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ABSTRACT

Some New Probability Distributions Based on Random Extrema and Permutation
Patterns

by

Jie Hao

In this paper, we study a new family of random variables, that arise as the distribution

of extrema of a random number N of independent and identically distributed random

variables X1, X2, . . . , XN , where each Xi has a common continuous distribution with

support on [0, 1]. The general scheme is first outlined, and SUG and CSUG models are

introduced in detail where Xi is distributed as U [0, 1]. Some features of the proposed

distributions can be studied via its mean, variance, moments and moment-generating

function. Moreover, we make some other choices for the continuous random variables

such as Arcsine, Topp-Leone, and N is chosen to be Geometric or Zipf. Wherever

appropriate, we estimate of the parameter θ in the one-parameter family in question

and test the hypotheses about θ. In the last section, two permutation distributions

are introduced and studied.
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1 INTRODUCTION

1.1 Extreme Value Problems

Extreme value theory has been well developed. Gumbel [1] indicates this area

of research might go back to as early as 1709. N. Bernoulli was one of the pioneers

who discussed extreme value problems. Classical extreme limit theory about only

three types of extreme value distributions was firstly proposed by Fisher and Tippet

[2]. If X1, X2, . . . , Xn are independent and identically distributed (i.i.d.) random

variables with cumulative distribution function (cdf) F , then in elementary texts, the

distribution of the maxima Y = max(X1, X2, . . . , Xn) can be derived:

P(Y ≤ y) = P(X1 ≤ y, X2 ≤ y, . . . , Xn ≤ y)

= P(X1 ≤ y)P(X2 ≤ y) · · ·P(Xn ≤ y)

= [FX(y)]n, (1)

which converges to 1 if F (x) = 1 and to 0 if F (x) < 1. If there exists a sequence of

constants an > 0, and bn ∈ R such that

lim
n→∞

F n(anx + bn) = G(x), (2)

where G(x) is a nondegenerate distribution function, then these distributions with

G occurring as a limit in (2) are called extreme value distributions [3], which are

considered as the following three types of distributions:
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Gumbel-type distribution:

P(X ≤ x) = exp(−e−(x−µ)/σ), −∞ < x < ∞

Fréchet-type distribution:

P(X ≤ x) =

{
0, x < µ

exp{−(
x− µ

σ
)−ξ}, x ≥ µ

Weibull-type distribution:

P(X ≤ x) =

{
exp{−(

µ− x

σ
)ξ}, x ≤ µ

1, x < µ

where µ, σ(> 0) and ξ(> 0) are parameters [4].

Obviously, X with the above three types of distributions takes values in an infinite

interval, but this thesis studies the case where X ∈ [0, 1] and we do not need to use the

classical theory. Let us consider a sequence X1, X2, . . . of i.i.d. random variables with

support on [0, 1] and having distribution function F . Let Y denote the maximum,

and the minimum is denoted by Z. For any fixed n, the distribution of the maximum

Y = max
1≤i≤n

{Xi}

10



has the cdf F (y) = [FX(y)]n; and the distribution of the minimum

Z = min
1≤i≤n

{Xi}

has the cdf F (z) = 1− [1− FX(z)]n.

But what if we have a situation where N of Xi’s is a random number, and we are

instead considering the extrema

Y = max
1≤i≤N

{Xi} (3)

and

Z = min
1≤i≤N

{Xi} (4)

of a random number of i.i.d. random variables? Now consider the sum S of a random

number of i.i.d. variables, defined as

S =
N∑

i=1

Xi

satisfies, according to Wald’s Lemma [5], the equation

E(S) = E(N)E(X),

provided that N is independent of the sequence {Xi} and assuming that the means

of X and N exist.
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The main objective of this thesis is to show that the distributions in (3) and (4)

can be studied in many canonical cases, even if N and {Xi}N
i=1 are correlated. The

main deviation from the papers [6], [7] and [8], where similar questions are studied, is

that the variable X is concentrated on the interval [0, 1] – unlike the above references,

where X has lifetime-like distributions on [0,∞). Even then, we find that many new

and interesting distributions arise, none of them to be found, e.g., in [9] or [10]. In

another deviation from the theory of extremes of random sequences (see, i.e., [11]),

we find that the tail behavior of the extreme distributions is not relevant due to the

fact that the distributions have compact support.

We next cite three examples where our methods might be useful. First, we might

be interested in the strongest earthquake in a given region in a given year. The

number of earthquakes in a year, N , is usually modeled using a Poisson distribution,

and, ignoring aftershocks and similarly correlated events, the intensities of the earth-

quakes can be considered to be i.i.d. random variables in [a, b] whose distribution

can be modeled using, e.g., the data set maintained by Caltech [12]. Second, many

“small world” phenomena have recently been modeled by power law distributions,

also sometimes termed discrete Pareto or Zipf distributions. See, for example, the

body of work by [13], [14], and the references therein, where vertex degrees d(v) in

“internet-like graphs” G (e.g., the vertices of G are individual webpages, and there is

an edge between v1 and v2 if one of the webpages has a link to the other) are shown

to be modeled by

P(d(v) = n) =
[ζ(k)]−1

nk

12



for some constant k > 1, where ζ(·) is the Riemann Zeta function

ζ(k) =
∞∑

n=1

1

nk
.

Thus, the vertices v in a large internet graph have some bounded i.i.d. property Xi,

then the maximum and minimum values of Xi for the neighbors of a randomly chosen

vertex can be modeled using the methods of this paper. Third, we note that N and

the Xi may be correlated, as in the CSUG example (studied systematically in Section

3) where Xi ∼ U [0, 1] and N = inf{n ≥ 2 : Xn > (1 − θ)} follows the geometric

distribution with success probability θ. This is an example of a situation where we

might be modeling the maximum load that a device might have carried before it

breaks down due to an excessive weight or current. It is also feasible in this case that

the parameter θ might be unknown.

1.2 General Scheme

Let X1, X2, . . . , XN be independent and identically distributed (i.i.d.) random

variables following a continuous distribution on [0, 1] with common probability density

function (pdf)

pXi
(x) = f(x), i = 1, 2, . . . , N.

Let N is a random number following a discrete distribution on {1, 2, . . .} with prob-

ability mass function (pmf) given by

P(N = n) = p(n), n = 1, 2, . . . .
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Then the cumulative distribution function (cdf) of Y = max(X1, X2, . . . , XN) given

N = n is

P(Y ≤ y|N = n) = [F (y)]n, (5)

where

F (y) =

∫ y

0

f(x)dx.

Taking the first derivative of (5), we have

g(y|N = n) = n[F (y)]n−1f(y).

