
East Tennessee State University East Tennessee State University 

Digital Commons @ East Digital Commons @ East 

Tennessee State University Tennessee State University 

Electronic Theses and Dissertations Student Works 

5-2006 

Bayesian Reference Inference on the Ratio of Poisson Rates. Bayesian Reference Inference on the Ratio of Poisson Rates. 

Changbin Guo 
East Tennessee State University 

Follow this and additional works at: https://dc.etsu.edu/etd 

 Part of the Statistical Theory Commons 

Recommended Citation Recommended Citation 
Guo, Changbin, "Bayesian Reference Inference on the Ratio of Poisson Rates." (2006). Electronic Theses 
and Dissertations. Paper 2194. https://dc.etsu.edu/etd/2194 

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @ 
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an 
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please 
contact digilib@etsu.edu. 

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/214?utm_source=dc.etsu.edu%2Fetd%2F2194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


Bayesian Reference Inference on the Ratio of Two Poisson Rates

A thesis

presented to

the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment of the requirements for the degree

Master of Science in Mathematical Sciences

by

Changbin Guo

May 2006

Robert Price, Ph.D., Chair

Edith Seier, Ph.D.

Robert Gardner, Ph.D.

Yali Liu, Ph.D.

Keywords: Poisson ratio, reference analysis, posterior simulation, credible interval,

HPD interval, maximum a posteriori, probability matching prior, exact coverage



ABSTRACT

Bayesian Reference Inference on the Ratio of Two Poisson Rates

by

Changbin Guo

Bayesian reference analysis is a method of determining the prior distribution under

the Bayesian paradigm. It incorporates as little information as possible from the

experiment. Estimation of the ratio of two independent Poisson rates is a common

practical problem. In this thesis, the method of reference analysis is applied to derive

the posterior distribution of the ratio of two independent Poisson rates, and then to

construct point and interval estimates based on the reference posterior. In addition,

the Frequentist coverage property of highest posterior density (HPD) intervals is

evaluated through simulation.
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1 INTRODUCTION

1.1 The Problem of Estimating the Ratio of Two Poisson Rates

Many phenomena where rare events occur randomly in time or space are usually

modeled by the statistician as a Poisson process, which is the most important class of

stochastic processes. The following are the assumptions to ensure a Poisson process:

• The probability of one change in a short interval of length t is approximately

proportional to the length of the interval and is independent of changes in other

nonoverlapping intervals.

• The probability of two or more changes in a short interval of length t is essen-

tially equal to zero.

The probability distribution that is associated with this process is called the Poisson

distribution. The probability mass function has the form

f(y|µ) =
µye−µ

y!
, y = 0, 1, . . .

where µ > 0.

As experiments of two-sample designs are common in decision-making applica-

tions, it may be of interest to estimate the ratio of two unknown population Poisson

rates. Let Y1, Y2 be two independent Poisson variables and y1, y2 be the observed

counts in each of the two samples. The amount of time or space of the sample is

quantified by tj. We have E(Yj) = V AR(Yj) = µ = tjλj for j = 1, 2, where µj is an

unknown mean of the Poisson distribution and λj is the Poisson rate.
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Several Frequentist methods have been developed for estimating the ratio of two

Poisson rates with desired accuracy using transformation techniques. See [17] for an

overview and comparison of these methods. Bayesian approaches under conjugate

and noninformative priors applied to each Poisson process has been studied in [17].

In this thesis, I am interested in making an inference on the ratio of two Poisson

rates based on the reference posterior derived under the paradigm of Bayesian ref-

erence analysis [2]. It is interesting to observe that the resulting interval estimates

have satisfactory Frequentist coverage probability, and they are in fact equivalent to

the method where a noninformative prior is applied for each Poisson process in [17].
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1.2 Bayesian Methodology

Unlike methods of traditional statistical inference that are primarily based on a

retrospective evaluation of the distribution of possible y values conditional on the

true unknown parameter θ, Bayesian methods distinguish themselves explicitly by

conditioning on the observed data to quantify uncertainty in statistical data analysis.

In order to obtain such a probability statement, we should first begin with a joint

probability distribution for θ and y. From probability theory, the joint probability

density function can be represented as a product of two densities, namely the prior

distribution p(θ) (sometimes we use π(θ)) and the sampling distribution p(y|θ), that

is,

p(θ, y) = p(θ)p(y|θ).

Using the basic property of conditional probability known as Bayes’ formula [10],

the posterior density is the conditional probability of the parameter θ given the data

y, i.e.

p(θ|y) =
p(θ, y)

p(y)
=

p(θ)p(y|θ)
p(y)

(1)

where p(y) =
∑

θ p(θ)p(y|θ). If θ is continuous, we have p(y) =
∫

p(y)p(y|θ)dθ.

For the sake of computational convenience, the posterior density is usually ex-

pressed in the unnormalized form

p(θ|y) ∝ p(θ)p(y|θ) (2)

where “∝” stands for “proportional to.” Note that the probability density function

p(y|θ) is often referred to as the likelihood [10] function denoted as L(θ). For an

identically and independently distributed (i.i.d.) sample y = (y1, · · ·, yn), the principle
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of exchangeability [15] suggests writing the likelihood as

L(θ) =
n∏

i=1

p(yi|θ) . (3)

In this manner, the Bayes’ formula can be simply interpreted in words by the

statement that the posterior density is proportional to the product of the likelihood

function and the prior density. This implies that Bayesian inference, like the tra-

ditional methodologies of statistics, also complies with the likelihood principle [5].

Nevertheless, a particular specification of the prior density p(θ) will make the pos-

terior distribution not totally depend on the observed data values. It is this feature

that separates Bayesian methodology from the Frequentist one.
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1.3 Prior Specification

The Bayes’ formulae (1) (2) may be viewed as a data-driven machine or proba-

bility transformation, which maps prior densities that describe prior knowledge into

posterior densities. However, priors, unlike the data, are not generally known to be

objective.

