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ABSTRACT

Are Highly Dispersed Variables More Extreme? The Case of Distributions with

Compact Support

by

Benedict Adjogah

We consider discrete and continuous symmetric random variables X taking values in

[0, 1], and thus, having expected value 1/2. The main thrust of this investigation is to

study the correlation between the variance Var(X) of X and the value of the expected

maximum E(Mn) = E(X1, . . . , Xn) of n independent and identically distributed ran-

dom variables X1, X2 . . . Xn, each distributed as X. Many special cases are studied,

some leading to very interesting alternating sums, and some progress is made towards

a general theory.
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1 MOTIVATION AND BASELINE EXAMPLES

Figure 1: Distribution with Var(X)=0.125

We know that the variance Var(X) of a random variable is a measure of its spread,

or dispersion. So if we have observations X1, . . . , Xn from a distribution X on [0, 1]

with a high variance, then the high spread should make the maximum of the obser-

vations larger than for another distribution with a smaller variance. Consider the

diagrams in Figures 1 and 2, where we get (hypothetical) expected maxima of 0.95,

0.8, and 0.7, respectively, for variables with Var(X) = 0.125; 0.0833, and 0.05.

We expect, from the figures, the largest of n values is further from the mean in

Figure 1 than in Figure 2. In the same way, comparing Figure 2, we can see that the

variance in our Beta(1,1) graph is higher than in our Beta(2,2) graph, and as such,

this makes the Beta(1,1) graph have a higher value for its expected maximum than
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the Beta(2,2) graph. This thesis is intended to quantify such behavior.

Distribution with Var(X)=0.083 Distribution with Var(X)=0.05

Figure 2: Comparing Beta(1,1) and Beta(2,2) graphs

Consider a random variable X taking values in [0, 1]. We first show that such

a random variable has bounded variance no more than 1
4

and that this bound is

attained. To prove the second part, first note that the discrete variable X that takes

on values 0 and 1 with probability 1
2

each has mean 1
2

and variance given by

Var(X) = E(X2)− E2(X)

=
1

2
− 1

4

=
1

4
.
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For the first part we note that

Var(X) = E(X2)− E2(X)

≤ E(X)− E2(X)

= E(X)(1− E(X))

≤ 1

4
,

where the last line follows from the fact that the function ϕ(x) = x(1− x); 0 ≤ x ≤ 1

takes on a maximum value of 1
4

at x = 1
2
.

Throughout this thesis, we will consider discrete and continuous symmetric ran-

dom variables X taking values in [0, 1], and thus, having expected value 1/2, and,

by the above discussion, Var(X) ≤ 1
4
. The main thrust of our investigation is to

study the correlation between the variance Var(X) of X and the value of the expected

maximum E(Mn) = E(max(X1, . . . , Xn)) of n independent and identically distributed

random variables X1, X2 . . . Xn, each distributed as X. In this chapter we consider

some baseline examples, which will then be followed in later chapters by families of

examples. Finally, we will give the beginnings of a general theory.

Example 1.1. If X is uniformly distributed on [0, 1], then Var(X) = 1
12

and E(Mn) =

1− 1
n+1

.

Proof. To see this we note that

Var(X) = E(X2)− E2(X)

≤
(∫ 1

0

x2dx

)
− 1

4

=
1

12
.
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Next, note that {Mn ≤ x} if and only if {Xi ≤ x} for each 1 ≤ i ≤ n. This is an

important fact that will be used throughout the thesis. Thus, for any input variable

X with CDF FX(x),

FM(x) = FMn(x) = F n
X(x) (1)

and, in our case, this gives

FM(x) = xn (0 ≤ x ≤ 1),

so that

E(M) =

∫ 1

0

xfM(x)dx = n

∫ 1

0

xndx =
n

n+ 1
= 1− 1

n+ 1
,

as asserted. This completes the proof.

For reasons that will become clearer soon, we always will express the value of

E(Mn) in the form 1 − εn, where εn → 0 as n → ∞. Also, from now on, we will

suppress the subscript n in expressions such as E(Mn) when there is no danger of

confusion.
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2 DISCRETE AND CONTINUOUS UNIFORM DISTRIBUTIONS

We now compare the variance and expected maximum of the distribution from

Chapter 1.

Table 1: Comparing Variance with Expected Maximum

Example Var(x) E(M)

1. U[0,1] 1
12

1− 1
n+1

We will be building on this example in the present chapter. Next, let us consider

X =


0 with probability 1

2

1 with probability 1
2

Then

E(max(X1, ..., Xn)) = 1−
(

1

2

)n
,

since M = 0 if and only if Xi = 0 for each i, and M = 1 otherwise. Thus,

E(M) = P(Xi ≥ 1 for some i) = 1−
(

1

2

)n
.

Table 2 compares our current set of results on the variance and expected maximum

given the examples above:
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Table 2: Comparing Variance with Expected Maximum

Example Var(X) E(M)

1. U[0,1] 1
12

1− 1
n+1

2. X = 0 and X = 1 1
4

1− (1
2
)n

We now proceed to the discrete uniform cases. First, let us consider the following

cases of m, where m+ 1 equals the number of discrete values, uniformly spaced, that

X takes.

