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ABSTRACT

Mathematical Modeling of Immune Responses to Hepatitis C Virus Infection

by

Ivan Ramirez

An existing mathematical model of ordinary differential equations was studied to

better understand the interactions between hepatitis C virus (HCV) and the immune

system cells in the human body. Three possible qualitative scenarios were explored:

dominant CTL response, dominant antibody response, and coexistence. Additionally,

a sensitivity analysis was carried out to rank model parameters for each of these

scenarios. Therapy was addressed as an optimal control problem. Numerical solutions

of optimal controls were computed using a forward-backward sweep scheme for each

scenario. Model parameters were estimated using ordinary least squares fitting from

longitudinal data (serum HCV RNA measurements) given in reported literature.

2



Copyright by Ivan Ramirez 2014

All Rights Reserved

3



DEDICATION

This thesis is dedicated to my parents. I am eternally grateful for all their love,

support and encouragement. I also dedicate this thesis to my grandmother. She has

played such a significant role throughout my life. Abuelita, you have been and always

will be an inspiration for all of us.

4



ACKNOWLEDGMENTS

Firstly, I would like to express my gratitude to my advisor, Dr. Ariel Cintrón-

Arias, for his constant guidance and support. This work would have not been possible

without him. I will also like to thank Dr. Lenhart, Dr. Forde and Dr. Ciupe for their

valuable input to this project. I thank my committee, Dr. Gardner and Dr. Knisley,

for the suggestions they gave during the revision process, as well as for all the help

they offered me through out my time as a student in the math department at ETSU.

Finally, I thank the Department of Mathematics and Statistics of ETSU for a very

rewarding experience as a master student.

5



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 BASIC BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Hepatitis C Virus . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Immune Responses . . . . . . . . . . . . . . . . . . . . . . . . 14

2 MATHEMATICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Qualitative Scenarios . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Dominant CTL Response . . . . . . . . . . . . . . . 24

2.1.2 Dominant Antibody Response . . . . . . . . . . . . . 26

2.1.3 Coexistence . . . . . . . . . . . . . . . . . . . . . . . 28

3 SENSITIVITY ANALYSIS PART I . . . . . . . . . . . . . . . . . . . 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Relative Sensitivities: Dominant CTL Response . . . . . . . . 40

3.3 Relative Sensitivities: Dominant Antibody Response . . . . . 44

3.4 Relative Sensitivities: Coexistence . . . . . . . . . . . . . . . . 47

4 TREATMENT AS AN OPTIMAL CONTROL PROBLEM . . . . . . 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Necessary Conditions . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Forward-Backward Sweep Method . . . . . . . . . . . . . . . . 54

6



4.4 Optimal Treatment Strategy for the Dominant CTL Response

Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Optimal Treatment Strategy for the Dominant Antibody Re-

sponse Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Optimal Treatment Strategy for the Coexistence Scenario . . . 74

5 INVERSE PROBLEM: PARAMETER ESTIMATION . . . . . . . . 82

5.1 Ordinary Least Squares . . . . . . . . . . . . . . . . . . . . . 82

5.2 The Bootstrap Method . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Parameter Estimation for Patient 1 . . . . . . . . . 87

5.2.2 Parameter Estimation for Patient 2 . . . . . . . . . . 91

5.2.3 Parameter Estimation for Patient 3 . . . . . . . . . 94

5.2.4 Parameter Estimation for Patient 4 . . . . . . . . . 97

6 SENSITIVITY ANALYSIS PART II . . . . . . . . . . . . . . . . . . 100

6.1 Sensitivity Analysis for Patient 1 . . . . . . . . . . . . . . . . 100

6.2 Sensitivity Analysis for Patient 2 . . . . . . . . . . . . . . . . 103

6.3 Sensitivity Analysis for Patient 3 . . . . . . . . . . . . . . . . 106

6.4 Sensitivity Analysis for Patient 4 . . . . . . . . . . . . . . . . 109

7 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . 112

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7



LIST OF TABLES

1 Ranking of parameters that are most influential for dominant CTL

response in the transient phase . . . . . . . . . . . . . . . . . . . . . 41

2 Ranking of parameters that are most influential for dominant CTL

response in the long-term phase . . . . . . . . . . . . . . . . . . . . . 43

3 Ranking of parameters that are most influential for dominant antibody

response in the transient phase . . . . . . . . . . . . . . . . . . . . . 45

4 Ranking of parameters that are most influential for dominant antibody

response in the long-term phase . . . . . . . . . . . . . . . . . . . . . 46

5 Ranking of parameters that are most influential for coexistence in the

transient phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Ranking of parameters that are most influential for coexistence in the

long-term phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Total production of virus in the dominant CTL response scenario . . 63

8 Total production of infected cells in the dominant CTL response scenario 63

9 Total production of virus in the dominant antibody response scenario 72

10 Total production of infected cells in the dominant antibody response

scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

11 Total production of virus in the coexistence scenario . . . . . . . . . . 80

12 Total production of infected cells in the coexistence scenario . . . . . 81

13 Bootstrap estimates and standard errors for patient 1 . . . . . . . . . 87

14 Bootstrap estimates and standard errors for patient 2 . . . . . . . . . 92

15 Bootstrap estimates and standard errors for patient 3 . . . . . . . . . 94

8



16 Bootstrap estimates and standard errors for patient 4 . . . . . . . . . 97

17 Ranking of parameters that are most influential for the viral load in

patient 1 in the transient phase . . . . . . . . . . . . . . . . . . . . . 101

18 Ranking of parameters that are most influential for the viral load in

patient 1 in the long-term phase . . . . . . . . . . . . . . . . . . . . . 102

19 Ranking of parameters that are most influential for the viral load in

patient 2 in the transient phase . . . . . . . . . . . . . . . . . . . . . 104

20 Ranking of parameters that are most influential for the viral load in

patient 2 in the long-term phase . . . . . . . . . . . . . . . . . . . . . 104

21 Ranking of parameters that are most influential for the viral load in

patient 3 in the transient phase . . . . . . . . . . . . . . . . . . . . . 107

22 Ranking of parameters that are most influential for the viral load in

patient 3 in the long-term phase . . . . . . . . . . . . . . . . . . . . . 108

23 Ranking of parameters that are most influential for the viral load in

patient 4 in the transient phase . . . . . . . . . . . . . . . . . . . . . 110

24 Ranking of parameters that are most influential for the viral load in

patient 4 in the long-term phase . . . . . . . . . . . . . . . . . . . . . 111

9



LIST OF FIGURES

1 Schematic illustration of the two types of immune responses . . . . . 17

2 Dynamics of the immune responses . . . . . . . . . . . . . . . . . . . 18

3 Disease free equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 No immune response endemic equilibrium . . . . . . . . . . . . . . . 23

5 Dominant CTL response equilibrium . . . . . . . . . . . . . . . . . . 25

6 Dominant antibody response equilibrium . . . . . . . . . . . . . . . . 27

7 Coexistence equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Relative sensitivities for example 1 . . . . . . . . . . . . . . . . . . . 33

9 Numerical solutions for example 1 . . . . . . . . . . . . . . . . . . . . 33

10 Relative sensitivities for example 2 . . . . . . . . . . . . . . . . . . . 35

11 Numerical solutions for example 2 fixing parameters . . . . . . . . . . 35

12 Numerical solutions for example 3 . . . . . . . . . . . . . . . . . . . . 37

13 Numerical solutions for example 3 fixing parameters . . . . . . . . . . 38

14 Relative sensitivities for example 3 . . . . . . . . . . . . . . . . . . . 38

15 Relative sensitivities for the dominant CTL response scenario in the

transient phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

16 Relative sensitivities for the dominant CTL response scenario in the

long-term phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

17 Relative sensitivities for the dominant antibody response scenario in

the transient phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

18 Relative sensitivities for the dominant antibody response scenario in

the long-term phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10



19 Relative sensitivities for the coexistence scenario in the transient phase 47

20 Relative sensitivities for the coexistence scenario in the long-term phase 48

21 Numerical solutions of the optimal control problem for the dominant

CTL response scenario and best treatment strategies. . . . . . . . . . 58

22 Numerical solutions of the optimal control problem for the dominant

CTL response scenario and best treatment strategies after cessation of

therapy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

23 Viral load with treatment and with no treatment for the dominant

CTL response scenario with a non logarithmic scale . . . . . . . . . . 65

24 Numerical solutions of the optimal control problem for the dominant

antibody response scenario and best treatment strategies. . . . . . . . 69

25 Numerical solutions of the optimal control problem for the dominant

CTL response scenario and best treatment strategies after cessation of

therapy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

26 Viral load with treatment and with no treatment for the dominant

antibody response scenario with a non logarithmic scale. . . . . . . . 73

27 Numerical solutions of the optimal control problem for the coexistence

scenario and best treatment strategies. . . . . . . . . . . . . . . . . . 77

28 Numerical solutions of the optimal control problem for the coexistence

scenario and best treatment strategies after cessation of therapy. . . . 79

29 Viral load with treatment and with no treatment for the coexistence

scenario with a non logarithmic scale. . . . . . . . . . . . . . . . . . . 81

30 Bootstrap cloud for patient 1 . . . . . . . . . . . . . . . . . . . . . . 88

11



31 Best fit solutions for patient 1 . . . . . . . . . . . . . . . . . . . . . . 90

32 Bootstrap cloud for patient 2 . . . . . . . . . . . . . . . . . . . . . . 92

33 Best fit solutions for patient 2 . . . . . . . . . . . . . . . . . . . . . . 93

34 Bootstrap cloud for patient 3 . . . . . . . . . . . . . . . . . . . . . . 95

35 Best fit solutions for patient 3 . . . . . . . . . . . . . . . . . . . . . . 96

36 Bootstrap cloud for patient 4 . . . . . . . . . . . . . . . . . . . . . . 98

37 Best fit solutions for patient 4 . . . . . . . . . . . . . . . . . . . . . . 99

38 Relative sensitivities for patient 1 in the transient phase . . . . . . . 101

39 Relative sensitivities for patient 1 in the long-term phase . . . . . . . 102

40 Relative sensitivities for patient 2 in the transient phase . . . . . . . 103

41 Relative sensitivities for patient 2 in the long-term phase . . . . . . . 105

42 Relative sensitivities for patient 3 in the transient phase . . . . . . . 106

43 Relative sensitivities for patient 3 in the long-term phase . . . . . . . 107

44 Relative sensitivities for patient 4 in the transient phase . . . . . . . 109

45 Relative sensitivities for patient 4 in the long-term phase . . . . . . . 110

12



1 BASIC BACKGROUND

1.1 Hepatitis C Virus

Hepatitis C, which is an infectious liver disease caused by the hepatitis C virus

(HCV), is commonly transmitted through direct contact with the blood of an in-

fected person (blood transfusion, injection drug use, etc). About 150 million people

worldwide are chronically infected with hepatitis C virus, and more than 350,000

people die every year from hepatitis C-related liver diseases [28]. After exposure to

HCV, a strong host immune response is launched. However, in a majority of pa-

tients the response fails to eradicate the virus, leading to chronic infection [14]. As a

matter of fact, HCV is a major cause of chronic liver cirrhosis and liver cancer [28].

Antiviral medicines such as combinations of pegylated-interferon−α and ribavirin

(PEG-INF/RBV) have been used as medication for several years. Nevertheless, this

treatment is far from being ideal, it is associated with significant side effects, is expen-

sive, and only has a cure rate of 50% or less in patients infected with HVC genotype

1 [6, 12, 14]. More recently treatments are focused on direct-acting antiviral agents

(DAAs) that target specific steps of the HCV life cycle. More details about these

new types of treatments can be found in [24, 11, 23]. There is currently no vaccine

for hepatitis C virus. Nevertheless, research in this area is outgoing.

In this thesis we want to understand the interactions between the hepatitis C

virus and the immune system. For this reason it is necessary to understand the

characteristics of the immune responses against foreign pathogens.
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1.2 Immune Responses

The immune system is an organization of cells, organs, and molecules that protect

the body from infection. The purpose of the immune system is to defend the body

against foreign pathogens such as certain bacteria, viruses, and fungi. There are

two fundamental categories of immune responses against invading pathogens [8, 26]:

(i) innate or nonspecific responses, and (ii) specific or adaptive responses. Innate

immune responses form a first barrier to protect the body against infection. Immune

cells such as macrophages and natural killer cells are examples of cells that fight

pathogens in a nonspecific way. In other words, these type of responses act as reactions

of the body against an invader, no matter what type of pathogen they are fighting.