This situation of insufficient reasoning [15] makes the analysis of whether or not

sensible changes in the prior would result in noticeable changes to the posterior; a

fundamental question in Bayesian methodology. It disturbs some statisticians that

there is often a broad range of prior distributional choices. To overcome such a

difficulty, some people suggest including a scientific report to demonstrate how the

posterior functionally depends on the choice of the prior [15].

Nowadays, besides the reference algorithm which we will discuss later, there are

mainly two approaches to determine the prior distribution, namely, Jeffrey’s principle

and conjugate methodology.

1.3.1 Jeffrey’s Principle

Though no general principles have been developed to specify the prior in practice,

most statisticians agree that such a prior, if it exists, should incorporate as little

relevant information as possible. A prior satisfying this kind of property is referred

to as a noninformative prior [18]. The most widely used method for obtaining a

noninformative prior for a one-parameter model is the Jeffrey’s principle [10], which

is motivated by the idea that Bayesian inference should not depend on how a model

(or equivalently the likelihood) is parameterized.
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The Fisher information matrix is defined as

I(θ)ij = E
(
− ∂2l

∂θi∂θj

)
(4)

where l denotes the log-likelihood, l(θ) , logL(θ). Theoretically, since it is pro-

portional to the expected curvature of the likelihood at the Maximum Likelihood

Estimator (MLE), it measures sensitivity of an estimation in the neighborhood of the

MLE [8].

The Jeffrey’s principle is to take the prior to be

πθ(θ) ∝ det
(
I(θ)

) 1
2 (5)

where det(.) denotes the determinant. This is applicable as long as I(θ) is well defined

and positive definite [18]. It has the property of invariance as it can be easily checked

that for any other parameterization γ, one has

πθ(θ) = πγ

(
γ(θ)

) ·
∣∣∣det

(γ

θ

)∣∣∣ . (6)

This means that a prior under a different parameterization will follow the change-of-

variable formula. Hence, the selection of a specific parameterization is not necessary.
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1.3.2 Conjugate Prior

Before powerful computational techniques such as the Monte Carlo Markov Chain

(MCMC) method came along, a convenient choice of a prior was to take a mathemat-

ical function which simplifies the analytical calculation of the posterior density. One

well-known approach is to choose a family of prior densities based on the likelihood

function such that the resulting posterior belongs to the same family of functions as

the prior. Prior and posterior densities determined from such a strategy are said to

be conjugate.

Formally, if y = (y1, · · ·, yn) are i.i.d. from an exponential family then the proba-

bility density or mass function for each observation can be expressed as

yi|θ ∼ f(yi|θ) = A(θ)eT ∗(yi)B(θ)ψ(yi) .

By equation (3), the likelihood function in this case is represented as

l(θ) =
n∏

i=1

f(yi|θ) = [A(θ)]neT ·B(θ)H(y)

where T =
∑

i T
∗(yi) and H(y) =

∏
i ψ(yi). Thus, a conjugate prior density is defined

as

p(θ) ∝ [
A(θ)

]p
eq·B(θ)

and the correspondening posterior is

p(θ|y) ∝ [
A(θ)

]n+p
e(T+q)B(θ) .

Interestingly, all the functions belonging to the exponential family have conjugate

priors [10]. For example, the beta distribution is the conjugate prior to the binomial
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model. If we combine the prior distribution p(θ) ∝ θa−1(1 − θ)a−1 ∝ Beta(a, b)

with the likelihood L(θ|y) ∝ θy(1 − θ)n−y, the posterior will be p(θ|y) ∝ θa+y−1(1 −

θ)n−y+b−1 ∝ Beta(a + y, n− y + b).

Since the exponential family is broad, the conjugate methodology is quite devel-

oped. Nevertheless, the obvious limitation to apply conjugate methodology lies in

that it is usually unrealistic to attempt to represent prior information in the conju-

gate form. There is no theoretical basis for taking certain values of parameters in the

conjugate priors.
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1.4 Bayesian Reference Analysis

Like the Jeffrey’s principle and conjugate priors, Bayesian reference analysis [2]

emerged as an approach for determining a prior from the likelihood function under

the Bayesian paradigm. From the perspective of information theory, the available

prior knowledge will affect the amount of information we expect to obtain from the

designed experiment [15], or in other words, the stochastic model we choose. That

is, the more prior information we have, the less information we would expect to be

learned from the data. Thus, the reference prior, which in some sense should have

a minimal effect relative to the data on the corresponding probabilistic inference, is

very desirable.

Following the definition by Lindley [15], the ordered triple ε = {y, Θ, p(y|θ)}

is used to express an experiment, where y is the result of the experiment, Θ is the

parameter space of the parameter of interest θ. After the prior density p(θ) is specified,

the expected information from the experiment ε = {x, Θ, p(x|θ)} is defined as

Iθ
{
ε, p(θ)

}
=

∫
p(y)

∫
p(θ|y)log

p(θ|y)

p(θ)
dθdy (7)

where the marginal density is p(y) =
∫

p(y|θ)p(θ)dθ and the posterior density is

p(θ|y) = p(y|θ)p(θ)
p(y)

by Bayes’ formula (1).

Such a logarithmic measure of information possesses many important properties,

such as invariance under different parameterization, non-negativity, concavity, etc

[15]. Bernardo [2] gave a general review of such theoretical properties. Depending on

whether the expected information (7) is finite or not in the limiting process, reference

prior and posterior are defined as:

18



• When Iθ
{
ε(∞), p(θ)

}
is finite, it is a desirable measure for the amount of infor-

mation under the prior specifications. Thus, the reference prior π(θ) is defined

as the prior which maximizes the missing information Iθ
{
ε, p(θ)

}
in the prior

class C. Then the reference posterior density π(θ|y) can be obtained to be

π(θ|y) ∝ p(y|θ)π(θ) by the Bayes’ formula.

