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ABSTRACT

Decomposition, Packings and Coverings of Complete Digraphs with a

Transitive-Triple and a Pendant Arc

by

Jan Lewenczuk

In the study of design theory, there are eight orientations of the complete graph on

three vertices with a pendant edge, K3

⋃
{e}. Two of these are the 3-circuit with a

pendant arc and the other six are transitive triples with a pendant arc. Necessary

and sufficient conditions are given for decompositions, packings and coverings of the

complete digraph with each of the six transitive triples with a pendant arc.
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1 INTRODUCTION

Design theory, an intriguing branch of combinatorial mathematics, has applications

in many fields. Some applications in the area of computer science and electronics are

“the theory of parallel algorithms, the design of file organization schemes, the design

of hardware switches, and the analysis of algorithms[17].” In design theory, using

graphs to represent structures, we study decompositions, packings and coverings with

a smaller structure in order to better understand the whole structure.

Graphs provide a visible link between theory and application that makes them

ideal for design theory. A graph G consists of a set of elements together with a

binary relation defined on the set. In a graph, the elements are represented by points

(vertices) and the binary relation is represented by lines (edges) joining pairs of points.

A directed graph (digraph) D is simply a graph where the edges (arcs) have been

assigned a direction. If two vertices have an edge between them, we say that they

are adjacent. A complete graph on v vertices, Kv, is a graph where every vertex is

adjacent to every other vertex in the graph. The complete digraph on v vertices, Dv,

is formed by replacing each edge in Kv with two arcs of opposite orientation. As an

example, see Figure 1 which shows K3, the complete graph on three vertices and D3,

the complete digraph on three vertices.

The degree of a vertex u in a graph, G, is defined as the number of edges that are

adjacent to u. Directed graphs, however, have out degrees and in degrees for each

vertex. The out degree, od(u), of vertex u in D is defined as the number of vertices

of D that are adjacent from u. The in degree, id(u) of vertex u in D refers to the

number of vertices of D that are adjacent to u. The total degree of vertex u in D is

8



Figure 1: A Complete Graph, K3 and a Complete Digraph, D3

od(u) + id(u).

A decomposition of a digraph with isomorphic copies of digraph d is a set {d1, d2, ..., dn}

where di
∼= d and V (di) ⊂ V (D) for all i and A(di)∩A(dj) = ∅ for i 6= j and the union

over all di’s gives the digraph D. The di’s are called the blocks of the decomposition

while V (D) is the vertex set of D and A(D) is the arc set.
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Figure 2: The 3-Circuit C3, the Transitive Triple T , and L (K3 with a Pendant Edge)

Many types of decompositions have been studied that led to this research. A triple

system is a graph (or digraph) decomposition into isomorphic copies of a graph (or

digraph) on three vertices. Steiner Triple systems, denoted STS(v), are decompo-

sitions of Kv into K3 ’s. Figure 2 shows the two orientations of D3 (called directed

triples) which are known as the 3-circuit and the transitive triple. The 3-circuit
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and the transitive triple decompositions of Dv are called Mendelsohn triple systems

(MTS(v)) and directed triple systems (DTS(v)), respectively. In addition, L (from

Figure 2) decompositions of Dv have been studied.

The concentration of this thesis is the three transitive triple orientations, applied

to the K3 subgraph in the L and the two different orientations on the pendent arc.

We will decompose, pack and cover complete digraphs with these six orientations.

These orientations are labeled d1, d2, d3, d4, d5, and d6 as shown in Figure 3.
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Figure 3: Six Orientations of K3 ∪ {e}.
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These six orientations are denoted as (a, b, c)− (d)d1, (a, b, c)− (d)d2, . . . , (a, b, c)−

(d)d6, respectively.
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2 DECOMPOSITIONS

2.1 INTRODUCTION

Many mathematicians have studied decompositions of a complete graph. These are

some of the results of their studies that motivated the research for this thesis:

• A STS(v) exists if and only if v ≡ 1 or 3 (mod 6) [13],

• A MTS(v) exists if and only if v ≡ 0 or 1 (mod 3), v 6= 6 [12],

• A DTS(v) exists if and only if v ≡ 0 or 1 (mod 3) [8], and

• A decomposition of Kv into copies of K3 with a pendant edge (the graph L of

Figure 2) exists if and only if v ≡ 0 or 1 (mod 8) [1].

Figure 4 shows the decomposition of D3 into two isomorphic copies of transitive

triples.

Figure 4: D3 Decomposition with Transitive Triples.
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2.2 DIFFERENCE METHOD

The difference method is a method of decomposing a complete graph using the dis-

tances (differences) between vertices. We define differences as follows. Suppose we

have a complete graph with v vertices. We start by labelling the vertices 0 through

v − 1. The difference of the arc from vertex a to vertex b, is defined as b − a (mod

v − 1). The complete graph, Dv, has N = v − 1 differences.

We define orbit as follows. The orbit of a block b under permutation π is the set

{πn(b)|n = 0, 1, 2, ...}. A set {b1, b2, ..., bn} is a set of base blocks under permutation

π of a b-decomposition of graph G if each bi is isomorphic to b and the orbits of the

blocks of the bi generate a b-decomposition of G and the orbit of bi is disjoint from

the orbit of bj when i 6= j.

