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ABSTRACT

Revised Model for Antibiotic resistance in Hospital

by

Ruhang Pei

In this thesis we modify an existing model for the spread of resistant bacteria in a

hospital. The existing model does not account for some of the trends seen in the

data found in literature. The new model takes some of these trends into account.

For the new model, we examine issues relating to identifiability, sensitivity analysis,

parameter estimation, uncertainty analysis, and equilibrium stability.
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1 INTRODUCTION

Antibiotic resistance occurs when an antibiotic has lost its effectiveness against

the bacteria it is trying to kill. Normally, the bacteria is killed by an antibiotic, but

in some situations, like the overuse of antibiotics, development of bacterial resistance

of an antibiotic can occur. Drugs can lose their ability to kill bacteria and thus

cure patients. It happens frequently in various hospital settings. [26] Patients will

not get better immediately because of antibiotic resistance. This resistance, in turn,

makes it harder for medical staff to treat patients effectively for their illnesses. The

development and occurrence of antibiotic resistance cannot be eliminated completely,

but there may be ways to reduce its occurrence. Joyner et al. [1]. introduced a model

to simulate the spread of antibiotic resistant bacteria to two drugs in a hospital setting.

Patients were categorized as colonized with either resistant bacteria or uncolonized.

The colonized patients were separated into four groups. It was assumed that four

types of colonized patients could influence each other, and colonized and uncolonized

patients could also affect each other. The simulation of the model in Joyner et

al. [1] shows that the proportion of patients colonized with dual antibiotic resistant

bacteria are higher than other proportions of patients. It was explained that this

was possibly due to the assumption that there was no treatment for those patients.

This is unrealistic.The majority of patients are likely to be colonized with bacteria

sensitive to antibiotics [2]. In this thesis, we focused on revising the model by Joyner

et al. [1] to try to more accurately represent the trend in a hospital.

We illustrate how we changed the previous model to get the new model in Section

2. In Section 3 we analyze the identifiability of the parameters in the new model and
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the sensitivity of the variables to the parameter values. In Section 4, we focused on

parameter estimation. In section 5, we address uncertainty in the model. In Section

6, we focus on the existence and stability of a resistant-free equilibrium. We end the

thesis with some final conclusions and remarks about future work.
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2 MODEL DEVELOPMENT

In this section, we discuss the specific modifications to an existing model for the

spread of antibiotic resistance in a hospital setting. The original model by Joyner

et al. [1] is a compartmental model in which patients are classified in one of five

categories based on their bacterial colonization. It is assumed there are only two

drugs and patients can be resistant to one, two or none of the antibiotics. Resistance

may then be transmitted to patients who are uncolonized or colonized with a type

of resistance which spreads faster. Patients can become uncolonized either through

treatment or through their immune system fighting off the bacteria. The simulation

of the original model is shown in Figure 1.
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Figure 1: Simulation of Original Model developed by Joyner et al. [1]

Figure 1 shows that after approximately 20 days of treatment, the proportion of

patients in the hospital colonized with dual resistance is approximately 72%. The
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proportion of patients uncolonized and colonized with sensitive bacteria are approxi-

mately 16% and 10%, respectively. The proportion of patients with single resistance

is only around 2%. The simulation is not what is expected based on observed hospital

data [2]. The proportion of the hospital colonized with dual resistance should be

lower than the proportion of the hospital colonized with single resistance as shown in

the data by Takesque et al. [2]. In our model, we focus on new assumptions which

might more accurately show what occurs in a hospital setting.

The first change in the model is a change in the model variables. We let S be the

proportion of patients with bacteria sensitive to all drugs in the hospital. We let R be

the proportion of patients colonized with bacteria resistant to only a single antibiotic.

We let M be the proportion of patients colonized with bacteria resistant to multiple

antibiotics, and X represents the proportion of patients who are uncolonized. We

assume a constant population in the hospital, so S +R+M +X = 1. Analyzing the

simulation from the original model, we made three major changes. First, we assumed

there is treatment available for patients colonized with multiple-resistant bacteria [3].