Hence, the marginal density function of Y is

g(y) =
∞∑

n=1

g(y|N = n)P(N = n)

= f(y)
∞∑

n=1

n[F (y)]n−1p(n). (6)

In a similar fashion, the marginal density function of Z = min(X1, X2, . . . , XN)

can be shown as follows:

g(z) = f(z)
∞∑

n=1

n[1− F (z)]n−1p(n), (7)

since

P(Z ≤ z|N = n) = 1− P(Z > z|N = n) = 1− [1− F (z)]n.

14



1.3 Permutation Problems

Before we continue with our study of the distribution of extrema of a random

number of random variables, we will also study a few distributions that arise from

the theory of permutations and pattern avoidance in permutations. For instance, if

X1, X2, . . . are i.i.d. random variables with some common continuous distribution(i.e.

U [0, 1]), and if X1 > X2 > X3 > · · · > Xt < Xt+1, then we can say the position of

the first ascent is at t. For n ≥ 0, the Catalan numbers Cn are given by

Cn =
1

n + 1

(
2n

n

)
;

generalizing this fact, Catalan [15] proved the k-fold Catalan convolution formula

Cn,k :=
∑

i1+...+ik=n

k∏
r=1

Cir−1 =
k

2n− k

(
2n− k

n

)
.

The theory of pattern avoidance in permutations is now well-established and thriving,

and a survey of the many results in that area may be found in the text by Kitaev

[16]. One of the earliest and most fundamental results in the field is that the number

of permutations in which the longest increasing sequence is of length 2, the so-called

123-avoiding permutations, is given by the Catalan numbers. The following is a

very natural question: in how many permutations in which the longest increasing

subsequence is of length 2, does the first ascent occur in positions j, j +1? In [18] it is

proved that there are Cn,k permutations on [n] := {1, 2, . . . , n} with longest increasing

subsequence of size 2 and for which the first ascent occurs at positions k, k + 1. It is

15



this fact that leads to the distribution in Section 6. In Section 5, however, we will

study a simpler distribution that deals with first ascent in ordinary non-restricted

permutations.
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2 STANDARD UNIFORM GEOMETRIC (SUG) MODEL

Let X1, X2, . . . , XN be i.i.d. random variables following the Standard Uniform

distribution with pdf is given by

f(x) = 1, 0 ≤ x ≤ 1.

And N is a random number following the Geometric distribution with probability

mass function given by

P(N = n) = θ(1− θ)n−1, 0 < θ < 1, n = 1, 2, . . . .

According to general scheme (Section 1.2), we have from (6) that the density function

of Y in the SUG Model is given by

g(y) =
∞∑

n=1

θ(1− θ)n−1 × nyn−1

= θ ×
∞∑

n=1

n[(1− θ)y]n−1

=
θ

[1− (1− θ)y]2
, 0 < y < 1. (8)

The following figure shows that a graphical probability density function of the SUG

maximum model on various values of parameter θ.
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Figure 1: Plot of the SUG maximum density for some values of θ

Similarly, from (7), the density function of Z in the SUG Model is derived as

follows:

g(z) =
∞∑

n=1

θ(1− θ)n−1 × n(1− z)n−1

= θ ×
∞∑

n=1

n[(1− θ)(1− z)]n−1

=
θ

[1− (1− θ)(1− z)]2

=
θ

[θ + (1− θ)z]2
, 0 < z < 1. (9)
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Figure 2: Plot of the SUG minimum density for some values of θ

See Figure 2 for a graphical probability density function of the SUG minimum model

on various values of parameter θ.

2.1 Some Properties of the Distributions of Y and Z Under the SUG Model

Proposition 2.1. For a random variable Y with “SUG maximum distribution” (8)

and k ∈ N, we have that

E(Y k) =
θ

(1− θ)k+1

k∑
j=0

(
k

j

)∫ 1

θ

(−u)j−2du,

where u = 1− (1− θ)y.

19



Proof.

E(Y k) =

∫ 1

0

yk × θ

[1− (1− θ)y]2
dy

=

∫ θ

1

(
1− u

1− θ

)k

× θ

u2
×
(
− 1

1− θ

)
du

=
θ

(1− θ)k+1

∫ 1

θ

(1− u)k

u2
du

=
θ

(1− θ)k+1

∫ 1

θ

∑k
j=0

(
k
j

)
(−u)j

u2
du

=
θ

(1− θ)k+1

k∑
j=0

(
k

j

)∫ 1

θ

(−u)j−2du,

as claimed.

Proposition 2.2. The random variable Y with density function given by (8) has

mean and variance obtained, respectively, by

E(Y ) =
θ(ln θ +

1

θ
− 1)

(1− θ)2
and V(Y ) =

θ3 − 2θ2 − θ2 ln2 θ + θ

(1− θ)4
.

Proof. Using Proposition 2.1, we can directly obtain the mean and variance by setting

k = 1 and k = 2, and using the fact that V(W ) = E(W 2)− [E(W )]2 for any random

variable W .

Proposition 2.3. For a random variable Z with “SUG minimum distribution” (9)

and k ∈ N, we have that

E(Zk) =
θ

(1− θ)k+1

k∑
j=0

(
k

j

)
(−θ)j

∫ 1

θ

uk−j−2du,

20



where u = θ + (1− θ)z.

Proof.

E(Zk) =

∫ 1

0

zk × θ

[θ + (1− θ)z]2
dz

=

∫ 1

θ

(
u− θ

1− θ

)k

× θ

u2
× 1

1− θ
du

=
θ

(1− θ)k+1

∫ 1

θ

(u− θ)k

u2
du

=
θ

(1− θ)k+1

∫ 1

θ

∑k
j=0

(
k
j

)
uk−j(−θ)j

u2
du

=
θ

(1− θ)k+1

k∑
j=0

(
k

j

)
(−θ)j

∫ 1

θ

uk−j−2du.

as claimed.

Proposition 2.4. The random variable Z with density function given by (9) has

mean and variance obtained, respectively, by

E(Z) =
θ(θ − 1− ln θ)

(1− θ)2
and V(Z) =

θ3 − 2θ2 − θ2 ln2 θ + θ

(1− θ)4
.

Proof. Using Proposition 2.3 and the fact that V(W ) = E(W 2) − [E(W )]2 for any

random variable W , we directly obtain this proof.

Moment-generating functions of the Y, Z variables are easily to calculate too.

Notice that the logarithmic terms above arise due to the contributions of the j = 1

and j = k − 1 terms, and it is precisely these logarithmic terms that make, e.g.,

method of moments estimates for θ to be intractable in a closed (i.e., non-numerical)

21



form. Similar difficulties arise when analyzing the likelihood function and likelihood

ratios.
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3 THE CORRELATED STANDARD UNIFORM GEOMETRIC (CSUG) MODEL

The Correlated Standard Uniform Geometric (CSUG) model is related to the SUG

model, as the name suggests, but X and N are correlated as indicated in Section

2. The CSUG problems arise in two cases. One case is that we conduct standard

uniform trials until a variable Xi exceeds 1 − θ, where θ is the parameter of the

correlated geometric variable, and the maximum of X1, X2, . . . , Xi−1 is what we seek.

