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ABSTRACT

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on

the Coefficients

by

Brett A. Shields

In this thesis, we put restrictions on the coefficients of polynomials and give bounds

concerning the number of zeros in a specific region. Our results generalize a number of

previously known theorems, as well as implying many new corollaries with hypotheses

concerning monotonicity of the modulus, real, as well as real and imaginary parts of

the coefficients separately. We worked with Eneström-Kakeya type hypotheses, yet

we were only concerned with the number of zeros of the polynomial. We considered

putting the same type of restrictions on the coefficients of three different types of

polynomials: polynomials with a monotonicity“flip” at some index k, polynomials

split into a monotonicity condition on the even and odd coefficients independently,

and Pn,µ polynomials that have a gap in between the leading coefficient and the

proceeding coefficient, namely the µth coefficient.
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1 INTRODUCTION

Research on the zeros of polynomials has a plethora of applications and is studied

vastly by both the theoretical and applied mathematical communities. In general it

can be quite difficult to find the zeros of a polynomial; therefore it is desirable to

apply restrictions to the coefficients in order to restrict the locations of zeros. Histor-

ically, the study of finding zeros began with Gauss, who proved the classical complex

analysis result, The Fundamental Theorem of Algebra, and Cauchy, who is thought

of as the father of complex analysis. This was around the same time the geometric

representation of the complex numbers was introduced into mathematics in the 1800s

[16].

In the early 1900s Gustaf Hjalmar Eneström, a Swedish mathematician and Soichi

Kakeya, a Japanese mathematician simultaneously worked on a result that would give

the bound of the location of the zeros of a polynomial with nonnegative monoton-

ically increasing coefficients. Eneström was best known for creating the Eneström

Index, which is used to identify Eulers writings [13]. Kakeya is most noted for solving

the transportation problem, a very famous and important problem sought out during

World War II. Although, both Eneström and Kakeya proved the same result, they

did so independently, and both are given credit for the proof [13],[28]. The Eneström-

Kakeya Theorem concerns the location of zeros of a polynomial with monotonically

increasing real, nonnegative coefficients. This result was quite extraordinary in that

it restricts the location of zeros, of this type of polynomial, to the closed unit disk.

This bound on the zero’s locations makes the zeros easy to find, which leads to an eas-

ier way of finding the critical points of the polynomial by the Gauss-Lucas Theorem
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[1], which lead us into applications. There are numerous applications including, but

not limited to, “Cryptograph, Control Theory, Signal Processing, Communication

Theory, Coding Theory, Combinatorics, and Bio-Mathematics” [7]. There is always

interest in getting better results and faster ways of locating and counting the zeros

of polynomials, whether it is in general or with specific hypotheses.

Here we introduce the Eneström-Kakeya Theorem and begin to give the back-

ground of our work, leading up to the research we have accomplished.

Theorem 1.1 (Eneström-Kakeya) For polynomial p(z) =
∑n

j=0 ajz
j, if the coef-

ficients satisfy 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all the zeros of p lie in |z| ≤ 1 (see

section 8.3 of [26]).

In connection with the location of zeros of an analytic function f(z) =
∑∞

j=0 ajz
j,

where Re(aj) = αj and Im(aj) = βj, Aziz and Mohammad imposed the condition

0 < α0 ≤ tα1 ≤ · · · ≤ tkαk ≥ tk+1αk+1 ≥ · · · (and a similar condition on the βj’s) [3].

We denote this restriction of the coefficients as a “flip at k”, where the monotonicity

of the coefficients changes from increasing to decreasing. These types of conditions

have also been put on the coefficients of polynomials in order to get a restriction on

the location of zeros [15]. In Chapter 2, we impose these types of restrictions on the

coefficients of polynomials in order to count the number of zeros in a certain region.

We introduce the idea of counting zeros of a polynomial with Jensen’s Formula,

which Titchmarsh used to get a bound on the number of zeros in a specific region.

Theorem 1.2 (Jensen’s Formula) (From Conway’s Function’s of One Complex

Variable I, page 280.)

8



Let f be an analytic function on a region containing B(0;R) and suppose that

a1, a2, . . . , an are the zeros of f in B(0, R), repeated according to multiplicity.

If f(0) 6= 0 then

log |f(0)| = −
n∑
k=1

log
R

|ak|
+

1

2π

∫ 2π

0

log |f(Reiθ)| dθ.

Theorem 1.3 (Titchmarsh’s Number of Zeros Theorem) [29]

Let f be analytic in |z| < R. Let |f(z)| ≤M in the disk |z| ≤ R and suppose f(0) 6= 0.

Then for 0 < δ < 1 the number of zeros of f(z) in the disk |z| ≤ δR is less than

1

log 1/δ
log

M

|f(0)|
.

Here we show the proof of Titchmarsh’s Number of Zeros Theorem. This proof

uses the idea that we can get a bound on the number of zeros by applying Jensen’s

Formula for analytic functions on a closed disk. This result is the foundation of our

research in that we always relate back to Titchmarsh’s result to get the number of

zeros. We seek out a specific value of M such that we have a new, or better, bound

on the number of zeros of specific polynomials.

Proof of Theorem 1.3 Let f have n zeros in the disk |z| ≤ δR, say a1, a2, . . . , an.

Then for 1 ≤ k ≤ n we have |ak| ≤ δR, or
R

|ak|
≥ 1

δ
. So

n∑
k=1

log
R

|ak|
= log

R

|a1|
+log

R

|a2|
+· · ·+log

R

|an|
≥ n log

1

δ
. (1)
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By Jensen’s Formula, we have

n∑
k=1

log
R

|ak|
=

1

2π

∫ 2π

0

log |f(Reiθ)| dθ − log |f(0)|

≤ 1

2π

∫ 2π

0

logM dθ − log |f(0)|

= logM − log |f(0)|

= log
M

|f(0)|
. (2)

Combining (1) and (2) gives

n log
1

δ
≤

n∑
k=1

log
R

|ak|
≤ log

M

|f(0)|
,

or

n ≤ 1

log 1/δ
logM |f(0)|.

Since n is the number of zeros of f in |z| ≤ δR, the result follows. �

We will now discuss what others have researched concerning the number of zeros

of a polynomial using Titchmarsh type results. This is the background needed to

understand the type of results we have derived. There is much research still active in

this field of mathematics on counting the number of zeros in a specific region. Even

though some of this work was accomplished in the early/mid 1900’s, much of this

is recently discovered and many papers have been recently published concerning the

number of zeros result.

By putting a restriction on the coefficients of a polynomial similar to that of the

Eneström-Kakeya Theorem, Mohammad used a special case of Theorem 1.3 to prove

the following [24].
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Theorem 1.4 Let p(z) =
n∑
j=0

ajz
j be such that 0 < a0 ≤ a1 ≤ a2 ≤ · · · ≤ an−1 ≤ an.

Then the number of zeros in |z| ≤ 1
2

does not exceed

1 +
1

log 2
log

(
an
a0

)
.

In her dissertation work, Dewan weakens the hypotheses of Theorem 1.4 and

proves the following two results for polynomials with complex coefficients [8, 23].

Theorem 1.5 Let p(z) =
n∑
j=0

ajz
j be such that |arg(aj) − β| ≤ α ≤ π/2 for all

1 ≤ j ≤ n and some real α and β, and 0 < |a0| ≤ |a1| ≤ |a2| ≤ · · · ≤ |an−1| ≤ |an|.

Then the number of zeros of p in |z| ≤ 1/2 does not exceed

1

log 2
log
|an|(cosα + sinα + 1) + 2 sinα

∑n−1
j=0 |aj|

|a0|
.

Theorem 1.6 Let p(z) =
n∑
j=0

ajz
j where Re(aj) = αj and Im(aj) = βj for all j and

0 < α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn−1 ≤ αn, then the number of zeros of p in |z| ≤ 1/2

does not exceed

1 +
1

log 2
log

αn +
∑n

j=0 |βj|
|α0|

.

Pukhta generalized Theorems 1.5 and 1.6 by finding the number of zeros in |z| ≤ δ

for 0 < δ < 1 [25]. The next theorem, due to Pukhta, deals with a monotonicity

condition on the moduli of the coefficients.
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Theorem 1.7 Let p(z) =
n∑
j=0

ajz
j be such that |arg(aj) − β| ≤ α ≤ π/2 for all

1 ≤ j ≤ n and some real α and β, and 0 < |a0| ≤ |a1| ≤ |a2| ≤ · · · ≤ |an−1| ≤ |an|.

Then the number of zeros of p in |z| ≤ δ, 0 < δ < 1 , does not exceed

1

log 1/δ
log
|an|(cosα + sinα + 1) + 2 sinα

∑n−1
j=0 |aj|

|a0|
.

Pukhta also gave a result which involved a monotonicity condition on the real

part of the coefficients [25]. Though the proof presented by Pukhta is correct, there

was a slight typographical error in the statement of the result as it appeared in print.

The correct statement of the theorem is as follows.