The previous model assumed there was no antibiotic available to treat dual resistance

(thus the proportion of people colonized with dual resistance was much higher than

what is typically seen in the hospital). Therefore, we instead chose to assume a

variable which included all patients colonized with bacteria resistant to more than

one drug, but instead of assuming there are no antibiotics to treat them, we instead

assume they can be treated at a rate τM , a slower rate than treatment of patients

colonized with either bacteria resistant to a single antibiotic or colonized with sensitive

bacteria. Second, we assume that resistance can develop during treatment [9]. We
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assume resistance can develop during treatment at a rate eτ , reducing the effective

treatment rate from τ to (1− eτ )τ where 0 < eτ < 1. The third major change is that

we assume there can be transfer of resistant mechanisms from bacteria to bacteria

[4, 5]. When two bacteria are close to each other, conjugation can occur in which one

bacteria can transfer the mechanism for antibiotic resistance to the other bacteria

causing both bacteria to be resistant to the antibiotic. We assume that conjugation

can only occur through either direct or indirect contact. A plasmid transfer rate βpT

is assumed in the new model. For example, βpTRM is the development of multiple

resistant bacteria due to the transfer of a second resistant mechanism to a single

resistant bacteria. The schematic for the new model is given in Figure 2 with the

parameters in Table 1. The model is given by the set of differential equations

dS

dt
= λmS − SµS + βS[X − pTR]− (τ + γ)S, (1)

dR

dt
= λmR −RµR + βR[(1− cR)X + pT (S −R−M)]− (τR + γ)R

+eττS,

dM

dt
= λmM −MµM + βM [(1− cM)X + pTR] + βpTR

2 + eττRR

−M [τm(1− eτ ) + γ].

Since we assume a constant hospital population, the differential equation for X is

defined by the relationship

dX

dt
= 1− dS

dt
− dR

dt
− dM

dt
.
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Figure 2: Schematic for the revised model after making the revisions discussed in

Section 2
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Table 1: Definitions of Parameters

Parameters Description value ref.

β colonization rate 1/day [21, 24]
pT probability of plasmid transfer

upon contact 10−6/day [4, 5]
cR fitness cost of bacteria resistant

to single drug 0.05/day [21]
cM fitness cost of bacteria resistant

to multiple drugs 0.15/day [21]
τ per capita treatment rate of

sensitive bacteria (∼ 31 hours) 0.78/day [9]
τR per capita treatment rate of

resistance to a single drug
(∼ 1/2 day longer than sensitive) 0.56/day [12]

τM per capita treatment rate of
resistance to multiple drugs.
(∼ 2x as long as sensitive) 0.39/day [3]

eτ rate of resistance developing
during treatment 10−7/day [20, 22, 23]

γ per capita clearance rate of
bacteria due to immune response 0.03/day [21, 24, 25]

µS patients discharge rate for S 0.7/day [11]
µR patients discharge rate for R 0.05/day estimated
µM patients discharge rate for M 0.005/day estimated
µX patients discharge rate for X 0.245/day [10]

The simulation of the new model is shown in Figure 3. By comparing the difference

between the new simulation (Figure 3) and the previous simulations (Figure 1), the

proportion of patients with bacteria of multiple antibiotic resistances is lower than

the proportion of patients with bacteria of single antibiotic resistance as hoped. The

simulation also shows that the majority of patients are either uncolonized or colonized

with bacteria sensitive to antibiotics which is more in line with what is expected.

However, the proportion of uncolonized is expected to be lower than the proportion
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of patients with colonized bacteria sensitive to all antibiotics. One possible reason

is that the parameters value in Table 1 may not be ideal for modeling a particular

hospital. In order to identify the combination of parameters ideal to mimic the trends

seen in the data, one needs to take the data from a particular hospital and use it to

estimate the parameters. Therefore, the parameters must be identifiable, and, if so,

an inverse problem can be formulated to estimate the parameters. In the next section

we focus on identifiability of parameters in the model.
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Figure 3: Simulation for the new model given by Eq. (1)
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3 IDENTIFIABILITY AND SENSITIVITY ANALYSIS

In the previous section, we discussed that the choice of parameters may need to

be examined further in order for simulations to better represent the data found in

the literature. Therefore, in this section we examine the identifiability of the model,

so that in the future, this model can be adapted to a specific hospital. There are

many approaches in which one can examine identifiability. Eisenberg [13] uses a dif-

ferential algebra approach which involves reducing the system of differential equations

to an input-output equation to determine identifiable parameters. This process was

attempted with our model; however, the resulting input-output equations were quite

messy and therefore hard to use to determine the identifiable parameters.

Another approach for determining a subset of identifiable parameters is given in

the paper by Cintron-Arias et al. [8]. The Fisher Information Matrix (FIM) associated

with the model helps to determine the number of identifiable parameters in the given

subset of parameters. The Fisher Information Matrix is given by

FIM = χTχ (2)

where χ is the sensitivity matrix of the system discussed below. The rank of the

FIM gives the number of identifiable parameters from the given subset. All possible

parameter combinations can be tested until the Fisher Information Matrix has full

rank. Therefore, for identifiability, we need the FIM to have full rank.