The maximum is between 0 and 1 − θ. The other case is where standard uniform

trials are conducted until Xi is less than θ, and we are looking for the minimum of

X1, X2, . . . , Xi−1. The minimum is between θ and 1.

Specifically, let X1, X2, . . . be a sequence of standard uniform variables and define

N = inf{n ≥ 2 : Xi > 1− θ},

or

N = inf{n ≥ 2 : Xi < θ}.

In either case N has probability mass function given by

P(N = n) = θ(1− θ)n−2, 0 < θ < 1, n = 2, 3, . . . ; (10)

note that this is simply a geometric random variable conditional on the success having

occurred at trial 2 or later. Considering (6), X has probability density function given

23



by

for maximum : f(x) =
1

1− θ
, 0 ≤ x ≤ 1− θ;

for minimum : f(x) =
1

1− θ
, θ ≤ x ≤ 1.

Clearly N is dependent on the X sequence.

Proposition 3.1. Under the CSUG model, the density function of Y , defined by (3),

is given by

g(y) =
θ

(1− θ)(1− y)2
, 0 ≤ y ≤ 1− θ. (11)

Proof. The conditional cumulative distribution function of Y given that N = n is

given by

P(Y ≤ y|N = n) =

(
y

1− θ

)n−1

, n = 2, 3, . . . . (12)

Taking the derivative of (12), we see that the conditional density function is given by

g(y|N = n) =
n− 1

1− θ

(
y

1− θ

)n−2

, n = 2, 3, . . .

Consequently, the marginal density function of Y in the CSUG model is given by

g(y) =
∞∑

n=2

θ(1− θ)n−2 × n− 1

1− θ

(
y

1− θ

)n−2

=
θ

1− θ
×

∞∑
n=2

(n− 1)yn−2

=
θ

(1− θ)(1− y)2
,

24



which completes the proof.

Figure 3 shows the probability density function of the CSUG maximum model on

various values of parameter θ.
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Figure 3: Plot of the CSUG maximum density for some values of θ

Proposition 3.2. The density function of Z under the CSUG model is given by

g(z) =
θ

(1− θ)z2
, θ ≤ z ≤ 1, n = 2, 3, . . . . (13)

Proof. The conditional cumulative distribution function of Z given that N = n is

given by

P(Z ≤ z|N = n) = 1− P(Z > z|N = n) = 1−
(

1− z

1− θ

)n−1

, n = 2, 3, . . .

25



Thus, the conditional density function is given by

g(z|N = n) =
n− 1

1− θ

(
1− z

1− θ

)n−2

, n = 2, 3, . . . ,

which yields the density function of Z under the CSUG model as

g(z) =
∞∑

n=2

θ(1− θ)n−2 × n− 1

1− θ

(
1− z

1− θ

)n−2

=
θ

1− θ
×

∞∑
n=2

(n− 1)(1− z)n−2

=
θ

(1− θ)z2
,

which finishes the proof.

Figure 4 shows the probability density function of the CSUG minimum model on

various values of parameter θ.

3.1 Some Properties of the Distributions of Y and Z Under the CSUG Model

Proposition 3.3. For a random variable Y with “CSUG maximum distribution” (11)

and k ∈ N, we have that

E(Y k) =
θ

1− θ

k∑
j=0

(
k

j

)∫ 1

θ

(−u)j−2du,

whereu = 1− y.
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Figure 4: Plot of the CSUG minimum density for some values of θ

Proof.

E(Y k) =

∫ 1−θ

0

yk × θ

(1− θ)(1− y)2
dy

=
θ

1− θ

∫ θ

1

(1− u)k

u2
(−du)

=
θ

1− θ

∫ 1

θ

∑k
j=0

(
k
j

)
(−u)j

u2
du

=
θ

1− θ

k∑
j=0

(
k

j

)∫ 1

θ

(−u)j−2du,

as asserted.

Proposition 3.4. The random variable Y with density function given by (11) has
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mean and variance obtained, respectively, by

E(Y ) =
θ ln θ − θ + 1

1− θ

and

V(Y ) =
θ3 − 2θ2 − θ2 ln2 θ + θ

(1− θ)2
.

Proof. Using Proposition 3.3, we can directly compute the mean and variance by

setting k = 1, 2. Notice that the variance of Y is smaller than that of Y under the

SUG model, with an identical numerator term. Also, the expected value is smaller

under the CSUG model than in the SUG case.

Proposition 3.5. For a random variable Z with “CSUG minimum distribution” (13)

and k ∈ N, we have that

E(Zk) =
θ

1− θ

∫ 1

θ

zk−2dz.

Proof.

E(Zk) =

∫ 1

θ

zk × θ

(1− θ)z2
dz

=
θ

1− θ

∫ 1

θ

zk−2du

Proposition 3.6. The random variable Z with density function given by (13) has
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mean and variance given, respectively, by

E(Z) =
−θ ln θ

1− θ
and V(Z) =

θ3 − 2θ2 − θ2 ln2 θ + θ

(1− θ)2
.

Proof. A special case of Proposition 3.5; note that as in the SUG model, V(Y ) =

V(Z).

3.2 Parameter Estimation

The intermingling of polynomial and logarithmic terms makes method of moments

estimation difficult in closed form, as in the SUG case. However, if θ is unknown,

the maximum likelihood estimate of θ can be found in a satisfying form, both in the

CGUG maximum and CSUG minimum cases. Suppose that Y1, Y2, . . . , Yn form a

random sample from the CSUG Maximum distribution with unknown θ. Since the

pdf of each observation has the following form:

f(y|θ) =

{
θ

(1−θ)(1−y)2
, for 0 ≤ y ≤ 1− θ

0, otherwise

the likelihood function is given by

`(θ) =

{
( θ

1−θ
)n 1Qn

i=1(1−yi)2
, for 0 ≤ yi ≤ 1− θ (i = 1, 2, . . . , n)

0, otherwise

The MLE of θ is a value of θ, where θ ≤ 1−yi for i = 1, 2, . . . , n, which maximizes θ
1−θ

.

Let ϕ(θ) = θ
1−θ

. Since ϕ′(θ) ≥ 0, it follows that ϕ(θ) is a increasing function, which

means the MLE is the largest possible value of θ such that θ ≤ 1−yi for i = 1, 2, . . . , n.
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Thus, this value should be 1−max(Y1, . . . , Yn), i.e., θ̂ = 1− Y(n).

