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ABSTRACT

Very Cost Effective Domination in Graphs

by

Tony Rodriguez

A set S of vertices in a graph G = (V,E) is a dominating set if every vertex in V \ S

is adjacent to at least one vertex in S, and the minimum cardinality of a dominating

set of G is the domination number of G. A vertex v in a dominating set S is said

to be very cost effective if it is adjacent to more vertices in V \ S than to vertices

in S. A dominating set S is very cost effective if every vertex in S is very cost

effective. The minimum cardinality of a very cost effective dominating set of G is the

very cost effective domination number of G. We first give necessary conditions for a

graph to have equal domination and very cost effective domination numbers. Then

we determine an upper bound on the very cost effective domination number for trees

in terms of their domination number, and characterize the trees which attain this

bound. Lastly, we show that no such bound exists for graphs in general, even when

restricted to bipartite graphs.
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1 INTRODUCTION

1.1 Basic Definitions Within Graph Theory

A graph G = (V,E) is a nonempty set V (G), the elements of which are called

vertices, together with a (possibly empty) set E(G) of unordered pairs of elements of

V (G) called edges. For the sake of simplicity, we will denote edge {u, v} as uv. The

order of a graph, denoted n(G), is equal to the number of vertices in the graph, and

the size of a graph, denoted m(G), is the number of edges in a graph. If n(G) = 1, G

is said to be trivial, otherwse G is nontrivial. Further, if m(G) = 0, G is called empty,

otherwise G is nonempty. When G is clear from context, we will denote the vertex and

edge sets as V and E, respectively. A graph is said to be simple if it does not contain

multiple edges between any pair of vertices and edges must have distinct endpoints.

We will restrict our attention to simple graphs of finite order for this thesis.

For any two vertices u and v, if uv is an edge, then u and v are said to be adjacent,

edge uv is incident to vertex u, and u is a neighbor of v. Further, if uv /∈ E, u and

v are said to be nonadjacent. Two edges are said to be adjacent if they share a

common vertex. The degree of a vertex is the number of edges to which the vertex

is incident. A vertex of degree 0 is an isolated vertex, while a vertex of degree 1 is a

leaf or pendant. A vertex of odd degree is said to be odd, while one of even degree is

said to be even. The maximum degree of a graph G, written ∆(G), is the maximum

degree of any vertex in V (G), while the minimum degree of G, denoted δ(G), is the

minimum degree of any vertex in V (G). A u-v walk W of G is a finite, alternating

sequence W : u = u0, e1, u1, e2, ..., uk−1, ek, uk = v of vertices and edges, beginning

8



with vertex u and ending with vertex v such that ei = ui−1ui, 1 ≤ i ≤ k. A u-v walk

is closed if u = v and open if u ̸= v. A u-v trail is a u-v walk in which no edges are

repeated. A u-v path is a u-v walk in which no vertices are repeated. A nontrivial

closed trail is called a circuit. A circuit on at least 3 vertices where no vertex appears

more than once is called a cycle. A graph is connected if, given two distinct vertices

u and v, then a u-v path exists. A connected graph that contains no cycles is called

a tree. A path on n vertices is denoted Pn and cycles on n vertices are denoted Cn.

A graph is complete if, given any two vertices u, v ∈ V, then uv ∈ E. The complete

graph on n vertices is denoted Kn.

H K4 C4

Figure 1: The House Graph H, K4, and C4

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A

subgraph H of a graph G is said to be an induced subgraph if, for any pair of vertices

u, v ∈ V (H), uv ∈ E(H) if and only if uv ∈ E(G). An induced subgraph with vertex

set S ⊆ V (G) is written G[S] and is said to be induced by S. The open neighborhood

of a vertex u is the set N(u) = {v|uv ∈ E}, while the closed neighborhood of u is

N [u] = N(u) ∪ {u}. The open neighborhood of a set S ⊆ V is N(S) =
∪

u∈SN(u).

Similarly, the closed neighborhood of S is N [S] = N(S)∪S. A set S ⊆ V is said to be

independent if the vertices in S are pairwise nonadjacent. The vertex independence

number β0(G) is the maximum cardinality of an independent set of G. A graph is
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said to be k-partite if its vertex set can be partitioned into k independent sets. In

particular, a graph is bipartite if k = 2. S ⊆ V is said to be a dominating set if

N [S] = V . The domination number of a graph G, denoted γ(G), is the minimum

cardinality of a dominating set of G. The upper domination number, written Γ(G),

is the maximum cardinality of a minimal dominating set of G. The independent

domination number i(G) is the minimum cardinality of a maximal independent set of

G. A dominating set with cardinality γ(G) is called a γ(G)-set, and an independent

dominating set of cardinality i(G) is called an i(G)-set.

