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Abstract

AH Cep and CW Cep are both early B-type binaries with short orbital periods of 1.8days and 2.7days,
respectively. All four components are B0.5V types. The binaries are also double-lined spectroscopic and eclipsing.
Consequently, solutions for orbital and stellar parameters make the pair of binaries ideal targets for a study of the
colliding winds between two Bstars. Chandra ACIS-I observations were obtained to determine X-ray
luminosities. AHCep was detected with an unabsorbed X-ray luminosity at a 90% confidence interval of
9 33 1030´( – ) erg s−1, or L0.5 1.7 10 7

Bol´ -( – ) , relative to the combined Bolometric luminosities of the two
components. While formally consistent with expectations for embedded wind shocks, or binary wind collision, the
near-twin system of CWCep was a surprising nondetection. For CWCep, an upper limit was determined with
L L 10X Bol

8< - , again for the combined components. One difference between these two systems is that AHCep is
part of a multiple system. The X-rays from AHCep may not arise from standard wind shocks nor wind collision,
but perhaps instead from magnetism in any one of the four components of the system. The possibility could be
tested by searching for cyclic X-ray variability in AHCep on the short orbital period of the inner Bstars.

Key words: stars: early-type – stars: individual (AH Cep, CW Cep) – stars: massive – stars: winds, outflows –
X-rays: binaries

1. Introduction

The modern era has brought forth a plethora of intriguing
results for the study of massive stars based on X-ray
observations (e.g., Oskinova 2016). Massive star binaries with
colliding winds (colliding wind binaries, hereafter “CWBs”)
have been a staple of X-ray studies, both theoretically and
observationally (e.g., Usov 1992; Stevens et al. 1992; Rauw &
Nazé 2016). The attractions for stellar astronomers have been
the prospects of luminous and hard X-ray emissions from
CWBs, combined with possibilities for inferring or constrain-
ing wind properties (such as mass-loss rates Ṁ), orbital
properties, and interesting plasma physics (instabilities, possi-
bly magnetism, or nonequilibrium effects).

Advances in the modern era have been driven by increases in
the numbers of objects that have been studied via surveys (e.g.,
Nazé et al. 2011), plus intensive studies of a limited number of
especially interesting targets (some recent examples include
Lomax et al. 2015; Gosset & Nazé 2016; Corcoran et al. 2017).
One omission to the effort has been the neglect of CWBs
consisting of B+B stars. Much of the previous focus on CWBs
has involved systems in which one component is a Wolf–Rayet
(WR) star. The reason is clear: WRstars have fast winds and
generally large mass-loss rates that can result in strong X-ray
emissions (Cherepashchuk 1976; Prilutskii & Usov 1976).
With modern X-ray telescopes, interest has also been shown in
what are usually X-ray fainter O+O binaries (e.g., Pittard &
Parkin 2010; Rauw et al. 2016). Owing to low mass-loss rates,
B+B binaries have not, to our knowledge, been modeled in
hydrodynamic simulations, nor the subject of a dedicated
observational study.

Yakut et al. (2007) reported on a study of the B+B binary
CVVel. In that paper, the authors summarized the properties
for 17 fairly short-period and mostly main-sequence B+B
binaries. What makes this list special is that all of the systems

are both double-lined spectroscopic and eclipsing systems with
relatively short orbital periods. Analyses from a variety of
authors have provided for well-constrained orbital and stellar
parameters of these systems, including masses, radii, tempera-
tures, luminosities, semimajor axes, and eccentrities, among
other things. In particular, the viewing inclinations are known
to be near edge-on.
As a result, we selected the two most massive binaries of the

listing—AH Cep and CW Cep—with the intent of detecting
evidence for a wind–wind collision between B stars using the
Chandra X-ray Telescope. This paper describes expectations
for the observations, and reports on the curious result of one
detection and one nondetection, despite the two systems being
near twins in their physical parameters. Section 2 describes
target selection and predicted X-ray levels. Section 3 details the
observations. Results from the pointings are discussed in
relation to these expectations in Section 4, with concluding
remarks offered in Section 5.

