
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

8-2010

A Study of Improving the Parallel Performance of VASP. A Study of Improving the Parallel Performance of VASP.

Matthew Brandon Baker
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Systems Architecture Commons

Recommended Citation Recommended Citation
Baker, Matthew Brandon, "A Study of Improving the Parallel Performance of VASP." (2010). Electronic
Theses and Dissertations. Paper 1739. https://dc.etsu.edu/etd/1739

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=dc.etsu.edu%2Fetd%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

A Study of Improving the Parallel Performance of VASP

A thesis

presented to

the faculty of the Department of Computer Science

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer Science

by

Matthew Baker

August 2010

Dr. Phillip E. Pfeiffer, IV, Co-chair

Dr. Frank B. Hagelberg, Co-chair

Dr. Christopher D. Wallace

Keywords: Cluster, HPC, Parallelism, MPI, OpenMP, VASP

2

ABSTRACT

A Study of Improving the Parallel Performance of VASP

by

Matthew Baker

This thesis involves a case study in the use of parallelism to improve the performance of an

application for computational research on molecules. The application, VASP, was migrated from

a machine with 4 nodes and 16 single-threaded processors to a machine with 60 nodes and 120

dual-threaded processors. When initially migrated, VASP‟s performance deteriorated after about

17 processing elements (PEs), due to network contention. Subsequent modifications that restrict

communication amongst VASP processes, together with additional support for threading,

allowed VASP to scale up to 112 PEs, the maximum number that was tested. Other

performance-enhancing optimizations that were attempted included replacing old libraries, which

produced improvements of about 10%, and prefetching, which degraded, rather than enhanced,

VASP performance.

 3

CONTENTS

Page

ABSTRACT... 2

LIST OF TABLES... 5

LIST OF FIGURES... 6

Chapter

1. INTRODUCTION .. 7

1.1 The Problem .. 8

1.2 Approach ... 8

1.3 Balance of Thesis ... 9

2. BACKGROUND .. 11

2.1 Parallel and Distributed Computation: Key Concepts.. 11

2.1.1 Platforms. .. 11

2.1.1.1 Hardware ... 11

2.1.1.2 MPI. ... 12

2.1.1.3 Software Architectures .. 13

2.1.2 Performance .. 13

2.1.3 Performance Optimization. ... 14

2.1.3.1 Overview .. 14

2.1.3.2 Replacing slow code .. 14

2.1.3.3 Prefetching... 15

2.1.3.4 Communication Efficiency ... 15

2.2 VASP .. 16

3. METHODS ... 18

3.1 Computing Platforms ... 18

3.1.1 PQS ... 18

3.1.2 Blackpearl ... 18

3.1.3 PQS vs. Blackpearl ... 19

3.2 Performance Measurement Tools .. 20

3.2.1 Gprof ... 20

3.2.2 Valgrind .. 21

3.2.3 mpiP .. 21

3.3 Optimization Strategies ... 22

3.3.1 Replacing Slow Code. ... 22

3.3.2 Prefetching. ... 22

3.3.3 Improved Network Communications... 23

3.3.4 Converting Processes to Threads. .. 23

4. DATA ... 25

4.1 Initial Benchmark on PQS ... 25

4.2 Initial Blackpearl Benchmarks .. 26

4.3 Blackpearl with Hyperthreading ... 27

4

4.4 Profiling VASP with Gprof .. 28

4.5 Replacing Libraries ... 29

4.6 Profiling with Valgrind .. 30

4.7 Prefetch .. 30

4.8 Scaling Up to More PEs .. 31

4.9 mpiP ... 32

4.10 Limiting Communication ... 33

4.11 Adjusting MPI Block Size .. 35

4.12 Threading... 36

4.13 Readjusting Communication Group Size ... 37

5. ANALYSIS ... 38

6. CONCLUSION ... 41

REFERENCES ... 42

APPENDIX: SELECTED TERMS .. 44

VITA..45

 5

LIST OF TABLES

Table Page

1. Gprof Data.. 28

2. Valgrind Instruction Count and Cache Behavior... 30

3. Modified Prefetch Behavior Walltime.. 31

4. mpiP Task Data.. 32

5. mpiP Function Data.. 32

6. mpiP File and Function Data.. 33

6

LIST OF FIGURES

Figure

 Page

1. VASP Walltime on PQS.. 25

2. VASP Efficiency on PQS.. 25

3. VASP Walltime on Blackpearl.. 26

4. VASP Efficiency on Blackpearl.. 27

5. VASP Walltime with Hyperthreading... 27

6. VASP Efficiency with Hyperthreading... 28

7. Walltime After Replacing Libraries.. 29

8. Large Scale Walltime... 31

9. PROC_GROUP Walltime ... 33

10. VASP with PROC_GROUP 3 Walltime... 34

11. VASP MPI_BLOCK_SIZE Walltime... 35

12. VASP Threads and Processes Walltime.. 36

13. VASP PROC_GROUP with Threads Walltime ... 37

 7

CHAPTER 1

INTRODUCTION

 This thesis involves a case study in the use of parallelism to improve an application‟s

performance. In order to improve the performance of contemporary computers, computer

architects are increasingly turning to parallel architectures. Parallelism allows for a program to

run many tasks simultaneously, a situation which, as a rule, speeds program completion [7]. The

application, VASP, is used for computational research on molecules [3]. VASP simulates the

electronic structure of molecules, ranging in size from large molecules to nanostructures: i.e.

systems with at least one dimension in the order of nanometers. At East Tennessee State

University (ETSU), VASP is used primarily for understanding and designing materials of

interest for nanoelectronics, or electronic circuits scaled down to nanoscopic dimensions.