Skin, coughing, sneezing, and fever are also examples of the nonspecific immune

responses. The adaptive responses are due to cells and molecules that are able to

recognize the physical structure of a pathogen [26]. They can perceive proteins from

which the pathogen is built. Once these cells are activated they start to divide

and expand in number. Probably the most important component of the specific

immune system are the lymphocytes. These type of cells are white blood cells that

arise continuously in the bone marrow (flexible tissue in the interior of the bones).

One microlitre of human blood contains about 2500 lymphocytes and in total there

are about 1012 lymphocytes in an adult human [20]. Lymphocytes can be grouped

into two major branches: B-lymphocytes, referred to as B cells, and T-lymphocytes,

referred to as T cells [8, 20, 21, 26].

B cells carry antibody molecules on their surface membrane that serve as receptors

that can specifically recognize the pathogen [8, 20, 26]. During B cell development,

14



the immune system creates billions of different antibodies with a limited number of

genes by rearranging DNA segments. Mutation can also increase genetic variation

in antibodies. Basically, for any pathogen that enters the body, there is a specific

antibody molecule that can recognize it [20].

When HCV enters the human body, most B-cells do not have the specific receptors

to recognize this foreign intruder. However, some B-cells will be able to bind some

viral proteins. There is a specific antibody molecule that can bind to the pathogen in

a lock-and-key system manner. Once a B-cell is bound to the virus particle, a process

known as endocytosis starts. In this process, the virus is broken into pieces and part

of it is presented in association with the so-called major histocompability complex

type II (MHC II), which is a molecule on the surface of the B-cell [8, 20, 26].

T-helper cells or CD4 cells are another type of T-cells that play an important role

in the activation of B-cells. If CD4 cells can bind the presented part of the virus on

the surface of the B-cell, a release of molecules will occur and the activation of the

B-cell will be complete [20].

Once B-cells are activated they start to divide into memory and effector cells.

This production of new B-cells are replications with the same specific receptor that

can recognize HCV. The memory B-cells will take no action but stay in the system

in case this pathogen enters the host in the future [20, 26]. The effector B-cells, also

called plasma cells, are responsible in the release of new antibodies. These antibodies

then bind to the virus particles and tag them as foreign pathogens for elimination by

a macrophage [20].
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T cells can be grouped into two types of cells: T helper cells or CD4 and cytotoxic

T lymphocytes (CTL) or CD8. The acronyms CD4 and CD8 refer to some proteins

on the surface of these cells [20, 26]. As we mentioned above, T helper cells play

an important role in the activation of the B-cells and therefore in the release of

antibodies. The CTL have the ability to take lytic action against infected cells by

killing them. These cells can recognize and eliminate infected cells. Once a cell has

been infected it becomes a factory of production of new virus. The viral proteins

inside the infected cell are presented on the surface in combination with the major

histocompability complex type I (MHC I), which is presented essentially in every cell

of the human body. If a specific CTL with the correct T-cell receptor can recognize

this presented portions on the surface of the infected cells then it will bind to the

cell. The CD8 cell will become activated and start to produce chemicals that kill the

target cell [20]. After activation, the CTL will proliferate into effector and memory

cells, much like in the B-cell activation process. The effector cells will have the same

functions as the parent cell: to destroy infected cells while the memory cells will

stay in the host in case of a future infection. A schematic illustration of the types

of immune responses can be found in Figure 1. A summarized explanation of the

dynamics of the immune system is shown in Figure 2.
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Figure 1: Schematic illustration of the two types of immune responses: the innate and

the adaptive responses. The most important compartment of the adaptive responses

are the lymphocytes that can be grouped into B-cells and T-Cells.
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Figure 2: Schematic illustration of the adaptive and innate responses. The adaptive

responses can be grouped into B-cells and T-cells. The B-cells secrete antibodies that

neutralize free virus particles. The cytotoxic T lymphocytes (CTLs or CD8) eliminate

infected cells. The CD4 T helper cells ensure that CTLs and B-cells develop efficiently.

Phagocytes are cells in charge of eliminating virus particles that have been bound by

antibodies.
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The interactions between immune responses and pathogens can be considered a

predator-prey system. The virus is the prey and the immune cells like the B-cells

and T-cells are the predators. In the absence of the pathogen, the immune cells

die. The predator species that is most efficient at capturing the prey can reduce the

food resource to levels which are too low for other predator species to survive. This

can result in competitive exclusion where only one predator species remains [27]. If

antibodies are more efficient at fighting a virus, they can reduce virus load to levels

that are too low to stimulate the CTLs. This outcome is going to be called a dominant

antibody response. Likewise, if CTLs are more efficient in killing the pathogen, they

can reduce the virus load to levels that are too low to stimulate the antibodies. This

outcome is called a dominant CTL response. In addition to these exclusion outcomes,

there is also a coexistence outcome. Even if the CTLs are very efficient in reducing the

number of infected cells, the number of viruses could be sufficiently large to stimulate

the antibody response. More details about immunity can be found in [20, 26].
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2 MATHEMATICAL MODEL

In literature, several models have been used to describe HCV dynamics [19, 6, 25].

The following model, proposed by Wodarz [25], describes the competition dynamics

between CTL and antibodies as responses to a viral infection. In particular, this

model can be used to study the interaction between HCV and immune responses in

a host. We denote the number of uninfected hepatocytes (cells of the liver), at time

t, by T (t), infected hepatocytes by I(t), the viral load by V (t), the number of CTLs

by Z(t), and the number of antibodies by W (t). The system of differential equations

that describes the change of these populations over time is:

dT

dt
= s− dT − βV T (1)

dI

dt
= βV T − aI − pIZ (2)

dV

dt
= kI − µV − qV W (3)

dZ

dt
= cIZ − bZ (4)

dW

dt
= gV W − hW (5)

This model assumes uninfected host cells (healthy hepatocytes) are produced at

a rate s, undergo natural decay at a rate dT and become infected by the interaction

with virus at a rate βTV . Infected cells die at a rate aI and are killed by the CTL

response at a rate pIZ. Free virus is produced by infected cells at a rate kI, decays at

a rate µV and is neutralized by antibodies at a rate qV W . CTL expand in response

to viral antigen derived from infected cells at a rate cIZ and decay in the absence of

antigenic stimulation at a rate bZ. Antibodies develop in response to free virus at a

rate gV W and decay at a rate hW .
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2.1 Qualitative Scenarios

Definition 2.1 The basic reproductive number of the virus R0 is defined as the av-

erage number of newly infected cells produced by a single infected cell at the beginning

of the infection.

It is a well known result that R0 = 1 is a dynamic threshold [20, 26]. In other

words, R0 can be used as a metric to determine whether or not an infectious disease

will spread through a population. In fact, if R0 > 1 the infection becomes established

and if R0 < 1 the virus will not spread [26, 20].

The system given by equations (1)-(5) has the basic reproductive number:

R0 =
sβk

daµ

A stability analysis of the model, as well as properties of the solutions such as

positivity, boundedness, non periodicity, and limiting behavior can be found in [29].

The system of equations (1)-(5) supports five equilibrium points or steady states. The

stability of these points is determined by conditions on the parameters of the system

[29]. These equilibria are considered as qualitative scenarios that can be observed in

a typical host.
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The first equilibrium point, also called disease free equilibrium, is globally asymp-

totically stable if R0 < 1 [29]. This scenario represents the absence of virus and

immune responses. The equilibrium point is given by the expression:(
T

(1)
, I

(1)
, V

(1)
, Z

(1)
,W

(1)
)

=
(s
d
, 0, 0, 0, 0

)

Figure 3: A disease free equilibrium point is observed if R0 ≤ 1. Parameter values were

chosen as follows: s = 1.0× 105, d = 1.0× 10−1, β = 0, a = 1.0× 10−2, p = 1.0× 10−2, k =

0, µ = 1.0 × 10−2, q = 1.0 × 10−2, g = 0, c = 0, h = 1.0 × 10−2, b = 1.0 × 10−2. Initial

conditions: T (0) = 1.0× 104, I(0) = 2.0× 100, V (0) = 3.0× 100, Z(0) = 1.0× 100,W (0) =

1.5× 100. According to the values of the parameters, R0 = 0.

In Figure 3, parameters have been chosen properly to give an illustration of this

first scenario. The proliferation of uninfected cells reaches its equilibrium value at
s

d

while the other four populations converge to zero. In this numerical illustration T (t)

converges to
s

d
= 106.
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Under the assumption that R0 > 1 and that there is not an immune response, the

system converges to the equilibrium point given by:

(
T

(2)
, I

(2)
, V

(2)
, Z

(2)
,W

(2)
)

=

(
s

d

1

R0

,
µ

k

d

β
(R0 − 1) ,

d

β
(R0 − 1) , 0, 0

)
This equilibrium is globally asymptotically stable [29, 26] if

gkb

µc
< h and

cβhs

a(dg + βh)
< b

Figure 4: An endemic equilibrium where there is not an immune response is observed.

Parameter values were chosen as follows: s = 1.0× 105; d = 1.0× 10−1, β = 2.0× 10−7, a =

5.0 × 10−1, p = 6.4 × 10−4, k = 1.0 × 102, µ = 5.0 × 100, q = 5 × 10−1, g = 0, c = 0, h =

1 × 10−2, b = 2 × 10−2. Initial conditions: T (0) = 1.0 × 105, I(0) = 1.0 × 102, V (0) =

1.0 × 103, Z(0) = 2.0 × 100,W (0) = 1.0 × 100. According to the values of the parameters,

R0 > 1.
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In Figure 4, parameters have been chosen properly to give an illustration of this

scenario. The proliferation of uninfected cells, the number of viruses, and infected

cells reach their equilibrium values while the immune responses converge to zero.

The first two scenarios are mentioned for completeness. However, the focus in

this thesis is on the three scenarios in which R0 > 1 and there are immune responses.

These three scenarios are the following: dominant CTL response, dominant antibody

response, and coexistence (both CTL and antibody response are activated).

2.1.1 Dominant CTL Response

The third equilibrium observed is called dominant CTL response. A strong pro-

liferation of CTLs combined with a weak antibody production leads to an eventual

extinction of this response.

This scenario is described by the following equilibrium:

(
T

(3)
, I

(3)
, V

(3)
, Z

(3)
,W

(3)
)

=

(
sµc

dµc+ βkb
,
b

c
,
kI

(3)

µ
,
βT

(3)
V

(3) − aI(3)

pI
(3)

, 0

)

Notice that here we have that T
(3)

=
sµc

dµc+ βkb
, I

(3)
=
b

c
, and V

(3)
=
kb

µc
.

This equilibrium is globally asymptotically stable [29, 26] if

gkb

µc
< h and

cβhs

a(dg + βh)
> b

In Figure 5, values of parameters were chosen to illustrate this scenario where the

infection has become established. Large values of the viral load and infected cells

were chosen for the initial conditions to indicate the case of a chronic infection. See

caption of Figure 5 for details on the values of parameters and initial conditions. The
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Figure 5: Numerical solutions for equations (1)-(5) for the dominant CTL response scenario

with R0 > 1 where the third equilibrium is stable. An endemic equilibrium is observed.

Parameter values were chosen as follows: s = 2.0× 105, d = 1.0× 10−1, β = 2.0× 10−7, a =

5.0× 10−1, p = 6.4× 10−4, k = 2.0× 101, µ = 8.0× 100, q = 5.0× 10−1, g = 1.0× 10−11, c =

3.0 × 10−7, h = 1.0 × 10−1, b = 5.0 × 10−2. Initial conditions: T (0) = 1.0 × 106, I(0) =

1.6× 105, V (0) = 4.1× 105, Z(0) = 7.1× 101,W (0) = 5.0× 100.

virus persists in the presence of a dominant CTL response leading system going to

an endemic equilibrium.

Because parameter c is the proliferation rate of CTLs, for larger values of this

parameter, damped oscillations will be observed at the beginning of the simulation.

Infection will not become totally extinct, but a considerable reduction of the viral

load and infected cells will be observed.
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2.1.2 Dominant Antibody Response

The fourth equilibrium that is observed is called dominant antibody response.

The proliferation rate of antibody is assumed to be much stronger than the natural

production rate of CTLs. For this reason, the antibody response develops and the

CTL response is unsuccessful.

This scenario is described by the following equilibrium:

(
T

(4)
, I

(4)
, V

(4)
, Z

(4)
,W

(4)
)

=

(
sg

dg + βh
,

βhs

a(dg + βh)
,
h

g
, 0,

kI
(4) − µV (4)

qV
(4)

)

Notice that here we have that T
(4)

=
sg

dg + βh
, I

(4)
=

βhs

a(dg + βh)
, and V

(4)
=

h

g
.