• When Iθ{ε(∞), p(θ)} is not finite, the reference prior π(θ) is defined as the

limit of a sequence of prior densities that maximizes the information we expect

from an experiment.

As pointed out by Bernardo [2], there are several theoretical requirements of regu-

larity concerning determining the reference prior by the above definition. For example,

the class C of all admissible priors needs to be compact in order to guarantee the

existence of a maxima. In practice, if such a requirement is not satisfied, usually an

expanding convergent sequence of compact sets to C is constructed, and the limit of

such a sequence is defined as the reference prior.
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2 APPLYING REFERENCE ANALYSIS

2.1 Reference Algorithm for One Nuisance Parameter

Suppose the probability model is p(y|φ, λ), where θ ∈ Θ, λ ∈ Λ(φ). We are

interested in the quantity of the parameter φ, therefore λ will be considered as the

nuisance parameter [16], which may or may not depend on φ.

The common strategy [4] to eliminate the nuisance parameter is as follows: First

conditioning on φ, determine the conditional reference prior π(λ|φ) by the Jeffrey’s

principle (5). Thus the model p(y|φ.λ) will be reduced to contain only one parameter.

Next, two situations may occur:

1. If the conditional reference prior π(λ|φ) is proper, the one-parameter model can

be obtained by integrating out the nuisance parameter through

p(y|φ) =

∫

Λ(φ)

p(y|φ, λ)π(λ|φ)dλ .

Then the marginal prior π(φ) can be determined by applying the algorithm

again. Finally, the reference posterior will be obtained as π(φ|y) ∝ p(y|φ)π(φ)

by the Bayes’ formula (2).

2. If the conditional reference prior π(λ|φ) is not proper, an increasing sequence

of bounded approximations {Λi, i = 1, 2, · · ·} to the nuisance parameter space

Λ(φ) is needed as argued in the previous chapter. The corresponding reference

posterior π(φ|y) is then obtained by taking the limit of the sequence {πi(φ|y), i =

1, 2, · · ·}.
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Formally, the reference prior algorithm for one nuisance parameter is summarized

by Bernardo & Ramon [4] in the following proposition.

Proposition 2.1 : Let p(y|φ, λ), φ ∈ Φ, λ ∈ Λ(φ) be the probability model with two

real-valued parameters φ and λ, where φ is the quantity of interest, and suppose

that the joint posterior distribution of (φ, λ) is asymptotically normal with covariance

matrix S(φ̃, λ̃). Then, if H(φ, λ) = S−1(φ, λ),

1. the conditional reference prior of λ is π(λ|φ) ∝ d−1
1 (φ, λ) = h

1
2
2,2(φ, λ), λ ∈ Λ(φ);

2. if π(λ|φ) is proper, the reference posterior distribution of φ given {x1, · · ·, xn} is

π(φ|x1, · · ·, xn) ∝ π(φ)
∫

Λ(φ)

{∏
p(xl|φ, λ)

}
π(λ|φ)dλ, where the marginal ref-

erence prior of φ is π(φ) ∝ exp
{∫

Λ(φ)
π(λ|φ)log

[
d−1

0 (φ, λ)
]
dλ

}
, d0(φ, λ) =

S
1
2
1,1(φ, λ).

3. if π(λ|φ) is not proper, a compact approximation
{
Λi(φ), i = 1, 2, · · ·, n}

to Λ(φ)

is required, and the reference posterior distribution of φ is obtained as

π(φ|x1, · · ·, xn) = lim πi(φ|x1, · · ·, xn),

where π(φ|x1, · · ·, xn) is derived using Λi(φ) instead of Λ(φ).

Furthermore, if the nuisance parameter space Λ(φ) = Λ is independent of φ, and

the functions d0, d1 can be factorized into separable forms of φ and λ, then this

proposition can be simplified to the following corollary.

Corollary 2.2 If the nuisance parameter space Λ(φ) = Λ is independent of φ, and the

functions d0, d1 can be factorized into the forms d−1
0 (φ, λ) = a0(φ)b0(λ), d−1

1 (φ, λ) =

21



a1(φ)b1(λ), then the marginal and conditional reference priors are

π(φ) ∝ a0(φ)

π(λ|φ) ∝ b1(λ)

and the reference posterior distribution of φ given {x1, · · ·, xn} is π(φ|x1, · · ·, xn) ∝

π(φ)
∫

Λ(φ)

{∏
p(xl|φ, λ)

}
π(λ|φ)dλ.
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2.2 Reference Prior and Posterior

We now derive the reference prior and posterior for the ratio of independent Pois-

son rates. Let y1 and y2 be the observed counts from each one of the two independent

Poisson processes with means µ1 and µ2, respectively. By definition of the likelihood

function (3), the probability model is expressed as

p(y1, y2|µ1, µ2) = p(y1|µ1)p(y2|µ2) =
e−µ1µy1

1

y1!
· e−µ2µy2

2

y2!
(8)

where yj, j = 1, 2 denotes the counts of two Poisson processes and µj = λjtj, j = 1, 2.

Expressing the model in terms of the ratio of interest φ = λ1

λ2
, and µ2 we have

p(y1, y2|φ, µ2) =
e

(
−φµ2

t1
t2

)(
φµ2

t1
t2

)y1

y1!
· e−µ2µ2

y2

y2!
. (9)

Applying equation (4) to the above joint density function we have the corresponding

Fisher information matrix

F (φ, µ2) =
(t1

t2

) [µ2

φ
1

1
t2
t1

+φ

µ2

]
. (10)

It follows by the definition of S(φ, µ2) in Proposition 2.1

S(φ, µ2) = F−1(φ, µ2) =

[
φ
(

t2
t1

+φ
)

µ2
−φ

−φ µ2

]
. (11)

Thus, according to the asymptotic theory [4], we conclude that the joint posterior

of (φ, µ2) is asymptotically normal with covariance matrix S(φ̃, µ̃2), and

1. the marginal asymptotic posterior of φ is normal with standard deviation d0(φ̃, µ̃2),

d0(φ, µ2) =
1√
n

[φ
(

t2
t1

+ φ
)

µ2

]1/2

;
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2. the conditional asymptotic posterior of µ2 given φ is normal with standard

deviation d1(φ, µ̃2),

d1(φ, µ2) =
( µ2

t2
t1

+ φ

)1/2

.