Theorem 1.8 Let p(z) =
n∑
j=0

ajz
j be such that |arg(aj) − β| ≤ α ≤ π/2 for all

1 ≤ j ≤ n and some real α and β, and 0 < α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn−1 ≤ αn. Then

the number of zeros of p in |z| ≤ δ, 0 < δ < 1, does not exceed

1

log 1/δ
log

2
(
αn +

∑n
j=0 |βj|

)
|a0|

.

Aziz and Zargar [4] introduced the idea of imposing an inequality on the even

index and odd index for the coefficients of a polynomial separately. Cao and Gardner

[5] generalized this idea to impose the conditions

0 6= α0 ≤ α2t
2 ≤ α4t

4 ≤ · · · ≤ α2kt
2k ≥ α2k+2t

2k+2 ≥ · · · ≥ α2bn/2ct
2bn/2c

α1 ≤ α3t
2 ≤ α5t

4 ≤ · · · ≤ α2`−1t
2`−2 ≥ α2`+1t

2` ≥ · · · ≥ α2b(n+1)/2c−1t
2bn/2c

on the real parts of the coefficients and gave a result restricting the location of the

zeros of a polynomial. The hypotheses with restriction on the real and imaginary
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parts of the coefficients, split into even and odd indices imposed by Cao and Gardner

can be seen here:

α0 ≤ α2t
2 ≤ α4t

4 ≤ · · · ≤ α2kt
2k ≥ α2k+2t

2k+2 ≥ · · · ≥ α2bn/2ct
2bn/2c

α1 ≤ α3t
2 ≤ α5t

4 ≤ · · · ≤ α2`−1t
2`−2 ≥ α2`+1t

2` ≥ · · · ≥ α2b(n+1)/2c−1t
2bn/2c

β0 ≤ β2t
2 ≤ β4t

4 ≤ · · · ≤ β2st
2s ≥ β2s+2t

2s+2 ≥ · · · ≥ β2bn/2ct
2bn/2c

β1 ≤ β3t
2 ≤ β5t

4 ≤ · · · ≤ β2q−1t
2q−2 ≥ β2q+1t

2q ≥ · · · ≥ β2b(n+1)/2c−1t
2bn/2c.

In Chapter 3, we use the same hypotheses to count the number of zeros of the

polynomial by considering the moduli, real, as well as real and imaginary restrictions

of the even and odd indices.

In Chapter 4 we consider a type of polynomial with a gap between the leading

coefficient and the following coefficient, we denote the class of all of such polynomials

as Pn,µ, where the polynomial is of the form P (z) = a0 +
∑n

j=µ ajz
j. While studying

Bernstein type inequalities, Chan and Malik [6] introduced this particular class of

polynomials. Notice that when µ = 1, we simply have the class of all polynomials of

degree n. This class has been extensively studied in connection with Bernstein type

inequalities (see, for example, [2, 11, 10, 31, 27]). Pn,µ polynomials are the last class

of polynomials we considered with restricting the coefficients.

13



2 A MONOTONICITY CONDITION ON ALL OF THE COEFFICIENTS

In this chapter, we consider a monotonicity condition on all of the coefficients.

First, we imposed the condition on the moduli of the coefficients, similar to what

Dewan did for locations of zeros. In section 2.2 we split the coefficients into the real

and imaginary parts and put a monotonicity restriction on only the real part, much

like Pukta’s generalization of Theorem 1.6. Finally, we consider the monotonicity

restriction on the real and imaginary parts of the coefficients in 2.3. This is done

with the number of zeros in mind, where |z| ≤ δ where 0 < δ < 1, is the specific

region in the complex plane we are considering. Our results of this chapter appear in

the Journal of Classical Analysis [14].

2.1 Restrictions on the moduli of the Coefficients

In this section, we first consider the number of zeros in an annulus with restrictions

on the moduli of the coefficients where the monotonicity flips at some position k.

These are related to Puhkta type results with the monotonicity flip at k.

Theorem 2.1 Let P (z) =
n∑
j=0

ajz
j where for some t > 0 and some 0 ≤ k ≤ n,

0 < |a0| ≤ t|a1| ≤ t2|a2| ≤ · · · ≤ tk−1|ak−1| ≤

tk|ak| ≥ tk+1|ak+1| ≥ · · · ≥ tn−1|an−1| ≥ tn|an|

and |arg aj − β| ≤ α ≤ π/2 for 1 ≤ j ≤ n and for some real α and β. Then for

14



0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|

where M = |a0|t(1 − cosα − sinα) + 2|ak|tk+1 cosα + |an|tn+1(1 + sinα − cosα) +

2 sinα
∑n−1

j=0 |aj|tj+1.

As is traditional in classical complex analysis, we first discuss the results and then

offer a proof at the end of the section. Notice that when t = 1 in Theorem 2.1, we

get the following.

Corollary 2.2 Let P (z) =
n∑
j=0

ajz
j where for some t > 0 and some 0 ≤ k ≤ n,

0 < |a0| ≤ |a1| ≤ |a2| ≤ · · · ≤ |ak−1| ≤ |ak| ≥ |ak+1| ≥ · · · ≥ |an−1| ≥ |an|

and |arg aj − β| ≤ α ≤ π/2 for 1 ≤ j ≤ n and for some real α and β. Then for

0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|

where M = |a0|(1−cosα−sinα)+2|ak| cosα+|an|(1+sinα−cosα)+2 sinα
∑n−1

j=0 |aj|.

With k = n in Corollary 2.2, the hypothesis becomes 0 < |a0| ≤ |a1| ≤ · · · ≤

|an|, and the value of M becomes |a0|(1 − cosα − sinα) + |an|(1 + sinα + cosα) +

2 sinα
∑n−1

j=0 |aj|. Since 0 ≤ α ≤ π/2, we have 1−cosα− sinα ≤ 0. So the value of M

given by Theorem 1 is less than or equal to |an|(1 + sinα+ cosα) + 2 sinα
∑n−1

j=0 |aj|,

and Theorem 2.1 implies Theorem 1.7.
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In order to prove Theorem 2.1 we need the following, which is due to Govil and

Rahman and appears in [17].

Lemma 2.3 Let z, z′ ∈ C with |z| ≥ |z′|. Suppose |arg z∗ − β| ≤ α ≤ π/2 for

z∗ ∈ {z, z′} and for some real α and β. Then

|z − z′| ≤ (|z| − |z′|) cosα + (|z|+ |z′|) sinα.

Proof of Theorem 2.1. Consider

F (z) = (t− z)P (z) = (t− z)
n∑
j=0

ajz
j =

n∑
j=0

(ajtz
j − ajzj+1)

= a0t+
n∑
j=1

ajtz
j −

n∑
j=1

aj−1z
j − anzn+1

= a0t+
n∑
j=1

(ajt− aj−1)zj − anzn+1.

For |z| = t we have

|F (z)| ≤ |a0|t+
n∑
j=1

|ajt− aj−1|tj + |an|tn+1

= |a0|t+
k∑
j=1

|ajt− aj−1|tj +
n∑

j=k+1

|aj−1 − ajt|tj + |an|tn+1

≤ |a0|t+
k∑
j=1

{(|aj|t− |aj−1|) cosα + (|aj−1|+ |aj|t) sinα} tj

+
n∑

j=k+1

{(|aj−1| − |aj|t) cosα + (|aj|t+ |aj−1|) sinα} tj + |an|tn+1

16



by Lemma 2.3 with z = ajt and z′ = aj−1 when 1 ≤ j ≤ k,

and with z = aj−1 and z′ = ajt when k + 1 ≤ j ≤ n

= |a0|t+
k∑
j=1

|aj|tj+1 cosα−
k∑
j=1

|aj−1|tj cosα +
k∑
j=1

|aj−1|tj sinα

+
k∑
j=1

|aj|tj+1 sinα +
n∑

j=k+1

|aj−1|tj cosα−
n∑

j=k+1

|aj|tj+1 cosα

+
n∑

j=k+1

|aj|tj+1 sinα +
n∑

j=k+1

|aj−1|tj sinα + |an|tn+1

= |a0|t+ |ak|tk+1 cosα +
k−1∑
j=1

|aj|tj+1 cosα− |a0|t cosα−
k−1∑
j=1

|aj|tj+1 cosα

+|a0|t sinα +
k−1∑
j=1

|aj|tj+1 sinα + |ak|tk+1 sinα +
k−1∑
j=1

|aj|tj+1 sinα

+|ak|tk+1 cosα +
n−1∑
j=k+1

|aj|tj+1 cosα− |an|tn+1 cosα−
n−1∑
j=k+1

|aj|tj+1 cosα

+|an|tn+1 sinα +
n−1∑
j=k+1

|aj|tj+1 sinα + |ak|tk+1 sinα +
n−1∑
j=k+1

|aj|tj+1 sinα + |an|tn+1

= |a0|t+ |ak|tk+1 cosα− |a0|t cosα + |a0|t sinα + |ak|tk+1 sinα + 2
k−1∑
j=1

|aj|tj+1 sinα

+|ak|tk+1 cosα− |an|tn+1 cosα + |an|tn+1 sinα + |ak|tk+1 sinα

+2
n−1∑
j=k+1

|aj|tj+1 sinα + |an|tn+1

= |a0|t(1− cosα− sinα) + |ak|(2tk+1 cosα + 2tk+1 sinα) + |an|tn+1(1 + sinα− cosα)

+2
k−1∑
j=0

|aj|tj+1 sinα + 2
n−1∑
j=k+1

|aj|tj+1 sinα

= |a0|t(1− cosα− sinα) + 2|ak|tk+1 cosα + |an|tn+1(1 + sinα− cosα)

+2 sinα
n−1∑
j=0

|aj|tj+1

= M.
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Now F (z) is analytic in |z| ≤ t, and |F (z)| ≤ M for |z| = t. So by Theorem 1.3

and the Maximum Modulus Theorem, the number of zeros of F (and hence of P ) in

|z| ≤ δt is less than or equal to

1

log 1/δ
log

M

|a0|
.