This equilibrium is globally asymptotically stable [29, 26] if

gkb

µc
> h and

cβhs

a(dg + βh)
< b

In Figure 6, parameters were chosen to give an illustration of this scenario. Large

values of the viral load and infected cells were chosen for the initial conditions to

indicate the case of a chronic infection. The virus persists in the presence of a domi-

nant antibody response leading to an endemic equilibrium. Damped oscillations are

observed at the beginning of the simulation indicating that the antibody response is

unsuccessful in reducing the viral load.

26



Figure 6: Numerical solutions for equations (1)-(5) for the dominant antibody response

scenario with R0 > 1 where the fourth equilibrium is stable. An endemic equilibrium is

observed. Parameter values were chosen as follows: s = 1.0 × 105, d = 5.0 × 10−2, β =

8.0 × 10−7, a = 1.8, p = 6.4 × 10−4, k = 8.0 × 100, µ = 1.5 × 100, q = 5.0 × 10−4, g =

8.0 × 10−8, c = 6.0 × 10−6, h = 1.0 × 10−2, b = 1.0 × 10−1. Initial conditions: T (0) =

1.0× 106, I(0) = 1.0× 105, V (0) = 1.0× 105, Z(0) = 5.0× 100,W (0) = 1.0× 101.
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2.1.3 Coexistence

The fifth and last equilibrium that is observed is called coexistence because both

CTL and antibody responses are equally established. These two immune responses

compete against each other with the same objective: eradication of the infection.

This scenario is described by the following equilibrium:

(
T

(5)
, I

(5)
, V

(5)
, Z

(5)
,W

(5)
)

=

(
sg

dg + βh
,
b

c
,
h

g
,
βT

(5)
V

(5) − aI(5)

pI
(5)

,
kI

(5) − µV (5)

qV
(5)

)

Notice that here we have that T
(5)

=
sg

dg + βh
, I

(5)
=

b

c
, and V

(5)
=

h

g
. This

equilibrium is globally asymptotically stable [29, 26] if

gkb

µc
> h and

cβhs

a(dg + βh)
> b

In Figure 7, parameters are chosen so as illustrate this scenario were the infection

has become established. Large values of the viral load and infected cells were chosen

for the initial conditions to indicate the case of a chronic infection. Even though the

viral load was brought to lower levels in comparison to the two previous scenarios,

infection still persists in the presence of antibody and CTL responses. In other words,

V (t) and I(t) do not tend to zero as t grows.

28



Figure 7: Numerical solutions for equations (1)-(5) for the coexistence scenario with R0 > 1

where fifth equilibrium is stable. An endemic equilibrium is observed. Parameter values

were chosen as follows: s = 2.0 × 105, d = 1.0 × 10−1, β = 4.0 × 10−5, a = 9.9 × 10−1, p =

6.4 × 10−4, k = 5.0 × 102, µ = 2.9 × 100, q = 2.0 × 100, g = 1.0 × 10−5, c = 4.4 × 10−7, h =

2.0×10−1, b = 4.0×10−2. With initial conditions: T (0) = 2.2×105, I(0) = 1.0×105, V (0) =

1.9× 104, Z(0) = 7.0× 102,W (0) = 7.0× 102.
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3 SENSITIVITY ANALYSIS PART I

3.1 Introduction

Consider the system of differential equations given by

dx

dt
= f(t,x(t,θ),θ) (6)

where x(t,θ) ∈ Rn denotes the state variable vector at time t and θ ∈ Rp is the

parameter vector. It is of our interest to determine which of these parameters are

more important in the behavior of a particular state variable.

Definition 3.1 We define φ(t) =
∂x(t)

∂θ
to be the sensitivity matrix of x(t). This

matrix measures the sensitivity of the solution of (6) with respect to changes in the

parameters θk for k = 1, · · · , p.

By the chain rule for several variables and by assuming smoothness we have that

d

dt
φ(t) =

d

dt

(
∂x

∂θ

)
=

∂

∂θ

(
dx

dt

)
=

∂

∂θ
(f(t,x(t),θ)) =

∂f

∂θ
+
∂f

∂x
· ∂x
∂θ

To compute the sensitivities of (6) we solve what is called the system of sensitivity

equations given by:

dx

dt
= f(t,x(t,θ),θ) (7)

d

dt

∂x

∂θ
=

∂f

∂θ
+
∂f

∂x
· ∂x
∂θ

(8)
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Traditional sensitivity analysis is the quantification of the effect that changes in

parameters have on model solutions. Assume x(t) is a state variable of the model

given in (6). We can now define the traditional sensitivity function for x(t) [1].

Definition 3.2 The traditional sensitivity function for the solution model x(t) with

respect to θk is defined by
∂x

∂θk
(t) where k = 1, · · · , p.

Because parameters can have different units and state variables can be of different

orders of magnitude, we define the relative sensitivities of the state variable x(t) with

respect to the parameter θk as the product

θk
x(t)

∂x(t)

∂θk
(9)

Once the system of sensitivity equations (7)-(8) is solved, we can determine how

a specific state variable changes with respect to a given parameter θk. For instance,

if
∂x

∂θk
= 0 then the parameter θk has no influence in the behavior of the variable

x(t). If
∂x

∂θk
> 0 then the parameter θk has a positive influence in the behavior of

x(t). That is, for lager values of θk, x(t) will increase. Similarly, if
∂x

∂θk
< 0 then the

parameter θk has a negative impact in the behavior of x(t). That is, for larger values

of θk, x(t) will decrease.

In order to illustrate this concept we will find the sensitivities for some basic

examples. In our first two examples there is no need to compute the sensitivity

equations since the solutions of the models can be found analytically by standard

methods.
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Example 1 Consider the exponential growth model given by the initial value prob-

lem

dx

dt
= rx (10)

x(0) = x0 (11)

We know this model has solution x(t) = x0e
rt.

Since this model has only one parameter, the traditional sensitivity and the relative

sensitivity are given respectively by:

∂x

∂r
= x0te

rt and
r

x(t)

∂x

∂r
= rt

Notice that

r

x(t)

∂x

∂r
> 0 if r > 0 and

r

x(t)

∂x

∂r
< 0 if r < 0

Figure 8 shows the relative sensitivities of the model. If r > 0, then
r

x(t)

∂x

∂r
is a

monotonically increasing and positive function. In other words, the state function x(t)

increases as r grows. Similarly, if r < 0 then
r

x(t)

∂x

∂r
is a monotonically decreasing

and negative function. Which implies that the solution x(t) decreases as r grows. In

Figure 9 we have a numerical solutions for the model given by equations (10)-(11)

taking different values of r. In this figure, we can see that for positive values of r, as

this parameter grows x(t) will grow as well. For negative values of r, as this parameter

grows, the state variable x(t) decays faster.
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Figure 8: Relative sensitivities for the model given in Example 1

Figure 9: Numerical solutions of Example 1 with positive and negative values of r
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Example 2 Consider the initial value problem:

dx

dt
= a− bx

x(0) = x0

The vector of parameters is θ = (a, b).

For this example, the solutions of the sensitivities can be computed analytically. In

fact:

x(t) =
a

b
+
(
x0 −

a

b

)
e−bt

Then the traditional sensitivities are

∂x

∂a
=

1

b

(
1− e−bt

)
∂x

∂b
= − a

b2

(
1− e−bt

)
+
(a
b
− x0

)
te−bt

The relative sensitivities are:
a

x(t)

∂x

∂a
and

b

x(t)

∂x

∂b
.

Notice that

lim
t→+∞

a

x

∂x

∂a
=

1

b2
> 0, and lim

t→+∞

b

x

∂x

∂b
= −a

2

b4
< 0

This is, the relative sensitivity of x(t) with respect to a is always positive, which

implies that the parameter a has a positive influence in the behavior of x(t). In other

words, for larger values of a the function x(t) will increase. Likewise, the relative

sensitivity of x(t) with respect to b is always negative, which implies that for larger

values of b the function x(t) will decrease. The numerical solutions of the sensitivities

are given in Figure 10 and an illustration of the behavior of x(t) with respect to the

parameters a and b is given in Figure 11.
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Figure 10: Relative Sensitivities for the initial value problem in Example 2. Parameters

and initial condition were chosen as follows: a = 1, b = 1, and x(0) = 0.1.

Figure 11: (A) Numerical solution for x(t) fixing a and letting b vary. (B) Numerical

solution for x(t) fixing b and letting a vary. If we fix the value of a and we increase

parameter b we can see how function x(t) will reach smaller values. On the other hand, by

fixing parameter b and letting a increase, x(t) will reach larger values.
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Example 3 Consider the SIR model:

ds

dt
= −βsi (12)

di

dt
= βsi− γi (13)

1 = s(0) + i(0) (14)

Unlike Examples 1 and 2, the sensitivities for this model have to be calculated nu-

merically because an analytic solution does not exist. The sensitivities are found by

solving the following system:

dx

dt
= f(t,x(t,θ),θ)

d

dt

∂x

∂θ
=

∂f

∂θ
+
∂f

∂t
· ∂x
∂θ

where θ = (β, γ) is the vector of parameters.

Figure 12 exhibits the numerical solution of the model given by equations (12)-

(14). The population represented by s(t) decays from its initial condition to attain

its non-zero equilibrium point. On the other hand, the population represented by i(t)

shows a bell shaped curve having a maximum point nearly at t = 6.5 and eventually

going extinct.
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Figure 12: Numerical Solutions for the SIR model. Parameters and initial conditions

were chosen as follows: β = 2, γ = 1, s(0) = 0.998, and i(0) = 0.0013.

According to Figure 13, the larger the values of γ the smaller the values i(t)

attains. Similarly, the larger the values of β, the larger the values of i(t). This

is totally intuitive since β is the rate of production of i(t) and γ is the clearance

rate. Nevertheless, Figure 14 tells us that this behavior is not always like that.

Even though at the beginning of the simulation the sensitivities of β are positive and

the sensitivities of γ are negative, the role of these parameters changes. For values

of t > 7.2, the sensitivity of β becomes negative and the sensitivity of γ becomes

positive for values of t > 9. This means that for t ∈ (7.2,∞), if we increase β then

i(t) will reach smaller values. Additionally, for t ∈ (9,∞), if we increase γ then i(t)

will attain larger values.
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Figure 13: Numerical Solutions of i(t) fixing β and γ show the effect of increasing

one parameter at a time. Initial conditions were chosen as follows: s(0) = 0.998, and

i(0) = 0.0013. The parameter values are displayed in the legend of the figure.

Figure 14: Relative sensitivities for i(t) versus time t show how the role of the pa-

rameters β and γ eventually switches. Parameters and initial conditions were chosen

as follows: β = 2, γ = 1, s(0) = 0.998, and i(0) = 0.0013.
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We are interested in calculating the relative sensitivities to the model given in

equations (1)-(5). This model can be written as

dx

dt
= f(t,x(t),θ) (15)

where x(t) = [T (t), I(t), V (t), Z(t),W (t)] , θ = (s, d, β, a, p, k, µ, q, c, b, g, h) is the

vector of the twelve parameters of the system, and f(t,x(t),θ) is the right hand side

of the system of equations.

In particular, we are interested in distinguishing what parameters play an impor-

tant role in the increasing or decreasing behavior of the viral load V (t). In order to

find the sensitivity matrix φ(t) =
∂x

∂θ
, which is a 5 × 12 matrix, numerical solutions

of corresponding sensitivity equations were computed. The third row of this matrix

is given by
∂V (t)

∂θ
, the change in V (t) with respect the parameters θ. Each entry will

tell us information of how V (t) changes with respect to each parameter. We use the

same values of parameters and initial conditions that we used in Section 2 to find the

numerical solutions of the system of sensitivity equations (7)-(8) for each scenario:

dominant CTL response, dominant antibody response, and coexistence.
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3.2 Relative Sensitivities: Dominant CTL Response

Using the values of parameters and initial conditions used in Section 2.1.1, nu-

merical simulations of the relative sensitivities were computed for a transient and

long-term phases for the dominant CTL response scenario.

Figure 15: Numerical solutions of the relative sensitivities θk
V
∂V
∂θk

for the dominant

CTL response scenario in a transient phase from 0 to 20

Figure 15 exhibits the transient phase where the parameters with more impact in

the behavior of V (t) are k and µ. This is because the relative sensitivities,
k

V (t)

∂V (t)

∂k

and
µ

V (t)

∂V (t)

∂µ
, have the most positive and negative values, respectively. This is not

surprising since k is the rate of proliferation and µ is the rate of natural decay of the

viral load.
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As seen in Figure 15, other parameters such as, β, a, s, and d also play an important

role in the behavior of V (t). In fact, if parameters β and s increase during this time

window of [0, 20] we would expect that the viral load will reach larger values. On the

other hand, parameters a and d have a negative influence in the behavior of V (t).

