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ABSTRACT

Properties of Small Ordered Graphs Whose Vertices are Weighted by Their Degree

by

Constance M. Blalock

Graphs can effectively model biomolecules, computer systems, and other applications.

A weighted graph is a graph in which values or labels are assigned to the edges of the

graph. However, in this thesis, we assign values to the vertices of the graph rather

than the edges and we modify several standard graphical measures to incorporate

these vertex weights. In particular, we designate the degree of each vertex as its

weight. Previous research has not investigated weighting vertices by degree. We find

the vertex weighted domination number in connected graphs, beginning with trees,

and we define how weighted vertices can affect eccentricity, independence number,

and connectivity.
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1 INTRODUCTION

A graph G consists of a finite set of vertices together with a set of edges that

connect those vertices. If vertices u and v are connected by an edge, then it is

denoted as edge uv. The vertices u and v are therefore adjacent. A vertex u and

edge uv are called incident. A graph is said to be a weighted graph if the edges are

assigned weights. There is a large volume of work on weighted graphs in the literature.

However, there is not a comparable amount of research dedicated to graphs whose

vertices are weighted. In fact, a literature search for weighted graphs in mathematical

journals results almost exclusively in edge weighted graphs [6, 10, 14, 16]. In previous

work by Knisley et al. [7, 8, 9] small ordered graphs were used to model biomolecules

and the vertices were weighted by the molecular mass of the corresponding atoms.

In this thesis, we designate the degree of each vertex as its weight. In particular,

we studied small-ordered graphs, such as trees, whose vertices are weighted by their

degree.

A review of available publications on vertex weighting shows that vertex weighting

has been typically limited to various algorithms for assigning vertex weights [1, 11,

13, 14, 16]. For instance, Southey and Henning [14] developed a scheme of weighting

vertices by summing the values of the incident edges based on an edge weighting

function on dominating sets. Our goal is to assign weights to the vertices and use

these weights to define graphical invariants that incorporate vertex weights. We find

this an area of open investigation and have defined several invariants using degree

weights. We most fully examine domination by degree weights and thus start this

paper with weighted domination.
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A graph is connected if for any pair of vertices in the graph there is a path of

consecutive edges between them. That is, for every vertex v in graph G, we can find a

path of edges connecting vertices vu1, u1u2, ..., ui−1ui that leads directly to any other

given vertex ui in G. We limit our research to connected graphs.

A graph invariant is a number derived from the structure of the graph. Some

such invariants are order, n, which is the number of vertices in a graph, and size, m,

which is the number of edges of the graph. We use other invariants in this thesis, such

as domination number, maximum degree, radius, diameter, connectivity, and others

that will be formally defined as they are introduced. Observe that we often find the

cardinality of a minimum (maximum) vertex set under a specified constraint such as

the minimum dominating set of vertices. To incorporate the weights of the vertices

into the definition of a graphical invariant we find the minimum (maximum) weight

vertex set under that specified constraint.

The degree of a vertex is the number of vertices adjacent to that vertex. These

standard graphical definitions, and others in this thesis, have been compiled using

texts by Chartrand et al. [2], Haynes [5] et al. and Harary [4]. We now modify these

definitions by including the weight of the vertices.

Definition 1.1 A graph whose vertices are assigned weights is called a vertex-weighted

graph. A D-graph is a vertex-weighted graph, one whose vertices are assigned the

weight equal to its degree.

The ability to weight vertices in graphs for consideration in determining an in-

variant should be useful in a variety of task projects, biomedical applications, chemi-

cal molecular modeling, game theory, travel planning, city planning, communication
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networks, and data organization. Some of our observations and propositions are ap-

plicable to all graphs, but for some we will limit our discussions to graphs of order

n ≤ 6.
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2 DOMINATION IN D-GRAPHS

Domination in graphs has received much attention in the last few decades. A

vertex v in a graph G is said to dominate itself and all of the vertices adjacent to

it. A set S is called a dominating set of G if every vertex in the graph is dominated

by at least one vertex in set S. The minimum cardinality of all the dominating sets

of G is called the domination number, denoted γ(G). A dominating set of minimum

cardinality is called a γ-set. Ore’s Theorem [12] provides an upper bound for the

domination number using order.

Theorem 2.1 [12] If a graph G of order n has no isolated vertices, then γ(G) ≤ n
2
.

The maximum degree of a graph, denoted ∆(G), is the largest degree of all the

vertices in the graph. Using maximum degree, a lower bound for the domination

number is provided by Waliker et al. [15].

