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ABSTRACT

Independent Domination in Complementary Prisms

by

Joel A. Góngora

Let G be a graph and G be the complement of G. The complementary prism GG of

G is the graph formed from the disjoint union of G and G by adding the edges of a

perfect matching between the corresponding vertices of G and G. For example, if G

is a 5-cycle, then GG is the Petersen graph. In this paper we investigate independent

domination in complementary prisms.
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1 INTRODUCTION

In [8] the authors study the domination and total domination numbers for comple-

mentary prisms. Here we study independent domination for complementary prisms.

First, we will cover some basic definitions of graph theory followed by some standard

notation that will be seen throughout the paper. Lastly, we will give some examples

of complementary prisms.

Figure 1: Example of an i(G)-set.

1.1 Basic Definitions

Let G = (V, E) be a graph with vertex set V and edge set E. A dominating set,

denoted DS, of G is a set S of vertices of G such that every vertex in V \S is adjacent

to a vertex in S. The domination number of G, denoted by γ(G), is the minimum

cardinality of a DS of G. A DS of G of cardinality γ(G) is called a γ(G)-set.

If I is a nonempty subset of the vertex set V (G) of G, then the subgraph < I >

of G induced by I is the graph having vertex set V (I) and whose edge set consists of

those edges of G incident with two elements of V (I). A subset I of V (G) is said to
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Figure 2: GG where G = C5.

be independent if and only if the graph < I > has no edges. If the set I dominates

the graph G, then we call I an independent dominating set, abbreviated IDS.

The independent domination number of G, denoted by i(G), is the minimum

cardinality of an IDS. An IDS of G of cardinality i(G) is called a i(G)-set. Since an

IDS is a DS, we have γ(G) ≤ i(G) for all graphs G. In Figure 1, the set I = {v1, v4, v5}

is an i(G)-set of the graph G.

The complementary prism GG of G is the graph formed from the disjoint union

G∪G of G and G by adding the edges of a perfect matching between the correspond-

ing vertices (same label) of G and G. As illustrated in Figure [2], the graph C5C5

is the Petersen graph. Also, if G = Kn, the graph KnKn is the corona Kn ◦ K1,

where the corona, H ◦K1, of a graph H is the graph obtained from H by attaching

a pendant edge to each vertex of H.

9



1.2 Notation

For notation and graph theory terminology we, in general, follow [5]. Specifically,

let G = (V, E) be a graph with vertex set V of order n = |V | and edge set E of

size m = |E|, and let v be a vertex in V . The open neighborhood of v is the set

N(v) = {u ∈ V |uv ∈ E}, and the closed neighborhood of v is N [v] = {v} ∪ N(v).

For a set S ⊆ V , its open neighborhood is the set N(S) = ∪v∈SN(v), and its closed

neighborhood is the set N [S] = N(S) ∪ S. If X, Y ⊆ V , then the set X is said

to independent dominate the set Y if Y ⊆ N [X], and X is independent. A vertex

w ∈ V is an S-private neighbor of v ∈ S if N [w] ∩ S = {v}, while the S-private

neighbor set of v, denoted pn[v, S], is the set of all S-private neighbors of v. An open

S-private neighborhood is defined similarly for N(w)∩S = {v} and denoted pn(v, S).

The degree of a vertex v is degG(v) = |N(v)|. The minimum degree of G is δ(G) =

min{degG(v)|v ∈ V (G)}. The maximum degree of G is ∆(G) = max{degG(v)|v ∈

V (G)}. A vertex of degree zero is an isolated vertex. A vertex of degree one is called

a leaf or an endvertex, and its neighbor is called a support vertex. For any leaf vertex

v and support vertex w, the edge vw is called a pendant edge.

Let GG be the complementary prism of a graph G = (V, E). For notational

convenience, we let V = V (G). Note that V (GG) = V ∪V . To simplify our discussion

of complementary prisms, we say simply G and G to refer to the subgraph copies of

G and G, respectively, in GG. Also, for a vertex v of G, we let v be the corresponding

vertex in G, and for a set X ⊆ V , we let X be the corresponding set of vertices in V .

10



Since we study the independent domination number of complementary prisms,

here are some examples of i(G)-sets in various complementary prisms, these sets are

denoted by the darkened vertices in Figures 3 and 4.

