 1964 when twin brothers, Isaak

and Akiva Yaglom, provided detailed solutions for the rooks, knights, bishops and

kings [6].

The first formal graph theoretical definition of a domination number appeared

in Claude Berge’s 1958 work “The Theory of Graphs” [1], in which he referred to

the number as the coefficient of external stability. In 1962, Oystein Ore [8] used the

current names of a dominating set and the domination number when he defined the

two terms in his book “Theory of Graphs.”

In 1977, Ernest Cockayne and Stephen Hedetniemi [3] published the paper, “To-

wards a Theory of Domination in Graphs,” in which they provided a survey of the

few results known about dominating sets at that time and introduced the domatic

number of a graph. Two of the results included the following two given by Ore in [8]

pertaining to minimal dominating sets.

Theorem 2.1 (Ore’s Theorem) In any graph G = (V,E) having no isolated ver-

tices, the complement V \ S of any minimal dominating set S is a dominating set.

Theorem 2.2 [8] A dominating set S is a minimal dominating set if and only if for

each v ∈ S one of the following two conditions hold:

1. v is not adjacent to any vertex in S, or

2. there is a vertex u /∈ S such that N(u) ∩ S = {v}.

Hedetniemi and Cockayne defined [3] a D-partition of a graph G as a partition

of the vertices of G into dominating sets. They noted that one way of obtaining a
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D-partition was by assigning colors to the vertices of a graph such that each vertex

is adjacent to a vertex of every color different from itself. If a graph G then has a

domatic number k, it follows that every vertex must be adjacent to at least k − 1

vertices, one in each dominating subset of a D-partition of order k. Thus the upper

bound for the domatic number was given.

Proposition 2.3 [3] For any graph G, d(G) ≤ δ(G) + 1.

We next note the proposition presented that states d(G) for special classes of

graphs.

Proposition 2.4 [3]

i. d(Kn +G) = n+ d(G).

ii. d(Kn) = n; d(Kn) = 1.

iii. (Ore) d(G) ≥ 2 if and only if G has no isolated vertices.

iv. For any tree with p ≥ 2 vertices, d(T ) = 2.

v. For any n ≥ 1, d(C3n) = 3, and d(C3n+1) = d(C3n+2) = 2.

vi. For any 2 ≤ m ≤ n, d(Km,n) = m.

Hedetniemi and Cockayne [3] then established a bound by considering the product

of the invariant (domatic number) and its complement in respect to the order of a

graph. A method introduced by Nordhaus and Gaddum [9] in their study of the

chromatic number of a graph.

Proposition 2.5 [3] For any graph G, having n vertices, d(G) + d(G) ≤ n+ 1.

14



During their study of the domatic number of a graph, Hedetniemi and Cockayne [3]

noticed the fact that the minimum order of a graph’s clique (maximal complete sub-

graph), denoted c(G), seemed to bound the graph’s domatic number. They began

checking graphs with order less than or equal to five and found the conjecture held.

They continued to check the conjecture for graphs of higher order and in doing so

discovered the counterexample provided in Figure 3, where c(G) = 4 and d(G) = 3.

Attempts to settle the c ≤ d conjecture did however lead to the following results.

Let A be a set and let S be a collection of nonempty subsets of A. The intersection

graph of S is the graph whose vertices are the elements of S and where two vertices

are adjacent if the subsets have a nonempty intersection.

We note that a graph is said to be indominable if it has a D-partition in which

every subset is independent and a clique graph K(G) of a graph G is the intersection

graph of the cliques of G.

Proposition 2.6 [3] If G is indominable, then c(G) ≤ d(G).

Theorem 2.7 [3] If K(G) = Cn where n is even, then c(G) ≤ d(G).

Theorem 2.8 [3] If K(G) is a tree, then c(G) ≤ d(G).

2.3 Total Domatic Number Background

In 1980 Cockayne, Hedetniemi, and Dawes [4] defined a total dominating set of

a graph. The authors were concerned with sets of vertices in graphs which not only

cover vertices outside the set, but sets that cover all vertices.
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Figure 3: Counterexample to the c ≤ d conjecture

After presenting bounds for the total dominating number, the total domatic num-

ber of a graph was introduced and the following bounds were established.