2. Predicted X-Ray Emissions for CWBs

2.1. Target Selection

Table 8 of Yakut et al. (2007) lists 17 B+B binaries along
with primarily stellar properties of the components, plus the
orbital period (Porb). All but one of the binaries have orbital
periods under 1 week. The binary pairs usually consist of the
same spectral type, from B0.5V+B0.5V to B9.5V+B9.5V,
although a few systems consist of pairs with different spectral-
type components (one is B9V+A0V).
The two most massive binaries are comprised of B0.5V

stars: AHCep (B0.5Vn+B0.5Vn) and CWCep (B0.5V
+B0.5V). Table 1 summarizes the stellar properties of these
systems; Table 2 summarizes their orbital properties. We adopt
the standard usage that the primary is the more massive star,

The Astrophysical Journal, 850:82 (7pp), 2017 November 20 https://doi.org/10.3847/1538-4357/aa93ea
© 2017. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-7204-5502
https://orcid.org/0000-0002-7204-5502
https://orcid.org/0000-0002-7204-5502
mailto:ignace@etsu.edu
https://doi.org/10.3847/1538-4357/aa93ea
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa93ea&domain=pdf&date_stamp=2017-11-20
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa93ea&domain=pdf&date_stamp=2017-11-20


and the secondary is the less massive star, signified with
subscripts “1” for primary and “2” for secondary. Note that the
mass-loss rates and terminal speeds are not measured but
calculated from models. This will be discussed further in
Section 2.2.

Although all four stars in these two binaries share the same
spectral type (aside from the peculiar designation “n”), the
stellar properties are not exactly identical. Both binaries have
mass ratios q M M2 1= of about 0.9. The masses range from
12 to 15 M. The luminosities range by a factor of 2 from the
least luminous (secondary for CWCep) to the most luminous
(primary for AH Cep). Regarding the orbits, both binaries have
orbital periods of ∼2days, and the orbits are circular (Kim
et al. 2005; Yakut et al. 2007, for AH Cep and CWCep, resp.).

Figure 1 provides a schematic for the relative sizes and
separations of the stars. The two systems are displayed on the
same scale and offset vertically from one another. Between the
stars, the black dot indicates the location of the center of mass
(CM). The figure is arranged so that the respective CMpoints
are the coordinate origins for the two systems. Nearby in
magenta are the respective stagnation points, as discussed
further in Section 2.2. The primary for AHCep is the largest of
the four stars, and its size is shown as a red dashed circle
around the other three stars for reference.

Ultimately, major considerations for the selection of AH Cep
and CW Cep included the following.

1. The two binaries are the most massive ones in the list of
Yakut et al. (2007), suggesting that they will be the most
X-ray luminous, even without detection of a colliding
wind interaction (hereafter, CWI), based on the scaling
that L L10X

7
Bol~ - for massive, single stars (e.g.,

Berghoefer et al. 1997; Nazé 2009).
2. For each binary, the component stars are nearly identical.

This suggests that the winds will be nearly identical as
well, and so the CWI will be located close to the CM for

each of the respective systems. This should simplify the
intrepretation of any detected emissions from the CWIs.

3. Given that the stars are so similar in mass, size, and
binary orbit (inclination and period), observed differences
in X-rays could more confidently be related to “second-
ary” considerations, such as stellar magnetism.

2.2. Expected X-Ray Properties

The driving goal for obtaining Chandra data for AHCep
and CWCep is to detect for the first time a “classical” wind
collision (i.e., not involving magnetospheric effects) among B
+B binaries. Failing in that, we expected to detect X-ray
emissions at the level predicted for single massive stars.
For X-ray emissions from the individual stellar winds, we

had anticipated that, being of quite early types in the B spectral
class at B0.5, the individual stars would follow the relation of
L L10X