Figure 3: GG where G = K3,1 (left) and G = P4 (right).

Figure 4: GG where G = K5 (right).
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2 LITERATURE REVIEW

This chapter consists of a review of the literature of past research on comple-

mentary prisms. In the first section, we investigate the relationship between comple-

mentary prisms and complementary products which were first introduced by Haynes,

Henning, Slater and van der Merwe in [7]. In the following section, we will review

previous parameters studied in complementary prisms from [7, 8].

2.1 The Complementary Product of Two Graphs

In [7] Haynes, Henning, Slater and van der Merwe introduced a generalized form

of the Cartesian product of two graphs. Let G1 and G2 be graphs with V (G1) =

{u1, u2, ..., un} and V (G2) = {v1, v2, ..., vp}. The Cartesian product of the graphs G1

and G2, symbolized by G12G2, is the graph formed from G1 and G2 in the following

manner.

The graph G12G2 has np vertices. Each of these vertices has a label taken from

V (G1)× V (G2). In G12G2, two vertices (ui, vj) and (ur, vs) are adjacent if and only

if one of the following conditions hold:

(i.) i = r, and vjvs ∈ E(G2).

(ii.) j = s, and uiur ∈ E(G1).

For each i, the induced subgraph on the vertices (ui, vj) for 1 ≤ j ≤ p is a copy

of G2, and for each j, the induced subgraph on the vertices (ui, vj) for 1 ≤ i ≤ n is a

copy of G1. Note that, G12G2 can either be viewed as the graph formed by taking

each vertex of G1, replacing it with a copy of G2 and matching the corresponding
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vertices and taking each vertex of G2, replacing it with a copy of G1 and matching

the corresponding vertices.

Also, the complementary product of two graphs is defined as follows: Let R be a

subset of V (G) and S be a subset of V (H). The complementary product, denoted by

G(R)2H(S), is constructed as follows. The vertex set V (G(R)2H(S)) is {(ui, vj) :

1 ≤ i ≤ n, 1 ≤ j ≤ p} where the edge (ui, vj)(uh, vk) is in E(G(R)2H(S)) if one of

the following conditions hold.

(i.) If i = h, ui ∈ R, and vjvk ∈ E(H), or if i = h, ui 6∈ R and vjvk 6∈ E(H).

(ii.) If j = k, vj ∈ S, and uiuh ∈ E(G), or if j = k, vj 6∈ S, and uiuh 6∈ E(G).

In simpler terms, for each ui ∈ V (G), we replace ui with a copy of H if ui is in R

and with a copy of its complement H if ui is not in R, and for each vj ∈ V (H), we

replace each vj with a copy of G if vj ∈ S and a copy of G if vj 6∈ S.

In the case where R = V (G) and S = V (H), the complementary product G(R)2H(S)

is written G2H(S) and G(R)2H, respectively. In other words G2H(S) is the graph

obtained by replacing each vertex v ∈ V (H) with a copy of G if v ∈ S and by a copy

of G if v 6∈ S, and replacing each ui with a copy of H. In the extreme case where

R = V (G), and S = V (H), the complementary product G(V (G))2H(V (H)) = G2H

is simply the same as the Cartesian product G2H. See Figure 5 for an illustration of

C4({u1, u4}) 2 C3({v3}). A complementary prism GG is the complementary product

G2K2(S) with |S| = 1.
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Figure 5: C4({u1, u4}) 2 C3({v3})

2.2 Domination and Total Domination in Complementary Prisms

In [8], Haynes, Henning and Van der Merwe studied domination in complementary

prisms and acquired the following results. The first result we review is whenever G

is a specific family of graphs.

Proposition 2.1 [8]

(a) If G = Kn, then γ(GG) = n.

(b) If G = tK2, then γ(GG) = t + 1.

(c) If G = Kt ◦K1 and t ≥ 3, then γ(GG) = γ(G) = t.

(d) If G = Cn and n ≥ 3, then γ(GG) = d(n + 4)/3e.

(e) If G = Pn and n ≥ 2, then γ(GG) = d(n + 3)/3e.

Similarly in [8] they found the total domination numbers for graphs of specific families.