Notice the parameter space of φ = λ1

λ2
is Λ(φ) = (0, +∞), which is independent of

φ = λ1

λ2
and functions d−1

0 and d−1
1 can be factorized as

d−1
0 =

1√
φ
(

t2
t1

+ φ
) ·
√

µ2 = a0(φ)b0(µ2)

d−1
1 =

√
t2
t1

+ φ ·
√

1

µ2

= a1(φ)b1(µ2).

Hence, according to the Corollary 2.2, the marginal reference prior for φ is

π(φ) ∝ a0(φ) =
1√

φ
(

t2
t1

+ φ
) (12)

and the conditional reference prior of µ2 given φ is

π(µ2|φ) ∝ b1(µ2) =

√
1

µ2

. (13)

It is interesting to note that this conditional reference prior is the same as the

marginal reference prior for µ2 if we only apply the reference algorithm to the second

Poisson process. Hence, we conclude that the two parameters φ and µ2 are indepen-

dent. Combining the marginal (12) and the conditional priors (13), the joint reference

prior is then determined as

π(φ, µ2) = π(φ)π(µ2|φ) ∝ φ−1/2
(t2

t1
+ φ

)−1/2

µ
−1/2
2 . (14)
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According to Proposition 2.1, by eliminating the nuisance parameter µ2 via inte-

gration, the marginal posterior of φ is

π(φ|y1, y2) ∝ π(φ)

∫

Λ(φ)

p(y1, y2|φ, µ2)π(µ2|φ)dµ2

= π(φ)

∫

Λ

e

(
−φµ2

t1
t2

)(
φµ2

t1
t2

)y1

y1!
· e−µ2µ2

y2

y2!

√
1

µ2

dµ2

∝ φ−1/2
(t2

t1
+ φ

)−1/2
∫ +∞

0

e
−
(

t1
t2

φ+1
)

µ2 · φy1 · µy1+y2−1/2
2 dµ2 .

Since φ and µ2 are independent “φy1” can be taken out of the integration sign. Treat-

ing φ as a constant during the integration, we have

π(φ|y1, y2) ∝
(t2

t1
+ φ

)−1/2

φy1−1/2

∫ +∞

0

e
−
(

t1
t2

φ+1
)

µ2 · µy1+y2−1/2
2 dµ2

∝ Γ(y1 + y2 + 1/2)(
t2
t1

+ φ
)(y1+y2+1/2)

(t2
t1

+ φ
)−1/2

φy1−1/2

∝ φy1−1/2

(
t2
t1

+ φ
)y1+y2+1 .

If we define

ω =
φ

t2
t1

+ φ
=

µ1

µ1 + µ2

then φ = t2
t1

(
ω

1−ω

)
and the posterior distribution of ω can be determined using the

change of variable technique. After some algebra, we obtain

π(ω|y1, y2) = π(φ|y1, y2)
∣∣∣dφ

dω

∣∣∣ ∝ ωy1−1/2(1− ω)y2−1/2 .

This implies the posterior density function is

π(ω|y1, y2) = Beta(ω|y1 + 1/2, y2 + 1/2)

or

ω|y1, y2 ∼ Beta(α = y1 + 1/2, β = y2 + 1/2) . (15)
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Although the reference posterior distribution is a function of ω, not the parameter

of interest φ, it won’t affect upcoming inferences on φ. In the next chapter, inferences

on φ such as Bayesian credible intervals, HPD intervals and Maximum a posteriori

estimate will be constructed based on this posterior.

Instead of working with ω we could find the posterior of ρ where

ρ =
t1
t2
· y2 + 1/2

y1 + 1/2
· φ .

Solving for φ we find φ = t2
t1
· y1+1/2

y2+1/2
·ρ and the Jacobian to be

∣∣∣dφ
dρ

∣∣∣ = t2
t1
· y1+1/2

y2+1/2
. Using

the change of variable technique, the posterior of ρ is

p(ρ|y1, y2) ∝ p(φ|y1, y2) ·
∣∣∣dφ

dρ

∣∣∣

∝

(
t2
t1
· y1+1/2

y2+1/2
· ρ

)y1−1/2

(
t2
t1

+ t2
t1
· y1+1/2

y2+1/2
· ρ

)y1+y2+1 ·
t2
t1
· y1 + 1/2

y2 + 1/2

∝ ρy1−1/2

(
1 + y1+1/2

y2+1/2
· ρ

)y1+y2+1 .

If

ν1 = 2(y1 + 1/2) , ν2 = 2(y2 + 1/2)

then the posterior distribution of ρ is an F distribution with degrees of freedom ν1

and ν2,

ρ|y1, y2 ∼ F
(
ν1 = 2(y1 + 1/2), ν2 = 2(y2 + 1/2)

)
. (16)

This result coincides with the one in [17] where the noninformative priors πj(λj) ∝

λ
−1/2
j , j = 1, 2 for each Poisson process were used. This means that the two posteriors

(15)(16) are in fact equivalent with each other. Hence all inferences on φ based on

the posterior of ω will be the same as the inferences based on ρ.
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2.3 Posterior Simulation

Although the reference posterior has been determined in terms of ω, a function

of the parameter of interest φ, it clearly follows that Bayesian credible interval esti-

mates could be obtained through transformation of variables. However, the shape of

the posterior is not straightforward, mainly because the probability density function

(PDF) in general does not comply with the variable transformations. In this section,

we will discuss how to obtain the posterior shape through simulations.