7
Bol~ - (see Oskinova 2016 and references therein).

Table 3 provides estimates for the X-ray luminosities LX*, with
subscript “∗” referring to the stellar components of the binaries.
These values are totals for the two components, treating each
one as adhering to the relation for single stars. This canonical
scaling for single stars is known to have significant dispersion,
and its extension much into the B spectral class is recognized as
dubious (e.g., Cohen et al. 1997; Nazé 2009; Owocki
et al. 2013).
For X-rays from a colliding wind, the situation is far more

speculative. First, such estimates require knowledge of the
mass-loss rates Ṁ and terminal speeds v¥ of the stellar winds.
For a rough estimate of the wind speed, we adopted a scaling

from the theory of Castor et al. (1975, CAK) for line-driven
winds. The first is that the wind terminal speed scales as
v vescµ¥ . For Bstars, we adopt a value of 1.5 for the ratio, for
which all four stars are estimated to have v 1400»¥ kms−1,
as indicated in Table 1.

Table 1
Stellar Parameters

AH Cep AH Cep CW Cep CW Cep

(primary) (secondary) (primary) (secondary)
Sp. Type B0.5n B0.5n B0.5 B0.5
Teff (K) 30,000 29,000 28,000 28,000
Mass (M) 15.4 13.6 13.5 12.1
Radius (R) 6.4 5.9 5.7 5.2
Luminosity ( L104

) 2.9 2.1 1.9 1.4
vesc (km s−1) 960 940 950 940
v¥

a (km s−1) 1400 1400 1400 1400
Ṁ a ( M10 9-

 yr−1) 2.5 2.2 1.8 1.8

Note.
a The wind terminal speeds and mass-loss rates are not measured properties,
but estimated ones. See Section 2.

Table 2
Orbital Parameters

AH Cep CW Cep

Porb (day) 1.78 2.73
a (R) 19.0 24.2
e 0.0 0.0
q M M2 1= 0.88 0.90

Figure 1. Scale representation of the two binary systems. Upper is AHCep;
lower shows CWCep. Primary and secondary stars are indicated by the labels
M1 and M2, respectively. The dashed red circles represent the size of the
primary for AHCep, as a reference guide. The solid black dot is the center of
mass. The stars are situated in the figure such that the center of mass is at the
origin of the coordinate system for each binary. The magenta dot signifies our
estimate for the location of the colliding wind stagnation point (see Section 2).
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For the mass-loss rates, the following relation was used from
Vink et al. (2000):

M T Tlog 22.7 8.96 kK 1.42 kK , 12= - + -˙ ( ) ( ) ( )

which is claimed to have validity for T 15> kK. Here the
mass-loss rate is in solar masses per year. For AHCep and
CWCep, values for Ṁ are given in Table 1. In an analysis of
IUE spectral data, Pachoulakis et al. (1996) set upper limits to
the Ṁ values from Equation (1) for the stars in CW Cep at

M1.0 10 8´ -
 yr−1 and M0.3 10 8´ -

 yr−1 for the primary
and secondary components, respectively. In the case of
CWCep, the values are below the upper limits of Pachoulakis
et al. (1996). Given the similarity of the stars in AHCep to
those of CWCep, it is notable that the Ṁ values for
components of AHCep are also below the upper limits
established for CWCep.

To obtain estimates for the X-rays from colliding winds, an
important parameter is the ratio of wind momentum rates for
the two stars involved. This parameter is given by

M v

M v
. 22 2

1 1
h =

˙
˙ ( )

Note that different authors use different symbols and defini-
tions for the ratio of wind momenta. The above follows Gayley
(2009). (By contrast, Rauw & Nazé 2016 define η as the
inverse of the above.) Instead of using estimated values of
mass-loss rates and terminal speeds, we note that CAK theory
gives Mv M 3 2

*
µ¥˙ , for which case q3 2h » , assuming that

the terminal wind speeds for the components in each binary are
equal. This further assumes the shock forms after the respective
winds have achieved terminal speeds, which we signify as h¥.
Values of h¥ derived in this way are listed in Table 3.