This is, if the rates of natural decay of uninfected and infected cells increase over

this period of time, then the number of viruses decreases. Once again this makes

total sense because the virus depends on these cells to get reproduced. A summary of

the parameters with more influence in the behavior of the viral load in the transient

phase can be found in Table 1.

Table 1: Ranking of the most influential parameters for dominant CTL response

in the transient phase. Increasing parameters k, β, and s will increase V (t) during

this phase. Similarly, increasing the values of parameters µ, a, and d will produce a

reduction in the number of viruses.

Positive Negative
k µ

Parameter β a
s d
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In the long-term phase shown in Figure 16, the parameters k and µ still are the

most influential parameters because their sensitivities are again the most positive and

negative functions. However, now these parameters are also joined by c and b, the

proliferation and natural decay rates of the CTL, respectively. It was not surprising

that these two parameters eventually would be responsible for the behavior of V (t)

since we are in the dominant CTL response scenario. It is also important to notice

that parameters β, a, s, and d that were important in the transient phase eventually

will become irrelevant. A summary of the most important parameters in the behavior

of V (t) in the long-term phase is given in Table 2.

Figure 16: Numerical solutions of the relative sensitivities θk
V
∂V
∂θk

for the dominant

CTL response scenario in a long-term phase from 0 to 500
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Table 2: Ranking of the most influential parameters for the dominant CTL response

in the long-term phase. Increasing parameters k and b will increase V (t) during this

phase. Similarly, increasing the values of parameters µ and c will produce a reduction

in the number of viruses.

Positive Negative
k µ

Parameter b c
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3.3 Relative Sensitivities: Dominant Antibody Response

Numerical simulations of the sensitivities for the dominant antibody response

scenario were computed using the same values of the parameters used in Section 2.1.2.

These numerical simulations were calculated in transient and long-term phases.

Figure 17: Numerical solutions of the relative sensitivities θk
V
∂V
∂θk

for the dominant

antibody response scenario in a transient phase from 0 to 40

For the transient phase with t ∈ [0, 40], which is shown in Figure 17, the pa-

rameters that are most influential in the behavior of the virus load are µ, k, s, a, and

β because their sensitivities reach the most positive and negative values among all

the other sensitivities. However, because of the presence of an oscillatory behavior

on these sensitivities there are periods of time where their influence is stronger. A

summary of the most influential parameters in the behavior of the viral load is shown

in Table 3.
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Table 3: Ranking of parameters that are most influential for dominant antibody

response in the transient phase. Increasing parameters k, s and β will increase V (t)

during this phase. Similarly, increasing the values of parameters µ and a will produce

a reduction in the number of viruses.

Positive Negative
k µ

Parameter s a
β

A most interesting behavior is found in the long-term phase shown in Fig 18.

The oscillations that were observed in the transient phase continued until t = 70.

After this point, the sensitivities of s and k are clearly the most positive functions

and the sensitivities of µ and a are the most negative functions. However, at t = 450

something even more interesting and counterintuitive happened: the role of these four

parameters switch and two new parameters that so far were almost irrelevant become

the most influential. These new parameters are g and h: the rates of proliferation

and natural decay of the antibody response, respectively. Finally, for values of t >

1400 only these two parameters are in charge in the behavior of V (t). The other

parameters s, k, µ, and a eventually become irrelevant. A summary of the most

influential parameters in the long-term phase is shown in Table 4.
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Figure 18: Relative sensitivities θk
V
∂V
∂θk

for the dominant antibody response scenario

in a long-term phase from 0 to 2000

Table 4: Ranking of parameters for the relative sensitivities in the dominant antibody

response scenario in a long-term phase. Increasing parameter h will increase V (t)

during this phase. Similarly, increasing the value of parameter g will produce a

reduction in the number of viruses.

Positive Negative
Parameter h g
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3.4 Relative Sensitivities: Coexistence

Numerical solutions of the sensitivities for the coexistence scenario were calculated

using the same values of the parameters taken in Section 2.1.3. These solutions were

computed for transient and long-term phases.

Figure 19: Numerical solutions of the relative sensitivities θk
V
∂V
∂θk

for the coexistence

scenario in a transient phase from 0 to 20

It is reasonable to think that, in this scenario, V (t) will be mostly affected by the

values of parameters k, µ, c, b, h, and g since these parameters are proliferation and

natural decay rates of virus, CTL, and antibodies, respectively. However, as shown

in Figure 19, at the beginning of the simulation, from t = 0 to t = 2, V (t) looks to be

affected by the values of parameters k and q. After this point, for a short period of

time with t ∈ (1.8, 5) the sensitivities of s and g are the most positive and the most

negative, respectively. However, a unexpected outcome was obtained, in the transient

phase for t > 5 and in the long-term phase, shown in Figure 20, the viral load V (t) is
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affected only by the parameters g and h. In other words, in the coexistence scenario

the behavior of the viral load is affected only by the levels of production and reduction

of antibodies. A summary of the most influential parameters in the transient phase

and in the long-term phase is shown in Tables 5 and 6, respectively.

Table 5: Ranking of the most influential parameters of V (t) for the coexistence sce-

nario in a transient phase. Increasing parameters h, s, and k will increase V (t) during

this phase. Similarly, increasing the value of parameters g and q will produce a

reduction in the number of viruses.

Positive Negative
h g

Parameter s q
k

Figure 20: Relative sensitivities θk
V
∂V
∂θk

for the coexistence scenario in a long-term

phase from 0 to 150
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Table 6: Ranking of the most influential parameters of V (t) for the coexistence sce-

nario in a long-term phase. Increasing parameter h will increase V (t) during this

phase. Similarly, increasing the value of parameter g will produce a reduction in the

number of viruses.

Positive Negative
Parameter h g
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4 TREATMENT AS AN OPTIMAL CONTROL PROBLEM

4.1 Introduction

For several years antivirals such as interferon (IFN), pegylated-interferon (PEG-

INF) and ribavirin (RVB) have been used to reduce the levels of HCV RNA. In fact,

in approximately 50% of HCV treated patients with combinations of PEG-INF/RVB,

the virus is not eradicated [6, 14]. More recently treatments are focused on direct-

acting antiviral agents (DAAs) that target specific steps of the HCV life cycle [24].

Nevertheless, the use of these treatments is always restricted by their side effects.

In this section, we want to determine a best treatment strategy of a combination

of two antiviral medicines that reduces the infection and that minimizes the “cost”

effect to the body. We want to determine optimal treatment schedules for each of the

three scenarios discussed in the previous chapters.

The idea is to extend the system given by equations (1)− (5), with two piecewise

continuous functions u1(t) and u2(t) that describe a treatment strategy of a combina-

tion of two drugs over a certain fixed time horizon [0, tf ]. A best treatment strategy

has not only to consider the time where the medicines have to be administered but

also the side effects of the treatment to the human body. To approach the problem of

determining a best treatment strategy, we solve an optimal control problem. In this

thesis we provide definitions and concepts to our particular control problems. The

interested reader can find more general details in optimal control theory applied to

biological models in [18].
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Consider the extension of the equations (1)-(5) given by the system of differential

equations

dT

dt
= s− dT − (1− u1)βV T (16)

dI

dt
= (1− u1)βV T − aI − pIZ (17)

dV

dt
= (1− u2)kI − µV − qV W (18)

dZ

dt
= cIZ − bZ (19)

dW

dt
= gV W − hW (20)

where ui(t) = 1 represents maximal use of therapy and ui(t) = 0 corresponds to

minimal use of therapy, for i = 1, 2.

We rewrite the system of equations (16)− (20) as

dx

dt
= f(t,x(t), u1(t), u2(t)) (21)

where

x(t) = [T (t), I(t), V (t), Z(t),W (t)]

We define the set of admissible controls by

U = {(u1, u2) | u1, u2 measurable, 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, t ∈ [0, tf ]} .
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In this context, an optimal controls problem consists on finding piecewise continu-

ous functions u1(t) and u2(t), called control functions in U , and the associated states

variables x(t) that minimize a given objective functional of the form

J(u1(t), u2(t)) =

∫ tf

0

G(t,x(t), u1(t), u2(t))dt

In other words, we are interested in solving the optimal control problem

min
u1,u2∈U

∫ tf

0

G(t,x(t), u1(t), u2(t))dt

subject to
dx

dt
= f(t,x(t), u1(t), u2(t))

x(t0) = x0

The main technique for such optimal control problems consists of solving a set of

necessary conditions that an optimal control pair and corresponding state variables

must satisfy. The necessary conditions we derive were developed by Pontryagin et al.

[22].

Before giving the necessary conditions we need to give the following definition:

Definition 4.1 The Hamiltonian H is defined by

H(t,x(t), u1(t), u2(t)) = G(t,x(t), u1(t), u2(t)) + λ(t) · f(t,x(t), u1(t), u2(t))

where λ(t) = [λ1(t), · · · , λ5(t)] is a piecewise differentiable vector-valued function,

and each λi is called the adjoint variable corresponding to xi.

We propose three different control problems to determine an optimal treatment for

each scenario: dominant CTL response, dominant antibody response and coexistence.
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In other words, we define three different objective functionals for each scenario. To

find the solution to each problem we need to solve a set of necessary conditions, that

in general, are given in the next subsection but that will be studied in detail for each

scenario.

4.2 Necessary Conditions

The following theorem is an extension of Pontryagin’s Maximum Principle (Pon-

tryagin et al. [22]) given in Lenhart and Workman [18].

Theorem 4.2 Given the optimal control pair (u∗1(t), u∗2(t)) and solutions x∗(t) of the

state system given by equations (16)-(20), there exists λ(t), a piecewise differentiable

vector-valued function, satisfying

H(t,x∗, u1(t), u2(t),λ(t)) ≥ H(t,x∗, u∗1(t), u∗2(t),λ(t))

for all u1(t), u2(t) ∈ U at each time t, where

dλj(t)

dt
= −∂H

xj
(Adjoint Equations)

and λj(tf ) = 0 for j = 1, · · · , 5 usually called the transversality conditions. The

optimality conditions are given by

0 =
∂H

∂uk
at u∗k for k = 1, 2 (Optimality Condition)

To solve the set of necessary conditions given in Theorem 4.2 we applied a forward-

backward sweep method. A much more detailed version of this method can be found

in [18].
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4.3 Forward-Backward Sweep Method

The optimality system given in Theorem 4.2 is solved numerically using a forward-

backward sweep method [18]. The following is an outline of the algorithm:

1. Make an initial guess for u over the interval.

2. Using the initial condition x = x(t0), and the values for u, solve x forward in

time according to its differential equation in the optimality system.

3. Using the transversality condition and the values for u and x, solve λ backward

in time according to its differential equation in the optimality system.

4. Update u by entering the new x and λ values into the characterization of the

optimal control.

5. Check for convergence. If values of the variables in this iteration and the last

iteration are negligibly close, output the current values as solutions. If values

are not close, return to step 2.

To the best of our knowledge, Chakrabarty and Joshi [4] were the first ones in

approaching the problem of finding an optimal combination treatment strategy using

optimal control theory. However, in their model they did not consider immune re-

sponses. Similar problems for optimizing chemotherapy in HIV models can be found

in [15, 4, 17]. Our aim is to determine an optimal treatment strategy for the three

scenarios seen in Section 2: dominant CTL response, dominant antibody response,

and coexistence.
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4.4 Optimal Treatment Strategy for the Dominant CTL Response Scenario

Under the assumption that the CTL response is much stronger than the antibody

response, we seek to minimize the number of infected cells I(t) and the “cost” based

on the effect of the treatment to the human body. For this reason, the objective

functional to be minimized is

J(u1, u2) =

∫ tf

0

(
A1I(t) +

1

2

(
A2u

2
1(t) + A3u

2
2(t)
))

dt

subject to the system

dT

dt
= s− dT − (1− u1)βV T

dI

dt
= (1− u1)βV T − aI − pIZ

dV

dt
= (1− u2)kI − µV − qV W

dZ

dt
= cIZ − bZ

dW

dt
= gV W − hW

The positive parameters A1, A2, and A3 balance the size terms. With higher

cost parameters A2 and A3, the system has controls where maximum treatment is

continued for a shorter period of time. In other words, with large values of these

parameters the cost effect of treatment is virtually not important. The severity of

therapy in the human body is described by the terms u2
1 and u2

2. The reason behind

considering a finite time window is that the administration of treatment is usually

restricted to a limited time period.