Proposition 2.2 [8]

(a) If G = Kn, then γt(GG) = n.

(b) If G = tK2, then γt(GG) = n = 2t.
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(c) If G = Kt ◦K1 and t ≥ 3, then γt(GG) = γt(G) = t.

(d) If G ∈ {Cn, Pn} with order n ≥ 5, then

γt(GG) =


γt(G), if n ≡ 2 (mod4)

γt(G) + 2, if G = Cn, and n ≡ 0 (mod4)

γt(G) + 1, otherwise.

They also characterized graphs for which γ(GG) and γt(GG) are small.

Proposition 2.3 [8] Let G be a graph of order n. Then,

(a) γ(GG) = 1 if and only if G = K1.

(b) γ(GG) = 2 if and only if n ≥ 2 and G has a support vertex that dominates V (G)

or G has a support vertex that dominates V (G).

Proposition 2.4 [8] Let G be a graph of order n ≥ 2, with |E(G)| = |E(G)|. Then

(a) γt(GG) = 2 if and only if G = K2.

(b) γt(GG) = 3 if and only if n ≥ 3 and G = K3 or G has a support vertex that

dominates V (G) or G has a support vertex that dominates V (G).

As we continue through the results found in [8] we see that they were able to find a

lower and upper bound for γ(GG) and γt(GG).

Proposition 2.5 [8] For any graph G, max{γ(G), γ(G)} ≤ γ(GG) ≤ γ(G) + γ(G).

Proposition 2.6 [8] If G and G are without isolates, then max{γt(G), γt(G)} ≤

γt(GG) ≤ γt(G) + γt(G).

15



In [8], they then characterized graphs G for which γ(GG) = max{γ(G), γ(G)} and

γt(GG) = max{γt(G), γt(G)}. First, let us define a packing. A set S of vertices of a

graph G is a packing of G if dG(x, y) ≥ 3 for all pairs of distinct vertices x and y in

S. The packing number ρ(G) of G is the maximum cardinality of a packing set in G.

Proposition 2.7 [8] A graph G satisfies γ(GG) = γ(G) ≥ γ(G) if and only if G has

an isolated vertex or there exists a packing P of G such that |P | ≥ 2 and γ(G \ P ) =

γ(G)− |P |.

Proposition 2.8 [8] Let G be a graph such that neither G nor G has an isolated

vertex. Then γt(GG) = γt(G) ≥ γt(G) if and only if G = n/2K2 or there exists an

open packing P = P1 ∪ P2 in G satisfying the following conditions:

|P | ≥ 2;

P1 ∩ P2 = ∅;

if P1 6= ∅, then P1 is a packing in G;

if P1 = ∅, then |P | ≥ 3 or G[P ] = K2; and

γt(G \N [P1] \ P2) = γt(G)− 2|P1| − |P2|.

16



3 SPECIFIC FAMILIES

To illustrate independent domination in complementary prisms, we determine

i(GG) for selected graphs G. A subdivided star K∗
1,t is the graph obtained from

the star K1,t by subdividing each edge exactly once. Let Kr,s denote the complete

bipartite graph with partite sets of cardinality r and s, and let Pn denote the path of

order n.

We begin with a straightforward observation and a result from [5].

Observation 3.1 For a path Pn,

(a) i(Pn) = dn/3e, and

(b) there exists an i(Pn)-set I such that I does not contain one of the endvertices of

Pn.

Proposition 3.2 [8] Let G = Pn. Then γ(GG) = dn/3e+ 1.

Proposition 3.3

(a) If G = Pn and n ≥ 2, then i(GG) = dn/3e+ 1.

(b) If G = Kr,s where 2 ≤ r ≤ s, then i(GG) = r + 1.

(c) If G is a subdivided star K∗
1,t, then i(GG) = t + 1.

Proof. (a) Since i(G) ≥ γ(G) for any graph G, by Proposition 3.2 we have dn/3e+1 =

γ(GG) ≤ i(GG). Next, we will show that dn/3e+1 ≥ i(GG). Let the vertices of G =

Pn be labeled sequentially v0, v1, · · · , vn−1 such that v0 and vn−1 are endvertices. Let

I be an i(G)-set that does not contain v0, (such a set exists and has cardinality dn/3e

by Observation 3.1). This implies that v1 ∈ I. Notice that v0 dominates G \ {v1}.