Theorem 2.9 [4] For the complete graph Kn, complete bipartite graph Kr,s, and cycle

C4k, we have dt(Kn) =
⌊
n
2

⌋
, dt(Km,n) = min(m,n), and dt(C4n) = 2.

Theorem 2.10 [4] For any graph G with no isolated vertices,

dt(G) ≤ min (δ(G), n
γt(G)

).

Theorem 2.11 [4] If G has n vertices and no isolates, then γt(G) + dt(G) ≤ n+ 1,

with equality if and only if G = mK2.

Theorem 2.12 [4] If G is connected and has n ≥ 3 vertices, then γt(G)+dt(G) ≤ n,

with equality if and only if G is K1,2, K3, C4, K4−edge or K4.

Theorem 2.13 [4] If G has n vertices, no isolates, and ∆(G) < n− 1, then dt(G) +

dt(G) ≤ n− 1, with equality if and only if G or G = C4.

16



This section has acted as a brief introduction to the concept of the domatic and

total domatic number of a graph and some methods of determing bounds. Next

we introduce distance-2 domination and then present our results on the distance-2

domatic number of a graph. We determine bounds for the distance-2 domatic number

and determine the value of d≤2(G) for special classes of graphs.

17



3 DISTANCE-2 DOMINATION

3.1 Distance-2 Domination

In the following sections we present the results of my research.

A set S is called a distance-k dominating set if every vertex in V \ S is within

distance-k of at least one vertex in S, that is, for every vertex v ∈ V \ S, there exists

a vertex u ∈ S such that d(u, v) ≤ k. It follows from this definition that dominating

sets and distance-1 dominating sets are equivalent concepts.

Thus a set S is called a distance-2 dominating set if every vertex in V \ S is

within distance-2 of at least one vertex in S. The minimum cardinality of a distance-

2 dominating set in G is called the distance-2 domination number and is denoted

γ≤2(G). A distance-2 dominating set of cardinality γ≤2(G) is called a γ≤2-set. The

distance-2 domatic number d≤2(G) is the maximum number of sets in a partition of

V (G) into distance-2 dominating sets. Figure 4 provides an example of a distance-

2 dominating set of a graph G, a minimum distance-2 dominating set of the same

graph, and a partition of V (G) into the maximum number of distance-2 dominating

sets, where the different colored vertices represent different distance-2 dominating

sets in the partition.

The distance-2 open neighborhood of a vertex v ∈ V is the set, N2(v), of vertices

within a distance of two of v.

A minimal distance-2 dominating set in a graph G is a distance-2 dominating set

that contains no distance-2 dominating set as a proper subset.

A set S of vertices in a graph G is said to be an independent distance-2 dominating

18



Figure 4: Modified Houses 2

set of G if S is both a distance-2 dominating and independent set of G. A graph G

is distance-2 indominable if it has a distance-2 partition in which every subset is

independent.

Proposition 3.1 The distance-2 dominating set S is a minimal distance-2 dominat-

ing set if and only if for each v ∈ S at least one of the following two conditions

hold:

1. v is not within a distance of two of any vertex in S;

2. there is a vertex w /∈ S such that N2(w) ∩ S = {v}.

Proof. Assume S is a minimal distance-2 dominating set. It follows that for any

v ∈ S, S \ {v} is not a distance-2 dominating set. Thus, there exists a vertex w

that is not within a distance of two of any vertex in S \ {v}. If w = v, then v is

not within a distance of two of any vertex in S. If w 6= v, we note that since S is a

distance-2 dominating set, then w must be within a distance of two of some vertex

in S. Therefore, since w is not within a distance of two of any vertex in S \ {v},

19



N2(w) ∩ S = {v}.