Theorem 2.2 [15] For any graph G of order n,
⌈

n
1+∆(G)

⌉
≤ γ(G).

So a functional set of bounds for the domination number on a connected graph

G is
⌈

n
1+∆(G)

⌉
≤ γ(G) ≤ n

2
. From Haynes et al. [5], we know that one vertex can

dominate at most itself and the maximum degree of G, ∆(G), other vertices.

For a vertex weighted graph, instead of the minimum cardinality, we find the

minimum weight by summing the degree weight of each vertex in a dominating set.

Definition 2.3 Let the weighted domination number of a D-graph, denoted γw(G),

be the minimum sum of the weights of the vertices among all possible dominating sets.

A dominating set of vertices with minimum weight will be denoted by γw-set.
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Figure 1: The house graph as a D-graph, with vertex weights in parentheses

As an example of a D-graph, recall G, the house graph, shown in Figure 1. Let

G have vertices {a, b, c, d, e} as shown in Figure 1. It has three vertices of degree

2, namely, {a, c, d}. It has two vertices of degree 3, namely, {b, e}. The dominat-

ing vertex sets of G are {a, c}, {a, d}, {b, c}, {b, d}, {e, d}, {e, c}, and {b, e} and thus

γ(G) = 2. The weighted domination number of G can be found by checking the

sum of the degrees of these sets. They are 4, 4, 5, 5, 5, 5, and 6 respectively. Thus

γw(G) = 4, the minimum weight of these dominating sets, which can be found using

either {a, c} or {a, d}.

If a graph G has a γ-set that is also a γw-set, then we say that there exists a

γw-set such that γw-set = γ-set. The house graph in Figure 1 has a γw-set = γ-set,

namely {a, c} or {a, d}. On the other hand, the graph in Figure 2 does not. Its γ-sets

are {a, d}, {b, d}, and {c, d}. The weighted domination for these sets are 7, 6, and

6 respectively. We can, however, find a smaller γw(G) by choosing as our γw-set as

{a, e, f} or {c, f, e}. Thus γw(G) = 5.
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Figure 2: The graph above does not have a γw-set equal to its γ-set

2.1 Domination in D-Trees

We first investigate domination in D-trees. In a graph G, a cycle is a path

of edges connecting vertices vu1, u1u2, ..., uiv that leads directly back to the original

vertex. A tree is a connected graph without cycles. It is interesting to note that trees

always have size m = n−1 for order n and that the addition of a single edge in a tree

creates a cycle which changes the graph from a tree. The deletion of a single edge

disconnects the graph which also changes it to a graph that is not a tree.

We began with the tree with the highest degree, n − 1, known as a star. Figure

3 depicts a star. A star is a tree with n vertices, n − 1 of which are degree 1. The

designation for the star is K1,n−1, that is, a tree with one central vertex and n − 1

leaves with a leaf being a vertex of degree 1. Our first observation was that the

cardinality of γw-set of a star is the same cardinality of the γ-set, which is also the

11



Figure 3: The star graph with weights in parentheses used in Proposition 1

domination number of that star.

Proposition 2.4 For any star K1,n−1, there exists γw-set, such that γw-set = γ-set,

and γw(K1,n−1) = n− 1.

Proof. Let K1,n−1 be a star graph with order n. Then γ(K1,n−1) = 1 because a

star is dominated by its central vertex. The degree of the central vertex is n − 1.

The number of leaves (of degree one) is n − 1 and thus γw(K1,n−1) = n − 1 can be

achieved by either using the central vertex of degree n − 1 or by using the n − 1

vertices of degree one. These are the only two possible degree weighted dominating

sets and both are equal and thus minimum. Therefore γw(K1,n−1) = n− 1. Because

the degree weighted domination number of the star can be formed by a single vertex,

then there exists γw-set = γ-set. �

We now consider paths where ∆(G) = 2, the lowest maximum degree possible if

n ≥ 3. The path, is a tree of order n and size n− 1 whose vertices can be labeled
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v1 , v2 , ..., vn where all vi are distinct. Paths of order n = 1 are single vertices and

those of order n = 2 have maximum degree one. The maximum degree of any path

of order n ≥ 3 is ∆(Pn) = 2. The bounds on γ(Pn) for any path of order n can be

deduced from Cockayne et al. [3].