Theorem 2.1. This is the so-called m = 3 case, where with P(X = x) = 1
4

where

x = 0, 1
3
, 2

3
, 1. In this case, we have Var(X) = 0.139 and E(Mn) = 1− 1

3
·
(
3
4

)n

Proof. Now we have that

E(X) =
∑
x

xP(x)

= 0

(
1

4

)
+

1

3

(
1

4

)
+

2

3

(
1

4

)
+

(
1

4

)
=

1

12
+

1

6
+

1

4

=
1

2

13



and thus,

Var(X) = E(X2)− [E(X)]2

=
∑
x

x2P(x)− 1

4

= 0

(
1

4

)
+

1

9

(
1

4

)
+

(
4

9

)
1

4
+

1

4
=

1

36
+

1

9
+

1

4
− 1

4

=
14

36
− 1

4

= 0.139.

Thus,

P(X ≤ 0) =
1

4
⇒ P(M = 0) =

(
1

4

)n
P
(
X ≤ 1

3

)
=

1

2
⇒ P

(
M ≤ 1

3

)
=

(
1

2

)n
⇒ P

(
M =

1

3

)
=

(
1

2

)n
−
(

1

4

)n
P
(
X ≤ 2

3

)
=

3

4
⇒ P

(
M ≤ 2

3

)
=

(
3

4

)n
⇒ P

(
M =

2

3

)
=

(
3

4

)n
−
(

1

2

)n
P (X ≤ 1) = 1⇒ P(M ≤ 1) = 1 ⇒ P(M = 1) = 1−

(
3

4

)n

We summarize the probabilities of the maximum values with a table:

Table 3: Probabilities of Maximum Values

x P(x)

0 (1
4
)n

1
3

(1
2
)n − (1

4
)n

2
3

(3
4
)n − (1

2
)n

1 1− (3
4
)n

14



It follows that

E(M) =
∑
m

mP(m)

= 0

(
1

4

)n
+

1

3

[(
1

2

)n
−
(

1

4

)n]
+

2

3

[(
3

4

)n
−
(

1

2

)n]
+ 1−

(
3

4

)n
= 1− 1

3

(
3

4

)n [
1 +

(
2

3

)n
+

(
1

3

)n]
≈ 1− 1

3

(
3

4

)n
.

We will now update Table 2 by adding the results of Theorem 2.1 to get Table 4.

Since each family of distribution is different, it is reasonable to compare the variance

Table 4: Comparing Variance with Expected Maximum

Example Var(X) E(M)

1. U[0,1] 1
12

1− 1
n+1

2. X = 0 and X = 1 1
4

1− (1
2
)n

3. X = 0, 1
3
, 2
3
, 1 with P(x) = 1

4
0.139 1− 1

3
.
(
3
4

)n

of X with its expected maximum for each of the distributions according to the family

they belong to. Since we have different distributions in each family, we cannot clearly

see the relationship. This will become more evident as we progress.
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Theorem 2.2. For them = 5 case, with P(X = x) = 1
6

where x = 0, 0.2, 0.4, 0.6, 0.8, 1,

we have that E(X) = 0.5, Var(X) = 0.1166667 and E(Mn) = 1− (0.2)
(
5
6

)n

Table 5: The Distribution of X where m = 5

x P (x)

0 1
6

0.2 1
6

0.4 1
6

0.6 1
6

0.8 1
6

1 1
6

Proof. We now show that the expected value of the distribution is 0.5 and then we

can proceed to find the variance and probability of the maximum which, in turn, will

be used to calculate the expected maximum value.

E(X) =
∑
x

xP(x)

= 0

(
1

6

)
+ 0.2

(
1

6

)
+ 0.4

(
1

6

)
+ 0.6

(
1

6

)
+ 0.8

(
1

6

)
+

(
1

6

)
= 0.5

16



and thus,

Var(X) = E(X2)− [E(X)]2

=
∑
x

x2P(x)− 1

4

= 0

(
1

6

)
+ (0.2)2

(
1

6

)
+ (0.4)2

(
1

6

)
+ (0.6)2

(
1

6

)
+ (0.8)2

(
1

6

)
+

1

6
− 1

4

=
11

30
− 1

4

= 0.1166667.

From the above it follows that

P(X ≤ 0) =
1

6
⇒ P(M = 0) =

(
1

6

)n
P(X ≤ 0.2) =

1

3
⇒ P(M ≤ 0.2) =

(
1

3

)n
⇒ P(M = 0.2) =

(
1

3

)n
−
(

1

6

)n
P(X ≤ 0.4) =

1

2
⇒ P(M ≤ 0.4) =

(
1

2

)n
⇒ P(M = 0.4) =

(
1

2

)n
−
(

1

3

)n
P(X ≤ 0.6) =

4

6
=

2

3
⇒ P(M ≤ 0.6) =

(
2

3

)n
⇒ P(M = 0.6) =

(
2

3

)n
−
(

1

2

)n
P(X ≤ 0.8) =

5

6
⇒ P(M ≤ 0.8) =

(
5

6

)n
⇒ P(M = 0.8) =

(
5

6

)n
−
(

2

3

)n
P(X ≤ 1) = 1⇒ P(M ≤ 1) = 1⇒ P(M = 1) = 1−

(
5

6

)n

Table 6 shows the probability of the maximum equalling various values:
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Table 6: Probability of Maximum Values

x P(x)

0
(
1
6

)n
0.2

(
1
3

)n − (1
6

)n
0.4

(
1
2

)n − (1
3

)n
0.6

(
2
3

)n − (1
2

)n
0.8

(
5
6

)n − (2
3

)n
1 1−

(
5
6

)n
Now that we have the probability of the maximum values, we can find the expected

value of the maximum:

E(M) =
∑
m

mP(m)

=
5∑
j=0

(0.2j)

[(
j + 1

6

)n
−
(
j

6

)n]
= 1− (0.2)

(
5

6

)n
− (0.2)

(
2

3

)n
− (0.2)

(
1

2

)n
− (0.2)

(
1

3

)n
− (0.2)

(
1

6

)n
= 1− (0.2)

[(
5

6

)n
+

(
2

3

)n
+

(
1

2

)n
+

(
1

3

)n
+

(
1

6

)n]
= 1− (0.2)

(
5

6

)n [
1 +

(
4

5

)n
+

(
3

5

)n
+

(
2

5

)n
+

(
1

5

)n]
≈ 1− (0.2)

(
5

6

)n

Table 7 is an update of Table 4 from the results of Theorem 2.2

Theorem 2.3. For the m = 10 case, with P(X = x) = 1
11

uniformly where

18



Table 7: Comparing Variance with Expected Maximum

Example Var(X) E(M)

1. U[0,1] 1
12

1− 1
n+1

2. X = 0 and X = 1 1
4

1− (1
2
)n

3. m = 3 with P(x) = 1
4

where x = 0, 1
3
, 2
3
, 1 0.139 1− 1

3
.
(
3
4

)n
4. m = 5 with P(x) = 1

6
where x = 0, 0.2, 0.4, ..., 1 0.1166667 1− (0.2)

(
5
6

)n

x = 0, 0.1, 0.2, ..., 1, we have that E(X) = 0.5, Var(X) = 0.1082 and

E(Mn) = 1− (0.1)
(
10
11

)n

Proof. As we did in the previous case, we show that the expected value is 0.5 and

then we proceed to find the variance and probability of the maximum values which,

in turn, will be used to calculate the expected maximum value. We have

E(X) =
∑
x

xP(x) =
10∑
j=0

(0.1j)

(
1

11

)
= 0.5.

For the variance, we have that

Var(X) = E(X2)− [E(X)]2 =
∑
x

x2P(x)− 1

4

=
10∑
j=0

(0.1j)2
(

1

11

)
−
(

1

4

)
= 0.358182−

(
1

4

)
= 0.1082.
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Next, we calculate the probability of the maximum values. We have

P(X ≤ 0) =
1

11
⇒ P(M = 0) =

(
1

11

)n
P(X ≤ 0.1) =

2

11
⇒ P(M ≤ 0.1) =

(
2

11

)n
⇒ P(M = 0.1) =

(
2

11

)n
−
(

1

11

)n
P(X ≤ 0.2) =

3

11
⇒ P(M ≤ 0.2) =

(
3

11

)n
⇒ P(M = 0.2) =

(
3

11

)n
−
(

2

11

)n
P(X ≤ 0.3) =

4

11
⇒ P(M ≤ 0.3) =

(
4

11

)n
⇒ P(M = 0.3) =

(
4

11

)n
−
(

3

11

)n
P (X ≤ 0.4) =

5

11
⇒ P(M ≤ 0.4) =

(
5

11

)n
⇒ P(M = 0.4) =

(
5

11

)n
−
(

4

11

)n
P(X ≤ 0.5) =

6

11
⇒ P(M ≤ 0.5) =

(
6

11

)n
⇒ P(M = 0.5) =

(
6

11

)n
−
(

5

11

)n
P(X ≤ 0.6) =

7

11
⇒ P(M ≤ 0.6) =

(
7

11

)n
⇒ P(M = 0.6) =

(
7

11

)n
−
(

6

11

)n
P(X ≤ 0.7) = P(M ≤ 0.7) =

(
8

11

)n
⇒ P(M = 0.7) =

(
8

11

)n
−
(

7

11

)n
P(X ≤ 0.8) =

9

11
⇒ P(M ≤ 0.8) =

(
9

11

)n
⇒ P(M = 0.8) =

(
9

11

)n
−
(

8

11

)n
P(X ≤ 0.9) =

10

11
⇒ P(M ≤ 0.9) =

(
10

11

)n
⇒ P(M = 0.9) =

(
10

11

)n
−
(

9

11

)n
P(X ≤ 1) = 1⇒ P(M ≤ 1) = (1)n ⇒ P(M = 1) = 1−

(
10

11

)n

Table 8 shows the probability of the maximum equalling various values:
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Table 8: Probability of Maximum values

x P(x)

0
(

1
11

)n
0.1

(
2
11

)n − ( 1
11

)n
0.2

(
3
11

)n − ( 2
11

)n
0.3

(
4
11

)n − ( 3
11

)n
0.4

(
5
11

)n − ( 4
11

)n
0.5

(
6
11

)n − ( 5
11

)n
0.6

(
7
11

)n − ( 6
11

)n
0.7

(
8
11

)n − ( 7
11

)n
0.8

(
9
11

)n − ( 8
11

)n
0.9

(
10
11

)n − ( 9
11

)n
1 1−

(
10
11

)n
It follows that

E(M) =
∑
m

mP(m)

=
10∑
j=0

(0.1j)

[(
j + 1

11

)n
−
(
j

11

)n]
= 0

(
1

11

)n
+ 0.1

[(
2

11

)n
−
(

1

11

)n]
+ 0.2

[(
3

11

)n
−
(

2

11

)n]
+ ...+ 1−

(
10

11

)n
= 1− (0.1)

(
10

11

)n
− (0.1)

(
9

11

)n
− (0.1)

(
8

11

)n
− ...− (0.1)

(
1

11

)n
≈ 1− (0.1)

(
10

11

)n
,

as asserted.