The η parameter determines the location of the stagnation
point, and for an adiabatic wind, it can be used to estimate the
X-ray luminosity (Stevens et al. 1992) and the opening angle of
the bowshock (Gayley 2009). Let x be the fractional distance
between the stars for the location of the stagnation point, from
the primary. Then x1 - is the fractional distance from the

secondary to that point. Stevens et al. (1992) showed that

x

x

1
. 31 2z h=

-
= ( )

Consequently, for CAK theory, q3 4z »¥ , again for winds at
terminal speed. Values of z¥ are given in Table 3. The
stagnation point, using this relation, is indicated in the
schematic of Figure 1 by the magenta dot.
Gayley (2009) derived the opening angle, Shq for the

bowshock when the cooling is strictly adiabatic. This too
relates to η via the expression tan 24

Shh q= ( ). Again, for
CAK theory it can be shown that

q2 tan . 4Sh
1 3 8q » - ( )

However, for a colliding wind shock that is radiative, Canto
et al. (1996) determine the opening angle to be (using the
modified version from Gayley 2009):

tan

tan
. 5Sh Sh

Sh Sh
h

q q
q q p

=
-

- +
( )

Whether adiabatic or radiative, the derived opening angles,
given in Table 3, are very close to 90°. This indicates that,
neglecting the effects of the orbital motion, the discontinuity
surface for the colliding winds should be nearly planar at the
scale of the binary separation.
One challenge to these conclusions is the fact that the stellar

components are so close to one another that the stagnation point
actually lies within the wind acceleration zones of the two stars in
each binary. Using a standard 1b = wind velocity law for
illustration, as often invoked for early-type winds, we have that

v r v
bR

r
1 , 6*= -¥⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

where v is the radial velocity of the spherical wind at radius r,
and b 1 sets the speed at the wind base. For AHCep, the
wind speed is just over a third of the terminal value at the
predicted stagnation point. For CWCep, the speeds are just
over half of terminal. In both cases, the fractional speeds, v v¥
are almost exactly the same for the respective components, and
so η is little changed. However, because the winds have not
achieved terminal speed, the structure of the CWI is probably
not well-represented by the scenario in which both stars have
achieved terminal speed. Nonetheless, one may still expect that
the shock discontinuity surface is largely planar between the
stars (again, neglecting Coriolis effects that act to distort the
surface from planar).
Stevens et al. (1992) provide relations for the peak temperature

achieved in the wind collision, for whether the cooling is
predominantly adiabatic or radiative, and if the former, a scaling
relation for the X-ray luminosity. First, the peak temperature can
be estimated as

T
v v

13.6 MK
1000

1.17 keV
1000

, 7peak

2 2

= =⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

for v in kilometers per second. Again using a 1b = velocity
law, expected peak temperatures are given in Table 3. Note that
the peak value is somewhat soft at 0.3keV in the case of
AHCep, but fairly hard at 0.7keV for CWCep.

Table 3
Predicted X-Ray Properties

AH Cep CW Cep

d (pc) 1020 640
E B V-( ) 0.51 0.59
NH (1021 cm2) 3.0 3.4
LX,* (10

30 erg s−1) 19 12

h¥ 0.83 0.85

z¥ 0.91 0.92

Shq (radiative) 87° 88°
Shq (adiabatic) 87° 87°

kTpeak (keV) 0.29 0.69

χ 2 20
LX,CWI (10

30 erg s−1) 4.6> a 2.0> a

Note.
a Values scaled from Pittard & Parkin (2010), evaluated at terminal speed. At
less than terminal speed, Equation (9) indicates a larger X-ray luminosity.
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Stevens et al. (1992) provide a relation for the ratio of the
radiative cooling time to the flow time as a discriminant between
predominantly radiative or adiabatic cooling. The ratio is

t t
v d

M

1000 10

10
, 8cool flow

4 7

7
c = ~

-

( ) ( )
˙ ( )

with v in dkm s ,1- the instantaneous binary separation in
kilometers, and Ṁ the mass-loss rate. in M yr−1. The value of
χ is about 2 for AHCep and 20 for CWCep, with 1c
indicating that the cooling is adiabatic.