1.2 Very Cost Effective Domination

A vertex v in a set S is said to be cost effective if it is adjacent to at least as many

vertices in V \S as in S, and is very cost effective if it is adjacent to more vertices in

V \S than in S. A set S is said to be cost effective if every vertex in S is cost effective.

Similarly, S is very cost effective if every vertex in S is very cost effective. Set S is

a cost effective dominating set if it is both cost effective and dominating, and a very

cost effective dominating set if it is both very cost effective and dominating. The cost

effective domination number of a graph G, written γcϵ(G), is the minimum cardinality

of a cost effective dominating set. The very cost effective domination number γvcϵ(G)

of a graph G is the minimum cardinality of a very cost effective dominating set.

The upper cost effective domination number Γcϵ(G) is the maximum cardinality of a

minimal dominating set that is cost effective. The upper very cost effective domination

number Γvcϵ(G) is the maximum cardinality of a minimal dominating set that is very

cost effective. A cost effective dominating set of cardinality γcϵ(G) is a γcϵ(G)-set,
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while a very cost effective dominating set of cardinality γvcϵ(G) is a γvcϵ(G)-set. For

example, consider the graph in Figures 2(a), 2(b), and 2(c). In Figure 2(a), the

darkened vertices represent a γ(G)-set, in Figure 2(b), the darkened vertices represent

a γcϵ(G)-set, and in Figure 2(c), the darkened vertices represent a γvcϵ(G)-set.

(a) (b) (c)

Figure 2: A graph with γ(G) = 5, γcϵ(G) = 6, and γvcϵ(G) = 7

In terms of application, if maintaining edges within a network has an associated

cost, then it would be desirable to minimize that cost. We assume that an edge

between a vertex in a set S and a vertex in set V \ S is being used effectively, but

an edge between two vertices, both of which in S, is not being used effectively. So a

vertex could be considered very cost effective if it is incident to more edges which are

being used effectively than edges that are not.

A second application could be to consider a company that offers particular services

or products to everyone, but at a reduced rate to employees. Let set S represent the

employees, and V \ S represent customers. If a vertex u (not necessarily in S) is

adjacent to another vertex v ∈ S, then we say that u is a client of v. Since the

company will want everyone to be a client, S needs to be a dominating set. Also,

since having clients within the company costs the company money, and having clients

outside the company brings in profit for the company, the company will want each
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employee to have more clients outside than company than within, so S needs to be

very cost effective also. Thus, S should be a very cost effective dominating set.

12



2 RELATED WORK

2.1 Unfriendly Partitions

Cost effective domination, and therefore very cost effective domination, is derived

from the study of unfriendly partitions of graphs. Let C be a two-coloring of the

vertices of a graph G such that C : V → {Red,Blue}. For all v ∈ V , let B(v) =

{u ∈ N(v)|C(u) = Blue} and R(v) = {u ∈ N(v)|C(u) = Red}. For a set S ⊆ V , let

B(S) = {v ∈ S|C(v) = Blue} and R(S) = {v ∈ S|C(v) = Red}. Thus a two-coloring

of V produces a bipartition π = {B(V ), R(V )}. Given such a bipartition π, we say an

edge uv ∈ E is bicolored if C(u) ̸= C(v). A bipartition π is an unfriendly partition if

every vertex u ∈ B(V ) has at least as many neighbors in R(V ) as in B(V ), and every

vertex u ∈ R(V ) has at least as many neighbors in B(V ) as in R(V ). In other words,

if C(u) = Red, then |R(u)| ≤ |B(u)|, and if C(u) = Blue, then |B(u)| ≤ |R(u)|.

These partitions were defined and studied by Borodin and Koshtochka [3], Aharoni,

Milner, and Prikry [1], and Shelah and Milner [12].

The notion of unfriendly partitions have influenced other ideas. In [13, 14], the

concept of α-domination in graphs is defined and studied. A set S ⊆ V of vertices

in a graph G = (V,E) is called an α-dominating set if for every vertex v ∈ V \ S,

|N(v) ∩ S|/|N [v]| ≥ α, where 0 ≤ α < 1. In the case of α ≥ 1/2, every vertex in

V \ S meets the unfriendly condition in that it has at least as many neighbors in S

as it has in V \ S. We note that no unfriendly condition is imposed on the vertices

in S.

An idea closely related to unfriendly partitions is that of satisfactory partitions.
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A bipartition π = {B(V ), R(V )} is called a satisfactory partition if, for every vertex

v ∈ B(V ), |B(v)| ≥ |R(v)| and every vertex u ∈ R(V ), |R(u)| ≥ |B(u)|. In other

words, each vertex has at least as many neighbors in its own partition as the other

partition. While it is known that every graph has an unfriendly partition, it is not

true in general that every graph has a satisfactory partition. Indeed, determining

whether or not an arbitrary graph has a satisfactory partition is NP-complete [2].

Satisfactory partitions have been studied in [4, 5, 6, 11].