17



Thus I ∪{v0} is an IDS of GG. Therefore, i(GG) ≤ |I ∪{v0}| = |I|+ 1 = dn/3e+ 1,

and hence i(GG) = dn/3e+ 1.

(b) Let G = Kr,s, 2 ≤ r ≤ s, with partite sets R = {u1, u2, · · · , ur} and S =

{v1, v2, · · · , vs}. To show the upper bound, we note that {u1, v1} ∪ R \ {u1} is an

IDS of GG, so i(GG) ≤ 2 + r − 1 = r + 1. To show the lower bound, let L be an

i(GG)-set. If L∩V = ∅, then V ⊆ L to dominate V , a contradiction because V is not

independent. Hence, |L ∩ V | ≥ 1. Since each of R and S induces a complete graph,

|L ∩ V | ≤ 2. If L ∩ V = {ui}, then S ⊆ L to independent dominate S. Therefore,

i(GG) = |L| ≥ |S|+1 ≥ |R|+1 = r +1. If L∩V = {vi}, then R ⊆ L to independent

dominate R. Again i(GG) = |L| ≥ |R| + 1 = r + 1. If L ∩ V = {vi, uj}, then to

independent dominate (R ∪ S) \ {ui, vj}, either R \ {ui} ⊆ L or S \ {vj} ⊆ L. Since

r ≤ s, we have i(GG) = |L| ≥ |{ui, vj} ∪ R \ {ui}| = 2 + r − 1 = r + 1. Hence

i(GG) = r + 1.

(c) Let G = K∗
1,t, 2 ≤ t, be a subdivided star with center v0. Label the leaves of G, vi

for 1 ≤ i ≤ t, and let ui be the support vertex of vi. To show that |L| ≤ t+1, we note

that {v1, u1, vi | 2 ≤ i ≤ t} is an IDS of GG. Let L be an i(GG)-set. To independent

dominate vi, at least one of vi, ui, and vi must be in L for 1 ≤ i ≤ t. Moreover, to

independent dominate v0, L includes at least one vertex from {v0, v0, vi | 1 ≤ i ≤ t}.

If either v0 or v0 is in L, it follows that |L| ≥ t + 1 as desired. Hence assume that

v0 6∈ L and v0 6∈ L. Thus vi ∈ L for some i to dominate v0. Then to independent

dominate ui, L contains at least one vertex from {ui, ui} implying that |L| ≥ t + 1.

Hence, i(GG) = t + 1. 2
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4 LOWER BOUND

In this section, we present a lower bound on the independent domination number of

the complementary prism GG in terms of the independent domination number of G,

as well as a characterization of the graphs attaining this lower bound.

Theorem 4.1 For any graph G, max{i(G), i(G)} ≤ i(GG).

Proof. If G = Kn, then GG is the corona Kn ◦ K1. The result holds because

i(G) = n = i(GG). Thus, we may assume that neither G nor G is a complete graph.

Let I be an i(GG)-set, and let I1 = I ∩V and I2 = I ∩V . Without loss of generality,

let i(G) = max{i(G), i(G)}. If I1 is an IDS of G, then we are finished. If not, then I1

is independent but does not dominate G. Let T ⊆ V be the set of vertices that are

not dominated by I1, and let T1 be an IDS of T . Then |T1| ≤ |T |, and each vertex

in T is dominated by exactly one vertex in I2, so |T1| ≤ |T | ≤ |I2|. Moreover I1 ∪ T1

is an IDS of G. Hence, i(G) ≤ |I1 ∪ T1| ≤ |I1| + |I2| = |I| = i(GG). Therefore,

max{i(G), i(G)} ≤ i(GG). 2

Next we characterize the graphs attaining the lower bound of Theorem 4.1.

Theorem 4.2 A graph G satisfies i(GG) = i(G) ≥ i(G) if and only if G has an

isolated vertex.

Proof. First we consider the sufficiency. Assume that G has an isolated vertex v.

Since v dominates G, we have i(G) ≥ i(G) = 1. Let I be an i(G)-set. Then any

isolated vertex of G must be in I, so v ∈ I. Then A = I \ {v} ∪ {v} is an IDS of GG.