The joint posterior of φ and µ2 can be determined by applying Bayes’ formula (2)

to the likelihood function and the joint prior,

π(φ, µ2|y1, y2) ∝ π(y1, y2|φ, µ2) · π(φ, µ2)

∝ e

(
−φµ2

t1
t2

)(
φµ2

t1
t2

)y1

y1!
· e−µ2µ2

y2

y2!
· φ−1/2

(t2
t1

+ φ
)−1/2

µ
−1/2
2

∝ e
−
(

φ
t1
t2

+1
)

µ2φy1−1/2
(t2

t1
+ φ

)−1/2

µ
y1+y2−1/2
2

which can be factored as

π(φ, µ2|y1, y2) ∝ Gamma(µ2|y1 +1/2, 1
) ·Gamma

(
φ|y1,

1

µ2
t1
t2

)
·Beta

( φ
t2
t1

+ φ
|3/2, 1

)
.

This factorization suggests that samples of φ and µ2 can be drawn as a Markov

Chain [18] from the joint posterior density as the following,

µ2|y2 ∼ Gamma(µ2|y2 + 1/2, 1) ;

p(φ|µ2, y1) ∝ q(φ|µ2, y1) = Gamma
(
φ|y1,

1

µ2
t1
t2

)
·Beta

( φ
t2
t1

+ φ
|3/2, 1

)
.

Note for the second stochastic process φ|µ2, y1 the unnormalized functional density

form q(φ|µ2, y1) is sufficient for the purpose of simulation.
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Instead of solving the marginal posterior p(φ|y1, y2) analytically via the integration

p(φ|y1, y2) =
∫

Λ
p(φ, µ2|y1, y2)dµ2, we can do the following approximation,

p̂(φ|y1, y2) =
1

m

m∑
i=1

p
(
φ|µ(i)

2

)
=

1

C0

1

m

m∑
i=1

q
(
φ|µ(i)

2

)

where µ
(i)
2 , i = 1, 2, · · · ,m are the i.i.d. random samples of µ2 from the density

Gamma(µ2|y2 + 1/2, 1); C0 is the normalizing constant to make sure that the re-

sult is actually a probability density function, that is, C0 =
∫ +∞

0
1
m

∑m
i=1 q

(
φ|µ(i)

2

)
dφ.

There are several methods to calculate the normalizing constant C0 numerically.

By the method of numerical integration, C0 can be approximated as

C0 = lim
∆φ→0

+∞∑
j=0

[ 1

m

m∑
i=1

q
(
φ(j)|µ(i)

2

)]
∆φ ≈

M∑
j=0

[ 1

m

m∑
i=1

q
(
φ(j)|µ(i)

2

)]
∆φ (17)

for a sufficiently large integer M and sufficiently small ∆φ, where φ(j) = ∆φ · j, j =

0, 1, 2, · · · . Empirically, we can take M = 10, 000 and ∆φ so that Pφ|y1,y2(φ < φ(M)) =

Pω|y1,y2

(
ω < φ(M)

t2
t1

+φ(M)

)
≥ 1 − ξ, where ξ = 0.0001 to guarantee the accuracy of the

approximation.

This procedure is recognized as the reduced form of the method of substitution

sampling [9] where the conditional probability density p(µ2|y2) doesn’t depend on

the parameter φ. The approximated density p̂(φ|y1, y2) converges to p(φ|y1, y2) by L1

[11]. Therefore, if sufficiently large samples are drawn, we expect this procedure to

yield satisfactory accuracy.

28



2.4 Approximating Posterior Using Profile Likelihood Method

Another common-used method for eliminating the nuisance parameter is the pro-

file likelihood (P-L) [1]. We are interested in investigating how such an approximation

behaves under various situations compared to the simulation method which we believe

has the best accuracy.

Consider the joint reference posterior π(φ, µ2|y1, y2) as the likelihood function of

the parameters φ and µ2 and instead of integrating out µ2, the profile likelihood

method of approximation simply substitutes the nuisance parameter with its MLE.

That is,

π̃(φ|y1, y2) = sup π(φ, µ2) = π(φ, µ̂2|y1, y2)

where π̃(φ|y1, y2) is the profile-likelihood posterior of φ. Since in the Poisson process

µ̂2 = y2, the approximate reference posterior is

π(φ|y1, y2) =
1

C1

φy1−1/2
(t2

t1
+ φ

)−1/2

e
−φ

t1
t2

y2

where C1 is the normalizing constant, which can be approximated by numerical inte-

gration as was presented in (17).

An R program (.1) has been developed to simulate the posterior via the method

proposed in the last section as well as the computation of the profile-likelihood pos-

terior. The results of the simulation indicate that under the same condition (without

loss of generality, set t1 = t2) the approximate posterior by the profile likelihood

method behaves more concentrated around its mode compared to the simulated pos-

terior, as demonstrated in Figure 1. This can be explained by the fact that the

profile likelihood simply substitutes µ2 with its MLE µ̂2 = y2, it doesn’t account for
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Figure 1: Comparison of Simulated and P-L Posteriors

the variability of µ2 in the posterior distribution [1].

As y2 increases, the two posteriors become closer to each other (exemplified in

Figure 1). This is because for the Poisson process the variance of the MLE of µ2

increases by y2. As a result, the profile likelihood method will catch more uncertainty

from µ2. It has been argued by Berger [1] that the integrated likelihood methods

should be encouraged rather than the profile likelihood method, since the profile

likelihood often leads to misleading behaviors.
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3 POSTERIOR-BASED INFERENCES

Although a graphical presentation of the entire posterior is preferable in general,

summary statistics, such as point estimates and interval estimates, which portray

important features of the posterior are sometimes sufficient for the usage. In this

chapter, we will first develop methods for constructing the 100(1 − α)% Bayesian

credible intervals and highest probability density intervals, then derive the maximum

a posterior estimate.