 VASP is routinely used to simulate systems are computationally demanding. In order to

improve its performance, VASP‟s authors parallelized its operation using the “Message Passing

Interface” (MPI) standard. The MPI standard defines a model of parallelism in which multiple

cooperating processes share information by exchanging communications known as messages

over a computer network. MPI supports the execution of these processes on the same or different

machines as well as communication between processes launched on the same or different

systems.

 The MPI model of process operation includes a library of functions for inter-process

communication, as well as a standard model of execution, where a program is started

(“launched”) by a command—typically mpiexec. As part of program launch, a user specifies the

number of cooperating processes in a program execution. The MPI API supports various types of

communication among these processes, including point-to-point, broadcast within user-specified

groups of processes, and all-process broadcasts. The version of VASP in use at the outset of this

8

study made heavy use of collective operations in MPI, especially the MPI_alltoall function,

which directs all of a computation‟s nodes to exchange some data with all other nodes.

1.1 The Problem

 This work sought to migrate the version of VASP in use at the outset of this study to a

more powerful machine, in a way that effectively exploited that second machine‟s parallelism.

This initial version of VASP was configured for a system consisting of 4 nodes each with 1 quad

core AMD Opteron CPU called PQS, using OpenMPI and the AMD HPC libraries (ACML). The

target host, Blackpearl (blackpearl.etsu.edu), is a 60-node, 120-CPU cluster with dual

hyperthreaded CPUs and native OS support for OpenMPI.

 Extensive tests conducted since 2000 show that VASP achieves optimum performance

when run in parallel on 50 to 150 CPUs [12]. When initially installed on Blackpearl, VASP

exhibited adequate speedup on up to 16 CPUs, similar to its performance on PQS. Adding CPUs

beyond 16 would cause VASP to run slower rather than faster.

1.2 Approach

 Initially, the VASP source code and other build-related files were transferred to

Blackpearl, then built using the Intel compiler and a slightly modified Makefile. The code, when

run with 16 CPUs, was nearly twice as fast as when run on PQS, due to the better hardware

available in Blackpearl. To determine how to make VASP run still faster, the Blackpearl version

of VASP was profiled to determine what portions of the code dominated the CPU use.

 The first attempt to optimize VASP replaced AMD libraries for matrix operations with

matrix libraries optimized for Blackpearl‟s Intel CPUs. This change was inspired by an initial

round of profiling with Gprof (see 3.2.1) and Valgrind (see 3.2.2), which showed VASP spent

much of its execution time in matrix operations.

 9

 The second attempt involved prefetching data for a few loops in VASP that showed large

numbers of data reads. These changes typically slowed execution. A second analysis of the

Gprof and Valgrind profiles showed that these profiles were incomplete: Gprof and Valgrind

only accounted for 25% (20 minutes) of the program‟s actual wall-clock time, due to their failure

to measure I/O and operating system calls.

 Because VASP‟s system calls appeared to be dominated by networking operations,

network access was analyzed with libraries for profiling MPI communication. VASP‟s use of

MPI_alltoall communication, which worked fine on the smaller 16 node cluster, appeared to

overwhelm Blackpearl‟s Ethernet network.

 After networking time was isolated as the scaling problem, two strategies were used to

reduce the load on Blackpearl's Ethernet network. One limited the number of processes that

could communicate simultaneously by separating running processes into groups of a predefined

size, and replacing all-to-all communication with localized, intra-group communication. The

other change reduced the number of MPI process per node to one, while directing each MPI

process to spawn one thread for each of its node‟s remaining logical CPUs. A thread is

essentially a lightweight computation that shares most of a memory space with a parent process

[11]. This second change reduced inter-node communication, which left some CPUs idle when

VASP was executing a sequential routine. This penalty, however, was more than offset by the

speed gains from more efficient MPI communication.

1.3 Balance of Thesis

 The rest of thesis is divided into five sections. Section 2, a background section, describes

VASP and reviews performance-related concerns, including strategies for achieving parallelism

and measuring performance. Section 3 discusses the optimizations attempted for altering VASP

10

performance and what was expected of each. Section 4 presents the results of each optimization.

Section 5 analyzes the optimizations and their relative value. Finally, section 6 reviews the work

and provides suggestions for further research.