With adiabatic cooling, the X-ray luminosity is estimated with

L M v d . 9X
2 3.2 1 2 3 2h hµ +- -˙ ( ) ( )

This expression is a proportionality. To calibrate, we use model
cwb2 from Pittard & Parkin (2010) for a wind collision
between identical stars of type O6V. That model, characterized
by 19c = , predicts an X-ray luminosity of L 1.6 10X

33= ´
ergs−1 in the 0.5–10 keV band. From this model, along with
the above equation, X-ray luminosities can be estimated, and
these are provided as expected values for the target sources in
Table 3. A reminder that subscript “∗” refers to stellar
components, and “CWI” refers to contributions from the
CWI. Note that the predicted values for LX,CWI given in Table 3
are lower limits from evaluation at wind terminal speed; if the
CWI forms at a lower wind speed, the expected values would
be higher, based on Equation (9).5

3. Observations with ACIS-I

Two observations of the systems were obtained by the
Chandra X-ray Observatory, using the Advanced CCD
Imaging Spectrometer (ACIS; Garmire et al. 1992). ACIS-I
was chosen for maximum sensitivity with the ability to perform
some spectral analysis with a relatively short observing time.
Our exposures were designed to yield similar numbers of X-ray
counts, based on the discussion of the previous section. The
final exposure times for the two observations were 7ks and
10ks for CWCep and AHCep, respectively. Ephemeris data
from the AAVSO6 indicates that neither system was in eclipse
at the time of observation (with confirmation from Han et al.
2002 for CWCep).

Hydrogen column densities were estimated using values
of E B V-( ) from the relation that N 5.8 10H

21» ´ cm2 ´
E B V-( ) (Cox 2000). Observed colors were combined with
expected ones based on spectral class using Cox (2000). Count
rates for ACIS-I were then estimated with interstellar extinction
included. Note that the thermal plasma of OBstar X-rays is
typified by temperatures of a few MK (i.e., kT values of a
couple tenths of a keV (e.g., Oskinova 2016). Table 4
summarizes information about the observations, such as the
exposure “Exp”, observed counts, the count rate Ċ , the
hardness ratio HR, and the inferred fluxes f and luminosities
L with ACIS-I.

Analysis of both observations was performed with the
CIAO7 (v4.9; Fruscione et al. 2006) software after standard
pipeline processing of the event files. Source luminosity was
estimated using the srcflux function, assuming an APEC
model, by Dickey & Lockman (1990) via the HEASARC
database8. Figure 2 displays the field of view for our two
targets. Note that based on the GAIA DR1 Catalog, there are no
other objects within 2 arcsec from either target. The overall
90% uncertainty circle of Chandra’s X-ray absolute position
has a radius of 0.8arcsec. The 99% limit for the positional
accuracy is 1.4 arcsec. The worst case offset is 2.0 arcsec, but
that is for off-axis observations, whereas both of our pointings
were on-axis. For CW Cep, we detected no source photons,
giving us an upper limit on the model luminosity of 1 1030~ ´
erg s−1. AH Cep was detected with 37 source counts, and an
implied luminosity of 9 33 1030´( – ) erg s−1, for a 90%
confidence interval. Though the S/N is too low to be definitive,
AHCep emission does show some energy dependence, and is
centered around 1 keV» . We used a T1 fit with kT of 0.3 keV
and 0.6 keV, typical OB star X-ray spectra, and of the expected
temperature for the colliding wind shock as indicated in
Table 3.
Although the detection of AHCep yields an inferred X-ray

luminosity that is basically commensurate with expectations for
embedded wind shocks and/or a wind-collision shock, the

Table 4
Measured X-Ray Properties

AH Cep CW Cep

R.A.a 22 47 52.9414 23 04 02.2185
Decl.a +65 03 43.797 +63 23 48.718
Exp. (ks) 10 7
Counts 37 L
Ċ (cps) 0.0037 0.00033<
HR 0.9 L
fACIS

b,c (10−14 erg s−1 cm−2) 7–24 2<
LACIS

c (1030 erg s−1) 9–33 1.0<

Notes.
a R.A. and decl. taken from GAIA DR1 catalog.
b ACIS-I fluxes are the “unabsorbed” values.
c ACIS-I fluxes and luminosities are for the range of 0.3–10keV. The ranges
quoted for AHCep are 90% confidence intervals.