To illustrate the difference method and the use of fixed points, we will decompose

the complete digraph, Dv, with v ≡ 0 (mod 4). Suppose we have a complete digraph

Dv of 24 vertices (see Figure 5). This implies that v ≡ 0 (mod 4) or v = 4k. Since

v = 24, we have 23 differences. We are decomposing with d1 which has four arcs

so the number of differences has to be divisible by 4. We should then use one fixed

point because that will bring the number of differences down to 22. Then, we use

two differences with our base block containing the fixed point, making the number of

differences 20. So, we use fixed points when 4 does not divide v. Since each fixed point

uses up three differences, we keep adding fixed points until the number of differences

left (after we have subtracted three differences per fixed point) is a multiple of 4.

Now we let vertex c in d1 equal ∞ for the base block containing the fixed point.

Next we write all the differences down (1 through 22 in this case). We use the last

13



Figure 5: Example of a d1 Decomposition of D24 Using the Difference Method.

two differences in the base block containing the fixed point. We write our base blocks

as (a, b, c) - (d)d1. The base block containing the fixed point is (0, 2, ∞) -(1) which

takes care of the arcs (∞, 0), (2,∞), (1,0), and (2,0). Then we permute this base

block as follows {(0+ j, 2+ j,∞)− (1+ j)d1|j = 0, 1, . . . , 22} in order to cover all the

arcs to and from ∞ and the differences of 21 and 22.

Next, we write the blocks for the differences of 10, 15, 16, and 1. We chose these

using the difference method for transitive triples which is: if a, b and c are vertices of

the base block, then we choose our differences such that (c−b)+(a−c)=(a−b). So our

base block for the differences of 10, 15, 16, and 1 is (0, 7, 8)−(13)d1. We then take this

base block and permute it around the circle shown in Figure 5 in order to use up all

these differences. In mathematical notation, this is {(0+j, 7+j, 8+j)−(13+j)d1|j =

14



0, 1, . . . , 22} . Similarly, the rest of our blocks are {(j, 6 + j, 9 + j) − (15 + j)d1,

(j, 5+ j, 10+ j)− (17+ j)d1, (j, 4+ j, 11+ j)− (19+ j)d1, (j, 3+ j, 12+ j)− (21+ j)d1

| j = 1, 2, . . . , 22}.

Now, we check to see if we have covered all the arcs in D24. In our base block

with the fixed point, we have used 23 times 4 arcs which equals 92. In the other five

blocks, we’ve used 23 times 4 times 5 arcs which equals 460. When we add these

together, we get 552 arcs which is 24 times 23 which equals the number of arcs in

D24.

This process is then extended to all the complete digraphs, Dv, with v ≡ 0 (mod

4), i.e. v = 4k. Figure 6 shows the differences marked for the general case where

v = 4k. Next we write the blocks which are annotated in Theorem 2.1, case 4.

Figure 6: A d1 Decomposition of Dv with v = 4k Vertices Using the Difference

Method.
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2.3 RESULTS

Theorem 2.1 A d1-decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4).

Proof. The necessary condition for a d1-decomposition of Dv to exist is v ≡ 0 or 1

(mod 4) since 4 divides v if and only if v ≡ 0 or 1 (mod 4). We show sufficiency in

four cases.

Case 1. Suppose v ≡ 1 (mod 12), say v = 12k + 1. Consider the blocks:

{(j, 6k − i + j, 12k − 2i + j) − (3k + 1 + i + j)d1,

(j, 5k − i + j, 10k − 2i + j) − (8k + 1 + 2i + j)d1

| i = 0, 1, . . . , k − 1, j = 0, 1, . . . , 12k}

⋃
{(j, k − 1 − i + j, 12k − 3 − 2i + j) − (2k + 2 + i + j)d1

| i = 0, 1, . . . , k − 2, j = 0, 1, . . . , 12k}

⋃
{(j, k + j, 12k − 1 + j) − (k + 1 + j)d1 | j = 0, 1, . . . , 12k}.

Case 2. Suppose v ≡ 5 (mod 12), say v = 12k + 5. Consider the blocks:

{(j, 6k + 2 − i + j, 12k + 4 − 2i + j) − (3k + 1 + i + j)d1,

(j, 5k + 1 − i + j, 10k + 2 − 2i + j) − (8k + 5 + 2i + j)d1

| i = 0, 1, . . . , k − 1, j = 0, 1, . . . , 12k + 4}

⋃
{(j, k − 1 − i + j, 12k + 1 − 2i + j) − (2k + 2 + i + j)d1

| i = 0, 1, . . . , k − 2, j = 0, 1, . . . , 12k + 4}
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⋃
{(j, 5k + 2 + j, 10k + 4 + j) − (4k + 1 + j)d1,

(j, k + j, 12k + 3 + j) − (k + 1 + j)d1 | j = 0, 1, . . . , 12k + 4}.

Case 3. Suppose v ≡ 9 (mod 12), say v = 12k + 9. Consider the blocks:

{(j, 6k + 4 − i + j, 12k + 8 − 2i + j) − (3k + 4 + i + j)d1,

(j, 5k + 3 − i + j, 10k + 6 − 2i + j) − (8k + 7 + 2i + j)d1,

(j, k − i + j, 12k + 5 − 2i + j) − (2k + 4 + i + j)d1

| i = 0, 1, . . . , k − 1, j = 0, 1, . . . , 12k + 8}
⋃

{(j, 5k + 4 + j, 10k + 8 + j) − (8k + 6 + j)d1,

(j, k + 1 + j, 12k + 7 + j) − (k + 2 + j)d1 | j = 0, 1, . . . , 12k + 8}.