2.2 Cost Effective Domination

Cost effective domination was introduced in [7]. The study of cost effective dom-

ination was motivated by the studies of unfriendly partitions and satisfactory parti-

tions. As defined earlier, a set is a cost effective dominating set if it is both dominating

and cost effective. The following inequality is a well-known result pertaining to dom-

ination.

Proposition 2.1 For any graph G, γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G).

It can be noted that every independent dominating set in an isolate-free graph is

also a very cost effective dominating set. This observation allowed the previous propo-

sition to be extended to include the cost effective and very cost effective domination

parameters in the following two results.

Observation 2.2 [7] Every independent dominating set S in an isolate-free graph G

is a (very) cost effective dominating set.
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Corollary 2.3 [7] For any isolate-free graph G,

γ(G) ≤ γcϵ(G) ≤ γvcϵ(G) ≤ i(G) ≤ β0(G) ≤ Γvcϵ(G) ≤ Γcϵ(G) ≤ Γ(G).

In [10], the cost effective domination number of several families of graphs was

determined, in relation to the graphs’ domination number. The authors were also

able to bound γcϵ(T ) in terms of γ(T ) for all trees T and give a characterization for

those trees which obtain the upper bound. We give some of these results below. First

we give an additional definition. The corona of graphs G and H, denoted G ◦H, is

the graph formed from one copy of G and |V (G)| copies of H, where the ith vertex

in V (G) is adjacent to every vertex in the ith copy of H.

Theorem 2.4 [10] If G has maximum degree ∆(G) ≤ 4, then γ(G) = γcϵ(G).

Theorem 2.5 [10] If γ(G) ≤ 3, then γ(G) = γcϵ(G).

Theorem 2.6 [10] If T is a tree with γ(T ) ≥ 3, then γ(T ) ≤ γcϵ(T ) ≤ 2γ(T ) − 3.

Further, these bounds are sharp.

The authors of [10] noted that the upper bound of Theorem 2.6 does not hold for

the very cost effective domination number of trees. For a counterexample, consider

the tree T = K1,t ◦Kt for which γ(T ) = γcϵ(T ) = t + 1 and γvcϵ(T ) = 2t > 2t− 1 =

2(t+ 1)− 3 = 2γ(T )− 3. This lead them to ask the following questions:

1. Is there a bound on γvcϵ(T ) in terms of γ(T ) for trees T?

2. Is there a bound on γcϵ(G) in terms of γ(G) for graphs G?

15



In this thesis, we address these and other questions motivated by this research.

We answer the first question by giving a bound on γvcϵ(T ) in terms of γ(T ) for trees

T and characterizing those trees which attain the bound. As for the second question,

we answer it in the negative, showing that no such bound exists, even when restricted

to bipartite graphs.
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3 PRELIMINARY RESULTS

We first give some additional terminology. An S-external private neighbor of a

vertex v ∈ S is a vertex u ∈ V \S which is adjacent to v but to no other vertex of S.

The set of all S-external private neighbors of v ∈ S is called the S-external private

neighbor set of v and is denoted epn(v, S). The neighbor of a leaf vertex is a support

vertex. The double star Sr,s is the tree with exactly two adjacent non-leaf vertices,

one of which is adjacent to r ≥ 1 leaves and the other to s ≥ 1 leaves.

We note that the same conditions on a graph G given in Theorem 2.4 and Theo-

rem 2.5 to ensure that γ(G) = γcϵ(G) do not guarantee that γ(G) = γvcϵ(G). To see

this, consider the graph H shown in Figure 3. Note that ∆(H) = 4 and γ(G) = 3,

but γvcϵ(H) = 4.

H

Figure 3: The graph H does not have a very cost effective γ-set

However, if we tighten the restrictions on ∆(G) and γ(G) in Theorem 2.4 and

Theorem 2.5, respectively, similar results are attainable for the very cost effective

domination number. Note that the graph in Figure 3 shows that the results of The-

orems 3.1 and 3.2 are the best possible.

Theorem 3.1 If a graph G has no isolated vertices and maximum degree ∆(G) ≤ 3,

then γ(G) = γvcϵ(G).

17



Proof. Among all γ(G)-sets, select S to be one with the minimum number of edges

in G[S]. If S is very cost effective, we are finished. Thus, assume there is a vertex

x ∈ S that is not very cost effective, that is, |N(x)∩S| ≥ |N(x)∩(V \S)|. Since G has

no isolated vertices and x is not very cost effective, we have |N(x) ∩ S| ≥ 1. By the

minimality of S, we have epn(x, S) ̸= ∅, and so |N(x)∩ (V \S)| ≥ 1. Since ∆(G) ≤ 3

and |N(x) ∩ S| ≥ |N(x) ∩ (V \ S)| ≥ 1, it follows that |N(x) ∩ (V \ S)| = 1. Let

N(x)∩(V \S) = {x1}. Note that S\{x} dominates G−x1. Thus, S
′ = (S\{x})∪{x1}

is a γ(G)-set with fewer edges in G[S ′] than in G[S], contradicting our choice of S.