We will now update Table 7 by adding the results of Theorem 2.3 to get Table 9.
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Table 9: Comparing Variance with Expected Maximum

Example Var(X) E(M)

1. U[0,1] 1
12

1− 1
n+1

2. X = 0 and X = 1 1
4

1−
(
1
2

)n
3. m = 3 with P(x) = 1

4
where X = 0, 1

3
, 2
3
, 1 0.139 1− 1

3
.
(
3
4

)n
4. m = 5 with P(x) = 1

6
where X = 0, 0.2, 0.4, ..., 1 0.1166667 1− (0.2)

(
5
6

)n
5. m = 10 with P(x) = 1

11
where X = 0, 0.1, 0.2, ..., 1 0.1082 1− (0.1)

(
10
11

)n

We next consider a specific continuous uniform-like case:

Theorem 2.4. If

f(x) =



3
2

if 0 < x < 1
3

0 if 1
3
< x < 2

3

3
2

if 2
3
< x < 1

then Var(X) = .1204 and E(M) ≈ 1− 2
3n+3

.

Proof. The expected value is calculated as shown below:

E(X) =

∫ 1

0

xf(x)dx

=

∫ 1
3

0

(
3

2

)
xdx+

∫ 2
3

1
3

0xdx+

∫ 1

2
3

(
3

2

)
xdx

=

[
3

4
x2
] 1

3

0

+

[
3

4
x2
]1

2
3

=
1

12
+

3

4
− 3

4
.
4

9

=
1

2
.
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Likewise, we calculate the variance of X as shown below:

Var(X) = E(x− µ)2

=

∫ 1

0

(
x− 1

2

)2

f(x)dx

=

∫ 1
3

0

(
x− 1

2

)2

.
3

2
dx+

∫ 2
3

1
3

(
x− 1

2

)2

.0dx+

∫ 1

2
3

(
x− 1

2

)2

.
3

2
dx

=
13

108

= 0.1204.

In other words, to find the expected maximum value, we need to find the cumu-

lative distribution function of the maximum. This will then be used to calculate the

density function of the maximum which will, in turn, be used to calculate the expected

maximum function from the definition of expected value of continuous functions. The

CDF of X is obtained by conducting a case study:

F (x) =

∫ x

0

f(t)dt =

∫ x

0

3

2
dt =

3

2
x

(
0 < x <

1

3

)
=

∫ 1
3

0

f(x)dx+

∫ x

1
3

f(t)dt

=

∫ 1
3

0

3

2
dt+

∫ x

1
3

dt =

[
3

2
x

] 1
3

0

=
1

2

(
1

3
< x <

2

3

)
=

∫ 1
3

0

f(t)dt+

∫ 2
3

1
3

f(t)dt+

∫ x

2
3

f(t)dt

=
3

2

(
1

3

)
+

3

2
x− 3

2

(
2

3

)
=

(
3x− 1

2

) (
2

3
< x < 1.

)
We proceed to find the cdf of the maximum:
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FM(x) =

(
3x

2

)n
⇒ fM(x) =

3

2
n

(
3x

2

)n−1 (
0 < x <

1

3

)
FM(x) =

(
1

2

)n
⇒ fM(x) = 0

(
1

3
< x <

2

3

)
FM(x) =

(
3x− 1

2

)n
⇒ fM3(x) =

3

2
n

(
3x− 1

2

)n−1 (
2

3
< x < 1.

)
Therefore, the density function of the maximum is

fMn(x) =



3
2
n
(
3x
2

)n−1
if 0 < x < 1

3

0 if 1
3
< x < 2

3

3
2
n
(
3x−1
2

)n−1
if 2

3
< x < 1

The expected value of the maximum is obtained next:

E(M) =

∫ 1

0

xfM(x)dx (2)

The integral is separated into three parts, I1, I2, I3, where

I1 =

∫ 1
3

0

x

[
3n

2

(
3x

2

)n−1]
dx

=
3n

2

(
3

2

)n−1 ∫ 1
3

0

xndx

=
1

3(2)n
− 1

3(2)n(n+ 1)
;

I2 = 0

and
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I3 =

∫ 1

2
3

x.
3n

2

(
3x− 1

2

)n−1
dx

=
3n

2
·
∫ 1

1
2

(
2u+ 1

3

)
un−1.

2

3
du

= n

∫ 1

1
2

(
2

3
un +

un−1

3

)
du

=
n

3

[
2
un+1

n+ 1
+
un

n

]1
1
2

=
n

3

[
3n+ 1

n(n+ 1)
−
(

1

2

)n(
2n+ 1

n(n+ 1)

)]
.

Therefore, we have:

I1 + I2 + I3 =
n

3(n+ 1)
.

1

2n
+
n

3

(
3n+ 1

n(n+ 1)

)
− 1

3

(
1

2n

)(
2n+ 1

n+ 1

)
=

1

3.(2)n

(
n

n+ 1
− 2n+ 1

n+ 1

)
+
n

3

(
3n+ 1

n(n+ 1)

)
=

1

3(2)n

(
−(n+ 1)

n+ 1

)
+
n

3

(
3n+ 1

n(n+ 1)

)
= − 1

3(2)n
+
n

3

(
3n+ 1

n(n+ 1)

)
=

3n+ 1

3(n+ 1)
− 1

3(2)n

=
3n+ 3− 2

3n+ 3
− 1

3(2)n

= 1− 2

3n+ 3
− 1

3(2)n

≈ 1− 2

3n+ 3
.