Necessary conditions are derived by using the extension of Potryagin’s Maximum

Principle [22] given in Theorem 4.2.
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Theorem 4.3 Given the optimal control pair (u∗1(t), u∗2(t)) and solutions T ∗, I∗, V ∗, Z∗,W ∗

of the state system, there exists adjoint variables λ1, λ2, λ3, λ4, λ5 satisfying:

λ′1 = λ1 (d+ (1− u1)βV )− λ2(1− u1)βV

λ′2 = −A1 + λ2(a+ pZ)− λ3k(1− u2)− λ4cZ

λ′3 = λ1(1− u1)βT − λ2(1− u1)βT + λ3(µ+ qW )− λ5gW

λ′4 = λ2pI + λ4(b− cI)

λ′5 = λ3qV + λ5(h− gV )

with λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = 0, which are the transversality

conditions. Furthermore, the controls are characterized by

u∗1 = min

{
1,max

{
0,

(λ2 − λ1)βV ∗T ∗

A2

}}
u∗2 = min

{
1,max

{
0,
λ3kI

∗

A3

}}
Proof:

The Hamiltonian is defined as follows:

H(t,x(t), u1(t), u2(t),λ(t)) = A1I +
1

2

(
A2u

2
1(t) + A3u

2
2(t)
)

+λ1(s− dT − (1− u1(t))βV T )

+λ2((1− u1(t))βV T − aI − pIZ)

+λ3((1− u2(t))kI − µV − VW )

+λ4(cIZ − bZ)

+λ5(gV W − hW )
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We obtain the adjoint equations:

λ′1 = −∂H
∂T

= λ1 (d+ (1− u1)βV )− λ2(1− u1)βV

λ′2 = −∂H
∂I

= −A1 + λ2(a+ pZ)− λ3k(1− u2)− λ4cZ

λ′3 = −∂H
∂V

= λ1(1− u1)βT − λ2(1− u1)βT + λ3(µ+ qW )− λ5gW

λ′4 = −∂H
∂Z

= λ2pI + λ4(b− cI)

λ′5 = − ∂H
∂W

= λ3qV + λ5(h− gV )

with λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = 0. In order to obtain the optimality

condition, we maximize the Hamiltonian with respect to u1 and u2 at the optimal u∗1

and u∗2, respectively.

This is,
∂H

∂ui
= 0 at u∗i for i = 1, 2.

Therefore,

u∗1 =
(λ2 − λ1)βV ∗T ∗

A2

and u∗2 =
λ3kI∗

A3

By standard routines of optimal control problems with bounded controls [4, 9, 15, 17,

18] the characterizations of the optimal controls are given by:

u∗1 = min

{
1,max

{
0,

(λ2 − λ1)βV ∗T ∗

A2

}}
u∗2 = min

{
1,max

{
0,
λ3kI

∗

A3

}}
�

The forward-backward-sweep method was used to find the numerical solutions of

the optimal control problem in the time window [0, tf ] with tf = 50. These solutions

are given in Figure 21.
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Figure 21: Numerical solutions and best treatment strategies. (A) shows the numer-

ical solutions of the system with no treatment. (B) shows the effect of one session of

treatment.(C) and (D) show the best treatment strategy. Parameters were chosen as

follows: s = 2.0×105, d = 1.0×10−1, β = 2.0×10−7, a = 5.0×10−1, p = 6.4×10−4, k =

2.0 × 101, µ = 8.0 × 100, q = 5.0 × 10−1, g = 1.0 × 10−11, c = 3.0 × 10−7, h = 1.0 ×

101−, b = 5.0× 10−2, A1 = 1.0× 100, A2 = 5.0× 10−3, A3 = 1.0× 10−2, tf = 5.0× 101.

Initial conditions: T (0) = 1.0 × 106, I(0) = 1.6 × 105, V (0) = 4.1 × 105, Z(0) =

7.1× 101,W (0) = 5.0× 100.
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Figure 21 (C) and (D) exhibits the controls u∗1 and u∗2, that are the optimal

treatment routines suggested by the model. According to the numerical solutions, the

drug that suppresses the production of infected cells, i.e. u1, must be administered

in full scale from t = 0 to t = 2. Then, u∗1 is tapered off from t = 2 to t = 16. Finally,

u∗1 has to be administered in full scale again, this time from t = 16 to t = 35. On

the other hand, the model suggests that the drug that interferes in the production of

virus, u∗2, must be administered in full scale from t = 0 to t = 15. Then, the dose is

tapered off from t = 15 to t = 35 and administered again in a much lower scale for

35 < t < 50.

Figure 21 (A) shows the numerical solutions of the model given by equations (16)-

(20) assuming no treatment has been administered. In other words, u1(t) = 0 and

u2(t) = 0. The value of the parameters and initial conditions are the same that were

used in Section 2.1.1.

In Figure 21 (B) we have the numerical solutions of the optimal control problem

for the state variables. This solution shows how the viral load and number of infected

cells are affected by the effect of treatment. With the treatment schedule suggested

by the model, we see a sharp decrease in the log of the viral load describing a biphasic

decline followed by a rebound at the moment treatment u2 is tapered off. However,

this rebound is controlled by the drug u1 that keeps the viral load at low levels.
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To understand what happens after cessation of therapy, we solved the optimal

control problem in two parts: first, we let u1 and u2 to be non zero functions from

t = 0 to 50 to compute the forward-backward method in this time window. Second,

we let u1 = 0 and u2 = 0 from t = 50 to t = 150 and calculated the numerical

solutions. These numerical solutions are shown in Figure 22.
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Figure 22: Numerical solutions after cessation of therapy. A continuation of the first

treatment schedule was computed. We let u2 and u2 to be activated in the time

window [0, 50]. Then we let u1 = 0 and u2 = 0 for t ∈ [50, 150]. (A) numerical

solutions of the system with no treatment; (B) levels of virus rebound after cessation

of treatment for t > 50; (C) and (D) are the continuation of the best treatment

schedules.
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It is reasonable to ask, what is the benefit of therapy if after treatment the vi-

ral load rebounds to its pretreatment levels? To provide a plausible answer to this

question, we calculate the number of new viruses produced and the number of new

infected cells produced during treatment and with no treatment. The rate of produc-

tion of new viruses is given by the term kI, where k has units of
1

time
, then kI has

units of
cells

time
.

Therefore, if the patient is not under treatment,∫ tf

0

kI dt

is an approximation of the total production of infected cells over the interval [0, tf ].

Similarly, during therapy ∫ tf

0

(1− u2)kI dt

is the total production of virus over the interval [0, tf ].

Table 7 shows the comparison of the total production of virus during treatment

and with no treatment. During treatment the production of new virus decreases

in five orders of magnitude. However, after cessation of treatment and running the

simulation until t = 150, the number of viruses is of the same order of magnitude.
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Table 7: The total production of virus was computed to compare the dominant CTL

response scenario under treatment and with no treatment

No Treatment Treatment

Total production

∫ 50

0

kI dt = 1.58× 108

∫ 50

0

(1− u2)kI dt = 1.43× 103

of new virus

∫ 150

0

kI dt = 4.96× 108

∫ 150

0

(1− u2)kI dt = 2.66× 108

Table 8: The total production of infected cells was computed to compare the

dominant CTL response scenario under treatment and with no treatment

No Treatment Treatment

Total production

∫ 50

0

βV Tdt = 4.27× 106

∫ 50

0

(1− u1)βV Tdt = 1.21× 10−2

of infected cells

∫ 150

0

βV Tdt = 1.31× 107

∫ 150

0

(1− u1)βV Tdt = 6.87× 106
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The production of new virus is assumed to be the number of interactions between

free virus particles and uninfected cell. Therefore, the total production of new infected

cells before treatment is given by the integral∫ tf

0

βV T dt.

Similarly, the total production of new infected cells during treatment is calculated by∫ tf

0

(1− u1)βV T dt.

Table 8 shows the comparison of these two quantities. During treatment for t ∈

[0, 50] the production of new virus decreases in eight orders of magnitude. However,

after cessation of therapy and computing the numerical solutions for t ∈ [0, 150] the

production of new infected cells is reduced only in one order of magnitude.

According to Tables 7 and 8, the benefit of therapy is precisely during the period of

time the drug is being administered. If the goal of therapy is to reduce the levels of

the viral load to undetectable numbers in a certain fixed time horizon, the optimal

schedule suggested here is the desired treatment routine.
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Figure 23: Comparison of the viral load under treatment and without treatment in a

non logarithmic scale for the dominant CTL response scenario. The viral load with

a non logarithmic scale during treatment (red curve) and with no treatment (blue

curve) show that on the short term, the viral load decays significantly. However, on

the long-term the steady state level is higher than without treatment. Worst than

leaving untreated.

Figure 23 shows the numerical solution of V (t) in a non logarithmic scale during

treatment (red curve) and with no treatment (blue curve). During the administration

of drugs, the viral load is maintained in considerably lower levels. This reduction in

the number of viruses continues even after cessation of therapy. However, eventually

V (t) rebounds to levels that are higher than without treatment. This is the reason

why in Table 7 the number of viruses is of the same order of magnitude during

treatment than with no treatment in the long-term.
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4.5 Optimal Treatment Strategy for the Dominant Antibody Response Scenario

As stated in Section 2, in this scenario we assume a vigorous antibody response

combined with a weak CTL response. Because the antibodies play the role of neu-

tralizing the production of new virus, we seek to minimize the function V (t) and the

“cost” based on the effect of the therapy to the body. The objective functional to be

minimized is

J(u1, u2) =

∫ tf

0

(
A1V (t) +

1

2

(
A2u

2
1(t) + A3u

2
2(t)
))

dt

subject to the system

dT

dt
= s− dT − (1− u1)βV T

dI

dt
= (1− u1)βV T − aI − pIZ

dV

dt
= (1− u2)kI − µV − qV W

dZ

dt
= cIZ − bZ

dW

dt
= gV W − hW

The parameters A1, A2, and A3 balance the size terms. With higher cost param-

eters A2 and A3, the system has controls where maximum treatment is continued for

a shorter period of time. In other words, with large values of these parameters the

cost effect of treatment is virtually not important. The severity of therapy in the

human body is described by the terms u2
1 and u2

2. The reason for considering a finite

time window is that the administration of treatment is usually restricted to a limited

time period. Necessary conditions are derived by using the extension of Pontryagin’s

Maximum Principle [22] given in Theorem 4.2.
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Theorem 4.4 Given the optimal control pair (u∗1(t), u∗2(t)) and solutions T ∗, I∗, V ∗, Z∗,W ∗

of the state system, there exists adjoint variables λ1, λ2, λ3, λ4, λ5 satisfying:

λ′1 = λ1 (d+ (1− u1)βV )− λ2(1− u1)βV

λ′2 = λ2(a+ pZ)− λ3k(1− u2)− λ4cZ

λ′3 = −A1 + λ1(1− u1)βT − λ2(1− u1)βT + λ3(µ+ qW )− λ5gW

λ′4 = λ2pI + λ4(b− cI)

λ′5 = λ3qV + λ5(h− gV )

with λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = 0, which are the transversality

conditions. Furthermore, the characterization of the control is given by

u∗1 = min

{
1,max

{
0,

(λ2 − λ1)βV ∗T ∗

A2

}}
u∗2 = min

{
1,max

{
0,
λ3kI

∗

A3

}}
Proof:

The Hamiltonian is defined as follows:

H(t,x(t), u1(t), u2(t),λ(t)) = A1V +
1

2

(
A2u

2
1(t) + A3u

2
2(t)
)

+λ1(s− dT − (1− u1(t))βV T )

+λ2((1− u1(t))βV T − aI − pIZ)

+λ3((1− u2(t))kI − µV − VW )

+λ4(cIZ − bZ)

+λ5(gV W − hW )
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We obtain the adjoint equations:

λ′1 = −∂H
∂T

= λ1 (d+ (1− u1)βV )− λ2(1− u1)βV

λ′2 = −∂H
∂I

= λ2(a+ pZ)− λ3k(1− u2)− λ4cZ

λ′3 = −∂H
∂V

= −A1 + λ1(1− u1)βT − λ2(1− u1)βT + λ3(µ+ qW )− λ5gW

λ′4 = −∂H
∂Z

= λ2pI + λ4(b− cI)

λ′5 = − ∂H
∂W

= λ3qV + λ5(h− gV )

with λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = 0. In order to obtain the optimality

condition, we maximize the Hamiltonian with respect to u1 and u2 at the optimal u∗1

and u∗2, respectively.

This is,
∂H

∂ui
= 0 at u∗i for i = 1, 2.