We conclude that S is very cost effective. �

Theorem 3.2 If a graph G has no isolated vertices and γ(G) ≤ 2, then γ(G) =

γvcϵ(G).

Proof. If γ(G) = 1, then since G has no isolated vertices, γ(G) = γvcϵ(G). Let

γ(G) = 2, and let S = {x, y} be a γ(G)-set. If S is very cost effective, then we are

finished. Thus, we may assume that S is not very cost effective. Since |S| = 2 and

G has no isolated vertices, xy ∈ E(G). Further, since xy ∈ E(G), the minimality of

S implies that epn(x, S) ̸= ∅ and epn(y, S) ̸= ∅. Since S is not very cost effective,

at least one of x or y has exactly one S-external private neighbor. Without loss of

generality, assume that epn(x, S) = {x1}. Note that y dominates every vertex in

V (G) \ {x1}, and thus {x1, y} is an independent dominating set. By Observation 2.2,

{x1, y} is a very cost effective dominating set of G. Therefore, 2 = γ(G) = γvcϵ(G),

as desired. �

We conclude this section by noting that it was shown in [10] that if G is cubic, then
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γ(G) = γvcϵ(G). Theorem 3.1 is not a surprising result with this in mind. However,

as previously mentioned, it is the best possible bound on ∆(G) to guarantee that

γ(G) = γvcϵ(G).
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4 MAIN RESULTS

4.1 Trees

In this section, we address the first question posed in [10], namely: Is there a

bound on γvcϵ(T ) in terms of γ(T ) for trees T? We show that 2γ(T )− 2 is in fact an

upper bound on γvcϵ(T ), and we also show that every value of γvcϵ(T ) between γ(T )

and 2γ(T )− 2 is realizable.

In [10], the authors provided a useful algorithm for building a cost effective domi-

nating set from a γ(T )-set of a tree T . We note that we use a slightly modified version

of this algorithm to prove Theorem 4.1, and so, our proof is very similar to the one

used to prove Theorem 2.6 in [10].

Theorem 4.1 If T is a tree with γ(T ) ≥ 3, then γ(T ) ≤ γvcϵ(T ) ≤ 2γ(T ) − 2.

Further, these bounds are sharp.

Proof. Corollary 2.3 yields the lower bound. For the upper bound, let S be a γ(T )-

set. If S is very cost effective, then we are finished. Thus, we may assume that S is

not very cost effective. Let U = {u1, u2, ..., uk} be the vertices in S that are not very

cost effective with respect to S. Let si = |N(ui) ∩ S| and oi = |N(ui) ∩ (V \ S)|, for

1 ≤ i ≤ k. Thus for each ui ∈ U , oi ≤ si. Let U ′ ⊆ V \ S be the vertices in V \ S

whose only neighbors in S are in U . Note that since each ui is not very cost effective,

ui has a neighbor in S, that is, si ≥ 1. Hence, the minimality of S implies that ui has

at least one S-external private neighbor in U ′. Thus, |U ′| ≥ Σk
i=1|epn(ui, S)| ≥ k.

We next prove that Σk
i=1si ≤ γ(T )+ k− 2. To see this, we establish the bound on

the degree sum in T [S] by considering the possible edges of T [S] incident to a vertex
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in U . If one endvertex of an edge in T [S] is in U and the other is in S \ U , then we

say the edge is a Type-1 edge. If both endvertices of an edge in T [S] are in U , then

we say the edge is of Type-2. Thus, each Type-1 edge adds 1 to the degree sum in

T [S], and each Type-2 edge adds 2. Let ti be the number of Type-i edges.

Note that if a pair of vertices in U are connected by a path in T [U ], then they

have no common neighbor in S \ U , for otherwise a cycle is formed. Let T [U ] have

c components. Since T is a tree, t2 = k − c. Moreover, no two vertices in the same

component of T [U ] have a common neighbor in S \ U . Also, there are at most c− 1

vertices in S \ U adjacent to more than one vertex in U ; for otherwise, a cycle is

formed. On the other hand, by the Pigeonhole Principle, there are at least t1−|S \U |

vertices in S \ U adjacent to more than one vertex in U . Thus, t1 − |S \ U | ≤ c− 1.

Hence, Σk
i=1si = t1+2t2 ≤ 2(k− c)+ |S \U |+ c−1 = 2k−2c+γ(T )−k+ c−1 =

γ(T ) + k − c − 1 ≤ γ(T ) + k − 2. Since si ≥ oi for each 1 ≤ i ≤ k, we have

Σk
i=1oi ≤ Σk

i=1si ≤ γ(T ) + k − 2. Hence, |U ′| ≤ γ(T ) + k − 2.