3.1 Bayesian Credible Interval

Under the Frequentist paradigm, the true parameter is assumed to be fixed not

random. That is, the parameter either belongs to the confidence interval or doesn’t

belong to it. Therefore, we need to take caution when interpreting confidence inter-

vals.

From the Bayesian perspective, the parameter itself becomes a random variable as

it is assumed to follow a particular prior distribution. It is advantageous to interpret

the interval estimates in a probabilistic manner.

Definition 3.1 Let π(θ|D) be the posterior distribution. A credible set is any set C

such that Pπ(θ|y)(C) = 1− α, where D denotes the data. [13]

If the posterior distribution is continuous and unimodal, the credible set is usually

constructed as an interval, which then becomes a credible interval. The difference

between the confidence interval and the credible interval lies in the interpretation.

Since the posterior is determined probabilistically by the data, the credible interval
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measures the probability that the parameter θ in C is at least 1 − α. On the other

hand, the confidence interval means: Before observations are taken, the probability

that θ belongs to C is at least 1− α.

If the cumulative posterior density Π(θ|D) is also available algebraically, a Bayesian

credible interval can be easily constructed. First, we calculate θ(α/2) and θ(1−α/2) such

that

Π
(
θ(α/2)|D)

= α/2 , Π
(
θ(1−α/2)|D)

= 1− α/2 .

Then, a 100(1− α)% credible interval for θ is CI =
(
θ(α/2), θ(1−α/2)

)
.

One interesting feature of credible intervals is that they are invariant under a

nonlinear transformation [5]. Thus if we assume η = h(θ), where h need not to be a

linear function of θ, the credible interval of η can be obtained by computing h
(
θ(α/2)

)

and h
(
θ(1−α/2)

)
.

Recall the definition in Section 2.2 that

φ =
t2
t1

( ω

1− ω

)

where ω follows a Beta distribution with α = y1 + 1/2 and β = y2 + 1/2. Thus, an

equal-tail 100(1− α)% credible interval for φ is obtained as

CI =
(t2

t1
· ω(α/2)

1− ω(α/2)
,

t2
t1
· ω(1−α/2)

1− ω(1−α/2)

)

where Πω|y1,y2

(
ω(α/2)

)
= α/2 and Πω|y1,y2

(
ω(1−α/2)

)
= 1− α/2.
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3.2 Highest Probability Density Interval

Theoretically there are an infinite number of credible intervals with probability

level 100(1 − α)% by Definition 3.1. It is quite questionable to just take the equal-

tailed. Unless under particular conditions they are not necessarily the shortest (Figure

3).

Definition 3.2 Let π(θ) be the density function of a random variable θ. Then the

100(1 − α)% highest probability density (HPD) interval is the subset R(πα) of the

parameter space of θ such that

R(πα) =
{
θ : π(θ) ≥ πα

}

where πα is the largest constant such that P (θ ∈ R(πα)) ≥ 1− α. [7]

This definition guarantees that the density for every point inside the HPD interval

is greater than that for every point outside the interval. Furthermore, it has been

proved by Box and Tiao [5] that the HPD interval is of the shortest length for a

given probability content 1−α. Thus, theoretically it is desirable to obtain the HPD

interval estimates from the posterior distribution.

The central difficulty is that HPD intervals are difficult to determine analytically.

For any unimodal, symmetric distribution, the HPD interval coincides with the equal-

tail credible intervals [7]. However, under other conditions it is difficult to find the

posterior probability of πα, much less solve for the required probability.

Hence the HPD intervals generally need to be solved computationally. One simple

algorithm is to start with a value of πα and compute the posterior probability of the
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Figure 3: HPD and Equal-tailed Intervals

resulting set by numerical integration. If the probability is too small, decrease πα. If

the probability is too large, increase πα.
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3.3 Monte Carlo Estimation of the HPD Interval

Monte Carlo techniques are widely used in simulation studies nowadays. Espe-

cially in Bayesian statistics, computation is really facilitated through implementation

of Monte Carlo methods. In this section, we will present a method to estimate the

HPD interval using a Monte Carlo technique [7].

Let π(θ|D) and Π(θ|D) be the marginal posterior density function and the marginal

posterior cumulative distribution function (CDF) of θ respectively, where D denotes

data. Assume that π(θ|D) is unimodal for convenience and also assume that θ can

be generated from π(θ|D) using a direct random sampling scheme. Let {θi, i =

1, 2, · · · , n} be a Monte Carlo sample from π(θ|D), and let θj be the jth smallest of

{θi}. Denote

Rj(n) =
(
θ(j), θ(j+[(1−α)n])

)

for j = 1, 2, · · · , n− [
(1− α)n

]
, where [.] denotes the integer part.

Theorem 3.3 Let {θi, i = 1, 2, · · · , n} be an ergodic Monte Carlo sample from π(θ|D)

and let Rj∗(n) =
(
θ(j∗), θ(j∗+[(1−α)n])

)
, where j∗ is chosen so that

θ(j∗+[(1−α)n]) − θ(j∗) = min
(
θ(j+[(1−α)n]) − θ(j)

)

That is, Rj∗(n) has the smallest interval width among all Rj∗(n)’s. If π(θ|D) is

unimodal, then we have

Rj∗(n) → R(πα) almost surely as n →∞,

where R(πα) has defined in the previous section. Thus, to find a 100(1 − α)% HPD

interval, we look at all the 100(1−α)% credible intervals in the sample and then take

the one with the smallest interval width.
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Unlike a Bayesian credible interval, the HPD interval is not invariant under a

nonlinear transformation [5]. Thus for η = h(θ), the HPD interval of η cannot

be computed as
(
h(θ(j∗)), h(θ(j∗+[(1−α)n]))

)
if h is not a linear function. In order

to overcome such a difficulty, the above theorem can be extended to the following

corollary.