Output for our model can be denoted by

z(ti, q0) = (S(ti, q0), R(ti, q0),M(ti, q0))

where ti is a time point and q0 is a given parameter value. If the model is a good
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model for the spread of resistant bacteria, the output of the model should match data

from a hospital fairly well. But, normally patients aren’t tested for resistant bacteria

while in a hospital unless treatment fails. Therefore, in our model, we assume the only

measurable output from the model would be the number of patients in the hospital

colonized with bacteria of multiple antibiotic resistance which can be obtained from

z(ti, q0) = NM(ti, q0) where N is the population of the hospital and M(ti, q0) is the

proportion of the patients colonized with bacteria of multiple antibiotic resistance.

We needed the sensitivity matrix to calculate the Fisher Information Matrix;

therefore, we describe the sensitivity analysis for the given model and then use this

analysis to aid in identifiability. The sensitivity matrix χ = ∂M
∂qi

is given below, where

q = [mS µS β pT τ γ mR µR cR τR eτ mM cM τM ]

is the vector of parameters in the model and

χ =


∂M(t1)
∂mS

· · · ∂M(t1)
∂τM

∂M(t2)
∂mS

· · · ∂M(t2)
∂τM

...
. . .

...
∂M(tn)
∂mS

· · · ∂M(tn)
∂τM

 . (3)

Traditional sensitivity analysis, as defined by Hamby [14], uses the modified L2 norm∥∥∥∥∂M∂q
∥∥∥∥
2

=
1

max
t0≤t≤tf

(M(t))

[
1

tf − t0

∫ tf

t0

(
∂M

∂q
q

)2

dt

] 1
2

(4)

to determine the relative ranking of the sensitivity of M to the various parameters

where tf = 30(days) is the finishing time and t0 = 0. The result from the sensitivity

analysis is shown in Figure 4. Based on what is shown in this analysis, we can conclude

that the model is most sensitive to the parameters mS, β, τM . When changed, those

parameters result in the most change in M .
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Figure 4: Sensitivity analysis for the model given by Eq (1)

Back to the concept of identifiability, the size of the FIM is 15× 15, but the rank

of the FIM is 11. So it is not full rank and the full set of parameters is not identifiable.

It is possible to choose subsets of parameters, but instead we first analyze the system

and reparameterize it to remove all sums and products which we know cannot be

identified separately. For instance consider the product, eττ in the differential equa-

tion. When eτ is increased and τ is decreased by the same proportion, the product

is the same. We reparameterize the model; the new parameters are given in Table 2.

The schematic for the reparameterized model is given in Figure 5 with the associated

18



ordinary differential equation system given by Eq. (5).

dS

dt
= λmS − SµS + βSX − (τ + γ)S − βTRS, (5)

dR

dt
= λmR −RµR + τ̃SS + βT (RS −R2 −RM)− (τR + γ)R + βRXRX,

dM

dt
= λmM −MµM + βMXMX + βT (R2 +RM) + τ̃RR−M(α + γ).

Table 2: New parameter values for identifiability

New Parameter Original Parameter

τ̃S τeτ
τ̃R τReτ
τ̃M τMeτ
βT βPT
βRX β(1− cR)
βMX β(1− cM)
α τM(1− eτ )

19



Figure 5: Schematic for the reparameterized model

Recalculating the Fisher Information Matrix using the reparameterized system

with 16 new parameters, we have a rank of 15. It is still not full rank. The parameter

γ represents the ability of the immune system to kill off the bacteria. It is more likely

to find data on how long it would take for a person’s immune system to fight off

something like antibiotic resistance. After removing γ from the parameter list, FIM

is full rank. Thus the remaining parameters,

q = [mS µS mR µR mM µM β βT βRX βMX τ τR τ̃S τ̃R α ]

are structurally identifiable. We will consider this reparameterized model for the

remainder of this thesis.