In each of Cases 1–3, the given set of blocks forms a decomposition of Dv where

V (Dv) = {0, 1, . . . , v − 1} and vertex labels in the blocks are reduced modulo v.

Case 4. Suppose v ≡ 0 (mod 4), say v = 4k. Consider the blocks:

{(j, 2 + j,∞) − (1 + j)d1}
⋃

{(j, k + 1 − i + j, k + 2 + i + j) − (2k + 1 + 2i + j)d1

| i = 0, 1, . . . , k − 2, j = 0, 1, . . . , 4k − 2}.

In Case 4, the given set of blocks forms a decomposition of Dv where V (Dv) =

{∞, 0, 1, . . . , v − 2} and numerical vertex labels in the blocks are reduced modulo

v − 1. �

Corollary 2.2 A d2-decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4).

Proof. The necessary condition follows as in Theorem 2.1. Since the converse of d1

is d2 and the Dv is self converse, the result follows trivially from Theorem 2.1. �

17



Corollary 2.3 A d3-decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4).

Proof. The necessary condition follows as in Theorem 2.1. In the case v ≡ 1 (mod 4),

blocks for such a system can be constructed from the d1 system of Theorem 2.1 by

replacing every block of the form (j, a + j, b + j)− (c + j)d1 with a block of the form

(a−b+j, a+j, j)−(a−b+c+j)d3 . In the case v ≡ 0 (mod 4), blocks for such a system

can be constructed from the d1 system of Theorem 2.1 by replacing every block of the

form (j, a+j, b+j)−(c+j)d1 with a block of the form (a−b+j, a+j, j)−(a−b+c+j)d3

and by replacing every block of the form (j, a + j,∞) − (c + j)d1 with a block of the

form (a + j,∞, j) − (a + c + j)d3. �

Corollary 2.4 A d4-decomposition of Dv exists if and only if v ≡ 0 or 1 (mod 4).

Proof. The necessary condition follows as in Theorem 2.1. Since the converse of d4

is d3 and the Dv is self converse, the result follows trivially from Corollary 2.3. �

Corollary 2.5 A d5-decomposition of Dv exists if and only if v ≡ 1 (mod 4).

Proof. As in Theorem 2.1, one necessary condition is that v ≡ 0 or 1 ( mod 4). Notice

that the vertices of d5 are of in-degree 0, 0, 2, and 2. Therefore another necessary

condition for a d5-design on Dv is that each vertex of Dv is of in-degree even — that

is, v must be odd. Therefore v ≡ 1 ( mod 4) is necessary.

Blocks for such a system can be constructed from the d1 system of Theorem 2.1

by replacing every block of the form (j, a + j, b + j) − (c + j)d1 with a base block of

the form (b + j, j, a + j) − (b + c + j)d5. �
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Corollary 2.6 A d6-decomposition of Dv exists if and only if v ≡ 1 (mod 4).

Proof. The necessary condition follows as in Corollary 2.5. Since the converse of d5

is d4 and the Dv is self converse, the result follows trivially from Corollary 2.5. �
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3 PACKINGS

3.1 INTRODUCTION

When a decomposition does not exist, we ask, “How close to a decomposition can we

get?” In this section, we will consider one way to answer this question which is with

packings. In a g-packing of Dv, we remove isomorphic copies of g without repeating

any arcs until we cannot remove more copies of g. The packing is said to be maximal

if the number of arcs left over or not used (the leave) in Dv is minimal. The formal

definition for a maximal packing follows.

A maximal packing of a directed graph G with isomorphic copies of a graph g is

a set {g1, g2, ..., gn} where gi
∼= g and V (gi) ⊂ V (G) for all i and A(gi) ∩ A(gj) = φ

for i 6= j and
⋃n

i gi ⊂ G and

|A(L)| = |A(G)/

n⋃

i

gi|

is minimal , where V (G) is the vertex set, A(G) is the arc set of the graph G and L

represents the leave of the packing.

The following lemma is an example of a maximal d1 packing of D6. Figure 7

illustrates the maximal d1 packing of D6 which consists of six d1 ’s.

20



Lemma 3.1 A d1 packing of D6 with minimal leave L exists and consists of exactly

six d1’s with |A(L)| = 6.

Proof.

Since |A(D6)| = 30 and |A(d1)| = 4, seven d1’s should fit in D6. However, since each

vertex in D6 has an in-degree of five, and vertex a of d1 has an in-degree of three,

only one vertex a of d1 will fit per vertex of D6. Therefore the maximum packing is

six d1’s and not seven. Here are the blocks and the leave of a maximal packing:

{(0, 2, 4) − (3)d1, (1, 2, 3)− (0)d1, (2, 4, 3) − (1)d1,

(3, 5, 1)− (0)d1, (4, 5, 6)− (3)d1, (5, 1, 0)− (4)d1}

A(L) = {(3, 5), (0, 2), (2, 5), (5, 2), (1, 4), (4, 1)}

�

Figure 7: The Packing and Leave of a Maximal d1-Packing of D6.
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3.2 RESULTS

Theorem 3.1 A maximal d1-packing of Dv with leave L satisfies

(i) |A(L)| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(L)| = 2 if v ≡ 2 or 3 (mod 4), v 6= 6, and

(iii) |A(L)| = 6 if v = 6.