Next we give an algorithm to recursively build a very cost effective dominating

set Sk from a γ(T )-set S. As before, let U = {u1, u2, ..., uk} be the subset of vertices

in S that are not very cost effective, and let U ′ be the set of vertices in V \ S whose

only neighbors in S are in U .

begin

let S0 = S.

for i = 1 to k do

if ui is very cost effective in Si−1

then let Si = Si−1

21



else if epn(ui, Si−1) = ∅

then let Si = Si−1 \ {ui}

else let Si = (Si−1 \ {ui}) ∪ epn(ui, Si−1)

fi

fi

end

We next prove that the algorithm produces a very cost effective dominating set

with cardinality at most 2γ(T )− 2.

By definition the set S0 = S is a dominating set and the vertices of S\{u1, u2, ..., uk}

are very cost effective in S. We define the loop invariant: for 1 ≤ i ≤ k, the set Si is

a dominating set and all of the vertices in Si \ {ui+1, ..., uk} are very cost effective in

Si.

To see that Si is a dominating set, we note that Si−1 is a dominating set, so if ui

is very cost effective and Si = Si−1, clearly Si is a dominating set. If ui is not very

cost effective in Si−1, then ui has at least one neighbor in Si−1, implying that ui is

dominated by Si. Moreover, the external private neighbors of ui with respect to Si−1

are added to form Si, so Si is a dominating set.

To see that the set Si \ {ui+1, ..., uk} is very cost effective, note if ui is not very

cost effective in Si−1, then Si = (Si−1 \ {ui})∪ epn(ui, Si−1). Let X = epn(ui, Si−1).

Since T is a tree and each vertex in X is adjacent to ui, X is an independent set.

Moreover, since each vertex x ∈ X is a private neighbor of ui, x has no neighbors

in Si−1 \ {ui}. In other words, X is independent in T [Si], and so the vertices of X

are very cost effective with respect to Si. Hence, the vertices that are not very cost
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effective in Si are at most the ones that are not very cost effective in Si−1 \ {ui}. On

iteration k, the algorithm terminates with the very cost effective dominating set Sk.

It remains to be shown that |Sk| ≤ 2γ(T )− 2. To do this, we count the maximum

possible vertices being added to form the set Sk. Since U ′ consists of the vertices

whose only neighbors in S are in U , we have that epn(ui, S) ⊆ U ′ for 1 ≤ i ≤ k.

Consider the construction of Sk. At iteration i, if ui is very cost effective in Si−1,

we let Si = Si−1. Since ui ∈ U , it is not very cost effective in S, so we have that

|epn(ui, S)| ≥ 1. Hence, for our counting purposes, letting Si = Si−1 is essentially the

same as removing ui and replacing it with a vertex from epn(ui, S) ⊆ U ′.

If ui is not very cost effective in Si−1, then we remove ui and add the set epn(ui, Si−1)

to form Si. To show that at most |U ′| vertices are added to S to form Sk, it suf-

fices to show that epn(ui, Si−1) ⊆ U ′. To see this, suppose to the contrary that x ∈

epn(ui, Si−1) and x /∈ U ′. By the definition of U ′, it follows that x has a neighbor in

S \ U . Since S \ U ⊆ Si−1, x has a neighbor in Si−1 \ U . But ui ∈ U , contradicting

that x ∈ epn(ui, Si−1). Hence, epn(ui, Si−1) ⊆ U ′, and so we may conclude that every

vertex added to form Sk is in the set U ′.

It follows that to form Sk from our original set S, we add at most |U ′| vertices,

while for the purposes of counting, we “remove” |U | = k vertices. Since |U ′| ≤

γ(T ) + k− 2, we have |Sk| ≤ |S| − |U |+ |U ′| ≤ γ(T )− k+ γ(T ) + k− 2 = 2γ(T )− 2,

the desired upper bound.

We now show that the two bounds given are sharp. The corona T ◦ K1 of any

tree T has γ(T ◦K1) = γvce(T ◦K1) =
n
2
. For the upper bound, let T be the corona

K1,t ◦Kt for t ≥ 2. Then γ(T ) = t+ 1 and γvce(T ) = 2γ(T )− 2. �
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Before we characterize the trees attaining the upper bound of Theorem 4.1, we

prove a useful lemma. As a point of interest, we notice that Lemma 4.2 only guar-

antees the existence of one such γ(T )-set. After the characterization is complete,

however, we see that this is indeed the only γ(T )-set.

Lemma 4.2 If T is a tree with γ(T ) ≥ 3 and γvcϵ(T ) = 2γ(T )−2, then some γ(T )-set

has exactly one vertex which is not very cost effective.