Suppose next that Z1, Z2, . . . , Zn form a random sample from the CSUG minimum

distribution. Since the pdf of each observation has the following form:

f(z|θ) =

{
θ

(1−θ)z2 , for θ ≤ z ≤ 1

0 otherwise,

it follows that the likelihood function is given by

`(θ) =

{
( θ

1−θ
)n 1Qn

i=1 z2
i
, for θ ≤ zi ≤ 1 (i = 1, 2, . . . , n)

0 otherwise.

As above, it now follows that θ̂ = Y(1).
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4 A SUMMARY OF SOME OTHER MODELS

The general scheme given by (6) and (7) is quite powerful. For example, suppose

(using the example from Section 1.1) that the pmf of random numbers is

p(n) =
6

π2

1

n2

and the random variables X ∼ U [0, 1]. Then it is easy to show that

g(y) =
6

π2

1

y
ln

(
1

1− y

)
, 0 ≤ y ≤ 1,

and that E(Y ) = 6
π2 . (The expected value of Y can also be calculated by using the

identity E(Y ) = E(E(Y |N)).

In this section, we collect some more results of this type, without proof:

UNIFORM-POISSON MODEL Here we let X ∼ U [0, 1] and p(n) = e−λλn

(1−e−λ)n!
, n =

1, 2, . . ., so that N follows a left-truncated Poisson distribution.

Proposition 4.1. Under the Uniform-Poisson model,

g(y) =
λe−λeλy

1− e−λ
; g(z) =

λe−λz

1− e−λ
;

E(Y ) =
1

1− e−λ
− 1

λ
; E(Z) =

1

λ
− e−λ

1− e−λ
;

V(Y ) =
1

λ2
+

1

1− e−λ
− 1

(1− e−λ)2
; V(Z) =

1

λ2
− e−λ

λ(1− e−λ)
− e−2λ

(1− e−λ)2
;
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MY (t) = E(ety) =
λe−λ(et+λ − 1)

(t + λ)(1− e−λ)
; MZ(t) = E(etz) =

λ(et−λ − 1)

(t− λ)(1− e−λ)
.

In some sense, the primary motivation of this paper was to produce extreme

value distributions that did not fall into the Beta family (such as f(y) = ntn−1

for the maximum of n i.i.d. U [0, 1] variables). A wide variety of non-Beta-based

distributions may be found in [10]. Can we add extreme value distributions to that

collection? In what follows, we use both the Beta families B(2, 2) and B(1/2, 1/2), the

arcsine distribution, and a “Beyond Beta” distribution, the Topp-Leone distribution,

as “input variables” to make further progress in this direction.

GEOMETRIC-BETA(2,2) MODEL. Here X ∼ B(2, 2) and N ∼ Geo(θ). In this case

we get

g(y) =
6y(1− y)θ

[1− (1− θ)y2(3− 2y)]2

and

g(z) =
6z(1− z)θ

[1− (1− θ)(2z3 − 3z2 + 1)]2
.

POISSON-BETA(2,2) MODEL. Here X ∼ B(2, 2) and N ∼ Po0(θ), the Poisson(θ)

distribution left-truncated at 0. In this case we get

g(y) =
6θy(1− y)e−θ(2y3−3y2+1)

1− e−θ

and

g(z) =
6θz(1− z)e−θ(3z2−2z3)

1− e−θ
.

GEOMETRIC-ARCSINE MODEL. Here X ∼ B(1/2, 1/2) and N ∼ Geo(θ). In this
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case we get

g(y) =
θπ−1[y(1− y)]−1/2

[1− (1− θ) 2
π

arcsin
√

y]2

and

g(z) =
θπ−1[z(1− z)]−1/2

[1− (1− θ)(1− 2
π

arcsin
√

z)]2
.

POISSON-ARCSINE MODEL. Here X ∼ B(1/2, 1/2) and N ∼ Po0(θ). Here we

have

g(y) =
θπ−1[y(1− y)]−1/2e−θ(1− 2

π
arcsin

√
y)

1− e−θ

and

g(z) =
θπ−1[z(1− z)]−1/2e−

2θ arcsin
√

z
π

1− e−θ
.

Before we move on to the next model, we study Topp-Leone distribution first.

Definition 4.2. Topp-Leone distribution is defined by Topp and Leone [20], which is

a family of distributions with cdf

F (x; a, b) =


0, x ≤ 0(

x
b

)a (
2− x

b

)a
, 0 < x < b

1, x ≥ b
(14)

where 0 < x < b < ∞ and a > 0. The pdf of the distribution obtained by differentia-

tion of (14) given by

f(x; a, b) =
2a

b
(1− x

b
)
(x

b

)a−1 (
2− x

b

)a−1

(15)

Genç [21] stated that the support of the Topp-Leone distribution is bounded. For
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b = 1, the pdf of the standard Topp-Leone (STL) distribution is given by

f(x; a) = 2a(1− x)xa−1(2− x)a−1, 0 < x < 1, a > 0 (16)
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Figure 5: Plot of the standard Topp-Leone density for some values of a

See Figure 5 for a graphical probability density function of the standard Topp-

Leone distribution on various values of parameter a.

GEOMETRIC-TOPP-LEONE MODEL. Here X ∼ STL(a) and N ∼ Geo(θ):

g(y) =
2a(1− y)ya−1(2− y)a−1θ

[1− (1− θ)ya(2− y)a]2
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and

g(z) =
2a(1− z)za−1(2− z)a−1θ

{1− (1− θ)[1− za(2− z)a]}2
.

POISSON-TOPP-LEONE MODEL. X ∼ TL(a) and N ∼ Po0(θ):

g(y) =
2θa(1− y)ya−1(2− y)a−1e−θ[1−ya(2−y)a]

1− e−θ

and

g(z) =
2θa(1− z)za−1(2− z)a−1e−θ[za(2−z)a]

1− e−θ
.
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5 PERMUTATION BASED DISTRIBUTION 1

5.1 First Ascent Distribution

Consider there are n! permutations on {1, 2, 3, · · · , n}. For example, the proba-

bility that a randomly chosen permutation has the first ascent at position 1 is

P(n1 < n2) =
1

2!
=

1

2
;

the probability that a randomly chosen permutation has the first ascent at position

2 is

P(n3 > n1 > n2, n1 > n3 > n2) =
2

3!
.

In general, the probability that a random permutation on has its first ascent at

position k is given, for 1 ≤ k ≤ n − 1, by k
(k+1)!

. To see this, choose any one of

the k + 1 elements in positions 1 through k + 1, except for the smallest, to occupy

the k + 1st position, and then arrange the other elements in a monotone decreasing

fashion. The chance that the first ascent is at position n is, of course, 1
n!

.