Next, assume that at least one of the two conditions are true for each v ∈ S. Then

it follows that S \ v is not a distance-2 dominating set, and S is a minimal distance-2

dominating set. �

20



4 DISTANCE-2 DOMATIC NUMBER RESULTS

4.1 Bounds on the Distance-2 Domatic Number

In this section, bounds on the distance-2 domatic number of a graph are estab-

lished. We note that our results on paths, cycles, and graphs with diameter two were

obtained in a more general form by Zelinka [10] for distance-k domatic numbers.

Observation 4.1 If G is a graph on order n with diam(G) ≤ 2, then d≤2(G) = n.

Observation 4.2 For any graph G, d≤2(G) ≤
⌊

n
γ≤2(G)

⌋
.

Since every dominating set is a distance-2 dominating set, we have the following

bounds.

Observation 4.3 For any graph G, d(G) = d≤1(G) ≤ d≤2(G).

Thus by Ore’s Theorem it follows, for isolate free graphs G, 2 ≤ d(G) ≤ d≤2(G).

Our next result shows that every total dominating set of G can be partitioned

into two distance-2 dominating sets.

Lemma 4.4 If G is a graph with no isolated vertices and S is a total dominating set

of G, then S can be partitioned into two distance-2 dominating sets.

Proof. Let S be a total dominating set of G. Then there are no isolated vertices in

the induced subgraph G[S]. Hence, by Ore’s Theorem, we can partition S into two

dominating sets of the induced subgraph G[S], say S1 and S2.

21



Since S1 and S2 are dominating sets of G[S], in order to show that S1 and S2 are

distance-2 dominating sets of G, it suffices to show that each vertex in V \ S is at

most distance-2 from at least one vertex in S1 and at least one vertex in S2.

Consider any vertex v ∈ V \ S. Since S is a total dominating set of G, v has at

least one neighbor, say x, in S. Now x ∈ S1 or x ∈ S2. Without loss of generality,

assume that x ∈ S1. Since Si for i = 1, 2 are dominating sets of G[S], x has a neighbor

in S2. Hence, v is distance-1 dominated by S1 and at most distance-2 dominated by

S2. Similarly, if x ∈ S2, v is distance-1 dominated by S2 and distance-2 dominated

by S1. In any case, each of S1 and S2 is a distance-2 dominating set of G. �

Since any total dominating set of G is a distance-2 dominating set, we have the

following corollary.

Corollary 4.5 If G is a graph with no isolated vertices, then d≤2(G) ≥ 2dt(G).

In addition, one can also show that the vertices of a connected graph with min-

imum degree two can be partitioned into one dominating set and two distance-2

dominating sets. In order to show this we will use the following theorem of Henning

and Southey [7].

Theorem 4.6 [7] If G is a graph with δ(G) ≥ 2 and G has no C5 component, then

the vertices of G can be partitioned into a dominating set and a total dominating set.

Theorem 4.7 If G is a connected graph of order n ≥ 3 and minimum degree δ(G) ≥

2, then d≤2(G) ≥ 3.

Proof. Since diam(C5) = 2, by Observation 4.1, d≤2(C5) = 5 ≥ 3.
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Hence, assume G 6= C5 is a connected graph with minimum degree δ(G) ≥ 2.

By Theorem 4.6, we can partition the vertices of G into a dominating set S0 and

a total dominating set S. By Lemma 4.4, S can be partitioned into two distance-2

dominating sets, S1 and S2. Then {S0, S1, S2} is a partition of V (G), where each Si

is a distance-2 dominating set, and so d≤2(G) ≥ 3. �

Theorem 4.8 If G is a graph with no isolated vertices and no K2 component, then

d≤2(G) ≥ 3.

Proof. We first show that any graph with no isolated vertices and no K2 component

can be partitioned into a total dominating set and a distance-2 dominating set. Let

S be a γt(G)-set. If V \S is a distance-2 dominating set, then we are finished. Hence,

suppose that V \ S is not a distance-2 dominating set. Then there exists a vertex

u ∈ S that is not distance-2 dominated by V \ S. Since G has no isolated vertices,

u has at least one neighbor, say w, in S. Moreover, since G has no K2 component,

at least one of u and w has another neighbor, say v, in S. Since u is not distance-2

dominated by V \ S, no neighbor of u has a neighbor in V \ S. If v ∈ N(u), then

S \ {w} is a total dominating set with cardinality less than γt(G), a contradiction. If

v ∈ N(w), then S \ {u} is a total dominating set, again a contradiction.