Proof. Clearly it is necessary that |A(L)| ≡ |A(Dv)|(mod 4). We show that, with the

exception of v = 6, |A(L)| = |A(Dv)|(mod 4).

Case 1. If v ≡ 0 or 1 (mod 4), then there is a decomposition by Theorem 2.1 and the

result follows.

Case 2. If v ≡ 2 (mod 4), say v = 4k + 2, where k 6= 1, 2, 3, 4, 5 then consider the

blocks in A
⋃

B where

A = {j, k + 9 − i + j, k + 10 + i + j) − (2k + 5 + 2i + j)d1

| i = 0, 1, . . . , k − 6, j = 0, 1, . . . , 4k − 6}
⋃

{(j, 2i + 2 + j,∞i) − (2i + 1 + j)d1 | i = 0, 1, . . . , 6, j = 0, 1, . . . , 4k − 6}

and

B = {(∞0,∞1,∞3) − (∞6)d1, (∞1,∞2,∞4) − (∞0)d1, (∞2,∞5,∞3) − (∞1)d1,

(∞3,∞6,∞4) − (∞2)d1, (∞4,∞5,∞0) − (∞3)d1, (∞5,∞1,∞6) − (∞4)d1,

(∞6,∞2,∞0) − (∞5)d1, (∞2,∞4,∞0) − (∞6)d1,

(∞1,∞3,∞6) − (∞5)d1, (∞5,∞0,∞3) − (∞2)d1}.

22



Then A
⋃

B is a maximal d1-packing of Dv with leave L where A(L) = {(∞1,∞4), (∞4,∞6)},

and so the packing is maximal. The given set of blocks forms a packing of Dv where

V (Dv) = {∞0,∞1,∞2,∞3,∞4,∞5,∞6, 0, 1, . . . , v−8} and vertex labels in the blocks

are reduced modulo v − 7.

Case 3. If v ≡ 3 (mod 4), say v = 4k + 3, k 6= 1 then consider the blocks in A
⋃

B

where

A = {j, k+3−i+j, 4k−2i+j)−(2k+3+2i+j)d1 | i = 0, 1, . . . , k−2, j = 0, 1, . . . , 4k}

and

B = {(j, 1 + 2i + j,∞i) − (2 + 2i + j)d1 | i = 0, 1, j = 0, 1, . . . , 4k}

Then A
⋃

B is a maximal d1-packing of Dv with leave L where A(L) = {(∞0,∞1), (∞1,∞0)},

and so the packing is maximal. The given set of blocks forms a packing of Dv where

V (Dv) = {∞0,∞1, 0, 1, . . . , v−3} and vertex labels in the blocks are reduced modulo

v − 2.

Case 4. If v = 6 then Lemma 3.1 applies.

Case 5. If v = 7 then consider the blocks:

{(0, 1, 3) − (6)d1, (1, 2, 4)− (0)d1, (2, 5, 3)− (1)d1, (3, 6, 4)− (2)d1,

(4, 5, 0) − (3)d1, (5, 1, 6) − (4)d1, (6, 2, 0)− (5)d1, (2, 4, 0) − (6)d1,

(1, 3, 6) − (5)d1, (5, 0, 3)− (2)d1}.

The leave L is A(L) = {(1, 4), (4, 6)} so the packing is maximal.�
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Corollary 3.2 A maximal d2-packing of Dv with leave L satisfies

(i) |A(L)| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(L)| = 2 if v ≡ 2 or 3 (mod 4), v 6= 6, and

(iii) |A(L)| = 6 if v = 6.

Proof. The necessary condition follows as in Theorem 3.1. Since the converse of d1

is d2 and the Dv is self converse, the result follows trivially from Theorem 3.1. �

Theorem 3.3 A maximal d3-packing of Dv with leave L satisfies

(i) |A(L)| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(L)| = 2 if v ≡ 2 or 3 (mod 4).

Proof. The necessary condition follows as in Theorem 3.1. We consider sufficiency in

five cases.

Case 1. If v ≡ 0 or 1 (mod 4), then there is a decomposition by Theorem 2.1 and the

result follows.

Case 2. Suppose v ≡ 2 (mod 4), blocks for such a system can be constructed from the

d1 system of Theorem 3.1 by replacing every block of the form (j, a+j, b+j)−(c+j)d1

with a block of the form (a − b + j, a + j, j) − (a − b + c + j)d3.

Case 3. Suppose v ≡ 3 (mod 4), blocks for such a system can be constructed from the

d1 system of Theorem 3.1 by replacing every block of the form (j, a+j, b+j)−(c+j)d1

with a block of the form (a−b+j, a+j, j)−(a−b+c+j)d3 and by replacing every block
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of the form (j, a+j,∞)−(c+j)d1 with a block of the form (a+j,∞, j)−(a+c+j)d3.

Case 4. Suppose v = 6, consider the following blocks:

{(4, 1, 3) − (0)d3, (4, 5, 2)− (3)d3, (5, 3, 0)− (1)d3, (3, 1, 2)− (0)d3,

(0, 5, 1) − (2)d3, (1, 4, 0)− (2)d3, (2, 5, 4) − (0)d3}.

The leave L is A(L) = {(2, 3), (3, 5)} so the packing is maximal.