Therefore,

u∗1 =
(λ2 − λ1)βV ∗T ∗

A2

and u∗2 =
λ3kI∗

A3

By standard routines of optimal control problems with bounded controls [4, 9, 15, 17,

18] the characterizations of the optimal controls are given by:

u∗1 = min

{
1,max

{
0,

(λ2 − λ1)βV ∗T ∗

A2

}}
u∗2 = min

{
1,max

{
0,
λ3kI

∗

A3

}}
�

The forward-backward-sweep method was used to find the numerical solutions of

the optimal control problem in the time window [0, tf ] with tf = 40. These numerical

solutions are shown in Figure 24.
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Figure 24: Numerical solutions and best treatment strategies. (A) shows the numer-

ical solutions of the system with no treatment. (B) shows the numerical solutions

of the system with treatment. (C) and (D) describe the best treatment strategies.

Parameter were chosen as follows: s = 1 × 105, d = 5 × 10−2, β = 8 × 10−7, a =

1.8, p = 6.4 × 10−4, k = 8, µ = 1.5, q = 5 × 10−4, g = 8 × 10−8, c = 6 × 10−6, h =

0.01, b = 0.1, A1 = 001, A2 = 50, A3 = 3500, tf = 40.
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In Figure 24 (C) and (D), the controls u∗1 and u∗2 represent the drug administration

schedule. The model suggests that u∗1 must be administered in full scale from t = 9

to t = 15, then it must be reduced to much lower levels and turned off from t = 26

to t = 36. Finally, it has to be administered again for a short period of time from

t = 36 to t = 38 and eventually tapered off again. On the other hand, u∗2 must start

being fully administered from t = 8 to t = 14, it is turned off until t = 26 and finally

for values from t = 26 to t = 40, this drug must be administered in levels no larger

than 40% of the total dosage.

We computed a continuation of the numerical solutions letting the controls being

activated from t = 0 to t = 40 and then letting them be zero from t = 40 to t = 150.

In Figure 25 (B), we can see how after cessation of treatment the viral load and

infected cells rebound to their pretreatment levels.
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Figure 25: Numerical solutions after cessation of therapy. A continuation of the first

treatment schedule was computed. We let u1 and u2 to be activated in the time win-

dow [0, 40]. Then we let u1 = 0 and u2 = 0 for t ∈ [40, 150]. (A) numerical solutions

of the system with no treatment; (B) levels of virus and infected cells rebound after

cessation of therapy at t = 40; (C) and (D) are the best treatment schedules.
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It is clear that the effect of the therapy in this scenario is not as promising as in

the CTL dominance scenario. In fact, in Table 9 we can notice that with this treat-

ment schedule the production of new virus does not decrease in orders of magnitude.

However, a reduction of one order of magnitude in the number of newly infected cells

can be observed in Table 10.

Table 9: The total production of virus was computed to compare the dominant

antibody response scenario under treatment and with no treatment

No Treatment Treatment

Total production

∫ 40

0

kI dt = 1.67× 107

∫ 40

0

(1− u2)kI dt = 1.24× 107

of new virus

∫ 150

0

kI dt = 5.52× 107

∫ 150

0

(1− u2)kI dt = 5.12× 107

Table 10: The total production of infected cells was computed to compare the

dominant antibody response scenario under treatment and with no treatment

No Treatment Treatment

Total production

∫ 40

0

βV Tdt = 3.72× 106

∫ 40

0

(1− u1)βV Tdt = 3.00× 106

of infected cells

∫ 150

0

βV Tdt = 1.23× 107

∫ 150

0

(1− u1)βV Tdt = 1.17× 107
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Figure 26 shows the comparison of the viral load with treatment and with no

treatment for the dominant antibody response scenario. The rebound of V (t) during

treatment explains why the production of new viruses, shown in Table 9, does not

decrease drastically as in the dominant CTL scenario. In the long-term it is neither

worse nor better, because steady state levels are the same.

Figure 26: Comparison of the viral load under treatment and without treatment in

a non logarithmic scale for the dominant antibody response scenario. The viral load

with a non logarithmic scale during treatment (red curve) and with no treatment (blue

curve) show that on the short term, the viral load oscillates about the equilibrium

point. In the long-term, the values of the viral load during treatment and with no

treatment stay at the equilibrium point.
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4.6 Optimal Treatment Strategy for the Coexistence Scenario

Under the assumption that both CTL and antibody responses develop, we want

to minimize the number of viruses V (t), the number of infected cells I(t), and the

“cost” based on the effect of the therapy to the body. For this reason, the objective

functional to be minimized is

J(u1, u2) =

∫ tf

0

(
A1I(t) + A2V (t) +

1

2

(
A3u

2
1(t) + A4u

2
2(t)
))

dt

subject to the system

dT

dt
= s− dT − (1− u1)βV T

dI

dt
= (1− u1)βV T − aI − pIZ

dV

dt
= (1− u2)kI − µV − qV W

dZ

dt
= cIZ − bZ

dW

dt
= gV W − hW

The parameters A1, A2, and A3 balance the size terms. With higher cost param-

eters A2 and A3, the system has controls where maximum treatment is continued for

a shorter period of time. In other words, with large values of these parameters the

cost effect of treatment is virtually not important. The severity of therapy in the

human body is described by the terms u2
1 and u2

2. The reason for considering a finite

time window is that the administration of treatment is usually restricted to a limited

time period. Necessary conditions are derived by using the extension of Pontryagin’s

Maximum Principle [22] given in Theorem 4.2.
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Theorem 4.5 Given the optimal control pair (u∗1(t), u∗2(t)) and solutions T ∗, I∗, V ∗, Z∗,W ∗

of the state system, there exists adjoint variables λ1, λ2, λ3, λ4, λ5 satisfying:

λ′1 = λ1 (d+ (1− u1)βV )− λ2(1− u1)βV

λ′2 = −A1 + λ2(a+ pZ)− λ3k(1− u2)− λ4cZ

λ′3 = −A2 + λ1(1− u1)βT − λ2(1− u1)βT + λ3(µ+ qW )− λ5gW

λ′4 = λ2pI + λ4(b− cI)

λ′5 = λ3qV + λ5(h− gV )

with λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = 0, which are the transversality

conditions. Furthermore, the optimal controls are characterized by

u∗1 = min

{
1,max

{
0,

(λ2 − λ1)βV ∗T ∗

A3

}}
u∗2 = min

{
1,max

{
0,
λ3kI

∗

A4

}}
Proof:

The Hamiltonian is defined as follows:

H(t,x(t), u1(t), u2(t),λ(t)) = A1I + A2V +
1

2

(
A3u

2
1(t) + A4u

2
2(t)
)

+λ1(s− dT − (1− u1(t))βV T )

+λ2((1− u1(t))βV T − aI − pIZ)

+λ3((1− u2(t))kI − µV − VW )

+λ4(cIZ − bZ)

+λ5(gV W − hW )

75



We obtain the adjoint equations:

λ′1 = −∂H
∂T

= λ1 (d+ (1− u1)βV )− λ2(1− u1)βV

λ′2 = −∂H
∂I

= −A1 + λ2(a+ pZ)− λ3k(1− u2)− λ4cZ

λ′3 = −∂H
∂V

= −A2 + λ1(1− u1)βT − λ2(1− u1)βT + λ3(µ+ qW )− λ5gW

λ′4 = −∂H
∂Z

= λ2pI + λ4(b− cI)

λ′5 = − ∂H
∂W

= λ3qV + λ5(h− gV )

with λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = 0. In order to obtain the optimality

condition, we maximize the Hamiltonian with respect to u1 and u2 at the optimal u∗1

and u∗2, respectively.

This is,
∂H

∂ui
= 0 at u∗i for i = 1, 2.

Therefore,

u∗1 =
(λ2 − λ1)βV ∗T ∗

A3

and u∗2 =
λ3kI∗

A4

By standard routines of optimal control problems with bounded controls [4, 9, 15, 17,

18] the characterizations of the optimal controls are given by:

u∗1 = min

{
1,max

{
0,

(λ2 − λ1)βV ∗T ∗

A2

}}
u∗2 = min

{
1,max

{
0,
λ3kI

∗

A3

}}
�

The forward-backward-sweep method was used to find the numerical solutions of

the optimal control problem in the time window [0, tf ] with tf = 15. These numerical

solutions are shown in Figure 27.
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Figure 27: Numerical solutions and best treatment strategies. (A) shows the numer-

ical solutions of the system with no treatment. (B) shows the numerical solutions

of the system with treatment. (C) and (D) describe the best treatment strategies.

Parameters were chosen as follows: s = 2.0× 105, d = 1.0× 10−1, β = 4.0× 10−5, a =

9.9×10−1, p = 6.4×10−4, k = 5.0×102, µ = 2.9×100, q = 2.0×100, g = 1.0×10−5, c =

4.4 × 10−7, h = 2.0 × 10−1, b = 4.0 × 10−2, A1 = 1.0 × 100, A2 = 1.0 × 100, A3 =

4.0 × 104, A4 = 4.7 × 104, tf = 1.5 × 101. The large values taken for the parameters

A3 and A4 indicate the cost of the therapy on the human body. In other words, the

side effects of the therapy are assumed to be substantial.
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Figure 27 (A) shows the numerical solutions of the model with no treatment.

The parameter values and initial conditions used in this calculations were the same

used in Section 2.1.3. Figure 27 (C) and (D) represent the drug administration

schedule. The model suggests that drug represented by the control function u∗2 must

be administered in full scale from t = 2 to t = 7. After this point, this drug is

tapered off and fully administered again from t = 12.7 to t = 14.3. This regime will

drop the number of viruses by about 10 orders of magnitude. On the other hand, the

treatment represented by the control u∗1 is hardly used and it has to be administered

just for a short period of time at t = 14. For this reason, the level of infected cells

does not decrease as much as the viral load. In Figure 27 (B), we have displayed the

numerical solutions of the optimal control problem during a time horizon from t = 0

to t = 15. These solutions show the outcomes of applying the suggested treatment

schedule. After cessation of treatment, the viral load and the number of infected

cells return to their pretreatment levels. This is illustrated in Figure 28 (B), which

shows the continuation of the numerical solutions of the optimal control problem after

cessation of therapy.
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Figure 28: Numerical solutions after cessation of therapy. A continuation of the first

treatment schedule was computed. We let u1 and u2 to be activated in the time

window [0, 15]. Then we let u1 = 0 and u2 = 0 for t ∈ [15, 30]. (A) shows the

numerical solutions of the system with no treatment. (B) shows how the levels of

virus and infected cells rebound after cessation of therapy at t = 15. (C) and (D)

describe the best treatment strategies.
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Tables 11 and 12 show that there is not a significant reduction in the number

of newly formed viruses and infected cells during treatment. In fact, these numbers

do not change in orders of magnitude regardless of the administration of treatment.

In order to understand such a contradicting result, we refer the reader to Figure

29, that shows the viral load in a non logarithmic scale during treatment and with

no treatment. From this figure, it is clear that even though the number of viruses

was reduced during therapy, when the treatment is tapered off, V (t) rebounds to its

pretreatment levels through damp oscillations. In some of these oscillations, the viral

load reaches numbers much larger than in the non treatment scenario. Again, the

benefit of therapy is just observed during short periods of time.

Table 11: The total production of virus in a non logarithmic scale was computed to

compare the coexistence scenario under treatment and with no treatment

No Treatment Treatment

Total production

∫ 15

0

kI dt = 8.40× 108

∫ 15

0

(1− u2)kI dt = 5.86× 108

of new virus

∫ 30

0

kI dt = 1.70× 109

∫ 30

0

(1− u2)kI dt = 1.55× 109
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Table 12: The total production of infected cells was computed to compare the

coexistence scenario under treatment and with no treatment

No Treatment Treatment

Total production

∫ 15

0

βV Tdt = 2.56× 106

∫ 15

0

(1− u1)βV Tdt = 1.90× 106

of infected cells

∫ 30

0

βV Tdt = 5.22× 106

∫ 30

0

(1− u1)βV Tdt = 4.92× 106

Figure 29: Comparison of the viral load under treatment and without treatment in

a non logarithmic scale for the coexistence scenario. The numerical solutions of the

viral load with a non logarithmic scale during treatment (red curve) and with no

treatment (blue curve) show that at t = 8, V (t) rebounds to large values. However,

this rebound is just for a short period of time. Eventually, V (t) decreases and in the

the long-term, the values of the viral load during treatment and with no treatment

stay at the equilibrium point.
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5 INVERSE PROBLEM: PARAMETER ESTIMATION

Experimental data sets exhibiting HCV RNA levels from chronic HCV patients

treated with several types of drugs can be found in existing literature [6, 12, 19].

With these data sets, one can estimate a set of parameters that gives the best fit of

the data with a model. This problem is called the inverse problem. We address this

problem using an ordinary least squares (OLS) method to find a first estimation of

the parameters and then with a bootstrap method to find a new set of parameter

estimates and their corresponding standard errors.