Proof. Let T be a tree with γ(T ) ≥ 3 and γvcϵ(T ) = 2γ(T )− 2. Let S be a γ(T )-set

that minimizes the number of vertices which are not very cost effective. Let Sk be a

very cost effective dominating set of T formed by the algorithm given in Theorem 4.1

from S and U = {u1, u2, ..., uk} be the vertices in S which are not very cost effective.

Let U ′ be the vertices in V \S whose only neighbors in S are in U . Further, let T [U ]

have c components. Let oi and si be defined as before also. We will show that S has

exactly one vertex which is not very cost effective.

Notice that 2γ(T )−2 = γvcϵ(T ) ≤ |Sk| ≤ |S|+ |U ′|−k ≤ γ(T )+γ(T )+k−2−k =

2γ(T ) − 2, giving equality throughout. This implies |U ′| = γ(T ) + k − 2. Further,

γ(T ) + k − 2 = |U ′| ≤
∑k

i=1 oi ≤
∑k

i=1 si ≤ γ(T ) + k − c − 1 ≤ γ(T ) + k − 2, and

we have equality throughout. This implies that
∑k

i=1 oi =
∑k

i=1 si and c = 1. Thus,

T [U ] is a tree. Since oi ≤ si for all 1 ≤ i ≤ k (as each ui is not very cost effective by

assumption) and
∑k

i=1 oi =
∑k

i=1 si, we conclude that oi = si for all 1 ≤ i ≤ k.

To see that k = 1, assume not. Let k ≥ 2. Then T [U ] is a nontrivial tree. By

definition, every vertex in U ′ has at least one neighbor in U . Since T [U ] is a nontrivial

tree, if any vertex in U ′ has more than one neighbor in U , a cycle would be formed.

Thus, we conclude that every vertex in U ′ has exactly one neighbor in U .
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Recall that oi = |N(ui)∩ (V \ S)| and
∑k

i=1 oi = γ(T ) + k− 2 = |U ′|. Since every

vertex in U ′ has exactly one neighbor in U and
∑k

i=1 oi = |U ′|, we conclude that, for

every ui ∈ U , (N(ui)∩ (V \S)) ⊆ U ′. So, for every vertex in ui ∈ U , N(ui) ⊆ S ∪U ′.

We now show that each ui has at least two neighbors in U ′. To see this, assume not.

Let ui ∈ U have exactly one neighbor in U ′, say y. Then the set S ′ = (S \ {ui})∪{y}

is a γ(T )-set with no more than k − 1 vertices which are not very cost effective,

contradicting our choice of S. We conclude that ui has at least two neighbors in U ′.

For the sake of simplicity for the remainder of the argument, we will consider K2

as having one leaf and one support vertex.

Since T [U ] is a nontrivial tree, it contains at least one leaf and one support vertex.

Let Uℓ ⊂ U be the leaves in T [U ] and ℓ = |Uℓ|. Note that ℓ ≥ 1. Let U ′
T ⊂ U ′ be the

vertices in U ′ whose neighbor in U is in U \Uℓ. Consider the set S
′ = (S\U)∪Uℓ∪U ′

T .

Clearly, S ′ is a dominating set. To see that S ′ is a very cost effective set, note that,

by hypothesis, every vertex in S \U is very cost effective. Further, every vertex in Uℓ

has one neighbor in U \Uℓ. However, this neighbor is not in S ′. Since oi = si for every

vertex in U , it follows that every vertex in Uℓ has more neighbors in V \S ′ than in S ′,

so each vertex in Uℓ is very cost effective in S ′. Further, since U ′ is an independent

set (for otherwise a cycle is formed), every vertex in U ′
T has no neighbors in S ′ and

precisely one neighbor in V \ S ′. Hence, each vertex in U ′
T is very cost effective in

S ′. Thus, S ′ is a very cost effective dominating set. Further, since every vertex in U

has at least two neighbors in U ′ and every vertex in U ′ has exactly one neighbor in

U , it follows that |U ′
T | ≤ |U ′| − 2|Uℓ| = γ(T ) + k − 2 − 2ℓ. Hence, γvcϵ(T ) ≤ |S ′| =

|S|− |U |+ |Uℓ|+ |U ′
T | ≤ γ(T )−k+ ℓ+γ(T )+k−2−2ℓ = 2γ(T )−2− ℓ ≤ 2γ(T )−3.
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However, by assumption, γvcϵ(T ) = 2γ(T )− 2, a contradiction. Hence, k = 1. �

We now characterize the trees attaining the upper bound given in Theorem 4.1.

Let F be a family of trees obtained from the star K1,t with center x and leaves

x1, x2, ..., xt, t ≥ 2, as follows. Append precisely t new vertices to x, and append at

least t new vertices to xi, 1 ≤ i ≤ t. Notice that both the corona K1,t ◦Kt given to

show the bound is sharp and the graph H in Figure 3 are in F .

Theorem 4.3 Let T be a tree with γ(T ) ≥ 3. Then γvcϵ(T ) = 2γ(T )− 2 if and only

if T ∈ F .