20



4 PARAMETER ESTIMATION

The forward problem assumes that given a parameter q = q0, the solution of the

model in

dZ

dt
= f(t, Z(t), q0) (6)

can be calculated where Z is the vector of variables Z = [S,R,M,X]. The inverse

problem assumes some observable data from which the parameter q0 can then be

estimated. As mentioned previously, we assume the number of patients colonized

with multiple resistant bacteria, Y = NM , are likely the only population which can

be measured in a hospital setting. Therefore, even though we are still unlikely to be

able to identify every patient with multiple resistance, we are going to assume that

is possible in this thesis to establish the ability to estimate parameters in the best

possible case. We assume the data, yi, is one realization for the statistical model

Yi = M(ti, q0) + εi (7)

where Yi is a random variable , and M(ti, q0) is the solution of Eq. (5) where q0 is as-

sumed to be some true parameter corresponding to the data. It shows the observation

is equal to the model output, which is the solution to the forward problem given the

true parameter q0, plus any measurement error. The terms εi, i = 1, 2, . . . are inde-

pendent and identically distributed random variables satisfying a normal distribution

with mean 0 and variance var(εi) = σ2
0 <∞ i.e. εi ≈ N(0, σ2

0).

Given the assumption for the statistical model, we use ordinary least squares for

the parameter estimation in which we estimate parameter q̂. The cost function is
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shown as follows

q̂ = argmin
q

n∑
i

([yi −M(ti, q)]
2) (8)

where yi is the data assumed to be a realization of the model in Eq. (7) and M(ti, q)

is the solution of Eq. (5) for a given parameter q.

We use the package fminsearchcon developed for Matlab in this minimization

problem [15]. This algorithm is adapted from the built-in minimization routine

fminsearch. Both of them are used to find the minimum of a given cost function. We

chose fminsearchcon because it allows one to input parameter constraints. The lower

bound and upper bound are two of the constraints. We let all of the parameters have

lower bound 0. Since some of the parameters mS, µS, mR, µR, mM , µM , τ, τR,

τ̃S, τ̃R, α are proportions, they should less than 1. The incoming patient constraints

are mS > mR > mM . This occurs because most of the patients who are admitted to

the hospital are sensitive to most of the drugs. There are barely any patients resistant

to multiple drugs. The departure rate constraints are µS > µR > µM . Patients who

are sensitive to most of the drugs would be cured quicker than patients who are resis-

tant to drug treatment. The treatment rate constraints are τ > τR > τ̃S > τ̃R. The

treatment rate of patients who are drug sensitive should be quicker than the treatment

rate of patients who are drug resistant. A few patients will develop resistance to a

drug during treatment. The colonization rate constraints are β > βRX > βMX > βT .

When patients contact each other, we assume the uncolonized transfer to colonized

with multiple drug resistance is more difficult than becoming colonized with singleton

drug resistance. The transfer by conjugation is least likely to happen.

In this thesis, we generate simulated data in order to determine the ability to
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estimate parameters. To generate the data, we use Eq. (7) where we use the command

randn in Matlab to generate the term εi with mean 0. Using an initial guess close to

the actual parameters, we obtain the estimates given in Table 3. The absolute and

relative error give an idea of the accuracy of our estimates error, where absolute error

is given by

Absolute error = |q0 − q̂|,

and relative error can be calculated as

Relative error =
|q0 − q̂|
|q0|

.

The data together with the solution using the estimated parameters is shown in Figure

6. These are estimated parameter values; the confidence intervals will be given in the

next section when we discuss uncertainty analysis.
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Table 3: Estimated Parameter Values and Calculated Error

Parameter True value q0 Estimated value q̂ Absolute error Relative error %

mS 7.0000e-01 6.5302e-01 4.6977e-02 6.7110e+00
µS 2.0833e-01 1.3407e-01 7.4268e-02 3.5649e+01
mR 5.0000e-02 3.5278e-02 1.4722e-02 2.9445e+01
µR 1.6801e-01 9.9447e-02 6.8564e-02 4.0809e+01
mM 5.0000e-03 5.0366e-03 3.6638e-05 7.3275e-01
µM 8.4005e-02 9.9444e-02 1.5439e-02 1.8378e+01
β 1.0000e+00 8.9694e-01 1.0306e-01 1.0306e+01
βT 1.0000e-06 1.1738e-06 1.7376e-07 1.7376e+01
βRX 9.5000e-01 8.7521e-01 7.4795e-02 7.8731e+00
βMX 8.5000e-01 8.7520e-01 2.5200e-02 2.9647e+00
τ 7.8000e-01 7.1135e-01 6.8653e-02 8.8017e+00
τR 5.6000e-01 5.4764e-01 1.2360e-02 2.2071e+00
τ̃S 7.8000e-08 1.7073e-02 1.7073e-02 2.1889e+07
τ̃R 5.6000e-08 1.3684e-03 1.3684e-03 2.4435e+06
α 3.9000e-01 3.7749e-01 1.2508e-02 3.2071e+00

Table 3 shows that the relative error of τ̃S and τ̃R are much larger than the others.