Therefore,

E(M) ≈ 1− 2

3n+ 3
,

which completes the proof.
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3 THE GENERAL CASE OF DISCRETE AND CONTINUOUS UNIFORM

DISTRIBUTIONS

We start with the case of general m.

Theorem 3.1. If X has the distribution f(x) = 1
m+1

;x = 1
m
, 2
m
. . . , 1, then Var(X) =

1
12

+ 1
6m

and E(M) = 1− 1
m

(
m
m+1

)n
.

We begin the proof by showing that tE(X) = 0.5 and then we can proceed to find

the variance and the probability of the maximum values. This will then be used to

calculate the expected maximum value.

Proof. We have

E(X) =
∑
x

xP(x)

=
1

m

(
1

m+ 1

)
+

2

m

(
1

m+ 1

)
+ ...+

(
1

m+ 1

)
=

1

m(m+ 1)
(1 + 2 + 3 + 4 + ...+m)

=
1

m(m+ 1)

(
m(m+ 1)

2

)
= 0.5,

and

E(X2) =
∑
x

x2P(x)

=
1

m2

(
1

m+ 1

)(
1 + 22 + 32 + 42 + ...+m2

)
=

1

m2

(
1

m+ 1

)(
m(m+ 1)(2m+ 1)

6

)
=

1

m

(
2m+ 1

6

)
.
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Therefore,

Var(X) =
1

m

(
2m+ 1

6

)
− (0.5)2

=
1

12
+

1

6m
.

We now find the probabilities of the maximum:

P(X = 0) =
1

m+ 1
⇒ P(M = 0) =

(
1

m+ 1

)n

P
(
X ≤ 1

m

)
=

2

m+ 1
⇒

P
(
M ≤ 1

m

)
=

(
2

m+ 1

)n
⇒ P

(
M =

1

m

)
=

(
2

m+ 1

)n
−
(

1

m+ 1

)n
P
(
X ≤ 2

m

)
=

3

m+ 1
⇒

P
(
M ≤ 2

m

)
=

(
3

m+ 1

)n
⇒ P

(
M =

2

m

)
=

(
3

m+ 1

)n
−
(

2

m+ 1

)n
P
(
X ≤ 3

m

)
=

4

m+ 1
⇒

P
(
M ≤ 3

m

)
=

(
4

m+ 1

)n
⇒ P

(
M =

3

m

)
=

(
4

m+ 1

)n
−
(

3

m+ 1

)n
.

.

.

P(M ≤ 1) = 1⇒ P(M = 1) = 1−
(

m

m+ 1

)n
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Table 10 shows the probability of the maximum values.

Table 10: Probability of the Maximum Values

x P (x)

0
(

1
m+1

)n
1
m

(
2

m+1

)n − ( 1
m+1

)n
2
m

(
3

m+1

)n − ( 2
m+1

)n
3
m

(
4

m+1

)n − ( 3
m+1

)n
4
m

(
5

m+1

)n − ( 4
m+1

)n
. .
. .
. .

1 1−
(

m
m+1

)n

Now that we have the probability of the maximum values, we can calculate the

general form of the expected maximum of distributions of this form.

We thus get

E(M) =
∑
x

xP(x)

=
1

m

[(
2

m+ 1

)n
−
(

1

m+ 1

)n]
+ . . .+ 1− (

m

m+ 1
)n

= 1− (
m

m+ 1
)n +

1

m

[(
2

m+ 1

)n
−
(

1

m+ 1

)n]
+ . . .+

m− 1

m

[(
m

m+ 1

)n
−
(
m− 1

m+ 1

)n]
≈ 1−

(
1

m

)(
m

m+ 1

)n

Tables 11, 12 and 13 compares the Variance and the Expected value of the maxi-
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mum for different values of n using the General m Distribution.

Case 1: n = 10. Here, we can see from the plot in Figure 3 that there is a strong

Table 11: Comparing Variance with Expected Maximum for n=10

m Var(X) E(M)
1 0.25 0.9990
2 0.1667 0.9913
3 0.1389 0.9812
4 0.125 0.9731
5 0.1167 0.9677
6 0.1111 0.9643
7 0.1071 0.9624
8 0.1042 0.9615
9 0.1019 0.9613
10 0.1 0.9614

positive correlation between the variance of X and its expected maximum. However,

the relationship does not appear to be linear.

Case 2: n = 20

Table 12: Comparing Variance with Expected Maximum for n=20

m Var(X) E(M)
1 0.25 0.9999
2 0.1667 0.9998
3 0.1389 0.9989
4 0.125 0.9971
5 0.1167 0.9948
6 0.1111 0.9924
7 0.1071 0.9901
8 0.1042 0.9881
9 0.1019 0.9865
10 0.1 0.9851
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Figure 3: The Correlation between Variance and Expected Maximum

In this case, looking at Figure 4, we still have a strong relationship between the vari-

ance of X and its expected maximum. However, as with n = 10, the relationship is

not linear.
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Figure 4: The Correlation between Variance and Expected Maximum

Table 13: Comparing Variance with Expected Maximum for n=30

m Var(X) E(M)
1 0.25 9999
2 0.1667 0.9999
3 0.1389 0.9999
4 0.125 0.9997
5 0.1167 0.9991
6 0.1111 0.9984
7 0.1071 0.9974
8 0.1042 0.9963
9 0.1019 0.9953
10 0.1 0.9943
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Figure 5: The Correlation between Variance and Expected Maximum

Case 3: n = 30. From Figure 5 above, we can see that there is still a strong

positive correlation between the variance and the expected value of the maximum.