The theorem follows. �

2.2 Restrictions on the Real Part of the Coefficients

In this section, we impose the condition of having only a restriction on the real

part of the coefficients, along with the t condition and a flip of the monotonicity at

some position k. Again we have the number of zeros result in mind and we seek out

a different M value. We show Theorem 2.4:

Theorem 2.4 Let P (z) =
n∑
j=0

ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0 and some 0 ≤ k ≤ n we have

0 6= α0 ≤ tα1 ≤ t2α2 ≤ · · · ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tn−1αn−1 ≥ tnαn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|
.

where M = (|α0| − α0)t+ 2αkt
k+1 + (|αn| − αn)tn+1 + 2

∑n
j=0 |βj|tj+1.

Notice that with t = 1 in Theorem 2.4, we get the following.
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Corollary 2.5 Let P (z) =
n∑
j=0

ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤ n.

Suppose we have

0 6= α0 ≤ α1 ≤ α2 ≤ · · · ≤ αk−1 ≤ αk ≥ αk+1 ≥ · · · ≥ αn−1 ≥ αn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

(|α0| − α0) + 2αk + (|αn| − αn) + 2
∑n

j=0 |βj|
|a0|

.

With k = n and 0 < α0 in Theorem 2.4, the hypothesis becomes 0 < α0 ≤ α1 ≤

· · · ≤ αn and the value of M becomes 2(αn +
∑n

j=0 βj); therefore Theorem 1.8 follows

from Theorem 2.4. With βj = 0 for 1 ≤ j ≤ n and δ = 1/2, Corollary 2.5 reduces to

a result of Dewan and Bidkham [9].

Example: Consider the polynomial p(z) = (z+0.1)2(z+10)2 = 1+20.2z+104.01z2+

20.2z3 + z4. With α0 = α4 = 1, α1 = α3 = 20.2, α2 = 104.01, and each βj = 0, we see

that Corollary 2.5 applies to p with k = 2, however none of Theorems 1.5 through

1.8 apply to p. With δ = 0.1, Corollary 2.5 implies that the number of zeros in

|z| ≤ δ = 0.1 is less than 1
log(1/0.1)

log 2(104.01)
1

≈ 2.318, which implies that p has at

most two zeros in |z| ≤ 0.1, and of course p has exactly two zeros in this region. We

also observe that Theorem 1.3 applies to p, but requires that we find a bound for

|p(z)| for |z| = R = 1; this fact makes it harder to determine the bound given by the

conclusion of Theorem 1.3, as opposed to the other results mentioned above which

give bounds in terms of the coefficients of p. Since all the coefficients of p in this are

positive, it is quite easy to find this maximum, and Theorem 1.3 also implies that p
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has at most two zeros in |z| ≤ δ = 0.1.

Proof of Theorem 2.4 As in the proof of Theorem 2.1,

F (z) = (t− z)P (z) = a0t+
n∑
j=1

(ajt− aj−1)zj − anzn+1,

and so

F (z) = (α0 + iβ0)t+
n∑
j=1

((αj + iβj)t− (αj−1 + iβj−1))z
j − (αn + iβn)zn+1

= (α0 + iβ0)t+
n∑
j=1

(αjt− αj−1)zj + i
n∑
j=1

(βjt− βj−1)zj − (αn + iβn)zn+1

For |z| = t we have

|F (z)| ≤ (|α0|+ |β0|)t+
n∑
j=1

|αjt− αj−1|tj +
n∑
j=1

(|βj|t+ |βj−1|)tj + (|αn|+ |βn|)tn+1

= (|α0|+ |β0|)t+
k∑
j=1

(αjt− αj−1)tj +
n∑

j=k+1

(αj−1 − αjt)tj +
n−1∑
j=1

|βj|tj+1

+|βn|tn+1 + |β0|t+
n−1∑
j=1

|βj|tj+1 + (|αn|+ |βn|)tn+1

= |α0|t+
k−1∑
j=1

αjt
j+1 + αkt

k+1 − α0t−
k−1∑
j=1

αjt
j+1 + αkt

k+1

+
n−1∑
j=k+1

αjt
j+1 − αntn+1 −

n−1∑
j=k+1

αjt
j+1 + 2

n∑
j=0

|βj|tj+1 + |αn|tn+1

= (|α0| − α0)t+ 2αkt
k+1 + (|αn| − αn)tn+1 + 2

n∑
j=0

|βj|tj+1

= M.

The result now follows as in the proof of Theorem 2.1. �
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2.3 Restrictions on the Real and Imaginary Parts of the Coefficients

In this section, we now consider the same type of result with a restriction on the

real and imaginary parts of the coefficients. Both the real and imaginary parts have

a monotonicity flip at k and `, respectively. This gives a more specific bound on the

number of zeros for polynomials which satisfy the hypotheses stated here.

Theorem 2.6 Let P (z) =
n∑
j=0

ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0, for some 0 ≤ k ≤ n we have

0 6= α0 ≤ tα1 ≤ t2α2 ≤ · · · ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tn−1αn−1 ≥ tnαn,

and for some 0 ≤ ` ≤ n we have

β0 ≤ tβ1 ≤ t2β2 ≤ · · · ≤ t`−1β`−1 ≤ t`β` ≥ t`+1β`+1 ≥ · · · ≥ tn−1βn−1 ≥ tnβn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|
,

where M = (|α0|−α0)t+2αkt
k+1+(|αn|−αn)tn+1+(|β0|−β0)t+2β`t

`+1+(|βn|−βn)tn+1.

Theorem 2.6 gives several corollaries with hypotheses concerning monotonicity of

the real and imaginary parts. For example, with t = 1 and k = ` = n we have the

hypotheses that 0 6= α0 ≤ α1 ≤ · · · ≤ αn and β0 ≤ β1 ≤ · · · ≤ βn, resulting in the

following.

21



Corollary 2.7 Let P (z) =
n∑
j=0

ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤ n.

Suppose that we have

0 6= α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn−1 ≤ αn and β0 ≤ β1 ≤ β2 ≤ · · · ≤ βn−1 ≤ βn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

(|α0| − α0) + (|αn|+ αn) + (|β0| − β0) + (|βn|+ βn)

|a0|
.

With t = 1 and k = ` = 0, Theorem 2.6 gives the following.

Corollary 2.8 Let P (z) =
n∑
j=0

ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤ n.

Suppose that we have

0 6= α0 ≥ α1 ≥ α2 ≥ · · · ≥ αn−1 ≥ αn and β0 ≥ β1 ≥ β2 ≥ · · · ≥ βn−1 ≥ βn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

(|α0|+ α0) + (|αn| − αn) + (|β0|+ β0) + (|βn| − βn)

|a0|
.

With t = 1, we can let k = n and ` = 0 (or k = 0 and ` = n), Theorem 2.6 gives

the next two results.

Corollary 2.9 Let P (z) =
n∑
j=0

ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤ n.

Suppose that we have

0 6= α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn−1 ≤ αn and β0 ≥ β1 ≥ β2 ≥ · · · ≥ βn−1 ≥ βn.
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Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

(|α0| − α0) + (|αn|+ αn) + (|β0|+ β0) + (|βn| − βn)

|a0|
.

Corollary 2.10 Let P (z) =
n∑
j=0

ajz
j where Re aj = αj and Im aj = βj for 0 ≤ j ≤ n.

Suppose that we have

0 6= α0 ≥ α1 ≥ α2 ≥ · · · ≥ αn−1 ≥ αn and β0 ≤ β1 ≤ β2 ≤ · · · ≤ βn−1 ≤ βn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

(|α0|+ α0) + (|αn| − αn) + (|β0| − β0) + (|βn|+ βn)

|a0|
.

Proof of Theorem 2.6 As in the proof of Theorem 2.4,

F (z) = (α0 + iβ0)t+
n∑
j=1

(αjt− αj−1)zj + i
n∑
j=1

(βjt− βj−1)zj − (αn + iβn)zn+1.