Hence, we can partition the vertices of G into a distance-2 dominating set V \ S

and a total-dominating set S. It follows from Lemma 4.4 that d≤2(G) ≥ 3. �

Let S be the set of support vertices of G, and let δS(G) denote the minimum

degree in G of any vertex in S. Since any leaf adjacent to a support vertex v is

distance-2 dominated only the vertices of N [v], we have the following observation.
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Observation 4.9 If G is a graph with set of support vertices S, then d≤2(G) ≤

1 + δS(G).

Note that deg2(v) = |N(v)| ∪ |N2(v)| and δ2(G) = min(deg2(v)).

Proposition 4.10 For any graph G, d≤2(G) ≤ δ2(G) + 1.

We will say that a graph G is distance-2 domatically full if d≤2(G) = δ2(G) + 1.

4.2 Specific Families

In this section we determine the distance-2 domatic number of paths Pn, cycles

Cn, and grids Gr,c, as well as classifying which graphs in each class are distance-2

domatically full.

Proposition 4.11 If Pn is a path with order n ≥ 3, then d≤2(Pn) = 3.

Proof. By Observation 4.9, d≤2(Pn) ≤ 3.

Let Pn = v1, v2, ..., vn, for n ≥ 3. Let Si = {vj | j ≡ i (mod 3) } for i ∈ {0, 1, 2}.

It is simple to see that each Si, 0 ≤ i ≤ 2, is a distance-2 dominating set, implying

that d≤2(Pn) ≥ 3. Hence, d≤2(Pn) = 3. �

Proposition 4.12 If Cn is a cycle, then

d≤2(Cn) =


3 if n = 3, 6, 7, 11

5 if 5|n
4 otherwise.
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Proof. First we consider small values of n. If n = 3, then C3 has diameter two and

by Observation 4.1, d≤2(C3) = 3.

Let n = 6. Note that γ≤2(C6) = 2. Thus, d≤2(C6) ≤ 6
2

= 3. Figure 5 gives a

partition of the vertices of C6 into three distance-2 dominating sets (each color class

represents a set in the partition.) Thus, d≤2(C6) ≥ 3 and so, d≤2(C6) = 3.

Let n = 7. Note γ≤2(C7) = 2. Thus, d≤2(C7) ≤ b62c = 3. Figure 5 gives a partition

of the vertices of C7 into three distance-2 dominating sets. Thus, d≤2(C7) ≥ 3 and

so, d≤2(C7) = 3.

Let n = 11. Note γ≤2(C11) = 3. Thus, d≤2(C11) ≤ b113 c = 3. Again we illustrate

that d≤2(C11) ≥ 3, and hence, obtain equality by showing a partition of the vertices

of C11 into three distance-2 dominating sets in Figure 5.

Since a vertex in a cycle distance-2 dominates exactly five consecutive vertices on

the cycle, it follows that d≤2(Cn) ≤ 5. Let {v1, v2, ..., vn} be the vertex set of Cn.

Assume first that 5|n. Then Si = {vj | j ≡ i (mod 5) } for 0 ≤ i ≤ 4 is a distance-2

dominating set of Cn. Hence, d≤2(Cn) ≥ 5 and so, d≤2(Cn) = 5.

For each vertex vi on the cycle to be distance-2 dominated five times, each vertex in

{vi−2, vi−1, vi, vi+1, vi+2}must be in a different set in the d≤2-partition. In other words,

each set of five consecutive vertices on the cycle must have a nonempty intersection

with each of the five different distance-2 dominating sets of Cn. Hence, if 5 - n, it

follows that d≤2(Cn) ≤ 4.

Assume that 5 - n and n /∈ {3, 6, 7, 11}. To show that d≤2 ≥ 4, we consider the

four possibilities.