5.1 Ordinary Least Squares

The formulation of the standard ordinary least squares usually involves two mod-

els: a mathematical model and a statistical model [1]. Assume we have a problem

modeled by a system of differential equations of the form

dx

dt
= f(t,x(t,θ),θ)

where x(t,θ) ∈ Rn denotes the state variable vector at time t and θ ∈ Rp de-

notes the parameter vector. The output of the mathematical model is denoted by

z(ti,θ0). In this case, z(ti,θ0) is a functional of the state variable x(t,θ), that is,

z(ti,θ0) ∈ F (x(t,θ)) and θ0 is the true parameter vector. The statistical model for

the observation process is given by the random variables

Yi = z(ti,θ0) + Ei for i = 1, 2, · · · , n.

For example, in our model the statistical model for the observation process is

Yi = ln (V (ti,θ0)) + Ei
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The errors Ei are assumed to be random variables that satisfy [1]:

1. Ei for for i = 1, 2, · · · , n are independent and identically distributed random

variables. This is, cov(Ei,Ej) = 0 whenever i 6= j.

2. E [Ei] = 0 for every i.

3. var(Ei) = σ2
0 <∞, for every i.

We use the ordinary least squares method to minimize [Yi − ln (V (ti,θ))]2 over

the set of parameter vectors θ constrained by a pre-specified feasible region denoted

by Θ. The minimizer is a random variable, called the estimator θOLS given by

θOLS = argminθ∈Θ

n∑
i=1

[Yi − ln (V (ti,θ))]2

The theoretical quantities θ0 and σ2
0 are in general unknown. In practice, one

has only the data associated with a single realization yi of the observation process Yi

for i = 1, · · · , n and has no option but to compute an estimate for θ̂OLS. Using the

genetic algorithm in MATLAB we carry out the following minimization process:

θ̂OLS = argminθ∈Θ

n∑
i=1

[yi − ln (V (ti,θ))]2

The reader can find more details and examples of using the OLS method for parameter

estimation in [1].
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5.2 The Bootstrap Method

The bootstrap method not only gives us parameter point-estimates but also an

interval of possible values or confidence intervals. The bootstrap method uses an

empirical distribution for the statistic based just on the data at hand. This empirical

distribution can be generated through resampling. Resampling takes random samples

with replacement(of the same size) from the original sample.

The following is the outline of the algorithm [2] :

1. Let θ̂
(0)

to be the vector of parameters estimates from the entire dataset {y1, y2, · · · , yn}

using OLS.

2. Using this estimate we define the standard residuals:

rj =

√
n

n− p

(
yj − ln

(
V (ti, θ̂

(0)
)
))

for j = 1, · · · , n. Then {r1, · · · , rn} are realizations of independent identically dis-

tribute (i.i.d) random variables Rj from an empirical distribution Fn.

3. Set m = 0 and create a bootstrap sample of size n using random sampling with

replacement from {r1, · · · , rn} to form a bootstrap sample
{
r

(m)
1 , · · · , r(m)

n

}
.

4. Create bootstrap sample points (for j = 1, · · · , n)

y
(m)
j = ln

(
V (ti, θ̂

(0)
)
)

+ r
(m)
j

5. Obtain a new estimate θ̂
(m+1)

from the bootstrap sample
{
y

(m)
j

}
.

6. Set m = m+ 1 and repeat steps 3-5.
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We carried out the iterative process m = 10, 000 times. Once this process is

finished, we compute mean, covariance matrix, and standard errors using the following

formulas:

θ̂boot =
1

M

M∑
m=1

θ̂
(m)

(22)

Cov
(
θ̂boot

)
=

1

M − 1

M∑
m=1

(
θ̂

(m)
− θ̂boot

)(
θ̂

(m)
− θ̂boot

)T
(23)

SEk
(
θ̂boot

)
=

√
Cov

(
θ̂boot

)
kk

(24)

where
(
θ̂boot

)
∈ Rp is assumed to be a column vector.

To evaluate the model, we fit data sets taken from existing literature [6, 7, 12, 19].

First of all, we find point estimates for the twelve parameters of the system using OLS.

Secondly, we run the bootstrap method to find new point estimates along with their

standard errors. However, the problem of finding the point estimates and intervals of

confidence for these parameters having only data sets of the viral load is a complex

problem due to the lack of information on the other variables that are involved. For

this reason, for some parameters we were able to find only point estimates; their

standard errors were not confident enough.
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Different HCV RNA profiles of patients under treatment have been observed,

namely: rebound to baseline values, biphasic decay, triphasic decay, and flat second

phases after cessation of therapy. The model given by equations (1)-(5) could be

fit to all of these profile observations with exception of the triphasic decay. The

consideration of a logistic term in the equations for the proliferation of hepatocytes

may yield to a more realistic model that can also be fit to a triphasic decay data

[6]. However, the inclusion of such a term would imply an increase in the number of

parameters. More details about the bootstrapping method can be found at [2].
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5.2.1 Parameter Estimation for Patient 1

The data set taken from Neumann et al. [19] was used to find point estimates of the

parameters. A MATLAB code was run to solve an OLS optimization problem using

the genetic algorithm. Initial conditions for the uninfected and infected cells were also

computed in the optimization process. With these first point estimates, a bootstrap

method was computed with 10,000 iterations to get a new set of parameter estimates

with their corresponding standard errors. Point estimates and their standard errors

are summarized in Table 13.

Table 13: Bootstrap estimates and standard errors for patient 1

Parameter Bootstrap Estimate Standard Error (SE)
s 8.7386× 103 t.l.n.r.
d 1.0700× 10−2 1.5000× 10−2

β 1.9677× 10−5 2.0170× 10−5

a 1.6010× 10−1 1.5090× 10−1

p 6.5859× 10−4 7.7706× 10−4

k 5.4780× 10−1 2.0880× 10−1

µ 2.8595× 100 4.6500× 10−1

q 9.5861× 10−4 t.l.n.r.
c 4.5438× 10−7 t.l.n.r.
b 1.8060× 10−1 t.l.n.r.
g 9.6712× 10−7 t.l.n.r.
h 6.2800× 10−1 9.7510× 10−1
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Table 13 shows the parameter estimates and standard errors found in the boot-

strapping. For some parameters, large standard errors were obtained. This is not

surprising due to the large variability that was observed for some data points in the

cloud provided in Figure 30. This large variability is due to the fact that the ob-

servations in the data points vary in several orders of magnitude. This explains the

fact that for the data points that were taken after day 5 we observe larger variability.

These issues reveal the limitations of the OLS method. The use of generalized ordi-

nary least squares (GOLS) [1] might be a possible solution to this weakness in our

method.

Figure 30: Bootstrap cloud for patient 1. Running the bootstrap algorithm for 10,000

iterations a cloud of best fit solutions is plotted. Parameter estimates and standard

errors are calculated after the iterative process.
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For those parameters with standard errors that are larger than the estimation,

only their point estimates are shown on Table 13. Instead we use the abbreviation

“t.l.n.r.”, which stands for “too large not reported”. In Figure 30, the best fits

found with the bootstrap and the data points were plotted. The thickness of the

cloud indicates large variability of the data points. This variability is larger for those

measurements that were taken after day 5.

It is important to notice that since the data set was taken from a patient that has

been under treatment for 14 days, the parameter estimates found are affected by the

treatment. For this reason, even though in Figure 31 the numerical solutions show

that patient 1 has no immune response, with the information we have we are not able

to claim that this is the case.
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Figure 31: Comparison of viral load data with model predictions. We fit HCV RNA

levels from a chronic HCV infected patient treated with interferon α− 2b from Neu-

mann et al.[19]. Numerical solutions of system given by equations (1)-(5) were calcu-

lated using the set of parameters given in Table 30. Initial conditions were chosen as

follows: T (0) = 1.0×106, I(0) = 2.0×105, V (0) = 2.5×106, Z(0) = 5.0×101,W (0) =

5.0× 100.
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5.2.2 Parameter Estimation for Patient 2

The model given by equations (1)-(5) is not exclusive for HCV infections. Other

type of viruses can also be understood through this model. As a matter of fact, data

from a hepatitis B infected patient during drug therapy was taken from Dahari et

al. [7] to fit the model and to estimate parameters and their corresponding standard

errors. As stated at the beginning of this section, a first iteration of the OLS method

with the genetic algorithm was run in MATLAB to find the point estimates for the

twelve parameters of the system. Initial conditions for the uninfected and infected

cells were also computed in the optimization process. With this set of parameter

estimates, called θ̂(0) in the bootstrap algorithm, we run 10,000 iterations to find new

parameter estimates with their corresponding standard errors. For this data set, we

obtained decent standard errors for ten out of the twelve parameters. For parameters

d and p that have standard errors that are larger than their estimation, only their

point estimates are shown on Table 14. Instead we use the abbreviation “t.l.n.r.”,

which stands for “too large not reported”. In other words, we do not report standard

errors with corresponding relative errors bigger than one.

Figure 32 shows the best fits solutions found with the bootstrap and the data

points. Just like for patient 1, the cloud tends to be thicker for those measurements

that were taken after day 5.
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Table 14: Bootstrap estimates and standard errors for patient 2

Parameter Bootstrap Estimate Standard Error (SE)
s 1.2025× 104 1.5652× 104

d 8.0000× 10−3 t.l.n.r.
β 9.3000× 10−3 2.9000× 10−3

a 7.7400× 10−2 3.0700× 10−2

p 4.8000× 10−3 t.l.n.r.
k 7.8300× 10−2 1.4900× 10−2

µ 4.9410× 10−1 3.0430× 10−1

q 1.6659× 10−4 9.9770× 10−5

c 3.0638× 10−7 7.1389× 10−8

b 3.5750× 10−1 2.3820× 10−1

g 6.6439× 10−7 8.7652× 10−7

h 7.2260× 10−1 1.5590× 10−1

Figure 32: Bootstrap cloud for patient 2. Running the bootstrap algorithm for 10,000

iterations a cloud of best fit solutions is plotted. Parameter estimates and standard

errors are calculated after the iterative process.
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Figure 33: Comparison of viral load data with model predictions. We fit HBV DNA

levels from patient that was treated with pegylated interferon-2αa [7]. Numerical

solutions for patient 2 were calculated using the set of parameters given in Table 14.

Initial conditions were chosen as follows: T (0) = 7.0 × 105, I(0) = 9.7 × 104, V (0) =

5.5× 106, Z(0) = 50,W (0) = 5.

Figure 33 shows the data points and the numerical solutions of the system (1)-(5)

using the set of parameters shown in Table 14. Observations made for patient 1 are

also valid for patient 2. According to this figure and to the values of the estimates, this

looks to be an example of an endemic equilibrium with no immune response (second

equilibrium seen in Section 2). However, this could be misleading because the data set

is taken from a patient that has been under treatment and, as a consequence, some

parameters are affected. A possible approach to solve the problem of detecting a

difference between the parameters and the treatment that has been applied is solving

the inverse problem simultaneously with an optimal control problem. Nevertheless,

this process is computationally intensive.
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5.2.3 Parameter Estimation for Patient 3

HCV RNA levels from a patient treated with interferon α − 2b were taken from

Neumann et al.[19]. A first iteration of the OLS optimization method with the genetic

algorithm was run in MATLAB to find the point estimates for the twelve parameters of

the system. Initial conditions for the uninfected and infected cells were also computed

in the optimization process. With this set of parameter estimates, called θ̂(0) in

the bootstrap algorithm, we run 10,000 iterations of this method to find the new

parameter estimates and their corresponding standard errors. Point estimates and

their standard errors are summarized in Table 15. For those parameters with standard

errors that are larger than the estimation, only their point estimates are shown on

Table 15. Instead we use the abbreviation “t.l.n.r.”, which stands for “too large not

reported”.

Table 15: Bootstrap estimates and standard errors for patient 3

Parameter Bootstrap Estimate Standard Error (SE)
s 5.5687× 104 8.0768× 104

d 9.5042× 10−4 t.l.n.r.
β 5.0346× 10−4 t.l.n.r.
a 6.3480× 10−1 t.l.n.r.
p 9.7000× 10−3 t.l.n.r.
k 2.3581× 101 2.5610× 101

µ 3.4945× 100 1.2655× 100

q 1.8000× 10−3 8.3000× 10−3

c 1.0767× 10−7 8.2202× 10−7

b 1.1361× 100 1.4274× 100

g 6.8124× 10−7 t.l.n.r.
h 9.4230× 10−1 t.l.n.r.
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In Figure 34 the best fits found with the bootstrap and the data points were

plotted. The thickness of the cloud indicates large variability of the data points.

Figure 34: Bootstrap cloud for patient 3. Running the bootstrap algorithm for 10,000

iterations a cloud of best fit solutions is calculated to later compute the standard

errors.