For |z| = t we have

|F (z)| ≤ (|α0|+ |β0|)t+
n∑
j=1

|αjt− αj−1|tj +
n∑
j=1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1

= (|α0|+ |β0|)t+
k∑
j=1

|αjt− αj−1|tj +
n∑

j=k+1

|αjt− αj−1|tj

+
∑̀
j=1

|βjt− βj−1|tj +
n∑

j=`+1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1
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= (|α0|+ |β0|)t+
k∑
j=1

(αjt− αj−1)tj +
n∑

j=k+1

(αj−1 − αjt)tj

+
∑̀
j=1

(βjt− βj−1)tj +
n∑

j=`+1

(βj−1 − βjt)tj + (|αn|+ |βn|)tn+1

= |α0|t+
k−1∑
j=1

αjt
j+1 + αkt

k+1 − α0t−
k−1∑
j=1

αjt
j+1 + αkt

k+1 +
n−1∑
j=k+1

αjt
j+1

−αntn+1 −
n−1∑
j=k+1

αjt
j+1 + |αn|tn+1 + |β0|t+

`−1∑
j=1

βjt
j+1 + β`t

`+1

−β0t−
`−1∑
j=1

βjt
j−1 + β`t

`+1 +
n−1∑
j=`+1

βjt
j+1 − βntn+1 −

n−1∑
j=`+1

βjt
j+1 + |βn|tn+1

= (|α0| − α0)t+ 2αkt
k+1 + (|αn| − αn)tn+1 + (|β0| − β0)t

+2β`t
`+1 + (|βn| − βn)tn+1

= M.

The result now follows as in the proof of Theorem 2.1. �
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3 A MONOTONICITY CONDITION ON THE COEFFICIENTS OF EVEN

POWERS AND COEFFICIENTS OF ODD POWERS OF THE VARIABLE

In this chapter, we explore the same type restrictions of the coefficients of the

polynomial, yet we impose the monotonicity condition on the even and odd indexed

coefficients separately, as did Cao and Gardner for the locations of zeros [5]. The

number of zeros result has not been previously worked on concerning the even and

odd indexed restriction on the coefficients of the polynomials and this research is novel

in that aspect. Due to the type of restrictions we impose we obtain a large number

of corollaries and results that trump previous research for specific polynomials.

3.1 Restrictions on the Moduli of the Coefficients

In this section, we first consider the moduli of the coefficients with a flip at 2k for

the even indices and a flip at 2`− 1 for the odd indices and seek out a new bound on

the M value.

Theorem 3.1 Let P (z) =
n∑
j=0

ajz
j. Suppose that for some t > 0, some nonnegative

integers k and s:

0 6= |a0| ≤ |a2t2| ≤ |a4t4| ≤ · · · ≤ |a2kt2k| ≥ |a2k+2t
2k+2| ≥ · · · ≥ |a2bn/2ct2bn/2c|,

|a1| ≤ |a3t2| ≤ |a5t4| ≤ · · · ≤ |a2`−1t2`−2| ≥ |a2`+1t
2`| ≥ · · · ≥ |a2b(n+1)/2c−1t

2bn/2c|

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|
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where

M = (|a0|t2 + |a1|t3 + |an−1|tn+1 + |an|tn+2)(1− cosα− sinα)

+2 cosα(|a2k|t2k+2 + |a2`−1|t2`+1) + 2 sinα
n∑
j=0

|aj|tj+2.

Notice when t = 1 in Theorem 3.1 we get the following,

Corollary 3.2 Let P (z) =
n∑
j=0

ajz
j. Suppose that for some t > 0, some nonnegative

integers k and s:

0 6= |a0| ≤ |a2| ≤ |a4| ≤ · · · ≤ |a2k| ≥ |a2k+2| ≥ · · · ≥ |a2bn/2c|,

|a1| ≤ |a3| ≤ |a5| ≤ · · · ≤ |a2`−1| ≥ |a2`+1| ≥ · · · ≥ |a2b(n+1)/2c−1|

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|

where

M = (|a0|+ |a1|+ |an−1|+ |an|)(1− cosα− sinα)

+2 cosα(|a2k|+ |a2`−1|) + 2 sinα
n∑
j=0

|aj|.

From Corollary 3.2 with 2k = 2bn/2c and 2` − 1 = 2b(n + 1)/2c − 1 we get the

following,
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Corollary 3.3 Let P (z) =
n∑
j=0

ajz
j. Suppose that for some t > 0, some nonnegative

integers k and s:

0 6= |a0| ≤ |a2| ≤ |a4| ≤ · · · ≤ |a2bn/2c|,

|a1| ≤ |a3| ≤ |a5| ≤ · · · ≤ |a2b(n+1)/2c−1|

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|

where

M = (|a0|+ |a1|)(1− cosα− sinα) + (|an−1|+ |an|)(1 + cosα− sinα) + 2 sinα
n∑
j=0

|aj|.

From Corollary 3.2, when k = 0 and ` = 1 we get,

Corollary 3.4 Let P (z) =
n∑
j=0

ajz
j. Suppose that for some t > 0, some nonnegative

integers k and s:

0 6= |a0| ≥ |a2| ≥ · · · ≥ |a2bn/2c|,

|a1| ≥ |a3| ≥ · · · ≥ |a2b(n+1)/2c−1|

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|

where

M = (|a0|+ |a1|)(1 + cosα− sinα) + (|an−1|+ |an|)(1− cosα− sinα) + 2 sinα
n∑
j=0

|aj|.
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From Corollary 3.2 when 2k = 2bn/2c and ` = 1 we get,

Corollary 3.5 Let P (z) =
n∑
j=0

ajz
j. Suppose that for some t > 0, some nonnegative

integers k and s:

0 6= |a0| ≤ |a2| ≤ |a4| ≤ · · · ≤ |a2bn/2c|,

|a1| ≥ |a3| ≥ · · · ≥ |a2b(n+1)/2c−1|

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|

where

M = (|a0|+|a1|+|an−1|+|an|)(1−cosα−sinα)+2 cosα(|a2bn/2c|+|a1|)+2 sinα
n∑
j=0

|aj|.

From Corollary 3.2 when k = 0 and 2`− 1 = 2b(n+ 1)/2c − 1 we get,

Corollary 3.6 Let P (z) =
n∑
j=0

ajz
j. Suppose that for some t > 0, some nonnegative

integers k and s:

0 6= |a0| ≥ |a2k+2| ≥ · · · ≥ |a2bn/2c|,

|a1| ≤ |a3| ≤ |a5| ≤ · · · ≤ |a2b(n+1)/2c−1|

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|
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where

M = (|a0|t2 + |a1|+ |an−1|+ |an|)(1− cosα− sinα)

+2 cosα(|a0|+ |a2b(n+1)/2c−1|) + 2 sinα
n∑
j=0

|aj|tj+2.

We now present the proof of Theorem 3.1.

Proof of Theorem 3.1 Define

G(z) = (t2 − z2)P (z) = t2a0 + a1t
2z +

n∑
j=2

(ajt
2 − aj−2)zj − an−1zn+1 − anzn+2.

For |z| = t we have

G(z) ≤ |a0|t2 + |a1|t3 +
n∑
j=2

|ajt2 − aj−2|tj + |an−1|tn+1 + |an|tn+2
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= |a0|t2 + |a1|t3 +
2k∑
j=2

j even

|αjt2 − αj−2|tj +

2bn/2c∑
j=2k+2
j even

|ajt2 − aj−2|tj

+
2s−1∑
j=3

j odd

|ajt2 − aj−2|tj +

2b(n+1)/2c−1∑
j=2s+1

j odd

|ajt2 − aj−2|tj + |an−1|tn+1 + |an|tn+2

≤ |a0|t2 + |a1|t3 +
2k∑
j=2

j even

{(|aj|t2 − |aj−2|) cosα + (|aj−2|+ |aj|t2) sinα}tj

+

2bn/2c∑
j=2k+2
j even

{(|aj−2| − |aj|t2) cosα + (|aj−2|+ |aj|t2) sinα}tj

+
2s−1∑
j=3

j odd

{(|aj|t2 − |aj−2|) cosα + (|aj−2|+ |aj|t2) sinα}tj

+

2b(n+1)/2c−1∑
j=2s+1

j odd

{(|aj−2| − |aj|t2) cosα + (|aj−2|+ |aj|t2) sinα}tj

+|an−1|tn+1 + |an|tn+2 by Lemma 2.1

= |a0|t2 + |a1|t3 − |a0|t2 cosα + |a2k|t2k+2 cosα + cosα
2k−2∑
j=2

j even

|aj|tj+2

− cosα
2k−2∑
j=2

j even

|aj|tj+2 + |a0|t2 sinα + |a2k|t2k+2 sinα + sinα
2k−2∑
j=2

j even

|aj|tj+2

+ sinα
2k−2∑
j=2

j even

|aj|tj+2 + |a2k|t2k+2 cosα− |a2bn/2c|t2bn/2c+2 cosα

+ cosα

2bn/2c−2∑
j=2k+2
j even

|aj|tj+2 − cosα

2bn/2c−2∑
j=2k+2
j even

|aj|tj+2

+|a2k|t2k+2 sinα + |a2bn/2c|t2bn/2c+2 sinα
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+ sinα