Case 1. n ≡ 0, 1 (mod 4).
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Let Sj = {vj | j ≡ i (mod 4) for 0 ≤ i ≤ 3}.

Case 2. n ≡ 2 (mod 4). Note that n ≥ 14.

Let S0 = {v4, v9} ∪ {vi | i ≥ 11 and (i− 10) ≡ 0 (mod 4),

S1 = {v1, v5, v6, v10} ∪ {vi | i ≥ 11 and (i− 10) ≡ 1 (mod 4),

S2 = {v2, v7} ∪ {vi | i ≥ 11 and (i− 10) ≡ 2 (mod 4),

and S3 = {v3, v8} ∪ {vi | i ≥ 11 and (i− 10) ≡ 3 (mod 4).

Case 3. n ≡ 3 (mod 4). Note that n ≥ 19.

Let S0 = {v4, v9, v14} ∪ {vi | i ≥ 16 and (i− 15) ≡ 0 (mod 4).

S1 = {v1, v5, v6, v10, v11, v15} ∪ {vi | i ≥ 16 and (i− 15) ≡ 1 (mod 4),

S2 = {v2, v7, v12} ∪ {vi | i ≥ 16 and (i− 15) ≡ 2 (mod 4),

and S3 = {v3, v8, v13} ∪ {vi | i ≥ 16 and (i− 15) ≡ 3 (mod 4).

In all cases Si for 0 ≤ i ≤ 3 is a distance-2 dominating set of Cn, and so,

{S0, S1, S2, S3} is a distance-2 partition of Cn. Hence, d≤2(Cn) ≥ 4, and so, d≤2(Cn) = 4. �

Figure 5: Cycles
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We next determine the distance-2 domatic number of grids, Gr,c = Pr×Pc, where

2 ≤ r ≤ c. We consider the grid as an“array” where vi,j represents the vertex in the

ith row and jth column. To aid in our discussion of grids, we sometimes list a pattern

of numbers in array format and say that each vertex is labeled by its corresponding

(positional) entry in the pattern.

Proposition 4.13 If Gr,c is a grid where r = 2 ≤ c, then

d≤2(G2,c) =

{
4 for c ∈ {2, 3, 4}
5 otherwise.

Proof. First we consider small values of c. If c = 2, then G2,2 = C4 has diameter

two and by Observation 4.1, d≤2(G2,2) = 4.

For c = 3, we note that any distance-2 dominating set containing a corner vertex

has cardinality at least two. Since n = 6, it follows that d≤2(G2,3) ≤ 4.

From the following labeling, note that d≤2(G2,3) ≥ 4, and hence, d≤2(G2,3) = 4.

1 2 3
3 4 1

If c = 4, then no single vertex distance-2 dominates G2,4. Thus, γ≤2(G2,4) ≥ 2,

and so, G2,4 ≤ n
2

= 4.

From the following labeling, note that d≤2(G2,4) ≥ 4, and hence, d≤2(G2,4) = 4.

1 2 3 4
4 3 2 1

Assume now that c ≥ 5. Note that the corner vertex v1,1 is distance-2 dominated

only by v1,1, v1,2, v1,3, v2,1, and v2,2, and hence, d≤2(G2,c) ≤ 5.

We define patterns as follows. Let
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1 3 5 2 4
2 4 5 1 3

be called a 0-block,

1 3 5 5 2 4
2 4 5 5 1 3

be called a 1-block, and

1 3 5 2 5 4 1
2 4 5 1 5 3 2

be called a 2-block.

Let c = 5k + j for integers i and k where 0 ≤ j ≤ 2. Now label G2,c by repeating

the 0-block k − 1 times and adding a j-block.

If j = 3, then label G2,c by repeating the 0-block k times and ending with the

following pattern
5 1 3
5 2 4

for the last three columns.

If j = 4, then label G2,c by repeating the 0-block pattern k times and ending with

the following pattern
5 5 1 3
5 5 2 4

for the last four columns.