We will find it more convenient in this section to consider an infinite analogs of

this distribution. An infinite permutation may be realized, e.g., by considering the

order statistics X(1) < X(2) < . . . of a sequence X1, X2 . . . of i.i.d. random variables

with say a uniform distribution on [0,1]. Under this scheme we get the first ascent

distribution as being

f(x) =
x

(x + 1)!
, x = 1, 2, . . . . (17)
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It is easy to verify that this is a genuine probability distribution on 1, 2, · · · , and that it

is similar to the unit Poisson distribution on 0,1,... with mass function f(x) = e−1/x!.

5.2 Some Properties of the First Ascent Distribution

Proposition 5.1. For i.i.d. random variable X with the first ascent distribution on

{1, 2, · · · }, the expected value is given by

E(X) =
∞∑

x=1

x× x

(x + 1)!

=
∞∑

x=1

1

(x− 1)!
−

∞∑
x=1

1

x!
+

∞∑
x=1

1

(x + 1)!

= e− (e− 1) + (e− 1− 1)

= e− 1.

Note that the exponential function formula, which is

ex =
∞∑

x=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . , valid for all real x.

Proposition 5.2. For i.i.d. random variable X with the first ascent distribution on

{1, 2, · · · }, the variance is given by

V(X) = e(3− e).
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Proof. Since

E(X2) =
∞∑

x=1

x2 × x

(x + 1)!

=
∞∑

x=2

1

(x− 2)!
+

∞∑
x=1

x

(x + 1)!

= e + 1,

then by the alternative definition of the variance,

V(X) = E(X2)− (E(X))2

= (e + 1)− (e− 1)2

= e(3− e).

Proposition 5.3. For i.i.d. random variable X with the first ascent distribution on

{1, 2, · · · }, the moment-generating function (m.g.f) is given by

E(etX) =
∞∑

x=1

etx × x

(x + 1)!

=
∞∑

x=1

etx

x!
−

∞∑
x=1

etx

(x + 1)!

=
∞∑

x=1

etx

x!
− 1

et

∞∑
x=1

(et)
x+1

(x + 1)!

= (eet − 1)− 1

et
(eet − 1− et)

= e−t(1− eet

+ et+et

),
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which is quite a strange m.g.f.!

5.3 The θ Model for the First Ascent Distribution

Meanwhile, it is similar as in the Poisson distribution, to define a θ-analog of the

above distribution defined by

f(x) =
θx

x!
− θx+1

(x + 1)!
, 0 < θ < 1, x = 0, 1, 2, . . . (18)

Let us discuss the relationship among our new density function, sub-Poisson and

super-Poisson. If we assume our new density function f(x) is a sub-Poisson function,

θx

x!
− θx+1

(x + 1)!
<

e−θθx

x!

by standard manipulations,

1− θ

x + 1
− e−θ < 0

If we set x = 0, then

1− θ − e−θ < 0

Let α(θ) = 1− θ − e−θ, we have α(0) = 0.

Taking the first derivative of α(θ),

α′(θ) = −1 + e−θ < 0 by e−1 < e−θ < 1, and e−1 ≈ 0.37

Hence, α(θ) is a decreasing function. Due to 0 < θ < 1, α(θ) < 0.
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Therefore, f(x) is always a sub-Poisson function when x = 0.

If we set x = 1, then

1− θ

2
− e−θ < 0

Let β(θ) = 1− θ
2
− e−θ, we have β(0) = 0.

Taking the first derivative of β(θ),

β′(θ) = −0.5 + e−θ

Now, we have to discuss β′(θ) into two cases. If θ > ln2, and ln2 ≈ 0.69, β′(θ) < 0.

Thus, β(θ) is a decreasing function, which implies β(θ) < 0. We conclude that f(x)

is a sub-Poisson function. If θ < ln2, β′(θ) > 0, which implies β(θ) is an increasing

function. Thus, β(θ) > 0, which means our assumption is invalid. So, f(x) is a

super-Poisson function.

Therefore, f(x) is either sub-Poisson or super-Poisson when x = 1. It depends

on the value of θ. If θ > ln2, f(x) is a sub-Poisson function; if θ < ln2, f(x) is a

super-Poisson function.

If we set x = 2, then

1− θ

3
− e−θ < 0

Let γ(θ) = 1− θ
3
− e−θ, we have γ(0) = 0.

Taking the first derivative of γ(θ),

γ′(θ) = −1

3
+ e−θ
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we know γ′(θ) would be greater than zero if θ > ln3. Since 0 < θ < 1, and ln3 ≈ 1.09,

γ′(θ) is positive. It implies γ(θ) is an increasing function, and then it is greater than

zero. Thus, the assumption is false.

So, f(x) is a super-Poisson function when x = 2. Similarity, f(x) is still a super-

Poisson function when x = 3, 4, 5, . . .

Therefore, f(x) is always a super-Poisson function when x ≥ 2.

5.4 Some Properties of the θ Model

Proposition 5.4. Under the θ-analog of the first ascent model, the m.g.f of X is

MX(t) = E(etX) =
∞∑

x=0

etx × (
θx

x!
− θx+1

(x + 1)!
)

=
∞∑

x=0

(θet)x

x!
− e−t

∞∑
x=0

(θet)x+1

(x + 1)!

= eθet − e−t(eθet − 1)

= eθet

(1− e−t) + e−t

Proposition 5.5. Under the θ-analog of the first ascent model, the expected value

and variance are given, respectively, by

E(X) = eθ − 1 and V(X) = eθ
(
2θ + 1− eθ

)
.
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Proof. If we differentiate MX(t) once and then set t = 0, we get the expected value is

E(X) = M ′(0)

=
(
eθet

θet
)
×
(
1− t−t

)
+ eθet × e−t − e−t

∣∣∣∣
t=0

= eθ − 1;

if we differentiate MX(t) twice and then set t = 0, we get E(X2) is

E(X2) = M ′′(0)

=
(
θ2e2t − θ2et + θet + θ − e−t

)
eθet

+ e−t

∣∣∣∣
t=0

= (2θ − 1) eθ + 1.

Therefore, using V(X) = E(X2)− [E(X)]2, the variance is

V(X) = (2θ − 1) eθ + 1−
(
eθ − 1

)2
= eθ

(
2θ + 1− eθ

)

Let’s verify the variance above is greater than zero. Let ϕ(θ) = 2θ + 1 − eθ,

then we have ϕ(0) = 0, and ϕ′(θ) = 2 − eθ which is greater than zero if θ < ln 2.