Corollary 3.4 Let {θi, i = 1, 2, · · · , n} be an ergodic Monte Carlo sample from

π(θ|D). Also let ηi = h(θi) and the η(i) be the ordered values of the ηi. Then a

100(1− α)% HPD interval of η can be approximated by

Rj∗(n) =
(
η(j∗), η(j∗+[(1−α)n])

)

where j∗ is chosen so that

η(j∗+[(1−α)n]) − η(j∗) = min
(
η(j+[(1−α)n]) − η(j)

)
.

According to this corollary, the HPD interval for φ = t2
t1
· ω

1−ω
can be calculated

through a random sample {ωi, i = 1, 2, · · · , n}, where ωi’s are i.i.d. samples from the

reference posterior distribution Beta(ω|y1 + 1/2, y2 + 1/2). An R program (.2) has

been designed to implement this algorithm.
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3.4 Maximum a Posteriori

With the reference posterior (15) available, the method of maximum a posteriori

(MAP) can be applied to obtain a point estimate of an observed quantity based on the

empirical data. Let L(D|θ) be the likelihood function and π(θ|D) be the posterior

density function, where θ is the unknown parameter which we would like to make

inference on, D denotes the data. It is known that the MLE is

θ̂ML(D) = arg max
θ

(
L(D|θ))

Definition 3.5 The method of maximum a posteriori estimates θ as the mode of the

posterior distribution of this random variable,

θ̂MAP (D) = arg max
θ

(
π(θ|D)

)
= arg max

θ

(
L(D|θ) · π(θ)

)
.

This definition implies, if the prior distribution of θ is uniform, the MAP estimate

of θ coincides with the MLE estimate. The point where highest probability density

occurs in Figure 4 is the MAP estimate of the posterior.

Recall in estimating the ratio of two independent Poisson processes, the trans-

formed reference posterior (15) is

ω ∼ Beta(ω|α = y1 + 1/2, β = y2 + 1/2)

where yj ∈ {0, 1, · · · }, j = 1, 2. Theoretically [6], the mode of a Beta distribution

occurs at

ωM =
α− 1

α + β − 2
=

y1 − 1/2

y1 + y2 − 1

with the restriction that α, β ≥ 1.
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Figure 4: Maximum a Posteriori

Since the mode for a unimodal and continuous density is invariant under one-to-

one continuous transformations [5], then the MAP estimate of φ = t2
t1
· ω

1−ω
is

φ̂MAP (y1, y2) =
t2
t1
· ωM

1− ωM

=
t2
t1
· y1 − 1/2

y2 − 1/2

where yj ∈ Z+, j = 1, 2. Notice that the MAP estimate makes a little correction on

the MLE estimate, which is φ̂MLE(y1, y2) = y1

y2
, but it still fails to work when a zero

count is observed.

It has been argued that although the MAP estimation uses a prior distribution,

it is not generally recognized as a Bayesian method. This is because MAP estimates

are point estimates, whereas Bayesian methodology is characterized by the use of

distributions to summarize data and draw inferences. Bayesian methods tend to

report interval estimates based on the posterior, rather than the posterior mode.
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4 FREQUENTIST COVERAGE STUDY

4.1 Probability Matching Prior

Recall the major discrepancy between the Frequentists and Bayesianists lies in the

interpretation of interval estimates. However, it is interesting that the Frequentist

coverage probabilities of Bayesian credible intervals derived from reference posterior

distributions are usually very close to their posterior probabilities [3].

Formally, if tα = tα(D) denotes the 1 − α quantile which corresponds to the

reference posterior π(φ|D), so that

P
[
φ ≤ |D]

=

∫

φ≤tα(D)

π(φ|D)dφ = 1− α ,

then the coverage probability of the 100(1−α)% reference posterior credible interval

(−∞, tα),

P
[
tα ≥ φ|φ]

=

∫

tα(D)≥φ

p(D|φ)dD

often satisfies

P
[
tα ≥ φ|φ]

= 1− α + O(n−1) ,

while, for most priors, this asymptotic approximation is only O(n−
1
2 ). This means

that the reference prior is often a probability matching prior, that is, a prior for which

the coverage probabilities of one-sided posterior credible intervals are asymptotically

closer to their posterior probabilities.

Recall the joint reference prior (14) in estimating the parameter of interest φ is

π(φ, µ2) = π(φ)π(µ2|φ) ∝ φ−1/2
(t2

t1
+ φ

)−1/2

µ
−1/2
2 .
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It can be verified that this joint reference prior satisfies the differential equation [8]

for probability matching in multiparameter models

m∑
j=1

∂

∂θi

ηi(θ)π(θ) = 0

where θ = {φ, µ2}, and

η(θ) =
S(φ, µ2)∇√
∇tS(φ, µ2)∇

,

where ∇ = {1, 0}t, and S(φ, µ2) is given by (11).

Hence, we conclude the reference prior for estimating the ratio of two Poisson rates

is actually a probability matching prior. This means that satisfactory Frequentist

coverage behavior of the interval estimates based on the reference posterior (15) is

guaranteed.
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4.2 Exact Coverage

Since two independent Poisson processes are involved and they are discrete dis-

tributions, then we could actually compute the exact coverage probability for the

100(1− α)% interval estimates under the fixed parameter values of µ1 and µ2 by

∞∑
y1=0

∞∑
y2=0

e−µ1µy1

1

y1!

e−µ2µy2

2

y2!
I(y1, y2)

where I(y1, y2) equals 1 if the interval contains the ratio φ = µ1

µ2
when yj, j = 1, 2 and

equals 0 if the ratio is not covered by the interval estimate.

Hartigan [12] has showed that the coverage probabilities of two-sided Bayesian

posterior credible intervals have satisfactory Frequentist coverage property asymp-

totically by O(n−1) for all sufficiently regular prior functions. Thus, the (1 − α)

HPD interval estimate, which is a special case of credible intervals, should have exact

coverage rate of (1− α).