For 1 ≤ i ≤ 5, let Si be the set of vertices of G2,c labeled i by the patterns in each

case. The collection of sets Si where 1 ≤ i ≤ 5 is a distance-2 domatic partition of

G2,c in all five cases. Hence, d≤2(G2,c) ≥ 5, and thus, d≤2(G2,c) = 5. �

Proposition 4.14 If Gr,c is a grid where r = 3 ≤ c, then

d≤2(G3,c) =

{
5 for c ∈ {3, 5}
6 otherwise.

Proof. First note that every corner vertex is distance-2 dominated by exactly six

vertices of G3,c. Hence, d≤2(G3,c) ≤ 6.

Let c = 3. Note γ≤2(G3,3) = 1. However, the only vertex that distance-2 domi-

nates G3,3 is the vertex v2,2. Hence, all other distance-2 dominating sets of G3,3 must

contain at least two vertices. Thus, d≤2(G3,3) ≤ 1 + 8
2

= 5.

From the following labeling, note that d≤2(G3,3) ≥ 5, and hence, d≤2(G3,3) = 5.
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1 2 3
4 5 4
3 2 1

Let c = 4. Then d≤2(G3,4) ≤ 6, the following labeling insist d≤2(G3,4) ≥ 6, and

hence, d≤2(G3,4) = 6.

1 4 6 3
2 5 1 2
3 6 4 5

Assume c = 5. Note γ≤2(G3,5) = 2. However, the only way to form a distance-2

dominating set of G3,5 consisting of only two vertices is to consider the vertices v2,2

and v2,4. Hence, all other distance-2 dominating sets of G3,5 must contain at least

three vertices. Therefore d≤2(G3,5) ≤ 1 + b13
3
c = 5.

From the following labeling note that d≤2(G3,5) ≥ 5, and hence, d≤2(G3,5) = 5.

1 4 2 3 4
2 5 3 5 1
3 1 4 3 2

Let G3,c be a grid where c ≥ 6.

Let

1 4 6 3
2 5 5 2
3 6 4 1

be a 4-block pattern,

1 4 6 3 5
2 5 5 2 6
3 6 4 1 4

be a 5-block pattern, and

1 4 5 3 4 5 1
2 6 6 2 6 6 2
3 5 4 1 5 4 3

be a 7-block pattern.

We consider four cases.

Case 1. c = 4k for some integer k.

Label G3,c by repeating the 4-block pattern k times.
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Case 2. c = 4k + 1 for some integer k.

Since c ≥ 6, we have that c ≥ 9. Label G3,c by repeating a 4-block k − 1 times

followed by a 5-block.

Case 3.c = 4k + 2 for some integer k.

Label G3,c by repeating a 4-block k− 1 times and ending in the following pattern for

the last two columns
1 4
2 5
3 6

.

Case 4. c = 4k + 3 for some integer k. Label G3,c by repeating a 4-block k − 1 times

followed by one 7-block.

Let Si, for 1 ≤ i ≤ 6, be the set of vertices labeled i in each of the cases. The

collection of sets Si where 1 ≤ i ≤ 6 is a distance-2 domatic partition of G3,c in all

four cases. Hence, d≤2(G3,6) ≥ 6, and thus, d≤2(G3,6) = 6. �

Proposition 4.15 If Gr,c is a grid where r = 4 ≤ c, then

d≤2(G4,c) =

{
5 if c = 4

6 otherwise.

Proof. Assume that c = 4. Then n = 16. Since two vertices can distance-2 dominate

at most fifteen vertices, it follows that γ≤2(G4,c) ≥ 3. Hence, d≤2(G4,4) ≤ b163 c = 5.

From the following illustration note d≤2(G4,4) ≥ 5, and hence, d≤2(G4,4) = 5.

1 4 2 3
2 5 5 4
3 5 5 1
4 1 3 2

Let G4,c be a grid where c ≥ 5. Then the vertex v1,1 is distance-2 dominated only

by v1,1, v1,2, v1,3, v2,1, v2,2 and v3,1, and hence, d≤2(G2,c) ≤ 6.