Proof. Let T ∈ F . Clearly, γ(T ) = t+ 1 and γvcϵ(T ) = 2γ(T )− 2.

For the converse, let T be a tree with γ(T ) ≥ 3 and γvcϵ(T ) = 2γ(T )−2. Let S be

the γ(T )-set guaranteed by Lemma 4.2. Let Sk be a very cost effective dominating

set of T formed by the algorithm given above from S. Thus, 2γ(T )− 2 = γvcϵ(T ) ≤

|Sk| ≤ 2γ(T )− 2. We therefore have equality throughout, and it follows that Sk is a

γvcϵ(T )-set.

Let x ∈ S be the only vertex which is not very cost effective. Also, Sk = S1 =

(S \ {x}) ∪ epn(x, S). Thus, 2γ(T ) − 2 = γvcϵ(T ) ≤ |Sk| = |S| − 1 + |epn(x, S)| =

γ(T )−1+ |epn(x, S)| ≤ 2γ(T )−2, and again we have equality throughout. It follows

that |epn(x, S)| = γ(T )− 1. Further, since x is not very cost effective in S, it follows

that x must have at least γ(T ) − 1 neighbors in S. Since x is also in S, clearly x

has exactly γ(T ) − 1 neighbors in S. Since T is a tree, we know that the subgraph

induced by S is the star K1,γ(T )−1, wherein x is the central vertex, and every vertex

in V (T ) \ S is a leaf in T . Further, x is a support vertex to precisely γ(T )− 1 leaves
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which are in V \ S. To show that T ∈ F , it suffices to show that every vertex in

S \ {x} is adjacent to at least γ(T )− 1 vertices in V \ S.

Suppose, for the sake of contradiction, that there exists a vertex y ∈ (S\{x}) such

that y is a support vertex to at most γ(T )−2 leaves. Note then that S1 = (S \{y})∪

epn(y, S) is a very cost effective dominating set. Thus, γvcϵ(T ) ≤ |S1| ≤ |S| − 1 +

γ(T ) − 2 = 2γ(T ) − 3 < 2γ(T ) − 2 = γvcϵ(T ), a contradiction. We therefore deduce

that every vertex in S \ {x} is a support vertex to at least γ(T ) − 1 leaves. We

conclude that T ∈ F . �

We now show that all values between the lower and upper bounds of Theorem 4.1

are realizable. Let Kv
1,t be the star with center v and leaves v1, v2, ..., vt.

Theorem 4.4 Given positive integers a and b such that 3 ≤ a ≤ b ≤ 2a − 2, there

exsists a tree T having γ(T ) = a and γvcϵ(T ) = b.

Proof. We first consider the case of a = 3. If a = 3, then b = 3 or b = 4. If b = 3, let

T be P3 ◦K1. Then clearly a = γ(T ) = γvce(T ) = b = 3. If b = 4, let T be P3 ◦K2.

Then γ(T ) = 3 = a and γvcϵ(T ) = 4 = b. We now turn our attention to the case of

a ≥ 4.

To construct a tree T having γ(T ) = a and γvcϵ(T ) = b, we begin with the forest

(Kx
1,a−2 ◦Ka−1) ∪Ky

1,b−a+1 and add the edge xy. Then T has a support vertices.

We first show that γ(T ) = a. Since T has a support vertices, and each leaf or its

support is in any dominating set, we have γ(T ) ≥ a. Also note that the set of all

support vertices is a dominating set, so γ(T ) ≤ a. Then, γ(T ) = a.

We now show γvcϵ(T ) = b. Let S = {x, x1, x2..., xa−2, y1, y2, ..., yb−a+1}. Clearly,

S is a dominating set of T . To see that S is very cost effective, note that yi is
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independent in T [S], and thus is very cost effective in S. Further, |N(xi) ∩ S| = 1

and |N(xi)∩ (V \S)| = a−1 ≥ 3, so each xi is very cost effective in S. Finally, notice

|N(x)∩S| = a− 2 and |N(x)∩ (V \S)| = a, so x is very cost effective in S. Thus, S

is a very cost effective dominating set, and γvcϵ(T ) ≤ |S| = 1+ a− 2 + b− a+ 1 = b.

Now, let S ′ be a γvcϵ(T )-set. To dominate T , each leaf or its support vertex must

be in S ′. We show that at least one of the support vertices is not in S ′. Assume to the

contrary that S ′ contains all the support vertices of T , that is, {x, x1, x2, ..., xa−2, y} ⊆

S ′. Then |N(x)∩ (V \ S ′)| = a− 1 = |N(x)∩ S ′|, and so S ′ is not very cost effective.