Thus i(GG) ≤ |A| = i(G). By Theorem 4.1, i(G) ≤ i(GG) and so i(GG) = i(G).
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Next we consider the necessity. Assume that i(GG) = i(G) ≥ i(G), and let I be

an i(GG)-set. If I ⊆ V , then I = V since I must also dominate G, hence V is an

independent set and the result follows. Thus, we may assume that I ∩ V 6= ∅ and

I ∩ V 6= ∅. Let I1 = I ∩ V and I2 = I ∩ V . Since |I1| < i(G), I1 does not dominate

G. Let X ⊆ V be the set that is not dominated by I1. Hence for each x ∈ X, x ∈ I2.

Since I2 is independent, X induces a complete graph in G. Therefore, I1 ∪ {x} for

any x ∈ X is an IDS of G. Thus i(G) ≤ |I1| + 1 ≤ |I1| + |I2| = i(GG). But,

since i(G) = i(GG), we have that |I2| = 1, that is, I2 = {x}. Now I2 dominates

V \ I1. Also since x is not dominated by I1, it follows that x dominates I1. Hence,

degG(x) = n− 1, implying that x is an isolated vertex in G. 2
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5 UPPER BOUND

Let δ(G) (respectively, ∆(G)) denote the minimum (respectively, maximum) degree

of G. In this section we present upper bounds on the independent domination number

of the complementary prism GG.

Observation 5.1 [5] For any graph G, i(G) ≤ δ(G).

Theorem 5.2 Let G be a graph with order n and maximum degree ∆(G). Then

i(GG) ≤ 2(n− 1)−max{∆(G), ∆(G)}, and this bound is sharp.

Proof. Let G be a graph of order n. We know from Observation 5.1 that i(G) ≤ δ(G).

Since ∆(GG) + δ(GG) = 2n− 1, we have δ(GG) = 2n− 1−∆(GG). Since ∆(GG) =

max{∆G, ∆G}+1, we have δ(GG) = 2n−2−max{∆(G), ∆(G)}. Therefore i(GG) ≤

2(n− 1)−max{∆(G), ∆(G)}.

Next we will show that the bound is sharp. Let G = K2 ∪ (n − 2)K1. Notice that

max{∆(G), ∆(G)} = ∆(G) = n−1. It is straightforward to show that i(GG) = n−1.

Thus 2(n−1)−max{∆(G), ∆(G)} = 2n−2−∆(G) = 2n−2−(n−1) = n−1 = i(GG).

2

Lemma 5.3 For any graph G, let I1 be an i(G)-set and I2 be an i(G)-set. Then

I1 ∪ I2 is not an IDS of GG if an only if there exists exactly one vertex v ∈ I1 such

that v ∈ I2.

Proof. Let G be a graph, and let I1 be an i(G)-set and I2 be an i(G)-set. Assume

that I1 ∪ I2 is not an IDS of GG. Clearly, I1 ∪ I2 dominates GG, so it must be the

case that I1 ∪ I2 is not independent. Thus assume, for a contradiction, that there
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exist two vertices v0, v1 ∈ I1 such that v0, v1 ∈ I2. Since I1 is an i(G)-set, then

v0v1 /∈ E(G). Thus v0v1 ∈ E(G), which is a contradiction to the fact that I2 is an

i(G)-set, concluding the sufficiency. Next let v be a unique vertex, such that v ∈ I1

and v ∈ I2, then clearly I1 ∪ I2 is not an IDS of GG. 2

In [8] the authors observed that for any graph G, γ(GG) ≤ γ(G) + γ(G) and

γt(GG) ≤ γt(G)+γt(G). Yet for independent domination, the upper bound i(G)+i(G)

does not hold. In fact the difference i(GG) − (i(G) + i(G)) can be arbitrarily large

as we show with the following theorem.

Theorem 5.4 For a graph G and its complementary prism GG, the difference i(GG)−

[i(G) + i(G)] can be arbitrarily large.