Theorem 2.5 [3] If a connected graph G of order n is claw-free and net-free, then

γ(G) ≤ dn
3
e.

Since a path is both claw-free and net-free, γ(Pn) = dn
3
e. To find the domination

number and γ-set of a path, γ(Pn), we use the simple process of starting with the

second vertex in the path, which will dominate the end vertex, itself, and the third

vertex, and choosing every third vertex after that. If n is divisible by 3, then (Pn) can

be partitioned into subsets of three vertices each with the center vertex dominating

the vertices on either side. If n is not divisible by 3, then an additional end vertex

will need to be in the dominating set. There are other means for determining γ(Pn)

but this produces a simple way to determine a weighted dominating set for the path.

For weighting purposes, it may be that using one or both end vertices to determine a

minimum degree weighted domination number will provide a lower bound on γw(G)

because the end vertices have degree 1 rather than 2. We define in what circumstances

this occurs.

Note, for n = 3, we obtain γ(P3) = 1 by choosing the center vertex and γw(P3) = 2

whether we use the two end vertices or the center vertex. For n = 4, γ(P4) = 2 and

γw(P4) = 2, obtained by using the end vertices of the path. From observation, we have

discovered the following equations for determining the degree weighted domination

13



number for paths of n > 4 using γ(Pn) = dn
3
e:

γw(Pn) =


2γ(Pn) = 2(n

3
) if n ≡ 0 mod 3, or

2γ(Pn)− 2 = 2dn
3
e − 2 if n ≡ 1 mod 3, or

2γ(Pn)− 1 = 2dn
3
e − 1 if n ≡ 2 mod 3.

Proposition 2.6 For any D-path of order n > 4, the weighted domination number

is given by:

γw(Pn) =


2(n

3
) if n ≡ 0 mod 3, or

2dn
3
e − 2 if n ≡ 1 mod 3, or

2dn
3
e − 1 if n ≡ 2 mod 3.

Proof. We have three cases to determine γw(Pn). Let Pn be a D-graph that is a

path with n vertices where n = 3k, 3k + 1, or 3k + 2, as needed for each case in the

proposition. Figure 4 illustrates these cases.

Figure 4: The three cases in Proposition 5

Case 1. If n ≡ 0 mod 3, then n = 3k. The vertex set of Pn = P3k can be

partitioned into subsets of three vertices each with the center vertex dominating the

14



vertices on either side. That is, for each 3-subset of vertices of Pn, of the form

{ui, vi, wi}, vi dominates ui and wi and thus γ(Pn) = n
3
. For the degree weighted

domination number, γw(Pn), we have the choice to use the same set of vertices as

γ(Pn). Because the degree of each of these vertices is 2, we have a result of γw(Pn) =

2(n
3
). Alternately, we can attempt to get a smaller weight by using one or both of

the end vertices of degree one. If we start with the end vertex u1, then that vertex

only dominates itself and v1. But we have dropped our weight by one. Each n
3

subset

after u1 is now {wi, ui+1, vi+1 : i = 1, 2, ..., k}. Now the final vertex chosen for the

dominating set is uk, two vertices from the end and the end vertex wk must be added

to the dominating set, thus bringing our weight number back up by one. So in Case 1,

changing the weighted domination set to include an end vertex means we will need to

include the other and our net weight is the same. Our weighted domination number

cannot be made less than 2(n
3
).

Case 2. If n ≡ 1 mod 3, then we have n = 3k + 1. But because the end vertices

are not used to dominate P3k, we need to add a new vertex, uk+1, into our dominating

set for P3k+1, thus increasing γ(P3k+1) by one over γ(P3k). Therefore, to determine

the weighting of P3k+1, we can again choose to use the same vertex set as γ(P3k+1),

which is one more that γ(P3k). This gives a weight of 2dn
3
e − 1 because the end

vertex, uk+1, has degree one. We can improve the γw(G) number by using the other

end vertex. As in Case 1, we will choose the end vertex u1, which will dominate itself

and v1 and the n
3

subsets will again be {wi, ui+1, vi+1}, decreasing the weight by one.

But this time we have the end vertex uk+1, which was included in the dominating set.

So our weighting number decreases by one. Taking advantage of the lower degree of

15



the end vertices results in a γw(P3k+1) = 2γ(P3k+1) − 2 = 2dn
3
e − 2. So we have a

smaller weighted domination number.