These large relative errors indicate it is not possible to accurately estimate these

parameter values. There is also significant error in the estimated values for µR, mR,

and µS; therefore, although these parameters are structurally identifiable, it may be

difficult to identify these parameters in the presence of noise. We examine the error

in these values further in the next section where we calculate confidence intervals

for these parameters. However, we note that although there is large relative error

in several parameters, Figure 6 shows that the simulation for the model using the

estimated parameters is an extremely good estimate for the model using the exact

parameters.
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5 UNCERTAINTY ANALYSIS

Uncertainty analysis is an important part of a modeling process because there is

variability in the data which effect parameter estimations. Similarly, uncertainty in

the parameter estimations propagate throughout the model. In this section we look

at both uncertainties in the parameter estimations by calculating confidence intervals

as well how this uncertainty propagates through the model. The method used in this

thesis is a bootstrapping method [16, 8]. The following algorithm can be used to

compute the bootstrapping estimate q̂BOOT of q0.

1. First estimate q̂0 from the entire sample Y N
i using OLS, where q̂0 is a first

parameter estimated from Eq. (8).

2. Using this estimate, we define the standardized residuals

r̄i =

√
(

N

N − k0
)(Yi −M(ti; q̂0)) for i = 1, . . . , N

where N = 30 is the number of data points and k0 is the number of parameters,

k0 = 15.

3. Create a bootstrapping sample of size N using random sampling with replace-

ment from the data (realizations) {r̄1, . . . , r̄N} to form a bootstrapping sample

{r̄m1 , . . . , r̄mN}. We randomly shuffle each individual of the residual set and give

new ordered residual set which is the bootstrapping sample.

4. Create bootstrap sample points

Y m
i = M(ti; q̂

0) + rmi , where i = 1, . . . , 30.
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In this step, we let the bootstrapping sample replace the measurement error to

get the new sample Y m
i ,

5. Obtain a new estimate q̂m from the bootstrapping sample {Y m
i } using OLS. We

use same way as step 1 to get new estimate q̂m.

6. Set m = m+ 1 and repeat steps 3-5 until m ≥ 1000.

We let m = 1000 and obtain {q̂m}, m = 1, ..., 1000. The confidence intervals for the

parameter values at the 100(1− α)% level are given by

C = [q̂BOOT − t1−α/2SEk(q̂
m), q̂BOOT − t1−α/2SEk(q̂

m)] k = 1, . . . , 15, (9)

where q̂BOOT is the mean value of {q̂m}. Let α = 0.05 for 95% confidence intervals.

The critical value t1−α/2 = 1.745884 is computed from the students t distribution

with k0 = 15 degrees of freedom. Standard error is calculated by

SEk(q̂
m) =

√
Var(qBOOT )kk

where

Var(qBOOT ) =
1

1000− 1

1000∑
m=1

(q̂m − q̂BOOT )T (q̂m − q̂BOOT ).

Confidence intervals are shown in Table 4 providing more information on the extent

of uncertainty involved in estimating q0. The solutions, M(t, q̂m), m = 1, ..., 1000, are

shown in Figure 7.
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Table 4: Confidence Interval for Parameter Estimates

Parameters True value q̂BOOT C

mS 7.0000e-01 6.6946e-01 [ 4.0212e-01 , 9.3679e-01]
µS 2.0833e-01 2.3849e-01 [1.3286e-02 , 4.6369e-01]
mR 5.0000e-02 6.4878e-02 [-7.7942e-02 , 2.0770e-01]
µR 1.6801e-01 1.5298e-01 [7.8344e-03 , 2.9813e-01]
mM 5.0000e-03 4.1250e-03 [2.1650e-03 , 6.0850e-03]
µM 8.4005e-02 7.9443e-02 [2.0312e-02 , 1.3857e-01]
β 1.0000e+00 1.0432e+00 [7.3260e-01 , 1.3537e+00]
βT 1.0000e-06 1.0582e-06 [5.4029e-07 , 1.5761e-06]
βRX 9.5000e-01 9.4735e-01 [7.3691e-01 , 1.1578e+00]
βMX 8.5000e-01 8.6234e-01 [7.6018e-01 , 9.6450e-01]
τ 7.8000e-01 7.8803e-01 [6.3728e-01 , 9.3879e-01]
τR 5.6000e-01 5.9233e-01 [3.5408e-01 , 8.3058e-01]
τ̃S 7.8000e-08 2.1096e-02 [-8.4058e-02 , 1.2625e-01]
τ̃R 5.6000e-08 1.7241e-03 [-3.5549e-03 , 7.0030e-03]
α 3.9000e-01 3.8284e-01 [2.9463e-01 , 4.7106e-01]