Thus,ϕ(θ) is an increasing function and greater than zero when θ < ln 2. Also, we

have ϕ(1) = 3− e which is greater than zero since e ≈ 2.718. Since 0 < θ < 1, ϕ(θ) is

always greater than zero. And we know eθ > 0, therefore we claim that the variance

is positive value.
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5.5 Inference for the θ Model

5.5.1 Method of Moments

Suppose θ is unknown, we can estimate parameter θ based on the method of

moments (MM) since moment expressions for this model is not cumbersome.

Let x̄ = E(X) = eθ − 1, then θ̂ = ln(x̄ + 1), where x̄ < e − 1 ≈ 1.718 based

on the domain of θ. But, what is the probability when x̄ < e − 1? The probabil-

ity of x̄ < e − 1 can be represented as P
(

x̄−µ
σ/
√

n
< e−1−(eθ−1)q

eθ(2θ+1−eθ)/
√

n

)
, which implies

P
(

x̄−µ
σ/
√

n
< (e−eθ)

√
n

eθ/2
√

2θ+1−eθ

)
. Define kθ = e−eθ

eθ/2
√

2θ+1−eθ
, then for any fixed θ where 0 <

θ < 1, kθ should be greater than zero. Furthermore, P (z <
√

nkθ) would converge to

1 as n tends to ∞ by the law of large number. So, the MM estimator is good as the

sample size is very large. In summary, the MM estimator is expressed as

θ̂MM =

{
ln(x̄ + 1) if ln(x̄ + 1) < 1
1 if ln(x̄ + 1) ≥ 1

5.5.2 Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be an i.i.d. sample from the θ model. By definition, the likeli-

hood function is represented as

L(x; θ) =
θ

Pn
i=1 xi∏n

i=1(xi)!

n∏
i=1

(
1− θ

1 + xi

)
(19)
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Taking the logarithm of (19),

logL(θ) =

(
n∑

i=1

xi

)
log θ − log

(
n∏

i=1

(xi)!

)
+

n∑
i=1

log

(
1− θ

1 + xi

)
(20)

Taking the derivative with respect to θ we obtain

∂ log `(θ)

∂θ
=

∑n
i=1 xi

θ
− 1

1− θ + xi

. (21)

Setting
∂ log `(θ)

∂θ
= 0, we obtain

nx̄

θ
=

n∑
i=1

1

1− θ + xi

. (22)

Unfortunately, it is difficult to solve for θ by standard manipulation. Next, we use

simulation technique to evaluate the maximum likelihood estimate (MLE).

Suppose we assume the value of θ is 0.25. Substituting θ = 0.25 into (18), the

density function yields that

f(x) =
0.25x

x!

(
1− 0.25

x + 1

)
.

The simulation technique is as follows: Using R, we generate random number from

0 to 9999. And choose 100 numbers randomly without replace by three times. The

following table shows how we process the simulation.

Based on the simulated data, we obtain the MLE θ̂ ≈ 0.24659 by solving for the

parameter in (22), which is approximately to the origin θ = 0.25.
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Table 1: Simulated data for θ = 0.25

x f(x) intervals Sample 1 Sample 2 Sample 3 Total
0 0.7500 0-7499 76 74 77 227
1 0.2188 7500-9687 21 22 19 62
2 0.0286 9688-9973 3 4 4 11
3 0.0024 9974-9997 0 0 0 0
4 0.0002 9998-9999 0 0 0 0
5 0.0000 n/a 0 0 0 0

Similarity, if θ = 0.5, then the data is simulated by

Table 2: Simulated data for θ = 0.5

x f(x) intervals Sample 1 Sample 2 Sample 3 Total
0 0.5000 0-4999 56 48 53 157
1 0.3750 5000-8749 37 22 38 97
2 0.1042 8750-9791 9 13 6 28
3 0.0182 9792-9973 1 0 3 4
4 0.0023 9974-9996 0 2 0 2
5 0.0002 9997-9998 0 0 0 0
6 0.0001 9999 0 0 0 0

Based on the simulated data, we obtain the MLE θ̂ ≈ 0.466992 by solving for the

parameter in (22), which is approximately to the origin θ = 0.5.

Therefore, the simulation method for MLE is appropriate. Furthermore, it shows

that the value of MLE is slightly greater than MM estimator for the same simulated

data.
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6 PERMUTATION BASED DISTRIBUTION 2

6.1 First Ascent in 123-avoiding Permutation Distribution

What can be said about the location distribution of the first ascent in a random

123-avoiding permutation? We see from the discussion in Section 1.3 that there are

Cn 123-avoiding permutation, and Cn,k 123-avoiding permutation in which the first

ascent is at position (k, k+1). Here the probability that the first ascent is a randomly

chosen 123-avoiding permutation is given by

f(k) =
Cn,k

Cn

= k
(2n− k − 1)!(n + 1)!

(2n)!(n− k)!
, k = 1, 2, . . . , n,

which, for small k and large n, may be approximated by f(x) = k
2k+1 . Accordingly,

let us define the geometric-like distribution on Z+ = 1, 2, . . . by

f(x) =
x

2x+1
, x = 1, 2, . . . .
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6.2 The Mean, Moment-generating Function

We see that

E(X) =
∞∑

x=1

x× x

2x+1

=
1

8

∞∑
x=1

x(x− 1)(
1

2
)x−2 +

1

4

∞∑
x=1

x(
1

2
)x−1

=
1

8
× 2

(1− 1
2
)3

+
1

4
× 1

(1− 1
2
)2

= 3.

Together with the result from the previous section, we have, roughly speaking, that

for a random permutation on a large [n], we expect the first ascent to be at position

e−1 ≈ 1.718, whereas this value increases to 3 for a random 123-avoiding permutation.

Also,

E(etX) =
∞∑

x=1

etx × x

2x+1

=
et

4

∞∑
x=1

x(
et

2
)x−1

=
et

4
× 1

(1− et

2
)2

=
et

(2− et)2
, if

et

2
< 1, i.e., if t < ln 2.
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6.3 The α Model and Its M.G.F

Moreover, it makes sense, as in the geometric distribution, to define a α-analog of

the above distribution defined by

f(x) =
(α− 1)2x

αx+1
, x = 1, 2, . . . , α > 1, (23)

Note that in the case of first ascent in a 123-avoiding permutation we have α = 2.