Case 3. If n ≡ 2 mod 3, then we now have n = 3k + 2. Note that P3k+2 adds

one more vertex over P3k+1, say vk+1. However, no additional dominating vertices are

necessary because vertex uk+1 of P3k+1 was already in the dominating set and can

dominate the added vertex vk+1 of P3k+2. Adding this vertex does not change the

dominating number. Thus γ(P3k+2) = γ(P3k+1). For weighting, we can again accept

the same set of dominating vertices. Therefore, γw(P3k+2) = 2γ(P3k+2)−1 = 2dn
3
e−1

because the new end vertex increases the degree of uk+1 in P3k+1 to degree 2. We

attempt to improve the number. Choose the end vertex u1, which only dominates

itself and v1, and the n
3

subsets will again be (wi, ui+1, vi+1), decreasing the weight by

one to 2dn
3
e−2. Now this time, the last dominating vertex is uk+1. This is the second

to last vertex and we cannot use the lower weight of the end vertex vk+1, raising the

number back to 2dn
3
e − 1. Thus, we have the same result. Here, we can use one but

not both end vertices and different weighted dominating set does not produce a lower

weighted domination number in the D-path.

We can take advantage of the lower degree of the end vertices only in Case 2 to

reduce the weighted domination number. All three cases are proved and the equations

for determining the weighted vertex domination number of a D-path is as observed.

�

2.2 Additional Graphs Where γw-set Equals γ-set

Graphs with a maximum degree of n−1 have the property that there exists a γw-

16



set = γ-set. Recall that the open neighborhood of v is the set NG(v) = {u ∈ V |uv ∈ E}

and the closed neighborhood of v is NG[v] = {v} ∪NG(v).

Proposition 2.7 For all connected D-graphs, if the maximum degree, ∆(G) = n−1,

then there exists γw-set = γ-set.

Proof. Let G be a D-graph and ∆(G) = n − 1. All graphs where ∆(G) = n − 1

are dominated by a single vertex of maximum degree, that is, the dominating vertex.

Thus γ(G) = 1. We want to show that γw(G) = n− 1 = ∆(G) and that there exists

a single vertex where the weighted domination number is minimum and thus there

exists γw-set = γ-set. Obviously, this is true if G is a complete graph as all vertices

have ∆(G) = n− 1 and we have already proven it for stars in Proposition 3.

Let v be a vertex of degree n − 1. We claim that there is no dominating set of

vertices whose weight is less than n − 1. Suppose, to the contrary, there is such a

set. Then no vertex of degree n − 1 will be in this γw-set. We build a weighted

dominating set S of a smaller weight excluding v. Let the remaining vertices of G be

ui for i = {1, ...n − 1}. Let u1 be in the dominating set and have degree n − k for

some k ∈ {2, 3, ..., n − 2}. If k = n − 1 then we would produce a star and we have

already discussed stars in Proposition 3. If k = 1, then we have another vertex of

maximum degree that can exist but cannot be in the dominating set as noted above.

Because u1 has degree n − k the γw(N [u1]) = n − k and the cardinality of the open

neighborhood of u1 is n− k.

Let the vertices ui that are not adjacent to u1 be B. Thus, the cardinality of

B is the order of G minus one for the vertex v, minus the cardinality of the open

17



Figure 5: Building S, a weighted dominating set consisting of u1 and the set of bj

vertices

neighborhood of u1, or

|B| = n− 1− (n− k) = k − 1.

Let some set of vertices bj ∈ B, for an indexing set j, dominate B. We take u1 and

the set of bj vertices to dominate G without using v. Each bj can dominate at most

deg(bj) − 1 new vertices and adds deg(bj) to the weight of S. Thus, all vertices bj

that are added to the dominating set S will add more weight than they dominate. So

γw(B) ≥ |B| = k − 1. Hence,

γw(G) ≥ n− k + |B| = n− k + k − 1 = n− 1.

Therefore, the single dominating vertex of maximum degree also has the minimum

weighted domination number and there exists γw-set = γ-set. �

18



2.3 Small Connected Graphs Where There Exists γw-set That Equals γ-set and

Where No Such Set Exists

Using Frank Harary’s [4] tables of small graphs, we looked further at the con-

nected graphs that are not trees. Graphs of order 1 and 2 are trees. There is one

graph of order n = 3 that is connected but not a tree, and only four graphs of order

n = 4 in this category. For n = 5, there are 18 connected graphs that are not trees.