Figure 2. Chandra ACIS-I image of the field of view for the targets AHCep
(left; detected) and CWCep (right; undetected). Each image is 2 2¢ ´ ¢. The
circles of 6″ radius are centered on source coordinates from SIMBAD.

5 Note that in the acceleration zone of the winds, peak temperature in the post-
shock gas may no longer occur along the lines of center for the stars, but in an
annulus about that line, owing to the condition of oblique shocks, with possible
consequences for the expected X-ray luminosity. Whether this can occur
requires evaluation via the hydrodynamical simulation.
6 https://www.aavso.org/ 7 Available at http://cxc.harvard.edu/ciao/.

8 https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl
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nondetection of CWCep, a near twin of the AHCep system,
makes this interpretation problematic.

4. Discussion

How are we to understand the detection for AHCep along
with the nondetection of CWCep, given the quite similar
properties of these two early-type binary stars? Uncertainties
in distance and interstellar absorption could perhaps be
important. However, given that one of the sources is detected
and the other is not, such effects must conspire to produce an
order of magnitude difference between the two source
luminosities.

Alternatively, it is useful to review the assumptions of
Section 2.2 for the target sources. In the theoretical study of
Owocki et al. (2013) for the scaling between LX and LBol for
single massive stars, it seems likely that embedded wind shocks
for early B-type stars, even B0.5V stars such as our targets,
will likely be adiabatic and therefore faint. In terms of the
emission expected from the stars individually, we appear to
have overstimated expected X-ray luminosities.

Regarding the colliding wind shock for the respective binary
targets, Antokhin et al. (2004) derived a convenient expression
for the condition in which the colliding wind shock is radiative
or adiabatic in terms of orbital period. Their Equation (24) is
reproduced here:

P
M

M M

M

v
26 day

20
, 10

1 2

1 2
6

1.5

1000
7.5

<
+

-⎛
⎝⎜

⎞
⎠⎟

˙
( )

where P is the orbital period, Ṁ is in M10 yr6 1- -
 , and v is

the pre-shock speed relative to 1000kms−1. The shock will
be radiative when the inequality is met; otherwise, it will be
adiabatic.

In the case of AHCep, the orbital period is 1.78days.
With a terminal speed of 1400kms−1, the division between
radiative and adiabatic colliding wind shocks is an orbital
period of 0.001days, or 36 s. The binary period is of course
much greater, thus predicting an adiabatic shock. However,
neither of the winds for the two components comes
anywhere near achieving terminal speed. The orbital
separation is R19.0 . The primary has a radius of R6.4 ,
and the secondary has a radius of R5.9 . Again using
Equation (6), the pre-shock wind speed of the primary for
the distance of the stagnation point is v0.34 ¥. Using Ṁ
estimated for the primary only, the threshold for a radiative
shock increases to 0.7days. Although still too short for the
shock to be radiative, it is much closer, being within a factor
of ∼2.5.

Now consider CWCep. The orbital period is longer at
2.73days. The orbital separation is somewhat larger, and the
stars are both somewhat smaller than the components of
AHCep. Following the steps in the example of AHCep, the
colliding wind shock will be adiabatic for orbital periods longer
than about 0.01days.

In summary, it appears that the embedded wind shocks for
both AHCep and CWCep are likely adiabatic, as consistent
with Equation (8), suggesting that the X-ray emissions from the
individual winds, if they were in isolation, would be relatively
weak. The colliding wind shocks are likewise adiabatic and
weak sources. However, there is tremendous sensitivity of this
criterion to the mass-loss rate and pre-shock wind speed, of
which neither is well-constrained for either system. If the

X-rays of AHCep do originate from the colliding wind shock,
it would imply that we have, for the first time, detected X-rays
from a B+B wind collision.9