Thus, for all the values of n considered, we see that as the variance of X increases,

its expected maximum value also increases, leading to a direct (but complicated)

relationship between the variance and the expected maximum.
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We next consider the general continuous uniform-like case:

Theorem 3.2. If

f(x) =



1
2a

if 0 < x < a

0 if a < x < 1− a

1
2a

if 1− a < x < 1

then Var(X) = 1
12

(4a2 − 6a + 3) and E(M) ≈ 1− 2a
n+1

Proof. We first find E(X):

E(X) =

∫ 1

0

xf(x)dx

Therefore,

E(X) =

∫ a

0

(
1

2a

)
xdx+

∫ 1−a

a

0xdx+

∫ 1

1−a

(
1

2a

)
xdx

=
1

2
.

Turning to the variance, we see that

Var(X) =

∫ 1

0

(
x− 1

2

)2

f(x)dx

=
1

2a

∫ a

0

(
x− 1

2

)2

dx+
1

2a

∫ 1

1−a

(
x− 1

2

)2

dx.

Letting u = x− 1
2

, we see that

1

2a

∫ (
x− 1

2

)2

=
1

2a

∫
u3du =

1

2a

u3

3
=
u3

6a
,
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so that

Var(X) =
1

6a

[
(x− 1

2
)3
]a
0

+
1

6a

[
(x− 1

2
)3
]1
1−a

=
1

48a

[
8x3 − 12x+ 6x+ 1

]a
0

+
1

48a

[
8x3 − 12x+ 6x+ 1

]1
1−a

=
1

24
(4a2 − 6a+ 3) +

1

24
(4a2 − 6a+ 3) =

1

12
(4a2 − 6a+ 3).

Therefore, we can confirm our result from the previous chapter that when a = 1
3
,

Var(X) =
1

12

(
4

9
− 2 + 3

)
=

13

108
≈ 0.12037.

We now proceed to find the cumulative distribution function
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F (x) =

∫ x

0

f(t)dt

=

∫ x

0

1

2a
dt

=
1

2a
x; 0 < x < a

F (x) =

∫ a

0

f(x)dx+

∫ x

a

f(t)dt

=

∫ a

0

1

2a
dx+

∫ x

a

0dt

=

[
1

2a
x

]a
0

=
1

2
; a < x < 1− a

F (x) =

∫ a

0

f(t)dt+

∫ 1−a

a

f(t)dt+

∫ x

1−a
f(t)dt

= 1− 1

2a
+

1

2a
x 1− a < x < 1.

Therefore, we can write the cumulative distribution function, F (x) as:

F (x) =



1
2a
x if 0 < x < a

1
2

if a < x < 1− a

1− 1
2a

+ 1
2a
x if 1− a < x < 1.

We proceed to find the properties of the maximum functions:

F (x) =

(
1

2
x

)n
⇒ f(x) =

n

2a

( x
2a

)n−1
F (x) =

(
1

2

)n
⇒ f(x) = 0

35



F (x) =

(
1− 1

2a
+

1

2a
x

)n
⇒ f(x) =

n

2a

(
1− 1

2a
+

1

2a
x

)n−1
.

The expected maximum is calculated as follows:

E(M) =

∫ 1

0

xfM(x)dx.

Separating the integral into three parts, I1, I2, I3, we get

I1 =

∫ a

0

xf(x)dx

=

∫ a

0

x

[
n

2a

( x
2a

)n−1]
dx

= n

(
1

2a

)n
an+1

n+ 1

=

(
1

2

)n
(1 + o(1));

I2 =

∫ 1−a

a

xf(x)dx =

∫ 1−a

a

x · 0dx = 0

and

I3 =

∫ 1

2
3

x.
3n

2

(
3x− 1

2

)n−1
dx.

In I3 we let u = 1 + x
2a
− 1

2a
, which leads to

I3 =
n

2a

∫ 1

1
2

(2au+ 1− 2a)un−1(2a)du

= n

∫ 1

1
2

(2aun + un−1 − 2aun−1)du

= n

[
2aun+1

n+ 1
+
un

n
− 2aun

n

]1
1
2

=
n+ 1− 2a

n+ 1
−
(

1

2

)n(
n+ 1− an− 2a

n+ 1

)
.
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Therefore, we have:

I1+I2+I3 =

(
1

2

)n
(1+o(1))+

n+ 1− 2a

n+ 1
−
(

1

2

)n(
n+ 1− an− 2a

n+ 1

)
= 1− 2a

n+ 1
(1+o(1)),

as claimed. Note that when a = 1
3
, we recover the previous result.
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4 THE BETA FAMILY CASE

Here we look at the correlation between the variance and the expected value of

the maximum for various values of n, and compare the results for different beta

distributions:

In general, for the beta (α, β) distribution, we have

f(x) =
1

B(α, β)
xα−1(1− x)β−1.

Theorem 4.1. For α = β = 1/2, we have f(x) = 1
π
x−

1
2 (1− x)−

1
2 with Var(x) = 1

8

and

E(M) =

∫ 1

0

nx
1

π
√
x(1− x)

(
2

π
sin−1

√
x

)n−1
dx.