In the general case, the m.g.f. given by

E(etX) =
∞∑

x=1

etx × (θ − 1)2x

θx+1

=
(θ − 1)2et

θ2

∞∑
x=1

x(
et

θ
)x−1

=
(θ − 1)2et

θ2
× 1

(1− et

θ
)2

= (
θ − 1

θ − et
)2 · et, if

et

θ
< 1, i.e., if i.e., if t < ln θ.
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6.4 Inference for the α Model

6.4.1 Method of Moments

Consider the population mean is

µX =
∞∑

x=1

x× (α− 1)2x

αx+1

=
(α− 1)2

α3

∞∑
x=1

x(x− 1)(
1

α
)x−2 +

(α− 1)2

α2

∞∑
x=1

x(
1

α
)x−1

=
(α− 1)2

α3
× 2

(1− 1
α
)3

+
(α− 1)2

α2
× 1

(1− 1
α
)2

=
2

α− 1
+ 1

If the number of observations n is large, the sample mean should be well approx-

imated by the population mean based on the law of large numbers. Thus,

x̄ = µX =
2

α− 1
+ 1,

which is solved for α̂. Consequently, we obtain the MM estimate of α

α̂ = 1 +
2

x̄− 1
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6.4.2 Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be an i.i.d. sample from the α model. By definition, the

likelihood function is represented as

L(α) =
(α− 1)2n

∏n
i=1 xi

αn+
Pn

i=1 xi
, (24)

Taking the logarithm of (24),

logL(α) =
n∑

i=1

log xi + 2n log(α− 1)−

(
n +

n∑
i=1

xi

)
log α, (25)

Taking the derivative with respect to α we obtain

∂ log `(α)

∂α
=

2n

α− 1
− n +

∑n
i=1 xi

α
. (26)

Setting
∂ log `(α)

∂α
= 0, we have

2n

α− 1
=

n +
∑n

i=1 xi

θ
, (27)

Solving for α in (27), we obtain an very interesting MLE

α̂ = 1 +
2

x̄− 1
.

Note that the estimates of MM and ML are same in α model.
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6.4.3 Testing Hypotheses

By Neyman-Pearson Test, we state the null hypothesis Ho : α = α0 versus the

alternative hypothesis Ha : α = α1. Assume that α1 > α0.

The most powerful test rejects Ho if the likelihood ratio Lα1)
L(α0)

> k, where k is a constant.

Then we have,

L(α1)

L(α0)
=

(α1 − 1)2n (
∏n

i=1 xi)

α
n+

Pn
i=1 xi

1

× α
n+

Pn
i=1 xi

0

(α0 − 1)2n(
∏n

i=1 xi)

=

(
α1 − 1

α0 − 1

)2n(
α0

α1

)n+
Pn

i=1 xi

We would reject Ho if
(

α1−1
α0−1

)2n (
α0

α1

)n+
Pn

i=1 xi

> k

which yields, (
α0

α1

)n+
Pn

i=1 xi

> k′

taking the logarithm on both sides,

(
n +

n∑
i=1

xi

)
log

α0

α1

> log k′

since α1 > α0, which implies log

(
α0

α1

)
< 0, then we turn into

(
n +

n∑
i=1

xi

)
< k′′
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Therefore, x̄ < k, where k is a constant.
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7 OPEN PROBLEMS

We are trying to fit all models for appropriate real data sets. The data set we

mentioned in Section 1.1 is the magnitude of earthquakes measured at the Southern

California Earthquake Data Center [12]. Unfortunately, we failed to fit the model for

earthquake data sets from 1962 to 2013. By now, we are still looking for data sets.

53



BIBLIOGRAPHY

[1] Gumbel, E. J. (1958). Statistics of Extremes, Columbia University Press, New

York.

[2] Fisher, R. A. and Tippett, L. H. C. (1928). “Limiting forms of the frequency

distribution of the largest or smallest member of a sample”, Proc. Cambridge

Philosophical Society, 24, 180–190.

[3] Haan, L. D. and Ferreira, A. (2006). Extreme Value Theory: An Introduction,

Springer, New York.

[4] Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and

Applications, Imperial College Press, London.

[5] Durrett, R. (1991). Probability: Theory and Examples., Wadsworth and

Brooks/Cole, Pacific Grove.

[6] Louzada, F., Roman M. and Cancho, V. G. (2011). “The complementary ex-

ponential geometric distribution: Model, properties, and a comparison with its

counterpart”, Computational Statistics and Data Analysis, 55, 2516–2524.

[7] Louzada, F., Bereta E. M. P. and Franco, M. A. P. (2012). “On the distribu-

tion of the minimum or maximum of a random number of i.i.d. lifetime random

variables”, Applied Mathematics, 3, 350–353.

54



[8] Morais, A. L. and Barreto-Souza W. (2011). “A compound class of Weibull

and power series distributions”, Computational Statistics and Data Analysis,

55, 1410–1425.

[9] Johnson, N., Kotz S. and Balakrishnan N. (1995). Continuous Univariate Dis-

tributions, Vol. 2, 2nd Edition, John Wiley, New York.

[10] Kotz S. and Dorp J. V. (2004). Beyond Beta: Other Continuous Families of Dis-

tributions with Bounded Support and Applications, World Scientific Publishing

Co., Singapore.

[11] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related

Properties of Random Sequences and Processes, Springer, New York.

[12] Earthquake data set, available at

http://www.data.scec.org/eq-catalogs/date_mag_loc.php (March 2014).

[13] Chung, F., Lu, L. and Vu, V. (2003). “Eigenvalues of random power law graphs”,

Annals of Combinatorics, 7, 21–33.

[14] Aiello, B., Chung, F. and Lu, L. (2001). “A random graph model for power law

graphs”, Experimental Mathematics, 10, 53–66.

[15] Catalan, E. (1887). “Sur les nombres de Segner”, Rend. Circ. Mat. Palermo, 1,

190–201.

[16] Kitaev, S. (2011). Patterns in Permutations and Words, Springer, New York.

55



[17] Hao, J. and Godbole, A. (2014+). “Distribution of the Maximum and Minimum

of a Random Number of Bounded Random Variables”, submitted, available at

http://arxiv.org/pdf/1403.1302v1.pdf (March 2014).

[18] Connolly, S., Gabor, Z. and Godbole, A. (2014+). “The location of

the first ascent in a 123-avoiding permutation”, submitted, available at

http://arxiv.org/pdf/1401.2691.pdf (March 2014).

[19] Godbole, A. and Hao, J. (2014+). “Telescoping Sums, Permuta-

tions, and First Occurrence Distributions”, submitted, available at

http://arxiv.org/pdf/1403.7665v1.pdf (April 2014).

[20] Topp, C. W. and Leone, F. C. (1955). “A Family of J-Shaped Frequency Func-

tions”, Journal of the American Statistical Association, 50, 209–219.
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APPENDICES

In these Appendices, the code used in R version 3.0.3. The R project for statistical

computing and graphics is a free programming software. All comments given in R

are preceded by the # symbol.