There is an alternative explanation to account for the detected
X-rays. Several previous studies suggest that AHCep is a
multiple system, with four components in total (Mayer &
Wolf 1986; Drechsel et al. 1989; Harvig 1990; Kim et al.
2005). Component #3 is assigned a period of 67.6years in an
eccentric orbit of e= 0.52. Component #4 has a period of 9.6
years, in an even more eccentric orbit with e= 0.64. The two stars
have respective mass estimates of M M83 »  and M M44 » ,
making them spectral types B2-B3 and B7-B8, respectively (Kim
et al. 2005). The age of the system is estimated at about 6Myr
(Holmgren et al. 1990). At these spectral types, neither the tertiary
or quarternary stars are expected to be X-ray bright, unless
perhaps the stars have magnetic fields (Oskinova et al. 2011; Petit
et al. 2013; Nazé et al. 2014).
Binarity among massive stars is known to be relatively

normal (e.g., a recent short review by Sana 2017). Less is
known about hierarchical systems among massive stars. The
well-known multiplet massive star system Mintaka (δOri,
HD 36486) is bright, relatively close, and well-studied in many
wavebands, including extensive observations at X-ray wave-
lengths (Corcoran et al. 2015; Nichols et al. 2015; Pablo et al.
2015; Richardson et al. 2015; Shenar et al. 2015). The center of
the system is a triple, involving an O9.5 II primary and an
early-type secondary in a fairly tight orbit with a period of 5.7»
days. A more distant third component of perhaps M8» 
follows an elliptical orbit of nearly 350 years. Although
Mintaka is an X-ray source, the bulk of the emission is
associated with the embedded shocks for the primary wind, as
opposed to a wind collision with the secondary star’s wind, or
as arising with the tertiary. Mintaka is a case in which the X-ray
emissions are dominated by the primary star, but in contrast to
our targets, the primary for Mintaka is an evolved late-type
Ostar.
βCru is an example of a triple system involving massive

stars that displays a complex X-ray signal (Cohen et al. 2008).
The primary is B0.5III, so the same spectral class as the stars
in our binaries, but a giant instead of a main-sequence star.
The secondary is B2V (Aerts et al. 1998) in an eccentric orbit
with a period of 5yr. The age of the system is estimated at
around 8–10Myr (Cohen et al. 2008), which is not much
greater than the estimate for AHCep. Interestingly, Cohen
et al. (2008) report on a pre-main-sequence companion in
their X-ray study of βCru, betrayed through its relatively
hard contribution to the X-ray emission detected from the
system. βCru represents a case in which the massive primary
does not entirely dominate the X-ray emissions. Whereas the
primary for βCru is evolved, the primary and secondary stars
in AHCep are less luminous main-sequence stars. Conse-
quently, either/both of the other companions could have a
relatively more important contribution to observed X-ray
emissions, if magnetic.

9 Pillitteri et al. (2017) report the detection of variable X-rays from the B2IV
+B2V binary ρOph A+B, but attribute the X-rays to magnetic effects for the
fast-rotating, young primary star. Shultz et al. (2015) report on X-rays from B
+B binary òLup in which both stars are magnetic with interacting
magnetospheres.
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5. Conclusions

There are three main mechanisms to consider for under-
standing the detection of X-rays from AHCep but not from
CWCep.

1. The X-rays detected in AHCep may come from a
colliding wind shock that is either not present or not
detected in CWCep. The predictions for whether the
colliding wind shock is radiative or adiabatic are quite
sensitive to the velocity distribution of the stellar winds,
and somewhat sensitive to the mass-loss rate. Using a

1b = velocity law, and given the different separations
between the primary and secondary stars in our targets,
we may expect the colliding wind shock of CWCep to be

3~ ´ smaller than for AHCep, yet the upper limit to the
X-ray luminosity for CWCep is over 10´ smaller.