Let
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1 3 6
2 5 4
4 1 2
6 3 5

be a 3-block pattern and

5 1 3 6
3 2 5 4
5 4 1 2
1 6 3 5

be a 4-block pattern.

We consider three cases.

Case 1. c = 3k for some integer k.

Label G4,c by repeating the 3-block pattern k times.

Case 2. c = 3k + 1 for some integer k.

Since c ≥ 5, we have c ≥ 7. Label G4,c by repeating the 3-block pattern k − 1 times

followed by a 4-block pattern.

Case 3. c = 3k + 2 for some integer k.

Label G4,c by repeating the 3-block pattern k times and ending with the pattern

4 5
1 2
4 3
1 6

for the last two columns.

Let Si, for 1 ≤ i ≤ 6, be the set of vertices labeled i by the pattern in each case.

The collection of sets Si where 1 ≤ i ≤ 6 is a distance-2 partition of G4,c in all three

cases. Hence, d≤2(G4,c) ≥ 6, and thus, d≤2(G4,c) = 6. �

Proposition 4.16 If Gr,c is a grid for r = 5 ≤ c, then d≤2(G5,c) = 6.

Proof. Let G5,c be a grid where c ≥ 5. Then the vertex v1,1 is distance-2 dominated

only by v1,1,v1,2, v1,3, v2,1, v2,2, and v3,1, and hence, d≤2(G2,c) ≤ 6.

Let
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1 2 3 6
4 5 4 5
6 1 1 1
3 2 3 2
1 5 4 6

be a 0-block pattern,

1 5 4 3 6
6 2 2 5 1
3 4 1 6 2
5 1 3 1 4
4 2 6 5 3

be a 1-block pattern,

2 6 4 3 5 1
5 1 1 1 2 6
3 4 6 5 1 4
6 2 3 1 1 3
5 1 4 6 2 5

be a 2-block pattern, and

2 6 4 4 3 5 1
5 1 3 5 1 2 6
3 4 1 2 6 1 4
6 2 1 5 4 1 3
5 1 4 3 6 2 5

be a 3-block pattern.

Let c = 4k + j for integers j and k, where 0 ≤ j ≤ 3. Label G5,c by repeating a

4-block k − 1 times followed by a j-block.

The collection of sets Si where 1 ≤ i ≤ 6 is a distance-2 partition of G5,c for all

c ≥ 5. Hence, d≤2(G5,c) ≥ 6, and thus, d≤2(G5,c) = 6. �

Proposition 4.17 If Gr,c is a grid where r ≥ 3 and c ≥ 6, then d≤2(Gr,c) = 6.

Proof. Assume that r ≥ 3 and c ≥ 6. Note that each corner of a Gr,c is distance-2

dominated by exactly six vertices. Hence, d≤2(Gr,c) ≤ 6.

Note by the Problem of Frobenius [5], any integer x ≥ 3 can be expressed as the

sum of multiples of the three integers 3, 4, and 5. Since r ≥ 3, we can express r as

3x+ 4y + 5z, where x, y, and z are non-negative integers.
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Thus we can consider Gr,c as x copies of G3,c, y copies of G4,c, and z copies of

G5,c. Using the labeling given in Proposition 4.14, 4.15, and 4.16 for these subgrids,

we can obtain a distance-2 partition of Gr,c of cardinality six. Hence, d≤2(Gr,c) ≥ 6,

and so, d≤2(Gr,c) = 6. �

As an example, using the method described in the proof, we can partition the

grid in Figure 6 into six different distance-2 dominating sets, where each is being

represented with a different color. We begin by noting that r = 11 = 4 · 2 + 3 · 1.

Thus, we can consider G11,13 to be two copies of G4,13 and one copy of G3,13. Using

the labellings given in Proposition 4.14 and 4.15, we obtain the distance-2 domatic

partition.

Figure 6: d≤2(G11,13) ≥ 6
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Proposition 4.18 Let G∞,∞ be the infinite grid. Then d≤2(Gr,c) = 13.