Proof. Let 2 ≤ t < r and Hr,t
x be the graph formed by identifying t copies of Kr+1

at a single vertex labeled x. For the ith copy of Kr+1 \ {x} where 1 ≤ i ≤ t, label the

vertices {xi,1, · · · , xi,r}. Now let G = Gr,t be the graph formed from Hr,t
x ∪ Hr,t

y by

adding the edge xy. See Figure 6 for an example.

Figure 6: The Graph G3,2
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Note that i(G) = t + 1 and i(G) = 2. We now proceed to show that i(GG) = 2t + 2.

Let I = {x, y, yi,1, xi,1 | 1 ≤ i ≤ t}. Observe that I is an IDS of GG with |I| = 2t+ 2.

Thus i(GG) ≤ 2t + 2. It remains to show that i(GG) ≥ 2t + 2. Let I be an arbitrary

IDS of GG. We note that since I is independent, |I ∩ {x, y, x, y}| ≤ 2. Without loss

of generality, we consider the following cases:

Case 1. I ∩ {x, y, x, y} = {x, y}. Observe that {x, y} independent dominates G ∪

{x, y} in GG. Since x, y /∈ I, to independent dominate G \ {x, y}, we need at least 2t

additional vertices. Thus i(GG) ≥ 2t + 2.

Case 2. I ∩ {x, y, x, y} = {x, y}. Observe that {x} dominates {x, x} ∪ (H
r,t

y \ {y}),

and {y} dominates Hr,t
y ∪ {x, y}. Thus it remains to independent dominate (Hr,t

x \

{x})∪ (H
r,t

x \ {x}). Since I is independent, no vertex of H
r,t

y is in I. Since H
r,t

x \ {x}

is a complete multipartite graph, and since y /∈ I, we need to select at least r vertices

from one of the partite sets in order to independent dominate H
r,t

x \{x}. This implies

that to independent dominate (Hr,t
x \ {x}) ∪ (H

r,t

x \ {x}), we need at least r + t − 1

vertices. Hence i(GG) ≥ 2 + r + t− 1 = r + t + 1 ≥ 2(t + 1), since r ≥ t + 1.

Case 3. I ∩ {x, y, x, y} = {x}. Clearly, {x} dominates Hr,t
x ∪ {y, x}. In order to

independent dominate G \ {x} in GG, we need at least r vertices from one of the

partite sets in H
r,t

x \ {x}. It remains to independent dominate Hr,t
y \ {y} in GG. To

do this, we need at least one vertex from each of the copies of Kr in Hr,t
y \ {y}. Thus,

i(GG) ≥ 1 + r + t ≥ 2(t + 1), since r ≥ t + 1.

Case 4. I ∩ {x, y, x, y} = {x}. Observe that {x} dominates {x, x} ∪ H
r,t

y \ {y} in

GG. Moreover, since y /∈ I, x ∈ I, and no vertex of H
r,t

y \ {y} is in I, we need at least

t vertices in Hr,t
y to independent dominate Hr,t

y . Also since y /∈ I, then we need at
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least r vertices of H
r,t

x \{x} to independent dominate (H
r,t

x \{x})∪{y}. It remains to

independent dominate the vertices Hr,t
x \ {x} that are not independent dominated by

the vertices of H
r,t

x . But to do this we need at least t − 1 additional vertices. Thus,

i(GG) ≥ 1 + t + r + t− 1 > 2(t + 1), since r ≥ t + 1.

Case 5. I ∩ {x, y, x, y} = ∅. Then, to independent dominate {x} and {y} in GG,

we need to select at least one vertex from H
r,t

x \ {x} and at least one vertex from

H
r,t

y \ {y}, which contradicts the fact that I is independent. Thus, this case is not

possible.

Therefore, in all cases i(GG) ≥ 2t+2. Hence, i(GG) = 2t+2. Also |i(GG)− [i(G)+

i(G)]| = 2t+2−(t+1)−2 = t−1. Thus as t →∞, the difference i(GG)−(i(G)+i(G))

is arbitrarily large. 2

Next we present another upper bound on i(GG).

Theorem 5.5 If G is a graph with minimum degree δ(G) and no isolated vertices,

then i(GG) ≤ i(G) + δ(G), and this bound is sharp.

Proof. Let G be a graph with no isolated vertices, and let x ∈ V be a vertex of

minimum degree δ(G). Let I be an i(G)-set.