Our adopted terminal speeds may be too high, or too
low. Moreover, our use of 1b = for the velocity law
could well be in error: the radiation from each of the stars
may modify the wind driving in between the stars. It
should be noted that Prinja (1989) provides an analysis of
IUE spectra for a number of main-sequence Bstars,
among them some early types. Values for Ṁ and v¥ are
determined only for two B0V stars, and the mass-loss
rates are actually products, Mq˙ , where q is the ionization
fraction for the species used in the PCygni line analysis.
Consequently, the values from Prinja (1989) provide only
lower limits to Ṁ , which for the two B0V stars are
nearly two orders of magnitude lower than values
adopted from Vink et al. (2000). The terminal speeds
are also lower than what we have adopted. Using values
from Prinja (1989) would indicate that the colliding wind
shocks for AHCep and CWCep are strongly adiabatic.
Although it seems unlikely that we have detected X-rays
from the colliding wind shocks, the wind properties of the
stars and of the CWI, being in the wind acceleration zone,
are simply too poorly known.

2. It seems unlikely that we have detected wind embedded
shocks from the individuals winds. The L LX Bol ratio for
AHCep is low but commensurate with expectations for
single stars. However, all four of the B0.5V stars are
nearly identical. Consequently, it is difficult to understand
why AHCep is detected when CWCep is not, if the
X-rays arise from wind shocks. Perhaps the primary or
secondary in AHCep is magnetic. Magnetic Bstars are
known to be diverse in the luminosity and hardness level
of their X-rays (e.g., Oskinova et al. 2011; Petit
et al. 2013; Nazé et al. 2014).

3. One distinction between our two targets is that AHCep
has been reported to be a multiplet system of four stars,
whereas CWCep appears to be only a binary. It is
possible that either or both of the other two stars in
AHCep are responsible for its X-ray emissions. The
tertiary and quaternary components are thought to be mid
and late B stars, respectively. Detectable X-rays from
embedded wind shocks for either of these objects seems
highly unlikely, given the roughly M2˙ dependence of
X-ray luminosity for these spectral types (Owocki
et al. 2013). Wind collision is an equally unlikely
explanation: the large separation implies low densities
and small emission measures. The ratio L LX Bol for
the detection of the AHCep system is 1 10 7» ´ - . If the

B2-B3 star of the system were the source of X-rays, the
ratio would increase to 10 6~ - for that object; if the even
later B8–B9 star is the source, the ratio would be 10 5~ - .

An interesting implication of the first two points—namely
that X-rays are not detected from the stellar winds or colliding
winds—would further support the emerging picture that the
wind properties of Bstars are poorly known, and that the winds
may be quite weak. Failure to detect X-ray signatures from
colliding winds could be a combination of low Ṁ values and
low-speed flow. The latter would result in weaker shocks of
lower temperatures at ∼1MK. Failure to detect X-rays from
the individual winds leads to the same conclusion of weak
winds. As further evidence in support of Bstars having weak
winds, Muijres et al. (2012) mention difficulties with obtaining
wind solutions for L L2 105 ´ . Their struggle aligns well
with the low Ṁ and v¥ values obtained by Oskinova et al.
(2011) in their study of several magnetic Bstars. The situation
for the Bstars is complicated by the fact that some weak-wind
Bstars are relatively strong X-ray emitters (Huenemoerder
et al. 2012; Doyle et al. 2017).
Progress toward understanding the differences in X-ray

emissions between these two systems can be addressed with
new observations. Certainly, better understanding of the stellar
winds would be furthered by performing a detailed analysis of
UVspectra of the systems, if possible. For example, Pachoulakis
et al. (1996) were only able to derive upper limits to the mass-
loss rates for CWCep. A deep X-ray exposure of CWCep
could allow for a detection of its faint X-rays, or at least place a
more stringent upper limit on its emission. An X-ray light curve
for the detected source, AHCep, would constrain the source of
X-rays. If its X-ray emissions vary in phase with the orbit period
of the primary and secondary, then the X-rays arise from the
inner binary of this multiplet. Dimming of the X-rays when
either of the stars are forefront (i.e., during an optical eclipse,
twice per orbit) would favor a colliding wind shock as the source
of X-rays, as opposed to embedded wind shocks. Failure to
detect variability of either kind could suggest stellar magnetism
among any of the four components of AHCep as an explanation
for the X-ray detection.
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