Proof. Since a vertex in an infinite grid distance-2 dominates exactly thirteen ver-

tices, note that d≤2(Gr,c) ≤ 13.

Consider the following labeling:

...
...

...
...

...
...

...
...

...
...

...
...

...
· · · 1 6 11 3 8 13 5 10 2 7 12 4 9 · · ·
· · · 2 7 12 4 9 1 6 11 3 8 13 5 10 · · ·
· · · 3 8 13 5 10 2 7 12 4 9 1 6 11 · · ·
· · · 4 9 1 6 11 3 8 13 5 10 2 7 12 · · ·
· · · 5 10 2 7 12 4 9 1 6 11 3 8 13 · · ·
· · · 6 11 3 8 13 5 10 2 7 12 4 9 1 · · ·
· · · 7 12 4 9 1 6 11 3 8 13 5 10 2 · · ·
· · · 8 13 5 10 2 7 12 4 9 1 6 11 3 · · ·
· · · 9 1 6 11 3 8 13 5 10 2 7 12 4 · · ·
· · · 10 2 7 12 4 9 1 6 11 3 8 13 5 · · ·
· · · 11 3 8 13 5 10 2 7 12 4 9 1 6 · · ·
· · · 12 4 9 1 6 11 3 8 13 5 10 2 7 · · ·
· · · 13 5 10 2 7 12 4 9 1 6 11 3 8 · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...

The labeling is achieved by repeating the integers 1 through 13 on each column such

that the row entries differ by 5 (mod 13), that is ai,j = (ai,j−1 + 5) (mod 13).

For 1 ≤ i ≤ 13, let Si be the infinite set of vertices of G∞,∞ labeled i by the

pattern. The collection of sets Si for 1 ≤ i ≤ 13 is a distance-2 domatic partition of

the grid. Hence, d≤2(Gr,c) ≥ 13, and thus, d≤2(Gr,c) = 13. �

We conclude this section by noting that the following graphs are distance-2 do-

matically full

• Paths – Pn for n ≥ 3.

• Cycles – Cn for n = 3, 4, 5 and 5|n.
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• Grids – Gr,c

– G2,2 and G2,c where c ≥ 5.

– G3,4 and G3,c where c ≥ 6.

– G4,c where c ≥ 5.

– G5,c where c ≥ 5.

– Gr,c where r ≥ 6 and n ≥ 6.

– G∞,∞.
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5 CONCLUDING REMARKS

Cockayne and Hedetniemi [3] stated that the theory of domatic numbers resembles

the well known theory of graph colorings. With this in mind, we conclude this thesis

by exploring the relationship between the distance-2 domatic number of a graph and

the chromatic number of a graph. In particular the observation that the distance-2

domatic number seems to be bounded below by the chromatic number in all graphs.

For distance-2 indominable graphs, we first note the following proposition.

Proposition 5.1 If G is distance-2 indominable, then d≤2(G) ≥ χ(G).

Proof

Let G be distance-2 indominable. Then we can find an independent distance-2

domatic partition of G by labeling each subset of vertices in the partition with some

integer 1, 2, ..., k. Since this is a proper coloring of G, it follows d≤2(G) ≥ χ(G). �

The bound of Proposition 5.1 is not true in general, however. For example see the

graph G in Figure 7, where d≤2(G) = 3 and χ(G) = 4.

Figure 7: Graph G

Since we have yet to find a counterexample for graphs with no induced K4, we

make the following conjecture. Let w(G) denote the number of vertices in a maximum

clique of G.
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Conjecture 5.2 If w(G) ≥ 4, then d≤2(G) ≥ χ(G).

In this thesis we defined the distance-2 domatic number of graph G as being the

maximum number of sets in a partition of the vertices of G into distance-2 dominating

sets. We calculated the distance-2 domatic number for paths, cycles, and grids, and

determined upper and lower bounds for the distance-2 domatic number. Some topics

for further investigation include the following:

i. Determine the d≤2- domatic number of a cylinder Pm × Cn.

ii. Determine the d≤2- domatic number of a torus Cm × Cn.
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