2bn/2c−2∑
j=2k+2
j even

|aj|tj+2 + sinα

2bn/2c−2∑
j=2k+2
j even

|aj|tj+2

−|a1|t3 cosα + |a2s−1|t2s+1 cosα + cosα
2s−3∑
j=3

j odd

|aj|tj+2 − cosα
2s−3∑
j=3

j odd

|aj|tj+2

+|a1|t3 sinα + |a2s−1|t2s+1 sinα + sinα
2s−3∑
j=3

j odd

|aj|tj+2 + sinα
2s−3∑
j=3

j odd

|aj|tj+2

+|a2s−1|t2s+1 cosα− |a2b(n1)/2c−1|t2b(n1)/2c+1 cosα

+ cosα

2b(n+1)/2c−3∑
j=2s+1

j odd

|aj|tj+2 − cosα

2b(n+1)/2c−3∑
j=2s+1

j odd

|aj|tj+2

+|a2s−1|t2s+1 sinα + |a2b(n+1)/2c−1|t2b(n+1)/2c+1 sinα

+ sinα

2b(n+1)/2c−3∑
j=2s+1

j odd

|aj|tj+2 + sinα

2b(n+1)/2c−3∑
j=2s+1

j odd

|aj|tj+2

+|an−1|tn+1 + |an|tn+2

= |a0|t2 + |a1|t3 − |a0|t2 cosα + |a2k|t2k+2 cosα + |a0|t2 sinα + |a2k|t2k+2 sinα

+2 sinα
2k−2∑
j=2

j even

|aj|tj+2 + |a2k|t2k+2 cosα− |a2bn/2c|t2bn/2c+2 cosα

+|a2k|t2k+2 sinα + |a2bn/2c|t2bn/2c+2 sinα + 2 sinα

2bn/2c−2∑
j=2k+2
j even

|aj|tj+2

−|a1|t3 cosα + |a2s−1|t2s+1 cosα + |a1|t3 sinα + |a2s−1|t2s+1 sinα

+2 sinα
2s−3∑
j=3

j odd

|aj|tj+2
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+|a2s−1|t2s+1 cosα− |a2b(n+1)/2c−1|t2b(n+1)/2c+1 cosα + |a2s−1|t2s+1 sinα

+|a2b(n+1)/2c−1|t2b(n+1)/2c+1 sinα + 2 sinα

2b(n+1)/2c−3∑
j=2s+1

j odd

|aj|tj+2

+|an−1|tn+1 + |an|tn+2

= |a0|t2(1− cosα + sinα) + |a1|t3(1− cosα + sinα) + 2|a2k|t2k+2(cosα + sinα)

+2|a2s−1|t2s+1(cosα + sinα) + 2 sinα
2k−2∑
j=2

j even

|aj|tj+2 + 2 sinα

2bn/2c−2∑
j=2k+2
j even

|aj|tj+2

+2 sinα
2s−2∑
j=3

j odd

|aj|tj+2 + 2 sinα

2b(n+1)/2c−3∑
j=2s+1

j odd

|aj|tj+2

+|an−1|tn+1(1− cosα + sinα) + |an|tn+2(1− cosα + sinα)

= (|a0|t2 + |a1|t3 + |an−1|tn+1 + |an|tn+2)(1− cosα + sinα)

+2 cosα(|a2k|t2k+2 + |a2s−1|t2s−1) + 2 sinα
n−2∑
j=2

|aj|tj+2

= (|a0|t2 + |a1|t3 + |an−1|tn+1 + |an|tn+2)(1− cosα− sinα)

+2 cosα(|a2k|t2k+2 + |a2s−1|t2s−1) + 2 sinα
n∑
j=0

|aj|tj+2

= M.

Now G(z) is analytic in |z| ≤ t, and |G(z)| ≤ M for |z| = t. So by Titchmarsh’s

theorem and the Maximum Modulus Theorem, the number of zeros of G (and hence

of P ) in |z| ≤ δt is less than or equal to

1

log 1/δ
log

M

|a0|
.

The theorem follows. �

32



3.2 Restrictions on the Real Part of the Coefficients

In this section, we now put the restriction on the real part only as before in

Chapter 2, yet with the even and odd restriction on the coefficients.

Theorem 3.7 Let P (z) =
n∑
j=0

ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0, some nonnegative integers k and s, and positive integers

` and q:

0 6= α0 ≤ α2t
2 ≤ α4t

4 ≤ · · · ≤ α2kt
2k ≥ α2k+2t

2k+2 ≥ · · · ≥ α2bn/2ct
2bn/2c

α1 ≤ α3t
2 ≤ α5t

4 ≤ · · · ≤ α2`−1t
2`−2 ≥ α2`+1t

2` ≥ · · · ≥ α2b(n+1)/2c−1t
2bn/2c

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|

where

M = (|α0| − α0)t
2 + (|α1| − α1)t

3 + 2α2kt
2k+2 + α2`−1t

2`+1 + (|αn−1| − αn−1)tn+1

+(|αn| − αn)tn+2 + 2
n∑
j=0

|βj|tj+2.

With t = 1 in Theorem 3.7 , we get the following,

Corollary 3.8 Let P (z) =
n∑
j=0

ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0, some nonnegative integers k and s, and positive integers

` and q:

0 6= α0 ≤ α2 ≤ α4 ≤ · · · ≤ α2k ≥ α2k+2 ≥ · · · ≥ α2bn/2c
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α1 ≤ α3 ≤ α5 ≤ · · · ≤ α2`−1 ≥ α2`+1 ≥ · · · ≥ α2b(n+1)/2c−1

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|

where

M = (|α0| − α0) + (|α1| − α1) + 2α2k + α2`−1 + (|αn−1| − αn−1)

+(|αn| − αn) + 2
n∑
j=0

|βj|.

With t = 1, 2k = 2bn/2c and 2`− 1 = 2bn+ 1/2c − 1 we get,

Corollary 3.9 Let P (z) =
n∑
j=0

ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0, some nonnegative integers k and s, and positive integers

` and q:

0 6= α0 ≤ α2 ≤ α4 ≤ · · · ≤ α2bn/2c

α1 ≤ α3 ≤ α5 ≤ · · · ≤ α2b(n+1)/2c−1

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|

where

M = (|α0| − α0) + (|α1| − α1) + 2α2bn/2c + α2bn+1/2c−1

+(|αn−1| − αn−1) + (|αn| − αn) + 2
n∑
j=0

|βj|.
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When, t = 1, k = 0 and `− 1 = 0 in Theorem 3.7 we get,

Corollary 3.10 Let P (z) =
n∑
j=0

ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0, some nonnegative integers k and s, and positive integers

` and q:

0 6= α0 ≥ α2 ≥ · · · ≥ α2bn/2c

α1 ≥ α3 ≥ · · · ≥ α2b(n+1)/2c−1

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|

where

M = (|α0|+ 2α0) + (|α1| − α1) + (|αn−1| − αn−1) + (|αn| − αn) + 2
n∑
j=0

|βj|.

From Corollaries 3.9 and 3.10 we can easily obtain two more corollaries with the

monotonicity of each the even and odd differing (i.e., we can have the even coefficients

monotonically increasing as the odd are monotonically decreasing, and visa versa).

We now present the proof of Theorem 3.7.

Proof theorem 3.7 Define

G(z) = (t2 − z2)P (z) = t2a0 + a1t
2z +

n∑
j=2

(ajt
2 − aj−2)zj − an−1zn+1 − anzn+2.
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For |z| = t we have

|G(z)| ≤ (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3

+
n∑
j=2

|αjt2 − αj−2|tj +
n∑
j=2

(|βj|t2 + |βj−2|)tj

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3

+

2bn/2c∑
j=2

j even

|αjt2 − αj−2|tj +

2b(n+1)/2c−1∑
j=3

j odd

|αjt2 − αj−2|tj

+

2bn/2c∑
j=2

j even

(|βj|t2 + |βj−2|)tj +

2b(n+1)/2c−1∑
j=3

j odd

(|βj|t2 + |βj−2|)tj

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3

+
2k∑
j=2

j even

(αjt
2 − αj−2)tj +

2bn/2c∑
j=2k+2
j even

(αj−2 − αjt2)tj

+
2`−1∑
j=3

j odd

(αjt
2 − αj−2)tj +

2b(n+1)/2c−1∑
j=2`+1

j odd

(αj−2 − αjt2)tj

+

2bn/2c∑
j=2

j even

|βj|tj+2 +

2bn+1/2c−1∑
j=3

j odd

|βj|tj+2

+

2bn/2c∑
j=2

j even

|βj−2|tj +

2bn+1/2c−1∑
j=3

j odd

|βj−2|tj

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3

+

 2k∑
j=2

j even

αjt
j+2 −

2k∑
j=2

j even

αj−2t
j

+

 2bn/2c∑
j=2k+2
j even

αj−2t
j −

2bn/2c∑
j=2k+2
j even

αjt
j+2
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+

 2`−1∑
j=3

j odd

αjt
j+2 −

2`−1∑
j=3

j odd

αj−2t
j

+

2b(n+1)/2c−1∑
j=2`+1

j odd

αj−2t
j −

2b(n+1)/2c−1∑
j=2`+1

j odd

αjt
j+2


+|β0|t4 + 2

2bn/2c∑
j=2

j even

|βj|tj+2 + 2

2bn+1/2c−1∑
j=3

j odd

|βj|tj+2 + |β1|t3

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3

+
(
α2kt

2k+2 − α0t
2
)

+
(
α2kt

2k+2 − α2bn/2ct
2bn/2c+2

)
+
(
α2`−1t

2`+1 − α1t
3
)

+
(
α2`−1t

2`+1 − α2b(n+1)/2c−1t
2b(n+1)/2c+1

)
+2

 2bn/2c∑
j=2

j even

|βj|tj+2 +

2bn+1/2c−1∑
j=3

j odd

|βj|tj+2

+ |β0|t4 + |β1|t3

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0| − α0)t
2 + (|α1| − α1)t

3 + 2α2kt
2k+2 + α2`−1t

2`+1 + (|αn−1| − αn−1)tn+1

+(|αn| − αn)tn+2 + 2
n∑
j=0

|βj|tj+2.