This gives a total of 23 graphs that are connected but are not trees for n ≤ 5. We

found that for these 23 graphs, there exists γw-set = γ-set. But when we look at

n = 6, of the possible 103 graphs that are not trees or disconnected, we have nine

that do not have this property, and the weighted domination number for these D-

graphs is only minimum when more vertices than the γ-set are strategically chosen.

All of these graphs have size m = 6 or m = 7. For n = 6, all graphs of size m ≥ 4n
3

have the property that γw-set = γ-set. None of these graphs have ∆(G) = n−1. But

where we have shown that when a graph has ∆(G) = n − 1, the γw-set = γ-set, the

converse is not true.

The graphs shown in Figure 6 of order n = 6 have a smaller weighted domination

number if more than γ(G) vertices are chosen. A review of their characteristics may

lead to an explanation of why. We investigated size, maximum degree, diameter,

radius, independence number, girth, circumference, and domination number of both

the line graphs and complements.

Some of these terms have not yet been defined in this paper. We provide those

definitions now. The distance between two vertices in a graph is the length of the

shortest path between the vertices, if such a path exists. The eccentricity, ε(v), of

19



Figure 6: These D-graphs have a smaller γw(Gi) if more than γ(Gi) vertices are chosen

a vertex v is the greatest distance between v and any other vertex. Diameter is the

maximum eccentricity of any vertex in the graph and radius is the minimum eccen-

tricity of any vertex in the graph. A set U of vertices in a graph G is independent

if no two vertices in U are adjacent. The vertex independence number of G is the

maximum number of vertices in an independent set U . The independence number is

denoted either α(G) or β0(G), depending on the author. We use the second desig-

nation in accordance with Haynes et al. [5]. Girth is the smallest cycle in a graph

and circumference is the largest cycle. The complement of graph G, denoted G, is a

graph with the same vertices as G but for every non-edge in G, there is an edge in G.

The line graph, L(G) of graph G, is a graph whose vertices correspond with the edges

(lines) of G, so that two vertices of L(G) are adjacent if and only if the corresponding

20



edges of G are adjacent.

First, note those invariants that are the same for all of the nine graphs: γ(Gi) = 2,

rad(Gi) = 2, γL(Gi) = 2, γ(Gi) = 2, and γw(Gi) = 5. Table 1 summarizes the

remaining graphical invariants.

Table 1: Summary of invariants examined

Graph Size ∆(Gi) Diam β0(Gi) Girth Cir γw(Gi) γwL(Gi)

(G1) 6 4 3 4 4 4 4 5
(G2) 6 4 3 3 3 3 4 5
(G3) 6 4 3 3 3 3 4 5
(G4) 7 4 3 3 3 4 4 5
(G5) 7 3 3 3 4 4 5 5
(G6) 7 4 3 3 3 4 4 5
(G7) 7 3 4 4 3 4 5 6
(G8) 6 3 3 3 4 4 4 5
(G9) 7 4 3 4 3 4 5 6

None of these measures are unique to these nine graphs for n = 6. For example,

we can find graphs in the other 94 that have radius 2 or γ(G) = 2. Therefore, this

remains an open problem for further research.
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3 DISTANCE MEASURES FOR D-GRAPHS

Recall the definitions for distance, eccentricity, diameter, and radius in the

previous section. Each of these invariants can be vertex weighted.

Definition 3.1 Weighted distance is the sum of the vertex weights, in a D-graph, of

the minimum weighted path between two vertices.

Definition 3.2 The weighted eccentricity of a vertex v of a D-graph, denoted εw(v),

is the greatest weighted distance between v and any other vertex in the graph.

Definition 3.3 Let the weighted diameter of a D-graph G, denoted diamw(G), be the

maximum weighted eccentricity of any vertex in the graph. Let the weighted radius of

a D-graph G, denoted radw(G), be the minimum weighted eccentricity of any vertex

in the graph.

Figure 7: Eccentricity in the star graph with weights in parentheses
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To visualize these definitions, consider the star graph in Figure 7. Let v be a

vertex in the outer ring of vertices, w be the central vertex, and x any outer vertex

other than v. Then the distance from v to x is two and ε(v) = 2. The diameter of

the star is obviously two. Using weighted diameter, from v we have the degree of w,

n−1, plus the degree of x, 1. Thus diamw(G) = n−1+1 = n. The radius of the star

is the minimum eccentricity that is w to any v or 1. The radw(G) is also 1 because

w to v means we only count the weight of the vertex v.