Proof.

f(x) =
Γ(1

2
+ 1

2
)

Γ(1
2
)Γ(1

2
)
x−

1
2 (1− x)−

1
2

=
Γ(1)

Γ(1
2
)Γ(1

2
)
x−

1
2 (1− x)−

1
2

=
1

π
x−

1
2 (1− x)−

1
2 (0 < x < 1).

The graph of Beta(0.5,0.5) can be seen in Figure 1 on page 8.

Now, we have that
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E(X) =

∫ 1

0

x
1

π
x−

1
2 (1− x)−

1
2dx

=
1

π

∫ 1

0

x
1
2 (1− x)−

1
2

=
1

π

∫ 1

0

(
x

1− x

) 1
2

dx

=
1

π

[
sin−1

√
x−

√
−(x− 1)x

]1
0

=
1

2
,

and also

Var(X) =
1

π

∫ 1

0

x−
1
2

(
x− 1

2

)2

(1− x)−
1
2 dx

=
1

π

∫ 1

0

x−
1
2

(
x2 − x+

1

4

)
(1− x)−

1
2 dx

=
1

π

∫ 1

0

(
x

3
2 − x

1
2 +

1

4
x−

1
2

)
(1− x)−

1
2 dx

=

[
2x3 − 3x2 + x+

√
x− 1

√
x log

(√
x− 1 +

√
x
)

4π
√
−(x− 1)x

]1
0

=
1

8

= 0.125.

Thus,

F (x) =

∫ x

0

1

π
y−

1
2 (1− y)−

1
2dy

=
1

π

∫ x

0

1

(y − y2) 1
2

dy

=
2

π
sin−1

√
x
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from which it follows that

P(M ≤ x) = FM(x) = [F (x)]n =

(
2

π
sin−1

√
x

)n
.

Therefore,

fM(x) = n
1

π
√
x(1− x)

(
2

π
sin−1

√
x

)n−1
dx,

and hence

E(M) =

∫ 1

0

nx
1

π
√
x(1− x)

(
2

π
sin−1

√
x

)n−1
dx.

Theorem 4.2. The case of α = β = 1 was considered in Example 1.1 where we had

a uniform distribution on [0,1] with Var(x) = 1
12

and E(M) = 1− 1
n+1

.

Theorem 4.3. When α = β = 2 we have f(x) = 6x(1− x) with Var(x) = 1
20

and

E(M) =
∫ 1

0
nx(3x2 − 2x3)n−1(6x− 6x2)dx.

Proof.

f(x) =
Γ(2 + 2)

Γ(2)Γ(2)
x(1− x)

=
Γ(4)

Γ(2)Γ(2)
x(1− x)

= 6x(1− x) (0 < x < 1).

Figure 6 shows the distribution of Beta(2,2).

Now, we have that,
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Figure 6: Distribution of Beta(2,2)

E(X) =

∫ 1

0

x [6x(1− x)] dx =

∫ 1

0

(
6x2 − 6x3

)
dx

=

(
2x3 − 3

2
x4
)1

0

=
1

2
,
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and also

Var(X) =

∫ 1

0

(
x− 1

2

)2

(6x(1− x)) dx

=

∫ 1

0

(
x2 − x+

1

4

)(
6x− 6x2

)
dx

=

∫ 1

0

(
3

2
x− 15

2
x2 + 12x3 − 6x4

)
dx

=

[
3

4
x2 − 5

2
x3 + 3x4 − 6

5
x5
]1
0

=
1

20
.

Thus,

F (x) =

∫ x

0

6y(1− y)dy = 3y2 − 2y3|x0

= 3x2 − 2x3,

from which it follows that

FM(x) = P(M ≤ x) = [F (x)]n =
(
3x2 − 2x3

)n
.

Therefore,

fM(x) = n(6x− 6x2)(3x2 − 2x3)n−1,

and hence

E(X) =

∫ 1

0

nx(6x− 6x2)(3x2 − 2x3)n−1,

as claimed.
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Theorem 4.4. When α = β = 3, we have f(x) = 30x2(1−x)2 with Var(x) = 1
28

and

E(M) =
∫ 1

0
nx(30x2 − 60x3 + 30x4)(10x3 − 15x4 + 6x5)n−1dx.

Proof.

f(x) =
Γ(3 + 3)

Γ(3)Γ(3)
x2(1− x)2

=
Γ(6)

Γ(3)Γ(3)
x2(1− x)2

= 30x2(1− x)2 (0 < x < 1).

Figure 7 shows the distribution of Beta(3,3). Also, we have that,

Figure 7: Distribution of Beta(3,3)
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E(X) =

∫ 1

0

x
[
30x2(1− x)2

]
dx = 30

∫ 1

0

(
x3 − 2x4 + x5

)
dx

= 30

[
x4

4
− 2

5
x5 +

x6

6

]1
0

=
1

2
,

and

Var(X) = 30

∫ 1

0

x2
(
x− 1

2

)2 (
6x(1− x)2

)
dx

= 30

∫ 1

0

(
x4 − x3 +

1

4
x2
)(

1− 2x+ x2
)
dx

= 30

∫ 1

0

(
1

4
x2 − 3

2
x3 +

13

4
x4 − 3x5 + x6

)
dx

=

[
1

12
x3 − 3

8
x4 +

13

20
x5 − x6

2
+
x7

7

]1
0

=
1

28

≈ 0.0357143.