Case 5. Suppose v = 7, consider the following blocks:

{(0, 5, 1) − (3)d3, (1, 5, 2)− (4)d3, (2, 5, 3)− (0)d3, (3, 5, 4)− (1)d3,

(4, 5, 0) − (2)d3, (0, 6, 3)− (1)d3, (1, 6, 4) − (2)d3(2, 6, 0) − (3)d3,

(3, 6, 1) − (4)d3(4, 6, 2)− (0)d3}.

The leave L is A(L) = {(5, 6), (6, 5)} so the packing is maximal. �

Corollary 3.4 A maximal d4-packing of Dv with leave L satisfies

(i) |A(L)| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(L)| = 2 if v ≡ 2 or 3 (mod 4).

Proof. The necessary condition follows as in Theorem 3.1. Since the converse of d3

is d4 and the Dv is self converse, the result follows trivially from Theorem 3.3. �

Lemma 3.5 A maximal d5-packing of Dv with leave L has |A(L)| ≥ v if v ≡ 0 or 2

(mod 4).
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Proof. Each vertex of Dv is of in-degree v − 1 (which is odd) and each vertex of d5

is of in-degree even. Therefore, in a maximal packing, we are left with each vertex of

Dv of in-degree at least 1. Thus, |A(L)| ≥ v. �

Theorem 3.5 A maximal d5-packing of Dv with leave L satisfies

(i) |A(L)| = 0 if v ≡ 1 (mod 4),

(ii) |A(L)| = v if v ≡ 0 or 2 (mod 4), and

(iii) |A(L)| = 2 if v ≡ 3 (mod 4).

Proof. The necessary conditions follow as in Theorem 3.1 when v ≡ 1 or 3(mod 4)

and follow from Lemma 3.5 when v ≡ 0 or 2(mod 4). We consider sufficiency in four

cases.

Case 1. If v ≡ 1 (mod 4), then there is a decomposition by Theorem 2.1 and the

result follows.

Case 2. If v ≡ 0 (mod 4), then by Lemma 3.5, |A(L)| ≥ v. Consider the following

blocks in A
⋃

B where:

A = {(2i, 4k − 1 + 2i, 1 + 2i) − (4k − 2 + 2i)d5|i = 0, 1, . . . , 2k − 1}

and

B = {(j, 3k − 3 + j, 4k − 2 + j) − (3k − 2 + j)d5|j = 0, 1, ..., 4k − 1}
⋃

{(j, 2k−1+i+j, 2k+2+2i+j)−(2k−3−2i+j)d5|i = 0, 1, . . . , k−3, j = 0, 1, ..., 4k−1}.

Then A
⋃

B is a maximal d5-packing of Dv with leave L where

A(L) = {(j − 1, j)|j = 0, 1, . . . , 4k − 1}.
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The given set of blocks forms a packing of Dv where V (Dv) = {0, 1, . . . , v − 1} and

vertex labels in the blocks are reduced modulo v.

Case 3. If v ≡ 2 (mod 4), then by Corollary 3.5, |A(L)| ≥ v. Consider the following

blocks:

A = {(j, k+2+ i+ j, 1+2i+ j)− (2k+2+2i)d5|i = 0, 1, . . . , k−1, j = 0, 1, ..., 4k+1}

Then A is a maximal d5-packing of Dv with leave L where

A(L) = {(j − 1, j)|j = 0, 1, . . . , 4k − 1}.

The given set of blocks forms a packing of Dv where V (Dv) = {0, 1, . . . , v − 1} and

vertex labels in the blocks are reduced modulo v.

Case 4. If v ≡ 3 (mod 4) Consider the following blocks in A
⋃

B where:

A = {(2i, 4k + 2 + 2i, 1 + 2i) − (4k + 1 + 2i)d5|i = 0, 1, . . . , 2k}

and

B = {(j, 3k − 1 + j, 4k + 2 + j) − (4k + j)d5|j = 0, 1, ..., 4k + 2}

⋃
{(j, 2k+ i+ j, 2k+4+2i+ j)− (2+2i+ j)d5|i = 0, 1, . . . , k−2, j = 0, 1, ..., 4k−1}.

Then A
⋃

B is a maximal d5-packing of Dv with leave L where

A(L) = {(4k + 1, 4k + 2), (4k, 4k + 2)}.

The given set of blocks forms a packing of Dv where V (Dv) = {0, 1, . . . , v − 1} and

vertex labels in the blocks are reduced modulo v. �
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Corollary 3.6 A maximal d6-packing of Dv with leave L satisfies

(i) |A(L)| = 0 if v ≡ 1 (mod 4),

(ii) |A(L)| = v if v ≡ 0 or 2 (mod 4), and

(iii) |A(L)| = 2 if v ≡ 3 (mod 4).

Proof. The necessary condition follows as in Theorem 3.5. Since the converse of d5

is d6 and the Dv is self converse, the result follows trivially from Theorem 3.5. �
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4 COVERINGS

4.1 INTRODUCTION

In answering the question, “How close to a decomposition can we get?”, our second

response is to consider coverings. In a g-covering of Dv, we cover Dv with isomorphic

copies of g until every arc of Dv is covered. The covering is said to be minimal if the

number of arcs repeated (the padding) in Dv is minimal. The formal definition for a

minimal covering follows.