Hence, at least one support vertex is not in S ′, call it w. Thus, since S ′ is a very cost

effective dominating set that does not contain a support vertex w, S ′ contains the

leaves adjacent to w. Let lw be the number of leaves adjacent to w. Recall that T has

a support vertices, so a−1+ lw ≤ |S ′| = γvcϵ(T ) ≤ b. Therefore, lw ≤ b−a+1. Since

b ≤ 2a− 2, we have b− a+ 1 ≤ 2a− 2− a+ 1 = a− 1. Now each support vertex in

T is adjacent to either a− 1 or b− a+ 1 leaves. Since b− a+ 1 ≤ a− 1, we conclude

each support vertex is adjacent to at least b−a+1 leaves, specifically, lw ≥ b−a+1.

Thus, lw = b− a + 1. Also, b ≥ γvcϵ(T ) = |S ′| ≥ a− 1 + lw = a− 1 + b− a + 1 = b,

so γvcϵ(T ) = b as desired. �

Once a bound is given for trees, a natural next question is whether or not the

same bound works for graphs in general? If not, since trees are bipartite, does it

work for bipartite graphs? We address this in the next section.
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4.2 General Graphs

In [10], it was left as an open question as to whether or not the bound given in

Theorem 2.6 held for graphs in general. In the following result, we show that, even

when restricted to bipartite graphs, there is no upper bound on γcϵ(G) in terms of

γ(G), allowing us to conclude that the same is true of γvcϵ(G).

Theorem 4.5 For every integer k ≥ 2, there exists a connected, bipartite graph G

with γcϵ(G) > kγ(G).

Proof. Consider the following construction of G. Begin with the complete bipartite

graph on 4k + 1 vertices, with partite sets V1, V2 such that |V1| = 2k, |V2| = 2k + 1.

To every vertex in V1, append at least 4k2 − 3k+ 1 leaves, and to every vertex in V2,

append exactly 2k − 1 leaves. Let the resulting graph be G.

Note that G is bipartite and every vertex in G is either a support vertex or a leaf

vertex. Further, every support vertex has at least three leaves. Then, S = V1∪V2 (all

of the support vertices in G) is γ(G)-set and |S| = 4k+1. Therefore, γ(G) = 4k+1.

We now show that γcϵ(G) > kγ(G). Notice that in S, every vertex in V1 is cost

effective, while no vertices in V2 are cost effective. Since every support vertex or all

of its leaf neighbors are in every dominating set, to form a cost effective dominating

set from S, we must either remove one vertex from V1 and add its external private

neighbors, or we must remove all the vertices from V2 and add their external private

neighbors. If we remove one vertex from V1 and add its external private neighbors,

we have a cost effective dominating set S ′ such that |S ′| ≥ 4k+1−1+4k2−3k+1 =

4k2 + k + 1 > 4k2 + k = kγ(G). Also, if we remove every vertex from V2 and add
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their external private neighbors, we have a cost effective dominating set S∗ such that

|S∗| = 4k+1− (2k+1)+ (2k+1)(2k− 1) = 4k2 + k+ k− 1 ≥ 4k2 + k+1 > kγ(G).

We conclude that γce(G) > kγ(G), as desired. �

Noting that γvcϵ(G) ≥ γcϵ(G) for any graph G, we have the following result.

Corollary 4.6 For every integer k ≥ 2, there exists a connected, bipartite graph G

with γvcϵ(G) > kγ(G).

30



5 CONCLUSION

We have found an upper bound on the very cost effective domination number of

trees and characterized the trees which obtain this bound. It was also shown that all

possible values between the domination number and the upper bound are attainable.

We also showed that no such bound exists for graphs in general, even when restricted

to bipartite graphs.

As a point of interest, we note a slight variation on the notion of a cost effective

set. A set S ⊆ V is set-wise cost effective if there are more edges between vertices

in S and V \ S than between vertices in S. A set S ⊆ V is a set-wise cost effective

dominating set if it is both dominating and set-wise cost effective. Let the set-wise

domination number γscϵ(G) of a graph G be the minimum cardinality of all set-wise

cost effective dominating sets.

We finish with some open problems suggested by this work:

1. Characterize the trees for which γ(T ) = γvcϵ(T ).

2. Characterize the trees for which γcϵ(T ) = γvcϵ(T ).

3. Characterize the trees for which γvcϵ(T ) = i(T ).

4. What, if anything, can be said about γcϵ(G�H) and γvcϵ(G�H) in terms of

γ(G) and γ(H)? In terms of γcϵ(G), γcϵ(H) and γvcϵ(G), γvcϵ(H), respectively?

5. It can be easily shown that γ(T ) = γscϵ(T ) for trees T . What, if anything, can

be said about γscϵ(G) in terms of γ(G)? In other words, prove or disprove: For

all graphs G, there exists a constant k such that kγ(T ) ≥ γscϵ(T ).
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6. Investigate bounds on the parameters Γcϵ(G) and Γvcϵ(G).
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