However, as in our study the HPD interval estimate always has shortest length

among all interval estimates with the same probability content, we would like to

actually verify its Frequentist coverage properties through simulations. An R program

has been developed to implement such an idea. Table 1 summarizes the results after

running the program for a wide range of values of µ1 and µ2. Since the average

coverage rate is close to (1−α) under different significance levels, and also the variance

of coverage rates is relatively small, we conclude that HPD interval estimates have

satisfactory Frequentist coverage properties.
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Table 1: Coverage Property Summary of HPD Intervals

Mean Minimum Proportion
Range of µ1, µ2 1− α coverage RMSE coverage below 1− α

.80 0.795 0.013 0.735 0.660

.85 0.846 0.013 0.805 0.585
7(3)70 .90 0.898 0.007 0.854 0.727

.95 0.947 0.008 0.923 0.619

.99 0.988 0.003 0.978 0.689

.80 0.794 0.014 0.772 0.668

.85 0.851 0.009 0.829 0.587
.1(.1)10 .90 0.903 0.018 0.835 0.541

.95 0.952 0.012 0.903 0.562

.99 0.991 0.009 0.964 0.539

*: 1000 samples of (y1, y2) are drawn.
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APPENDICES

.1 R Code of Monte Carlo Estimation of HPD Interval

## Monte Carlo HPD Interval Approximation

# Input posterior parameters x1,x2

hpd.mc <- function(x1,x2,t1=10,t2=10){

# Significance level alpha <- 0.05 ### specify significance level here

# Sample from transformed posterior, a beta density

n <- 1000 ### sample size

mc.phi <- t2/t1*sort(1/(1-rbeta(n,x1+.5,x2+.5))-1)

### sample, transform and sort

# Compute empirical length & highest lower rank of interval

estimates with the probability content of 1-alpha

hpd.length <- floor((1-alpha)*n)

hpd.lower.high <- n-hpd.length

# Form candidates of HPD interval

can.lower <- mc.phi[1:hpd.lower.high]

can.upper <- mc.phi[(1+hpd.length):n]
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# Determine the order where the shortest interval occurs

shortest.stack <- 1 ### initial value

for (i in 2:hpd.lower.high){

if ((can.upper-can.lower)[i] < (can.upper-can.lower)[shortest.stack])

shortest.stack <- i

}

hpd.rank <- shortest.stack

# Output the approximated HPD interval

hpd.appr <- c(can.lower[hpd.rank], can.upper[hpd.rank])

hpd.appr

}

47



.2 R Code for Simulating Posterior

### Posterior simulation from by (1) Markov Chain and (2) Profile-likelihood

## Input x1,x2 - two counts x1,x2 and t1,t2

post.sim <- function (x1=10,x2=10,t1=10,t2=10){

## Parameter setup

ipsilon <- 0.0001 ### tail-significance

N <- 1000 ### number of bins

m <- 1000 ### number of nuisance samples

## Lower & upper bounds of the ratio ’phi’

lb.phi <- t2/t1*(1/(1-qbeta(ipsilon,x1+.5,x2+.5))-1)

ub.phi <- t2/t1*(1/(1-qbeta((1-ipsilon),x1+.5,x2+.5))-1)

phi = seq(lb.phi,ub.phi,length=N) ### vector of "phi"

#(1) Random samples of the nuisance parameter - lambda2

mc.lambda2 = rgamma(m,x2+.5,scale=1)

## Approximate posterior via averaging and normalizing

post.sum <- array(0,dim=c(1,N)) for (j in 1:m){

post.sum <- post.sum +

dgamma(phi,x1,scale=1/mc.lambda2[j]/(t1/t2))*dbeta(phi/(t2/t1+phi),1.5,1)
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}

appr.post <- post.sum/m ### average

# Below module computes normalizing constant by numerical integration

c <- 0 for (i in 1:(N-1)){

c <- c+.5*(appr.post[i]+appr.post[i+1])*(ub.phi-lb.phi)/N

} appr.post <- appr.post/c ### normalize

#(2) Profile likelihood approximation [limitation: x2 not equal 0]

pl.q.post <- dgamma(phi,x1,scale=(t2/t1)/x2)*dbeta(phi/(t2/t1+phi),1.5,1)

## Approximate posterior via averaging and normalizing

pl.q.post <- pl.q.post/sum(pl.q.post) ### average

## Below module computes normalizing constant

c.pl <- 0 for (i in 1:(N-1)){

c.pl <- c.pl+.5*(pl.q.post[i]+pl.q.post[i+1])*(ub.phi-lb.phi)/N

} pl.post = pl.q.post/c.pl ### normalizing

## Plots

plot(phi,pl.post,type="l",col="green",xlim=c(0,ub.phi),main=paste("Posterior

comparison","(","y1=",x1,"y2=",x2,")"),xlab=expression(phi),ylab="",lwd=2)

lines(phi,appr.post,type="l",col="red",lty=2,lwd=2)

legend("topright",c("Simulated","Profile-Likelihood"),

lty=c(2,1),lwd=2,col=c("red","green"))}
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.3 R Code for Studying Coverage Property of HPD Intervals

# Coverage property study

n1 <- 21 n2 <- 21

cover <- matrix(0,nrow=n1,ncol=n2) ### create coverage matrix

for (i in 1:n1){

mu1 <- 7+3*(i-1)

for (j in 1:n2){

mu2 <- 7+3*(j-1)

ratio <- mu1/mu2

I <- array(0,dim=1000) ### true-value vector for each random sampled x1,x2

for (k in 1:1000){

x1.r <- rpois(1,mu1)

x2.r <- rpois(1,mu2)

hpd.r <- hpd.mc(x1.r,x2.r)

I[k] <- (ratio > hpd.r[1]) & (ratio < hpd.r[2])

} cover[i,j] <- sum(I)/1000 } }

# Coverage summary mean(cover) ### mean coverage

sqrt(var(as.vector(cover))) ### RMSE

min(cover) ### minimum coverage

length(cover[cover<.95])/length(as.vector(cover)) ### proportion below 1-alpha
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