A minimal covering of a simple graph G with isomorphic copies of a graph g is a

set {g1, g2, . . . , gn} where gi
∼= g and V (gi) ⊂ V (G) for all i, G ⊂ ∪n

i=1gi, and

|A(P )| = |∪n
i=1A(gi) \ A(G)|

is minimal (the graph ∪n
i=1gi may not be simple and ∪n

i=1E(gi) may be a multiset).

The graph P is called the padding of the covering.

The following lemma is an example of finding the minimal covering of D7 with

isomorphic copies of d5. Figure 8 shows d5 and blocks A and B from the proof of

Lemma 4.1. Block A is permuted by adding 2 to each vertex three times. It produces

all arcs with differences of 1 and 2 and it produces the padding. Block B is permuted

by adding 1 to each vertex (six times) and produces all arcs with differences of 4,

5 and 6. Block A is another example of the difference method in that a difference

of 1 plus a difference of 1 equals a difference of 2. Block B also demonstrates the

difference method because a difference of 5 plus a difference of 6 equals a difference

of 4 (mod 7).
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Lemma 4.1 A d5 covering of D7 with minimal padding P exists and consists of exactly

eleven d5’s with |A(L)| = 2.

Proof.

If v = 7, then consider the blocks in A
⋃

B where (See Figure 8):

A = {(1 + 2i, 0 + 2i, 2 + 2i) − (6 + 2i)d5|i = 0, 1, 2, 3}

and

B = {(1 + j, 3 + j, 0 + j) − (5 + j)d5|j = 0, 1, ..., 6}.

Then A
⋃

B is a minimal d5-covering of D7 with padding P where

A(P ) = {(0, 1), (6, 1)}.

�

Figure 8: Blocks for a Minimal d5-Covering of D7.
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4.2 RESULTS

Theorem 4.1 A minimal d1-covering of Dv with padding P satisfies

(i) |A(P )| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(P )| = 2 if v ≡ 2 or 3 (mod 4).

Proof. Clearly it is necessary that |A(Dv)| − |A(P )| ≡ 0(mod 4). We show that,

|A(P )| is the smallest value possible, namely |A(P )| = |A(Dv)|(mod 4).

Case 1. If v ≡ 0 or 1 (mod 4), then there is a decomposition by Theorem 2.1 and the

result follows.

Case 2. If v ≡ 2 (mod 4), say v = 4k + 2, where k 6= 1, 2, 3, 4, 5 then consider

the blocks in A
⋃

B
⋃
{(∞6,∞1,∞4) − (∞3)d1} where sets A and B are defined in

Theorem 3.1. This is a minimal covering of Dv with padding P where A(P ) =

{(∞1,∞6), (∞3,∞6)}.

Case 3. If v = 6, then consider the blocks

{(5, 0, 1) − (4)d1, (1, 5, 4)− (2)d1, (3, 1, 0)− (5)d1, (2, 4, 3)− (1)d1,

(4, 3, 1) − (0)d1, (0, 2, 4) − (3)d1, (5, 2, 3)− (4)d1, (2, 5, 0) − (3)d1}.

The padding P is A(P ) = {(3, 2), (4, 5)} so the covering is minimal.

Case 4. If v ≡ 3 (mod 4), say v = 4k + 3, where k 6= 1 then consider the blocks in

A
⋃

B
⋃
{(∞1, 3, 0) − (∞0)d1 ∪ (0,∞1,∞0) − (4)d1 6 (0, 3,∞1) − (4)d1} where sets A

and B are defined in Theorem 3.1. This is a minimal covering of Dv with padding P
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where A(P ) = {(∞0, 0), (∞1, 0)}.

Case 5. If v = 7, then consider the blocks

{(0, 1, 3) − (6)d1, (1, 2, 4)− (0)d1, (2, 5, 3)− (1)d1, (3, 6, 4)− (2)d1,

(4, 5, 0) − (3)d1, (5, 1, 6) − (4)d1, (6, 2, 0)− (5)d1, (2, 4, 0) − (6)d1,

(1, 3, 6) − (5)d1, (5, 0, 3)− (2)d1, (6, 1, 4) − (3)d1}.

The padding P is A(P ) = {(1, 6), (3, 6)} so the covering is minimal. �

Corollary 4.2 A minimal d2-covering of Dv with padding P satisfies

(i) |A(P )| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(P )| = 2 if v ≡ 2 or 3 (mod 4).

Proof. The necessary condition follows as in Theorem 4.1. Since the converse of d1

is d2 and the Dv is self converse, the result follows trivially from Theorem 4.1. �

Theorem 4.3 A minimal d3-covering of Dv with padding P satisfies

(i) |A(P )| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(P )| = 2 if v ≡ 2 or 3 (mod 4).

Proof. The necessary condition follows as in Theorem 4.1. We consider sufficiency in

five cases.

Case 1. If v ≡ 0 or 1 (mod 4), then there is a decomposition by Theorem 2.1 and the

result follows.
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Case 2. Suppose v ≡ 2 (mod 4), blocks for such a system can be constructed from the

d1 system of Corollary 4.1 by replacing every block of the form (j, a+j, b+j)−(c+j)d1

with a block of the form (a − b + j, a + j, j) − (a − b + c + j)d3.

Case 3. Suppose v ≡ 3 (mod 4), blocks for such a system can be constructed from the

d1 system of Corollary 4.1 by replacing every block of the form (j, a+j, b+j)−(c+j)d1

with a block of the form (a−b+j, a+j, j)−(a−b+c+j)d3 and by replacing every block

of the form (j, a+j,∞)−(c+j)d1 with a block of the form (a+j,∞, j)−(a+c+j)d3.