A Plotting Probability Density Functions

#SUG-Y#

y=seq(0,1,0.001)

theta=c(0.1,0.25,0.5,0.75,1)

fy1=theta[1]/(1-(1-theta[1])*y)^2

fy2=theta[2]/(1-(1-theta[2])*y)^2

fy3=theta[3]/(1-(1-theta[3])*y)^2

fy4=theta[4]/(1-(1-theta[4])*y)^2

fy5=theta[5]/(1-(1-theta[5])*y)^2

plot(y,fy1,type="l",ylim=c(0,6),lty=1,lwd=2,ylab="pdf")

lines(y,fy2,type="l",lty=2,lwd=2)

lines(y,fy3,type="l",lty=3,lwd=2)

lines(y,fy4,type="l",lty=4,lwd=2)

lines(y,fy5,type="l",lty=5,lwd=2)

legend("topleft",c("theta=0.1","theta=0.25","theta=0.5","theta=0.75","theta=1"),

cex=0.8,lty=1:5, lwd=2, bty="n")
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#SUG-Z#

z=seq(0,1,0.001)

theta=c(0.1,0.25,0.5,0.75,1)

fz1=theta[1]/(theta[1]+(1-theta[1])*z)^2

fz2=theta[2]/(theta[2]+(1-theta[2])*z)^2

fz3=theta[3]/(theta[3]+(1-theta[3])*z)^2

fz4=theta[4]/(theta[4]+(1-theta[4])*z)^2

fz5=theta[5]/(theta[5]+(1-theta[5])*z)^2

plot(z,fz1,type="l",ylim=c(0,6),lty=1,lwd=2,ylab="pdf")

lines(z,fz2,type="l",lty=2,lwd=2)

lines(z,fz3,type="l",lty=3,lwd=2)

lines(z,fz4,type="l",lty=4,lwd=2)

lines(z,fz5,type="l",lty=5,lwd=2)

legend("topright",c("theta=0.1","theta=0.25","theta=0.5","theta=0.75","theta=1"),

cex=0.8,lty=1:5, lwd=2, bty="n")

#CSUG-Y#

theta=c(0.1,0.25,0.5,0.75)

y1=seq(0,1-theta[1],0.001)

y2=seq(0,1-theta[2],0.001)

y3=seq(0,1-theta[3],0.001)

y4=seq(0,1-theta[4],0.001)
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fy1=theta[1]/((1-theta[1])*(1-y1)^2)

fy2=theta[2]/((1-theta[2])*(1-y2)^2)

fy3=theta[3]/((1-theta[3])*(1-y3)^2)

fy4=theta[4]/((1-theta[4])*(1-y4)^2)

plot(y1,fy1,type="l",xlim=c(0,1),ylim=c(0,10),lty=1,lwd=2,xlab="y",ylab="pdf")

lines(y2,fy2,type="l",lty=2,lwd=2)

lines(y3,fy3,type="l",lty=3,lwd=2)

lines(y4,fy4,type="l",lty=4,lwd=2)

legend("topleft",c("theta=0.1","theta=0.25","theta=0.5","theta=0.75"),

cex=0.8,lty=1:4, lwd=2, bty="n")

#CSUG-Z#

theta=c(0.1,0.25,0.5,0.75)

z1=seq(theta[1],1,0.001)

z2=seq(theta[2],1,0.001)

z3=seq(theta[3],1,0.001)

z4=seq(theta[4],1,0.001)

fz1=theta[1]/((1-theta[1])*(z1^2))

fz2=theta[2]/((1-theta[2])*(z2^2))

fz3=theta[3]/((1-theta[3])*(z3^2))

fz4=theta[4]/((1-theta[4])*(z4^2))

plot(z1,fz1,type="l",xlim=c(0,1),ylim=c(0,10),lty=1,lwd=2,xlab="z",ylab="pdf")
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lines(z2,fz2,type="l",lty=2,lwd=2)

lines(z3,fz3,type="l",lty=3,lwd=2)

lines(z4,fz4,type="l",lty=4,lwd=2)

legend("topright",c("theta=0.1","theta=0.25","theta=0.5","theta=0.75"),

cex=0.8,lty=1:4, lwd=2, bty="n")

#STL#

x=seq(0,1,0.001)

a=c(0.5,1,2,5)

f1=2*a[1]*(1-x)*x^(a[1]-1)*(2-x)^(a[1]-1)

f2=2*a[2]*(1-x)*x^(a[2]-1)*(2-x)^(a[2]-1)

f3=2*a[3]*(1-x)*x^(a[3]-1)*(2-x)^(a[3]-1)

f4=2*a[4]*(1-x)*x^(a[4]-1)*(2-x)^(a[4]-1)

plot(x,f1,type="l",ylim=c(0,6),lty=1,lwd=2,ylab="pdf")

lines(x,f2,type="l",lty=2,lwd=2)

lines(x,f3,type="l",lty=3,lwd=2)

lines(x,f4,type="l",lty=4,lwd=2)

legend("topright",c("a=0.5","a=1","a=2","a=5"),cex=0.8,lty=1:4, lwd=2, bty="n")
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B Simulation for Parameter Estimation of Permutation Based Model 1

#theta=1/2#

x=c(0,1,2,3,4,5)

f=(0.5^x)/factorial(x)*(1-1/(2*(x+1)))

x<-sample(0:9999,100,replace=F) # Generating random number

x0<-x[x<=4999]

x1<-x[x>=5000 & x<=8749]

x2<-x[x>=8750 & x<=9791]

x3<-x[x>=9792 & x<=9973]

x4<-x[x>=9974 & x<=9996]

x5<-x[x>=9997 & x<=9998]

x6<-x[x>=9999]

l0<-length(x0)

l1<-length(x1)

l2<-length(x2)

l3<-length(x3)

l4<-length(x4)

l5<-length(x5)

l6<-length(x6)

#theta=1/4#

x=c(0,1,2,3,4,5)

f=((1/4)^x)/factorial(x)*(1-(1/4)/(x+1))
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x<-sample(0:9999,100,replace=F)

x0<-x[x<=7499]

x1<-x[x>=7500 & x<=9687]

x2<-x[x>=9688 & x<=9973]

x3<-x[x>=9974 & x<=9997]

x4<-x[x>=9998 & x<=9999]

x5<-x[x>=10000]

l0<-length(x0)

l1<-length(x1)

l2<-length(x2)

l3<-length(x3)

l4<-length(x4)

l5<-length(x5)

#theta=3/4#

x=c(0,1,2,3,4,5)

f=((3/4)^x)/factorial(x)*(1-(3/4)/(x+1))

x<-sample(0:9999,100,replace=F)

x0<-x[x<=2499]

x1<-x[x>=2500 & x<=7187]

x2<-x[x>=7188 & x<=9296]

x3<-x[x>=9297 & x<=9867]

x4<-x[x>=9868 & x<=9979]
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x5<-x[x>=9980 & x<=9996]

l0<-length(x0)

l1<-length(x1)

l2<-length(x2)

l3<-length(x3)

l4<-length(x4)

l5<-length(x5)
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