The left confidence interval of mR, τ̃S, and τ̃R are negative. As defined, these

parameters should not be negative. Recall that these parameter values are also the

ones which gave the largest initial relative error (see Table 3). This is more indication

that we cannot accurately estimate these parameters. The mean estimated parameter

value for all other parameters had less than 18% relative error with all but two

parameter values resulting in less than 10% relative error.
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Figure 7: Variation in the solution M(t, q̂m) in Eq. (5) given the variability in pa-

rameter values seen in Table 4
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6 EQUILIBRIUM AND STABILITY ANALYSIS

In this section, we analyze the potential of a stable resistance-free equilibrium.

The disease-free equilibrium is not a realistic possibility, since patients will continu-

ously enter the hospital colonized with bacteria; therefore, we consider a resistant-free

equilibrium (RFE) given by ER = (S,R,M,X) = (S∗, 0, 0, X∗). As discussed in Sec-

tion 2, S +R+M +X = 1; therefore, X = 1− (S +R+M) and thus X∗ = 1− S∗.

S∗ can be calculated by the equation S∗ = dS
dt
|ER

= 0, where dS
dt

is given in Eq. (5).

This gives

S∗ =
β − µS − τ − γ ±

√
(β − µS − τ − γ)2 + 4βλmS

2β
.

We first reorder the system with the resistant variables as given by

dR

dt
= λmR −RµR + τ̃SS + βT (RS −R2 −RM)− (τR + γ)R +

βRXR(1− S −R−M),

dM

dt
= λmM −MµM + βMXM(1− S −R−M) + βT (R2 +RM) +

τ̃RR−M(α + γ),

dS

dt
= λmS − SµS + βS(1− S −R−M)− (τ + γ)S − βTRS.

The stability of the RFE can be computed by using the next generation approach

[17]. We then linearize the reordered system about the RFE. The Jacobian Matrix

evaluated at the RFE is given by

J =

 J11 0 τ̃S
τ̃R J22 0

S∗(−β − βT ) −βS∗ J33


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where

J11 = −(µR + τR + γ) + βTS
∗ + βRX(1− S∗)

J22 = −(µM + α + γ) + βMX

J33 = −(µS + τ + γ) + β(1− 2S∗)

The terms in the Jacobian matrix can be separated as new colonizations with

resistant bacteria and all other transitions. The new colonizations are given by

F =

[
F11 0
0 F22

]
where

F11 = βTS
∗ + βRX(1− S∗)

F22 = βMX

and all the other transitions are given by

V =

[
µR + τR + γ 0
−τ̃R µM + α + γ

]
.

V is a non-singular matrix. The matrix product FV −1 is called the next generation

matrix where V −1 is given as:

V −1 =


1

µR + τR + γ
0

τ̃R
(µM + α + γ)(µR + τR + γ)

1

µM + α + γ

 .
The terms Vjk represent the average length of time that a patient stays in compart-

ment j. Then the spectral radius ρ of the matrix FV −1 is defined as follows:

Rs = ρ(FV −1) = max

{
βTS

∗ + βRX(1− S∗)

µR + τR + γ
,

βMX

µM + α + γ

}
. (10)
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Based on theory developed by Hadeler [17] and using the approach from Snyder [26]

on our spectral radius, Rs, we have the following theorem concerning the model in

Eq. (5).

Theorem 6.1 The resistant-free equilibrium for the model in Eq. (5), RFE =

(S∗, 0, 0, X∗), is locally asymptotically stable if and only if Rs given in Eq. (10)

satisfies Rs < 1.
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7 CONCLUTIONS AND FUTURE WORK

In this thesis, a new model was built by modifying a previous model given in the

paper by Joyner et al. [1]. We then considered the reparameterization of the model

to enable identifiability and then considered parameter estimation. The result of the

simulation of our new model shows that it follows the trend seen in the data more than

the previous model. The parameter estimation resulted in close estimates to the true

parameters. The future work should focus on looking for real data. We need a real

data record from the hospital to support that our model captures the relationships

in an actual hospital. Future work may also include examining if all the important

relationships are considered in our model. Another potential idea for future work

could be using the model to test strategies for reducing antibiotic resistance in the

hospital.
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