= M.

Now G(z) is analytic in |z| ≤ t, and |G(z)| ≤ M for |z| = t. So by Titchmarsh’s

theorem and the Maximum Modulus Theorem, the number of zeros of G (and hence

of P ) in |z| ≤ δt is less than or equal to

1

log 1/δ
log

M

|a0|
.

The theorem follows. �
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3.3 Restrictions on the Real and Imaginary Part of the Coefficients

In this section, we impose the same restriction as in section 2.3 on the real and

imaginary part of the coefficients, yet we also have the coefficients restricted with

the even and odd indices. This gives four restrictions in the hypotheses: even and

real, even and imaginary, odd and real, as well as odd and imaginary. Because of

the restrictions, this section gives gratuitous amounts of corollaries. Although we do

not list them all, we state the ones of greatest deviation and note how we can easily

obtain the remaining corollaries with standard algebra.

Theorem 3.11 Let P (z) =
n∑
j=0

ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that for some t > 0, some nonnegative integers k and s, and positive integers

` and q:

0 6= α0 ≤ α2t
2 ≤ α4t

4 ≤ · · · ≤ α2kt
2k ≥ α2k+2t

2k+2 ≥ · · · ≥ α2bn/2ct
2bn/2c

α1 ≤ α3t
2 ≤ α5t

4 ≤ · · · ≤ α2`−1t
2`−2 ≥ α2`+1t

2` ≥ · · · ≥ α2b(n+1)/2c−1t
2bn/2c

β0 ≤ β2t
2 ≤ β4t

4 ≤ · · · ≤ β2st
2s ≥ β2s+2t

2s+2 ≥ · · · ≥ β2bn/2ct
2bn/2c

β1 ≤ β3t
2 ≤ β5t

4 ≤ · · · ≤ β2q−1t
2q−2 ≥ β2q+1t

2q ≥ · · · ≥ β2b(n+1)/2c−1t
2bn/2c.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|

where

M = (|α0| − α0 + |β0| − β0)t2 + (|α1| − α1 + |β1| − β1)t3

+2(α2kt
2k+2 + α2`−1t

2`+1 + β2st
2s+2 + β2q−1t

2q+1)

+(|αn−1| − αn−1 + |βn−1| − βn−1)tn+1 + (|αn| − αn + |βn| − βn)tn+2.

38



With t = 1 in Theorem 3.11, we have:

Corollary 3.12 Let P (z) =
n∑
j=0

ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that for some nonnegative integers k and s, and positive integers ` and q:

0 6= α0 ≤ α2 ≤ α4 ≤ · · · ≤ α2k ≥ α2k+2 ≥ · · · ≥ α2bn/2c

α1 ≤ α3 ≤ α5 ≤ · · · ≤ α2`−1 ≥ α2`+1 ≥ · · · ≥ α2b(n+1)/2c−1

β0 ≤ β2 ≤ β4 ≤ · · · ≤ β2s ≥ β2s+2 ≥ · · · ≥ β2bn/2c

β1 ≤ β3 ≤ β5 ≤ · · · ≤ β2q−1 ≥ β2q+1 ≥ · · · ≥ β2b(n+1)/2c−1.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|

where

M = (|α0| − α0 + |β0| − β0) + (|α1| − α1 + |β1| − β1) + 2(α2k + α2`−1 + β2s + β2q−1)

+(|αn−1| − αn−1 + |βn−1| − βn−1) + (|αn| − αn + |βn| − βn).

By manipulating the parameters k, `, s, and q we easily get over sixteen more

corollaries from Corollary 3.12. For example, with k = s = 2bn/2c and ` = q =

2b(n+ 1)/2c − 1 we have:

Corollary 3.13 Let P (z) =
n∑
j=0

ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that:

0 6= α0 ≤ α2 ≤ α4 ≤ · · · ≤ α2bn/2c
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α1 ≤ α3 ≤ α5 ≤ · · · ≤ α2b(n+1)/2c−1

β0 ≤ β2 ≤ β4 ≤ · · · ≤ β2bn/2c

β1 ≤ β3 ≤ β5 ≤ · · · ≤ β2b(n+1)/2c−1.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|

where

M = (|α0| −α0 + |β0| − β0) + (|α1| −α1 + |β1| − β1) + (|αn−1|+αn−1 + |βn−1|+ βn−1)

+(|αn|+ αn + |βn|+ βn).

With k = s = 0 and ` = q = 1 in Corollary 3.12 we have:

Corollary 3.14 Let P (z) =
n∑
j=0

ajz
j where Re(aj) = αj, Im(aj) = βj for 0 ≤ j ≤ n.

Suppose that:

0 6= α0 ≥ α2 ≥ α4 ≥ · · · ≥ α2bn/2c

α1 ≥ α3 ≥ α5 ≥ · · · ≥ α2b(n+1)/2c−1

β0 ≥ β2 ≥ β4 ≥ · · · ≥ β2bn/2c

β1 ≥ β3 ≥ β5 ≥ · · · ≥ β2b(n+1)/2c−1.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|
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where

M = (|α0|+α0 + |β0|+ β0) + (|α1|+α1 + |β1|+ β1) + (|αn−1| −αn−1 + |βn−1| − βn−1)

+(|αn| − αn + |βn| − βn).

With k = bn/rc, ` = 1, and each aj real in Corollary 3.12 we have:

Corollary 3.15 Let P (z) =
n∑
j=0

ajz
j where aj ∈ R for 0 ≤ j ≤ n. Suppose that:

0 6= a0 ≤ a2 ≤ a4 ≤ · · · ≤ a2bn/2c,

a1 ≥ a3 ≥ a5 ≥ · · · ≥ a2b(n+1)/2c−1.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|

where

M = |a0|+ a0 + |a2bn/2c|+ a2bn/2c.

Example: Consider the polynomial P (z) = 1+10z+2z2+0z3+3z4+0z5+4z6+0z7+

8z8. The zeros of P are approximately −0.102119, −0.872831, −0.629384±0.855444i,

0.22895± 1.05362i, and 0.887908± 0.530244i. Applying Corollary 3.15 with δ = 0.15

we see that it predicts no more than 1.888926 zeros in |z| ≤ 0.15. In other words,

Corollary 3.15 predicts at most one zero in |z| ≤ 0.15 In fact, P does have exactly

one zero in |z| ≤ 0.15, and Corollary 3.15 is sharp for this example.
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There are many more corollaries that can come from Theorem 3.11, yet we merely

note the remaining can easily be obtained with standard algebra. Here we now present

the proof of Theorem 3.11 which involves restrictions on the monotonicity of both

the real and imaginary coefficients as well as the even and odd restriction as before

in sections 3.1 and 3.2.

Proof Theorem 3.11 Define

G(z) = (t2 − z2)P (z) = t2a0 + a1t
2z +

n∑
j=2

(ajt
2 − aj−2)zj − an−1zn+1 − anzn+2.

For |z| = t we have

|G(z)| ≤ (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3

+
n∑
j=2

|αjt2 − αj−2|tj +
n∑
j=2

|βjt2 − βj−2|tj

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3

+

2bn/2c∑
j=2

j even

|αjt2 − αj−2|tj +

2b(n+1)/2c−1∑
j=3

j odd

|αjt2 − αj−2|tj

+

2bn/2c∑
j=2

j even

|βjt2 − βj−2|tj +

2b(n+1)/2c−1∑
j=3

j odd

|βjt2 − βj−2|tj

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2
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= (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3