Figure 8: A D-graph to illustrate weighted distance, with eccentricity (ε) noted
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For another example, consider the graph in Figure 8. This graph shows degree

weights and eccentricity (ε) for the displayed vertices. Note that the shortest distance

between v and w has a weight of 3 + 13 + 3 + 1 = 20. The longer distance provides

a weighted distance of only 15 as noted. Therefore, the shortest distance is larger in

weight and the longer distance over the top of the cycle is the least weighted. Thus,

we use the lower weight of the longer distance to calculate the weighted diameter and

radius. In this graph, diamw(G) = 15 and the radw(G) = 8.

A suggested usage for this convention of vertex degree weighting in distance mea-

surement is traffic movement and GPS instructions. Think of a higher weighted vertex

as a busy intersection, a long stoplight, a school zone, or a crowded business area.

Weighted vertex modeling can be used in GPS programming to assist drivers to avoid

these types of traffic delays.
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4 INDEPENDENCE NUMBER FOR D-GRAPHS

Remember the definition of independence number from Section 2.3. We have

elected to vertex weight independence number as follows.

Definition 4.1 Let the weighted independence number of a D-graph be the maximum

weight of the vertices in an independent set U , denoted β0w(G).

Figure 9: A D-graph to illustrate weighted independence number, β0w(G)

To understand weighted independence, refer to Figure 9. The independent sets for

this graph are U(G) = {{a, e, f.g}, {a, d, f, g}, {a, d, f}, {a, c, g}, {a, d, g}, {a, e, f}, {a, e, g}, {a, c},

{a, d}, {a, e} {a, f}, {a, g}, {b, d}, {b, e}, {b, f}, {b, d, f}, {b, e, f}, {c, g}, {d, f, g}, {d, b}, {d, f},

{d, g}, {e, b}, {e, f}, {e, g}, {f, g}, {a, f, g}}. Thus, β0(G) = 4 for the set U = {a, d, f, g}

or {a, e, f, g}. Therefore, {a, d, f, g} and {a, e, f.g} are of maximum cardinality of all

the independent sets, making β0 = 4. To find the weighted independence number,

find the weights of all the 27 independent sets and choose the maximum, per the

definition above. These weights are 5, 5, 4, 6, 4, 4, 4, 5, 3, 3, 2, 2, 5, 5, 4, 6, 6, 5, 4,

5, 3, 3, 3, 3, 5, 2, and 3, respectively. Therefore, β0w(G) = 6, the maximum weight
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of the vertices in an independent set of G. The sets that are of maximum weight are

{a, c, g}, {b, e, f}, and {b, d, f}. So β0-set is not the same as β0w-set. Here is another

area of open research.
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5 CONNECTIVITY FOR D-GRAPHS

A vertex cut set of a connected graphG is a set of vertices whose removal renders

G disconnected or trivial. The vertex connectivity κ(G) is the size of a minimum

vertex cut. A complete graph requires n− 1 vertices in the vertex cut set and is thus

a trivial case. A graph is called k-connected if κ(G) ≥ k. And κ(G) ≤ δ(G), the

minimum degree of the graph, because deleting all neighbors of a vertex of minimum

degree will disconnect that vertex from the rest of the graph.

Definition 5.1 Let the weighted vertex cut of a D-graph G be the minimum weight

of a vertex cut of G, denoted κw(G).

To understand weighted vertex cut, we use the same Figure 9 as we used to

demonstrate independence number. Consider the graph vertex cut sets {b} and {c}.

The removal of either of these vertices will disconnect the graph. The weight of b is

3 and the weight of c is 4. Therefore, using b as the cut vertex of minimum weight,

the κw(G) = 3.
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6 MAIN RESULTS AND FUTURE PROBLEMS

In this thesis, we introduced D-graphs, a graph whose vertices are weighted

by their respective degree. We have provided equations for finding the weighted

domination number, γw(G), for all paths, and shown that the cardinality of this set

of vertices for all stars, paths, and connected graphs where ∆(G) = n−1 can be made

equal to the γ-set. We have defined degree weighted vertex invariants for distance,

independence, and connectivity.

We have researched D-graphs with n ≤ 6 that have the property γw-set = γ-set

and those that do not. A problem for further investigation is to provide characteriza-

tions of these graphs, which can be expanded to other families of graphs and D-graphs

of order n ≥ 7. We have identified new areas of research in weighted domination and

weighted independence number. Other graphical invariants can also be modified to

include vertex weights.
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