Case 4. Suppose v = 6, consider the following blocks:

{(4, 1, 3) − (0)d3, (4, 5, 2)− (3)d3, (5, 3, 0)− (1)d3, (3, 1, 2)− (0)d3,

(0, 5, 1) − (2)d3, (1, 4, 0) − (2)d3, (2, 5, 4)− (0)d3, (2, 3, 5) − (1)d3}.

The padding P is A(P ) = {(1, 2), (2, 5)} so the covering is minimal.

Case 5. Suppose v = 7, consider the following blocks:

{(0, 5, 1) − (3)d3, (1, 5, 2)− (4)d3, (2, 5, 3)− (0)d3, (3, 5, 4)− (1)d3,

(4, 5, 0) − (2)d3, (1, 6, 4)− (2)d3(2, 6, 0) − (3)d3,

(3, 6, 1)− (4)d3, (4, 6, 2) − (0)d3, (6, 0, 3)− (5)d3, (0, 6, 5) − (1)d3, }.

The padding P is A(P ) = {(6, 0), (0, 5)} so the covering is minimal. �

Corollary 4.4 A minimal d4-covering of Dv with padding P satisfies

(i) |A(P )| = 0 if v ≡ 0 or 1 (mod 4), and

(ii) |A(P )| = 2 if v ≡ 2 or 3 (mod 4).
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Proof. The necessary condition follows as in Theorem 4.1. Since the converse of d3

is d4 and the Dv is self converse, the result follows trivially from Theorem 4.3. �

Lemma 4.5 A minimal d5-covering of Dv with padding P has |A(P )| ≥ v if v ≡ 0 or

2 (mod 4).

Proof. Each vertex of Dv is of in-degree v − 1 (which is odd) and each vertex of d5 is

of in-degree even. Therefore, in a minimal covering, each vertex of the covering is of

in-degree at least 1. Thus, |A(P )| ≥ v. �

Theorem 4.5 A minimal d5-covering of Dv with padding P satisfies

(i) |A(P )| = 0 if v ≡ 1 (mod 4), and

(ii) |A(P )| = v if v ≡ 0 or 2 (mod 4), and

(iii) |A(P )| = 2 if v ≡ 3 (mod 4).

Proof. The necessary conditions follow as in Theorem 4.1 when v ≡ 1 or 3(mod 4)

and follow from Lemma 4.5 when v ≡ 0 or 2(mod 4). We consider sufficiency in four

cases.

Case 1. If v ≡ 1 (mod 4), then there is a decomposition by Theorem 2.1 and the

result follows.

Case 2. If v ≡ 0 (mod 4), then by Lemma 4.5, |A(P )| ≥ v. Consider the following

blocks in A
⋃

B where:

A = {(j, 2k + j, 2k − 1 + j) − (4k − 1 + j)d5|j = 0, 1, . . . , 4k − 1}
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and

B = {(j, k + 1 + i + j, 1 + 2i + j) − (4k − 2 + j)d5

|i = 0, 1, . . . , k − 1, j = 0, 1, ..., 4k − 1}.

Then A
⋃

B is a minimal d5-covering of Dv with padding P where

A(P ) = {(j, j + 1)|j = 0, 1, . . . , 4k − 1}.

The given set of blocks forms a covering of Dv where V (Dv) = {0, 1, . . . , v − 1} and

vertex labels in the blocks are reduced modulo v.

Case 3. If v ≡ 2 (mod 4), then by Lemma 4.5, |A(P )| ≥ v. Consider the following

blocks in A
⋃

B where:

A = {(2i, 4k + 1 + 2i, 1 + 2i) − (4k + 2i)d5|i = 0, 1, . . . , 2k}

and

B = {(j, k + 1 + j, 1 + j) − (2k + 1 + j)d5|j = 0, 1, ..., 4k + 1}

⋃
{(j, k+2+i+j, 3+2i+j)−(4k−2−2i+j)d5|i = 0, 1, . . . , k−2, j = 0, 1, ..., 4k+1}.

Then A
⋃

B is a minimal d5-covering of Dv with padding P where

A(P ) = {(j, j + 1)|j = 0, 1, . . . , 4k + 1}.

The given set of blocks forms a packing of Dv where V (Dv) = {0, 1, . . . , v − 1} and

vertex labels in the blocks are reduced modulo v.

Case 4. If v ≡ 3 (mod 4) Consider the following blocks in A
⋃

B where:

A = {(2i, 4k + 2 + 2i, 1 + 2i) − (4k + 1 + 2i)d5|i = 0, 1, . . . , 2k + 1}
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and

B = {(j, 3k − 1 + j, 4k + 2 + j) − (4k + j)d5|j = 0, 1, ..., 4k + 2}

⋃
{(j, 2k+ i+ j, 2k+4+2i+ j)− (2+2i+ j)d5|i = 0, 1, . . . , k−2, j = 0, 1, ..., 4k−1}.

Then A
⋃

B is a minimal d5-packing of Dv with padding P where

A(P ) = {(4k + 1, 0), (4k + 2, 0)}.