Thus,

F (x) =

∫ x

0

30y2(1− y)2dy = 30

∫ x

0

(y2 − 2y3 + y4)dy

= 30

(
y3

3
− 1

2
y4 +

1

5
y5
)x

0

= 10x3 − 15x4 + 6x5,

which imples that

FM(x) = P(M ≤ x) = [F (x)]n =
(
10x3 − 15x4 + 6x5

)n
.
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Therefore,

fM(x) = n(30x2 − 60x3 + 30x4)(10x3 − 15x4 + 6x5)n−1,

and thus,

⇒ E(x) =

∫ 1

0

nx(30x2 − 60x3 + 30x4)(10x3 − 15x4 + 6x5)n−1,

as asserted.

Table 14 shows the correlation between the variance and the expected value of the

maximum for various values of n.

Table 14: Comparing Variance with Expected Maximum at different values of n
Model Var E(M)

1. f(x) = 1
π
x−

1
2 (1− x)−

1
2 1

8
.9646 .9895 .9951 .9971 .9981 .9987 .9990 .9993 .9994 .9995

2. U[0,1] 1
12

.9091 .9524 .9677 .9756 .9804 .9836 .9859 .9877 .9890 .9901
3. f(x) = 6x(1− x) 1

20
.8312 .8815 .9037 .9168 .9258 .9324 .9375 .9416 .9450 .9478

4. f(x) = 30x2(1− x)2 1
28

.7839 .8324 .8553 .8695 .8795 .8871 .8911 .8980 .9022 .9058

For each value of n, we can see that as the variance decreases, there is a decrease

in the corresponding expected maximum.
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5 THE GENERAL CASE

Here we have X ∼ F, f on [0, 1];

E(X) =
1

2
,

Var(X) = σ2.

Now we want to find the expected value of E(max(X1, ...Xn)). Here is a preliminary

result that may be found, e.g., in a probability textbook such as Feller [1]

Theorem 5.1. Given X ≥ 0,

E(X) =

∫ ∞
0

(1− F (x))dx

and

E(X) =
∞∑
0

P(X > x)

in the continuous and discrete cases respectively.

Proof. In the discrete case the right hand side equals

P(X = 1) + P(X = 2)+ P(X = 3) ...

+P(X = 2)+ P(X = 3) ...

+ P(X = 3) ...

The result follows by considering the above sum from top to bottom. In the continuous

case,

E(X) =

∫ ∞
0

xf(x)dx,
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so on integrating by parts, we have

E(X) = [xF (x)]∞0 −
∫ ∞
0

F (x)dx

= lim
t→∞

tF (t)− lim
t→∞

∫ t

0

F (x)dx

= lim
t→∞

F (t) lim
t→∞

∫ t

0

[1− F (x)] dx

=

∫ ∞
0

(1− F (x)) dx.

In particular, if

0 ≤ X ≤ 1,

E(X) =

∫ 1

0

(1− F (x)) dx.

In general, we can prove that in the continuous case,

Theorem 5.2.

E(Xr) =

∫ ∞
0

rxr−1 (1− F (x)) dx.

Proof. We know that by definition of expected value,

E(Xr) =

∫ ∞
0

xrf(x)dx.
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Letting u = xr and dv = f(x)dx, we see that du = rxr−1, and v = F (x), so that

E(Xr) = xrF (x)∞0 −
∫ ∞
0

F (x)rxr−1dx

= lim
t→∞

trF (t)− lim
t→∞

∫ t

0

F (x)rxr−1dx

= lim
t→∞

F (t)

∫ t

0

[
rxr−1 − F (x)rxr−1

]
= lim

t→∞
F (t)

∫ t

0

(1− F (x))rxr−1

= lim
t→∞

F (t) lim
t→∞

∫ t

0

(1− F (x))rxr−1

= 1.

∫ ∞
0

(1− F (x))rxr−1,

as claimed.

Our aim is to find the correlation between the variance and the expected value of

the maximum.

Therefore, using the above, we need to study the correlation between

a)

Var(X) = E(X2)− [E(X)]2

=

∫ ∞
0

2x (1− F (x))−
(∫ ∞

0

(1− F (x)dx

)2

,

= φ(x, F (x)).
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and

b)

E(Mn) =

∫ ∞
0

(1− FMAX)dx

=

∫ ∞
0

(1− F n(x)) dx

= ψn(x, F (x)).

This seems like a very hard problem for general n, but let us explore the simplest

case, i.e., n = 2. Here

Var(X) =

∫ ∞
0

2x (1− F(x))−
(∫ ∞

0

(1− F(x)dx

)2

=

∫ ∞
0

(1− F (x))

(
2x−

∫ ∞
0

(1− F (x)

)
dx

and

ψ2(x, F (x)) =

∫ ∞
0

(
1− F 2(x)

)
dx

This seems like a good starting point for a theoretical study in the general case.
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6 CONCLUSIONS AND COMMENTS

We have seen that there exists a strong positive correlation between Var(X) and

E(M) for (i) the discrete uniform family; (ii) continuous uniform-like variables; and

(iii) the beta family. This is not surprising or unexpected, but as seen in the last

Chapter, the general case is quite difficult, even for n = 2. Here are some other

issues:

(i) In our case, when the variables are symmetric, the expected value E(m) of the

minimum can easily be seen to be εn whenever E(M) = 1− εn. In general this is not

the case for non-symmetric variables.

(ii) Our results hold easily when the variables Xi are symmetrically distributed

on any compact interval [a, b]. However, it is hard to predict what may be true when

the distribution of X is not symmetric. This is an area for further investigation.
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