Case 1. Assume x ∈ I, and let X = NG(x). If pnG[x, I] = {x}, then let S be an

IDS of 〈X〉. Clearly, |S| ≤ δ(G) and (I \ {x}) ∪ {x} ∪ S is an IDS of GG. Thus,

i(GG) ≤ |I \ {x}|+ |S|+ 1 ≤ i(G)− 1 + δ(G) + 1 = i(G) + δ(G).

Suppose then that pnG(x, I) 6= ∅, that is, x is necessary in I to dominate at least one

vertex in V \ I. Let A = pnG(x, I), and let S be an IDS of 〈A〉. Then S ⊆ A ⊆ X.

Note that (I \ {x}) ∪ S is an IDS of G. Now let D be an IDS of 〈X \ S〉, then
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(I \ {x}) ∪ S ∪D ∪ {x} is an IDS of GG. Note that |S|+ |D| ≤ |X| = δ(G). Hence,

i(GG) ≤ |I \ {x}|+ |S|+ |D|+ 1 ≤ i(G)− 1 + δ(G) + 1 = i(G) + δ(G).

Case 2. Assume that x /∈ I. Since I dominates G, x has at least one neighbor in I.

Let A = NG(x) ∩ I where |A| = t ≥ 1, and let B = NG(x) \ A, and |B| = δ(G) − t.

Let S be an IDS of B. Note that S∪{x} is an IDS of G\A and |S| ≤ |B| = δ(G)− t.

Moreover, I ∪ {x} ∪ S is an IDS of GG, and so i(GG) ≤ |I| + 1 + |S| ≤ i(G) + 1 +

δ(G) − t ≤ i(G) + δ(G). We note that the bound i(GG) ≤ i(G) + δ(G) is sharp for

the complete graph G = Kn, where i(GG) = n = 1 + (n− 1) = i(G) + δ(G). 2

We note that strict inequality is possible for the upper bound of Theorem 5.5.

Consider the graph G = Gr,t from the proof of Theorem 5.4. Let t < r + 1. Notice

that i(GG) = 2t + 2 < (t + 1) + r = i(G) + δ(G).

Theorem 5.6 If G is a graph with δ(G) = 1 and δ(G) ≥ 1, then i(GG) = i(G) + 1.

Proof. Let G be a graph where neither G nor G contains isolated vertices, and G

has minimum degree δ(G) = 1. By Theorem 5.5, i(GG) ≤ i(G) + δ(G) = i(G) + 1.

Without loss of generality, let i(G) ≥ i(G). Now from Theorem 4.1, we have that

for any graph G, i(G) ≤ i(GG) and from Theorem 4.2, we know i(G) = i(GG) if

and only if i(G) contains an isolated vertex. Thus, i(G) + 1 ≤ i(GG). Therefore,

i(GG) = i(G) + 1. 2

We note that the converse of Theorem 5.6 is not necessarily true. Consider, for

example, the graph G = C5. Then G is self-complementary with no isolated vertices

and has i(G) = 2. Also, GG is the Petersen graph with i(GG) = 3 = i(G) + 1, but

δ(G) = 2.
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6 CONCLUSION

In this thesis, we studied independent domination in complementary prisms as

well as the relationship between independent domination and other parameters. In

Chapter 1, we introduced some basic definitions for thesis. The chapter concludes

with the definition of complementary prisms and some examples. In Chapter 2, we

review the some of the existing literature on complementary prisms.

Chapter 3 begins with our results. We found the independent domination number

of GG whenever G is a path, a subdivided star, and when G is a complete bipartite

graph. In Chapter 4, we discovered that the lower bound found in [8] for γ(GG) and

γt(GG) also held for independent domination. We were also able to characterize the

lower bound.

In Chapter 5, we give various upper bounds to our parameter. When we attempted

to mimic the results found in [8], we ran into a problem, yielding an interesting result.

We conclude with some open questions:

• Does there exist and upper bound we can characterize?

• Is G3,2 the smallest graph that poses a contradiction to the upper bound i(GG) ≤

i(G) + i(G)?

• If δ(G) = 1 is replaced with δ(G) = 2 in Theorem 5.6, will i(GG) = i(G) + 2?
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