The given set of blocks forms a covering of Dv where V (Dv) = {0, 1, . . . , v − 1} and

vertex labels in the blocks are reduced modulo v. �

Corollary 4.6 A minimal d6-covering of Dv with padding P satisfies

(i) |A(P )| = 0 if v ≡ 1 (mod 4), and

(ii) |A(P )| = v if v ≡ 0 or 2 (mod 4), and

(iii) |A(P )| = 2 if v ≡ 3 (mod 4).

Proof. The necessary conditions follow as in Theorem 4.5. Since the converse of d5

is d6 and the Dv is self converse, the result follows trivially from Theorem 4.5. �
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5 CONCLUSION

Here is a summary of our decomposition results:

(i) d1, d2, d3, or d4 decompositions of Dv exist if and only if v ≡ 0 or 1 ( mod 4), and

(ii) d4 or d5 decompositions of Dv exist if and only if v ≡ 1 ( mod 4).

The most similar decomposition result to compare this to is the transitive triple

decompositions of Dv as studied by Hung and Mendelsohn [8]. That is, a DTS(v)

exists if and only if v ≡ 0 or 1 (mod 3) [8]. We have similar results for d1 through d4

decompositions — these decompositions exist if and only if v is equivalent to 0 or 1

modulo the number of arcs in the figure with which we are decomposing. This makes

sense because the number of arcs in Dv is divisible by 3 if and only if v ≡ 0 or 1 (mod

3), i.e. v = 3k or v = 3k + 1. (Recall that |A(Dv)| = v(v − 1).) So if v = 3k, then

|A(Dv)| = 3k(3k − 1) and if v = 3k + 1, then |A(Dv)| = 3k + 1(3k). Similarly, the

number of arcs in Dv is divisible by 4 if and only if v ≡ 0 or 1 ( mod 4).

What was surprising though, was that d5 or d6 decompositions of Dv did not exist

if v ≡ 0 ( mod 4). A closer look at the structure of d5 and d6 revealed the reason for

this. The vertices of d5 were of in-degree even and Dv had an even number of vertices

which meant that the in-degree of each vertex in Dv was odd. Thus a decomposition

was not possible because the sum of any number of even numbers can never equal an

odd number.
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Here is a summary of our packing results:

(i) Maximal d1 or d2 packings of Dv with leave L has |A(L)| = 0 if v ≡ 0 or 1 (mod

4) and |A(L)| = 2 if v ≡ 2 or 3 (mod 4), v 6= 6, and |A(L)| = 6 if v = 6.

(ii) Maximal d3 or d4 packings of Dv with leave L has |A(L)| = 0 if v ≡ 0 or 1 (mod

4) and |A(L)| = 2 if v ≡ 2 or 3 (mod 4).

(iii) Maximal d5 or d6 packings of Dv with leave L has |A(L)| = 0 if v ≡ 1 (mod 4),

and |A(L)| = v if v ≡ 0 or 2 (mod 4), and |A(L)| = 2 if v ≡ 3 (mod 4).

Again, we want to compare this to the transitive triple packing results of Dv. Here

are the results from R. Gardner’s research in [5]:

Theorem 5.1 [5] A maximal packing of Dv, where v 6= 6, with copies of the transitive

triple, T , and a leave L satisfies:

1) |A(L)| = 0 if v ≡ 0 or 1 (mod 3), or

2) |A(L)| = 2 and L=C2 if v ≡ 2 (mod 3) .

Our results were very similar to R. Gardner’s but were dependent on which graph

configuration with which we were packing. In packing with d1 or d2, we found that

|A(L)| = 6 when v = 6. The reason for this was that one of the vertices in d1 had an

in-degree of three (See Lemma 3.1). Dr. Gardner also had an exception when v = 6,

but this would not be for the same reason since there are no vertices of in-degree

three in a transitive triple.

Another unusual result was that in packing with d5 or d6, we found |A(L)| = v

if v ≡ 0 or 2 (mod 4). Again the reason for this was the structure of d5 and d6 as

discussed above in the decomposition section (See Lemma 3.5).
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Finally, here is the summary of our covering results:

(i) Minimal d1, d2, d3 or d4 coverings of Dv with padding P has |A(P )| = 0 if v ≡ 0

or 1 (mod 4) and |A(P )| = 2 if v ≡ 2 or 3 (mod 4).

(ii) Minimal d5 or d6 coverings of Dv with padding P has |A(P )| = 0 if v ≡ 1 (mod

4), and |A(L)| = v if v ≡ 0 or 2 (mod 4), and |A(L)| = 2 if v ≡ 3 (mod 4).

And here are R. Gardner’s results from [5]:

Theorem 5.2 [5] A minimal covering of Dv, where v 6= 6, with copies of the transitive

triple, T , and padding, P , satisfies:

1) |A(P )| = 0 if v ≡ 0 or 1 (mod 3), or

2) |A(P )| = 4 if v ≡ 2 (mod 3) and P may be two disjoint copies of C2, any

orientation of a 4-cycle or two osculating 2-circuits OC2.

Dr. Gardner’s transitive triple results were quite different from minimal d1 through

d4 coverings of Dv because we found |A(P )| = 2 if v ≡ 2 or 3 (mod 4) instead of

|A(P )| = 4 if v ≡ 2 (mod 3). Again, minimal d5 or d6 coverings of Dv differed because

of the structure of d5 and d6. We found |A(P )| = v if v ≡ 0 or 2 (mod 4). These

results differ significantly and could warrant further study.
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