Figure 35 shows the numerical solutions of the system (1)-(5) using the set of

parameters found in Table 15. It also shows the data set taken from [19]. According

to this figure and to the values of the estimates, this looks to be an example of an

endemic equilibrium with no immune response (second equilibrium seen in Section

2). However, this could be misleading because the data set is taken from a patient

that has been under treatment and as a consequence some parameters are affected. A

possible approach to solve the problem of making a difference between the parameters

and the treatment that has been applied could be solving the inverse problem along

with an optimal control problem. However this process is computationally intensive

and therefore out of our possibilities.
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Figure 35: Comparison of viral load data with model predictions. We fit HCV RNA

levels from patient that was treated with interferon-2αb [19]. Numerical solutions

for patient 3 were calculated using the set of parameters given in Table 15. Initial

conditions were chosen as follows: T (0) = 1.0 × 105, I(0) = 1.0 × 103, V (0) = 1.6 ×

107, Z(0) = 50,W (0) = 5.
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5.2.4 Parameter Estimation for Patient 4

Data from a hepatitis B infected patient during drug therapy was taken from

Dahari et al. [7]. A first iteration of the OLS method with the genetic algorithm

was run in MATLAB to find the point estimates for the twelve parameters of the

system. Initial conditions for the uninfected and infected cells were also computed

in the optimization process. With this set of parameter estimates, called θ̂(0) in the

bootstrap algorithm, we run 10,000 iterations to find new parameter estimates with

their corresponding standard errors. For this data set, we obtained decent standard

errors for all twelve parameters. Table 16 shows a summary of the parameter estimates

and their corresponding standard errors.

Table 16: Bootstrap estimates and standard errors for patient 4

Parameter Bootstrap Estimate Standard Error (SE)
s 9.0505× 103 2.7321× 103

d 9.4000× 10−3 1.4000× 10−3

β 6.6000× 10−3 1.2000× 10−3

a 1.7000× 10−2 4.0000× 10−3

p 1.1000× 10−3 1.5422× 10−4

k 3.8530× 10−1 8.3900× 10−2

µ 2.9267× 100 3.0380× 10−1

q 1.0000× 10−3 1.7529× 10−4

c 1.5526× 10−7 2.3676× 10−7

b 2.6030× 10−1 5.2600× 10−2

g 5.2049× 10−7 6.4187× 10−8

h 9.0200× 10−1 1.4810× 10−1
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In Figure 36, the best fits found with the bootstrap and the data points were

plotted. From this figure we can see how the data points in the second phase have

large variability compare to the first data points.

Figure 36: Bootstrap cloud for patient 4. Running the bootstrap algorithm for 10,000

iterations a cloud of best fit solutions is calculated to later compute the standard

errors.

Figure 37 shows the numerical solutions of equations (1)-(5) using the parameters

obtained in the bootstrapping and shown in Table 16. As explained in the previous

sections, due to the fact the data set is taken from a patient under treatment, we do

not have enough information to claim that there is not an immune response.
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Figure 37: Comparison of viral load data with model predictions. We fit HBV DNA

levels from a patient that was treated with adefovir dipivoxil [7]. Numerical solutions

for patient 4 were calculated using the set of parameters given in Table 16. Initial

conditions were chosen as follows: T (0) = 2.6 × 106, I(0) = 1.7 × 105, V (0) = 2.1 ×

107, Z(0) = 50,W (0) = 5.
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6 SENSITIVITY ANALYSIS PART II

The parameters estimates found in Section 5 were used to perform a sensitivity

analysis for each patient during transient and long-term phases. Just like in Section

3, we want to determine what are the most influential parameters in the behavior of

the viral load for patients that have been under treatment.

6.1 Sensitivity Analysis for Patient 1

For patient 1, we found that during treatment the parameters that are the most

influential are k, µ, and a. These are the natural production and natural decay of

viruses and the natural decay of infected cells, respectively. In fact, the larger the

values of k the larger the values of the viral load. Similarly, the larger the values of

the parameters µ and a, the smaller the values that V (t) will reach. Fig 38 shows the

relative sensitivities of V (t) in the transient phase. In Table 17, we have a summary

of the most influential parameters in the behavior of the viral load in the transient

phase.
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Figure 38: Numerical solutions of relative sensitivities θk
V
∂V
∂θk

for patient 1 in a transient

phase from 0 to 14

Table 17: Ranking of the most influential parameters for the viral load for patient

1 in the transient phase. During the period of time the patient is under treatment,

increasing parameter k will increase the viral load. Similarly, increasing the values of

parameters µ and a will produce a reduction in the number of virus particles.

Positive Negative
k µ

Parameter a

The simulation suggests that, in a longer time window (in the long-term phase),

the parameter s also becomes important in the behavior of V (t). As a matter of fact,

the sensitivity of s is as positive as the sensitivity of parameter k. See Figure 39 and

Table 18.
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Figure 39: Numerical solutions of relative sensitivities θk
V
∂V
∂θk

for patient 1 in a long-

term phase from 0 to 150

Table 18: Ranking of the most influential parameters in the viral load for patient 1 in

the long-term. The model suggests that in a long-term phase, increasing parameters

k and s will increase the viral load. Similarly, increasing the values of parameters µ

and a will produce a reduction in the number of virus particles.

Positive Negative
k µ

Parameter s a
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6.2 Sensitivity Analysis for Patient 2

According to Figure 40, the parameters that are most influential in the behavior

of V (t) for patient 2 are k, s in a positive manner and µ, a negatively. However, it

is important to mention that from t = 10 up to t = 25 the simulation suggests that

larger values of b would increase the viral load. This seems to be counterintuitive

since b is the rate of natural decay of CTLs. Table 19 shows a summary of the most

important parameters in the behavior of V (t) in the transient phase fr patient 2.

Figure 40: Numerical solutions of relative sensitivities θk
V
∂V
∂θk

for patient 2 in a transient

phase from 0 to 45
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Table 19: Ranking of the most influential parameters for the viral load for patient

2 in the transient phase. During the period of time the patient is under treatment,

increasing parameters b, k, and s will increase the viral load. Similarly, increasing

the values of parameters µ and a will produce a reduction in the number of virus

particles.

Positive Negative
b µ

Parameter k a
s

In Figure 41 we notice that, in the long-term the effect of b eventually becomes

irrelevant. In this figure is also shown that, parameters k and s are equally influential

in a positive manner. Likewise, parameters µ and a are equally influential in a negative

manner. Table 20 shows a summary of these results.

Table 20: Ranking of the most influential parameters for the viral load for patient 2 in

the long-term. The model suggests that in a long-term phase, increasing parameters

k and s will increase the viral load. Similarly, increasing the values of parameters µ

and a will produce a reduction in the number of virus particles.

Positive Negative
k µ

Parameter s a

104



Figure 41: Numerical solutions of relative sensitivities θk
V
∂V
∂θk

for patient 2 in a transient

phase from 0 to 150
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6.3 Sensitivity Analysis for Patient 3

Sensitivities were computed for patient 3 using the estimates found in Section 5.

According to Figure 42, during the period of time the patient was under treatment

(transient phase), the parameters found to be the most influential were k, s in a pos-

itive manner and µ, a negatively. That is, increasing the proliferation of hepatocytes

and virus would make the viral load increase while the clearance rate of virus and

infected cells would make V (t) decrease. In Table 21, we have displayed the most

influential parameters in this phase.

Figure 42: Numerical solutions of relative sensitivities θk
V
∂V
∂θk

for patient 3 in a transient

phase from 0 to 14
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Table 21: Ranking of the most influential parameters for the viral load of patient

3 in a transient phase. During the period of time the patient is under treatment,

increasing parameters k, and s will increase the viral load. Similarly, increasing the

values of parameters µ and a will produce a reduction in the number of virus particles.

Positive Negative
k µ

Parameter s a

In the long-term phase the behavior of V (t) is still determined by the parameters

k, s, µ, and a. This is shown in Figure 43 and summarized in Table 22.

Figure 43: Numerical solutions of relative sensitivities θk
V
∂V
∂θk

for patient 3 in a long-

term phase from 0 to 150
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Table 22: Ranking of the most influential parameters in the viral load for patient 3 in

the long-term. The model suggests that in a long-term phase, increasing parameters

k and s will increase the viral load. Similarly, increasing the values of parameters µ

and a will produce a reduction in the number of virus particles.

Positive Negative
k µ

Parameter s a
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6.4 Sensitivity Analysis for Patient 4

A sensitivity analysis was done using the set of parameters estimated in Section

5 for patient 4. The numerical solutions shown in Figure 44 suggest that, at the

beginning of the treatment, the most influential parameters in the behavior of the

viral load are k and µ. However, for t > 5 parameters b and c play an important role

during the administration of treatment. These results are summarized in Table 23

that displays the most important parameters for the transient phase.

Figure 44: Numerical solutions of relative sensitivities θk
V
∂V
∂θk

for patient 4 in a transient

phase from 0 to 12
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Table 23: Ranking of the most influential parameters for the viral load of patient

4 in a transient phase. During the period of time the patient is under treatment,

increasing parameters k, and b will increase the viral load. Similarly, increasing the

values of parameters µ and c will produce a reduction in the number of virus particles.

Positive Negative
k µ

Parameter b c

Even though at the transient phase one would expect that parameters b and c

dominate among the other parameters, according to Figure 45, for t > 150, parame-

ters k, µ, s, and a become the most important in the long-term phase. These results

are summarized in Table 24.

Figure 45: Numerical solutions of relative sensitivities θk
V
∂V
∂θk

for patient 4 in a long-

term phase from 0 to 300
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Table 24: Ranking of the most influential parameters in the viral load for patient 4 in

the long-term. The model suggests that in a long-term phase, increasing parameters

b, k and s will increase the viral load. Similarly, increasing the values of parameters

c, µ and a will produce a reduction in the number of virus particles.

Positive Negative
b c

Parameter k µ
s a
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7 CONCLUDING REMARKS

In this thesis, we have used an existing model from [25] of ordinary differential

equations to describe the interaction between the responses of the human immune

system and a viral infection. In particular, in the context of the HCV infection, three

possible scenarios were studied, namely: dominant CTL response, dominant antibody

response, and coexistence.

In Section 2, by considering artificial values of parameters, a general illustration of

these scenarios was given. Each scenario can be characterized by stability conditions

given by the parameters. This conditions are studied deeply in [29].

Our first contribution to this study was a sensitivity analysis to determine the

most influential parameters in the behavior of the viral load. Transient and long-term

phases were explored with numerical simulations. In general in a transient phase, the

most influential parameters for dominant CTL response are k and µ. These are the

parameters of proliferation and natural decay of the viral load, respectively. For the

dominant antibody response scenario, we found that the most influential parameters

in the transient phase for the dominant antibody response scenario are also k and µ

and that this behavior eventually switches in the long-term phase. Ultimately, their

sensitivities converge to zero, and V(t) becomes affected only by parameters g and

h, the proliferation and dead rates of the antibodies, respectively. In Section 3.4, a

total counterintuitive behavior was observed in the sensitivities for the coexistence

scenario: the viral load is affected only by parameters g and h.
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Our second task in this thesis was to use optimal control theory to determine

optimal treatment strategies for each scenario mentioned above. We were able to

suggest treatment schedules that minimize the infection and the side effects of the

therapy in a finite time horizon. We conclude that if the goal of therapy is to reduce

the production of new virus and to reduce the production of infected cells, then

the dominant CTL response scenario seems to be more favorable than the dominant

antibody response and coexistence scenarios. However, in all the scenarios the viral

load and the number of infected cells rebound to pretreatment levels upon therapy

cessation.

Parameter estimates and standard errors were calculated by implementing the

OLS optimization method followed by the bootstrap method. Large variability was

observed in some of the parameter estimates. This variability can be explained in the

bootstrap cloud found for each data set (see Figures 30,32, 34, and 36). These clouds

have all the same behavior; large uncertainty for the data points in the second phase.

Because the parameter estimates are coming from data sets of patients that were

under treatment, it is not possible to use the conditions given in Section 2 to clas-

sify the dynamical system associated with each data set as dominant CTL, dominant

antibody, or coexistence. In fact, based on Figures 31,33,35, and 37, it seems these

systems settle into an endemic equilibrium without immune response. However, this

might not be the case. A possible approach to solve this issue involves the simul-

taneous solution of an optimal control and optimization problems which is a heavy

computationally intensive problem.
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A sensitivity analysis was done to understand what is the role of the estimated

parameters in the behavior of the state variable V (t) for data from 4 patients taken

from existing literature. As a result we can conclude that, in general, k and µ are the

most important parameters.
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