+
2k∑
j=2

j even

(αjt
2 − αj−2)tj +

2bn/2c∑
j=2k+2
j even

(αj−2 − αjt2)tj

+
2`−1∑
j=3

j odd

(αjt
2 − αj−2)tj +

2b(n+1)/2c−1∑
j=2`+1

j odd

(αj−2 − αjt2)tj

+
2s∑
j=2

j even

(βjt
2 − βj−2)tj +

2bn/2c∑
j=2s+2
j even

(βj−2 − βjt2)tj

+

2q−1∑
j=3

j odd

(βjt
2 − βj−2)tj +

2b(n+1)/2c−1∑
j=2q+1

j odd

(βj−2 − βjt2)tj

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3

+

 2k∑
j=2

j even

αjt
j+2 −

2k∑
j=2

j even

αj−2t
j

+

 2bn/2c∑
j=2k+2
j even

αj−2t
j −

2bn/2c∑
j=2k+2
j even

αjt
j+2


+

 2`−1∑
j=3

j odd

αjt
j+2 −

2`−1∑
j=3

j odd

αj−2t
j

+

2b(n+1)/2c−1∑
j=2`+1

j odd

αj−2t
j −

2b(n+1)/2c−1∑
j=2`+1

j odd

αjt
j+2


+

 2s∑
j=2

j even

βjt
j+2 −

2s∑
j=2

j even

βj−2t
j

+

 2bn/2c∑
j=2s+2
j even

βj−2t
j −

2bn/2c∑
j=2s+2
j even

βjt
j+2


+

 2q−1∑
j=3

j odd

βjt
j+2 −

2q−1∑
j=3

j odd

βj−2t
j

+

2b(n+1)/2c−1∑
j=2q+1

j odd

βj−2t
j −

2b(n+1)/2c−1∑
j=2q+1

j odd

βjt
j+2


+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2
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= (|α0|+ |β0|)t2 + (|α2|+ |β1|)t3

+
(
α2kt

2k+2 − α0t
2
)

+
(
α2kt

2k+2 − α2bn/2ct
2bn/2c+2

)
+
(
α2`−1t

2`+1 − α1t
3
)

+
(
α2`−1t

2`+1 − α2b(n+1)/2c−1t
2b(n+1)/2c+1

)
+
(
β2st

2s+2 − β0t2
)

+
(
β2st

2s+2 − β2bn/2ct2bn/2c+2
)

+
(
β2q−1t

2q+1 − β1t3
)

+
(
β2q−1t

2q+1 − β2b(n+1)/2c−1t
2b(n+1)/2c+1

)
+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0| − α0 + |β0| − β0)t2 + (|α1| − α1 + |β1| − β1)t3

+2(α2kt
2k+2 + α2`−1t

2`+1 + β2st
2s+2 + β2q−1t

2q+1)

+(|αn−1| − αn−1 + |βn−1| − βn−1)tn+1 + (|αn| − αn + |βn| − βn)tn+2

= M.

Now G(z) is analytic in |z| ≤ t, and |G(z)| ≤ M for |z| = t. So by Titchmarsh’s

theorem and the Maximum Modulus Theorem, the number of zeros of G (and hence

of P ) in |z| ≤ δt is less than or equal to

1

log 1/δ
log

M

|a0|
.

The theorem follows. �
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4 A MONOTONICITY CONDITION ON THE COEFFICIENTS OF

POLYNOMIALS WITH A GAP

In this chapter, we consider the same three types of hypotheses concerning the

monotonicity of the moduli, real, as well as real and imaginary parts of the coefficients.

Yet, we put these restrictions on a class of polynomials we denote as Pn,µ. This

polynomial has a gap between the leading coefficient and the preceding coefficient,

which has an index of µ. These polynomials are studied greatly in connection with

Bernstein type inequalities [6]. We obtain a number of new results and corollaries for

Pn,µ type polynomials concerning the number of zeros result.

4.1 Restrictions on the Moduli of the Coefficients

In this section, we consider the Pn,µ class of polynomials with the same restriction

as in section 2.1 on the real part of the coefficient only and seek a bound on M to

count the number of zeros using Theorem 1.3.

Theorem 4.1 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0 and for some t > 0 and some

k with µ ≤ k ≤ n,

tµ|aµ| ≤ · · · ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1|ak+1| ≥ · · · ≥ tn−1|an−1| ≥ tn|an|

and |arg aj − β| ≤ α ≤ π/2 for µ ≤ j ≤ n and for some real α and β. Then for

0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|
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where M = 2|a0|t+ |aµ|tµ+1(1− cosα− sinα) + 2|ak|tk+1 cosα+ |an|tn+1(1− cosα−

sinα) + 2
∑n

j=µ |aj|tj+1 sinα.

With t = 1 in Theorem 4.1 we get the following.

Corollary 4.2 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0 and for some t > 0 and some

k with µ ≤ k ≤ n,

|aµ| ≤ · · · ≤ |ak−1| ≤ |ak| ≥ |ak+1| ≥ · · · ≥ |an−1| ≥ |an|

and |arg aj − β| ≤ α ≤ π/2 for µ ≤ j ≤ n and for some real α and β. Then for

0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|

where M = 2|a0| + |aµ|(1 − cosα − sinα) + 2|ak| cosα + |an|(1 − cosα − sinα) +

2
∑n

j=µ |aj| sinα.

With k = n in Corollary 4.2 we get:

Corollary 4.3 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0,

|aµ| ≤ · · · ≤ |an−1| ≤ |an|

and |arg aj − β| ≤ α ≤ π/2 for µ ≤ j ≤ n and for some real α and β. Then for

0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|

where M = 2|a0|+ |aµ|(1− cosα− sinα) + |an|(1 + cosα− sinα) + 2
∑n

j=µ |aj| sinα.
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With k = µ in Corollary 4.2 we get:

Corollary 4.4 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0,

|aµ| ≥ · · · ≥ |an−1| ≥ |an|

and |arg aj − β| ≤ α ≤ π/2 for µ ≤ j ≤ n and for some real α and β. Then for

0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|

where M = 2|a0|+ |aµ|(1 + cosα− sinα) + |an|(1− cosα− sinα) + 2
∑n

j=µ |aj| sinα.

Proof of Theorem 4.1. Consider

F (z) = (t− z)P (z) = (t− z)(a0 +
n∑
j=µ

ajz
j) = a0t+

n∑
j=µ

ajtz
j − a0z −

n∑
j=µ

ajz
j+1

= a0(t− z) +
n∑
j=µ

ajtz
j −

n+1∑
j=µ+1

aj−1z
j

= a0(t− z) + aµtz
µ +

n∑
j=µ+1

(ajt− aj−1)zj − anzn+1.

For |z| = t we have

|F (z)| ≤ 2|a0|t+ |aµ|tµ+1 +
n∑

j=µ+1

|ajt− aj−1|tj + |an|tn+1

= 2|a0|t+ |aµ|tµ+1 +
k∑

j=µ+1

|ajt− aj−1|tj +
n∑

j=k+1

|aj−1 − ajt|tj + |an|tn+1
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≤ 2|a0|t+ |aµ|tµ+1 +
k∑

j=µ+1

{(|aj|t− |aj−1|) cosα + (|aj−1|+ |aj|t) sinα} tj

+
n∑

j=k+1

{(|aj−1| − |aj|t) cosα + (|aj|t+ |aj−1|) sinα} tj + |an|tn+1

by Lemma 2.3 with z = ajt and z′ = aj−1 when 1 ≤ j ≤ k,

and with z = aj−1 and z′ = ajt when k + 1 ≤ j ≤ n

= 2|a0|t+ |aµ|tµ+1 +
k∑

j=µ+1

|aj|tj+1 cosα−
k∑

j=µ+1

|aj−1|tj cosα +
k∑

j=µ+1

|aj−1|tj sinα

+
k∑

j=µ+1

|aj|tj+1 sinα +
n∑

j=k+1

|aj−1|tj cosα−
n∑

j=k+1

|aj|tj+1 cosα

+
n∑

j=k+1

|aj|tj+1 sinα +
n∑

j=k+1

|aj−1|tj sinα + |an|tn+1

= 2|a0|t+ |aµ|tµ+1 − |aµ|tµ+1 cosα + |ak|tk+1 cosα + |aµ|tµ+1 sinα

+|ak|tk+1 sinα + 2
k−1∑
j=µ+1

|aj|tj+1 sinα + |ak|tk+1 cosα− |an|tn+1 cosα + |ak|tk+1 sinα

+|an|tn+1 sinα + 2
n−1∑
j=k+1

|aj|tj+1 sinα + |an|tn+1

= 2|a0|t+ |aµ|tµ+1 + |aµ|tµ+1(sinα− cosα) + 2
n−1∑
j=µ+1

|aj|tj+1 sinα

+2|ak|tk+1 cosα + (sinα− cosα + 1)|an|tn+1

= 2|a0|t+ |aµ|tµ+1(1− cosα− sinα) + 2|ak|tk+1 cosα

+|an|tn+1(1− cosα− sinα) + 2
n∑
j=µ

|aj|tj+1 sinα

= M.

Now F (z) is analytic in |z| ≤ t, and |F (z)| ≤ M for |z| = t. So by Theorem 1.3

and the Maximum Modulus Theorem, the number of zeros of F (and hence of P ) in
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|z| ≤ δt is less than or equal to

1

log 1/δ
log

M

|a0|
.

The theorem follows. �

4.2 Restrictions on the Real Part of the Coefficients

In this section, we put a monotonicity restriction on the real part of the coefficients

only for polynomials in the class Pn,µ.

Theorem 4.5 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0, Re aj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some t > 0 and some k with µ ≤ k ≤ n we have

tµαµ ≤ · · · ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tn−1αn−1 ≥ tnαn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+|β0|)t+(|αµ|−αµ)tµ+1+2αkt
k+1+(|αn|−αn)tn+1+2

∑n
j=µ |βj|tj+1.

With t = 1 in Theorem 4.5, we get:

Corollary 4.6 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0, Re aj = αj and Im aj = βj

for µ ≤ j ≤ n. Suppose that we have

αµ ≤ · · · ≤ αk−1 ≤ αk ≥ αk+1 ≥ · · · ≥ αn−1 ≥ αn.
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Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ| − αµ) + 2αk + (|αn| − αn) + 2
∑n

j=µ |βj|.

Example. Consider the polynomial P (z) = 0.1 + 0.001z2 + 2z3 + 0.002z4 + 0.002z5 +

0.001z6. The zeros of P are approximately z1 = −0.368602, z2 = 0.184076+0.319010i,

z3 = 0.184076 − 0.319010i, and z4 = 5.62344 + 10.92507i, z5 = 5.62344 − 10.92507i,

and z6 = −13.2464. Corollary 4.6 applies to P with µ = 2 and k = 3. With δ = 0.37

we see that it predicts no more than 3.75928 zeros in |z| ≤ 0.37. In other words,

Corollary 4.6 predicts at most three zeros in |z| ≤ 0.37 In fact, P does have exactly

three zeros in |z| ≤ 0.37, namely z1, z2, and z3. So Corollary 4.6 is sharp for this

example.

With k = n in Corollary 4.6 we get:

Corollary 4.7 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0, Re aj = αj and Im aj = βj

for µ ≤ j ≤ n. Suppose that we have

αµ ≤ · · · ≤ αn−1 ≤ αn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ| − αµ) + (|αn|+ αn) + 2
∑n

j=µ |βj|.
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With k = µ in Corollary 4.6 we get:

Corollary 4.8 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0, Re aj = αj and Im aj = βj

for µ ≤ j ≤ n. Suppose that we have

αµ ≥ · · · ≥ αn−1 ≥ αn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ|+ αµ) + (|αn| − αn) + 2
∑n

j=µ |βj|.

It is easy to see from Corollary 4.6 that if n = k or k = 0, M will not change

drastically, and in fact the last three terms are the only ones affected.

Proof of Theorem 4.5. As in the proof of Theorem 4.1,

F (z) = (t− z)P (z) = a0(t− z) + aµtz
µ +

n∑
j=µ+1

(ajt− aj−1)zj − anzn+1,

and so

F (z) = (α0 + iβ0)(t− z) + (αµ + iβµ)tzµ +
n∑

j=µ+1

((αj + iβj)t− (αj−1 + iβj−1))z
j

−(αn + iβn)zn+1

= (α0 + iβ0)(t− z) + (αµ + iβµ)tzµ +
n∑

j=µ+1

(αjt− αj−1)zj

+i
n∑

j=µ+1

(βjt− βj−1)zj − (αn + iβn)zn+1.
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For |z| = t we have

|F (z)| ≤ 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +
n∑

j=µ+1

|αjt− αj−1|tj

+
n∑

j=µ+1

(|βj|t+ |βj−1|)tj + (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +
k∑

j=µ+1

(αjt− αj−1)tj

+
n∑

j=k+1

(αj−1 − αjt)tj + |βµ|tµ+1 + 2
n−1∑
j=µ+1

|βj|tj+1 + |βn|tn+1

+(|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 − αµtµ+1 + 2αkt
k+1 − αntn+1

+|βµ|tµ+1 + 2
n∑

j=µ+1

|βj|tj+1 + |αn|tn+1

= 2(|α0|+ |β0|)t+ (|αµ| − αµ)tµ+1 + 2αkt
k+1 + (|αn| − αn)tn+1

+2
n∑
j=µ

|βj|tj+1

= M.

The result now follows as in the proof of Theorem 4.1. �

4.3 Restrictions on the Real and Imaginary Part of the Coefficients

In this section, we put the monotonicity restriction on both the real and imaginary

parts of the coefficients for polynomials of the class Pn,µ.

Theorem 4.9 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0, Re aj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some t > 0 and some k with µ ≤ k ≤ n we have

tµαµ ≤ · · · ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tn−1αn−1 ≥ tnαn
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and for some µ ≤ ` ≤ n we have

tµβµ ≤ · · · ≤ t`−1β`−1 ≤ t`β` ≥ t`+1β`+1 ≥ · · · ≥ tn−1βn−1 ≥ tnβn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1 + 2(αkt
k+1 + β`t

`+1)

+ (|αn| − αn + |βn| − βn)tn+1.

In Theorem 4.9 if we let t = 1 we get the following.

Corollary 4.10 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0, Re aj = αj and Im aj = βj

for µ ≤ j ≤ n. Suppose that for some k with µ ≤ k ≤ n we have

αµ ≤ · · · ≤ αk−1 ≤ αk ≥ αk+1 ≥ · · · ≥ αn−1 ≥ αn

and for some µ ≤ ` ≤ n we have

βµ ≤ · · · ≤ β`−1 ≤ β` ≥ β`+1 ≥ · · · ≥ βn−1 ≥ βn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|)+(|αµ|−αµ+ |βµ|−βµ)+2(αk+β`)+(|αn|−αn+ |βn|−βn).

In Corollary 4.10 if we let k = ` = n we get the following.
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Corollary 4.11 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0, Re aj = αj and Im aj = βj

for µ ≤ j ≤ n. Suppose that for some k with µ ≤ k ≤ n we have

αµ ≤ · · · ≤ αn−1 ≤ αn

and for some µ ≤ ` ≤ n we have

βµ ≤ · · · ≤ βn−1 ≤ βn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ| − αµ + |βµ| − βµ) + (|αn|+ αn + |βn|+ βn).

In Corollary 4.10 if we let k = ` = µ we get the following.

Corollary 4.12 Let P (z) = a0 +
n∑
j=µ

ajz
j where a0 6= 0, Re aj = αj and Im aj = βj

for µ ≤ j ≤ n. Suppose that for some k with µ ≤ k ≤ n we have

αµ ≥ · · · ≥ αn−1 ≥ αn

and for some µ ≤ ` ≤ n we have

βµ ≥ · · · ≥ βn−1 ≥ βn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ|+ αµ + |βµ|+ βµ) + (|αn| − αn + |βn| − βn).
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In Corollary 4.10, we get similar corollaries by letting k = n and ` = µ, or k = µ

and ` = n.

Proof of Theorem 4.9. As in the proof of Theorem 4.1,

F (z) = (t− z)P (z) = a0(t− z) + atµz
µ +

n∑
j=µ

(ajt− aj−1)zj − anzn+1,

and so

F (z) = (α0 + iβ0)(t− z) + (αµ + iβµ)tzµ +
n∑

j=µ+1

((αj + iβj)t− (αj−1 + iβj−1))z
j

−(αn + iβn)zn+1

= (α0 + iβ0)(t− z) + (αµ + iβµ)tzµ +
n∑

j=µ+1

(αjt− αj−1)zj

+i
n∑

j=µ+1

(βjt− βj−1)zj − (αn + iβn)zn+1

For |z| = t we have

|F (z)| ≤ (|α0|+ |β0|)2t+ (|αµ|+ |βµ|)tµ+1 +
n∑

j=µ+1

|αjt− αj−1|tj

+
n∑

j=µ+1

(|βjt+ βj−1|)tj + (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +
k∑

j=µ+1

(αjt− αj−1)tj

+
n∑

j=k+1

(αj−1 − αjt)tj +
∑̀
j=µ+1

(βjt− βj−1)tj

+
n∑

j=`+1

(βj−1 − βjt)tj + (|αn|+ |βn|)tn+1
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= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 − αµtµ+1 + 2αkt
k+1 − αntn+1 − βµtµ+1

+2β`t
`+1 − βntn+1 + (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1 + 2(αkt
k+1 + β`t

`+1)

+(|αn| − αn + |βn| − βn)tn+1

= M.

The result now follows as in the proof of Theorem 4.1. �
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5 CONCLUSION

In this thesis, we considered three different classes of polynomials. First, a class

of polynomials with monotonically increasing coefficients to a position k, where the

monotonicity then decreased. Second, a class of polynomial with the same type of

monotonicity flip, yet with the indices of the coefficients separated into an even and

odd restriction. Last, we considered a class of polynomials with a gap between the

leading and proceeding coefficient, where the proceeding coefficient had an index of

µ. Each class of polynomial was considered with three hypotheses: restrictions on

the moduli of the coefficients, restrictions on the real part only of the coefficients,

and restrictions on the real and imaginary part of the coefficients. We put these

restrictions on the coefficients of polynomials in order to count the number of zeros

of each particular class of polynomial, in a specific region. We relied on Titchmarsh’s

result for counting the number of zeros, yet we sought out different M values for

specific polynomials. This was done to give results which can be easily applied by

simply plugging in coefficients of a polynomial, as opposed to the computation of the

bound M, which could be quite difficult.

There has been much research done in this particular field of mathematics and the

area is currently active. Our results from Chapter 2 have appeared in The Journal

of Classical Analysis [14]; the results from Chapters 3 and 4 are also being submitted

to journals. Furthermore, there is potential for further research in this area. From

the work in this thesis, one could combine Chapters 3 and 4 and consider the number

of zeros of the Pn,µ class polynomials from Chapter 3 and impose the even and odd

restriction from Chapter 4. This would be an original body of research.
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