 11

CHAPTER 2

BACKGROUND

2.1 Parallel and Distributed Computation: Key Concepts

2.1.1 Platforms.

 2.1.1.1 Hardware. Traditionally, the most common strategy for architecting computers

supported all computations using one Processing Element (PE) [7]. This processing element,

known as the Central Processing Unit (CPU), supported the execution of one process at a time,

with one memory address space running on one physical machine. Over time, two basic

strategies have been used to make this architecture run faster. The first is to improve the

performance and utilization of a machine‟s existing components, including its main memory,

secondary storage subsystems, and PEs. The second method is to increase the number of

components, in the hope that software can exploit the increases.

 Adding more PEs to computing systems has become attractive for economic reasons. In

the past, architects relied primarily on increases in single PE speed to increase performance. This

strategy was safe because the effective speed of a single PE typically doubled every 18 months.

In an article published in 2005, Asanovic et al. [1] argued that single PE speeds will increase

more slowly in the future, due to limits to power consumption, memory speed, and performance

increases obtainable through instruction pipelining. Because of this, adding more PEs to a system

has become the most cost-effective path to performance improvements.

 Multiprocessor systems support multiple, complete PEs that access a common hardware

address space [7]. Multiprocessors simplify the sharing of work among PEs because all PEs have

direct access to this common memory. A multiprocessor system can be difficult to program,

because access to shared data must be synchronized to prevent one PE from changing values that

12

other threads are actively using. Multiprocessors also do not scale well, due to contention for

system resources such as disk and memory.

 Simultaneous multithreading (SMT), also referred to as hyperthreading, augments PEs

with multiple instances of registers that hold program state and data [7]. These extra registers,

which typically include general purpose and status registers, allow processes that wait for non-

PE-based operations like data transfers and system calls to switch to a new process quickly,

without the need for spilling and reloading registers. While the speed up from hyperthreading is

not as great as for multiprocessors, hyperthreading is less expensive than adding another full PE.

 Multicomputers support multiple PEs by placing each PE in its own hardware address

space. Multicomputers typically consist of multiple physically separated machines with a

common interconnect [2]. While this use of separate address spaces eliminates the need to

synchronize PE access to memory, processes must exchange data by copying it between address

spaces—a process that slows computation, even with a fast interconnect between the PEs.

 A cluster is a set of multiple computers, any of which could be run as a stand-alone

system, that use a common networking interconnect to cooperate on a common task [7]. Often

these machines are identical, though this is not necessary. Data sharing is much slower, because

the data has to be routed through the interconnect.

 2.1.1.2 MPI. MPI is the de facto standard for implementing parallel code for distributed

computing [9]. MPI defines a programming and runtime environment that supports the launching

of applications that consist of multiple processes in interconnected computer networks. The

environment also provides an Application Programming Interface (API) that allows for

communication between the application‟s processes.

 13

 An MPI-based application is invoked using MPI‟s launcher, which starts processes

locally and on remote machines and assigns to each process a unique number, called its rank.

Ranks allow each of an application‟s processes to identify itself for the purpose of deciding what

logic to run, and to direct messages to and receive messages from the application‟s other

processes.

 The most basic MPI functions for network communication are MPI_Send and MPI_Recv,

which support point-to-point message transmission, and MPI_Bcast, which broadcasts a value

from a process with a specific rank to all other processes in the network. The MPI_alltoall

function synchronizes the contents of a specified array across a specified set of processes by

sending some data from each node and collecting all data from each other node.

 2.1.1.3 Software Architectures. VASP does not appear to have a formal architecture. The

code is highly coupled with little modularity and follows no particular design philosophy. The

only major exception to this appear to be the MPI functions, where higher level communication

functions were built on top of MPI.

2.1.2 Performance

 The primary metric used here for evaluating application performance is wall clock time:

the total time for which a program runs. This includes the time spent in MPI initialization,

network communication, disk IO, and PE execution, and excludes time spent waiting in the

cluster scheduler. Wall clock time is cited by authorities such as Hennessy and Patterson as the

only reliable metric for performance [7].

 Program speedup and performance are defined as in Hennessy and Patterson [7], where

the phrase “X is n times faster than Y” and n is defined as follows:

 (1)

14

 A second metric for program performance, parallel efficiency, identifies the extent to

which additional CPUs contribute to gains in overall run time. Parallel efficiency measured as

the ratio of a program‟s best runtime on a single CPU, relative to a given workload, to that

program‟s average runtime on a given number of CPUs, multiplied by the number of CPUs:

 (2)

 Program wall clock time was measured by using the program‟s execution command as a

parameter to the standard Unix command 'time'. For parallel programs, the „time‟ command

reports the time on the head node rather than time on worker processes. Because this approach

also measures how long it takes to launch and tear down the MPI network, runs with more nodes

will incur additional sequential overhead, due to the extra time spent by the MPI launcher script

to start and manage the larger launch. This additional overhead, however, is still of interest in

gauging the efficiency of using more CPUs.

2.1.3 Performance Optimization.

 2.1.3.1 Overview. This study employed four key strategies to maximize performance.

The first, replacing slow code with faster code, improved VASP‟s sequential performance. The

second, data prefetching, was also intended to improve sequential performance. Prefetching was

applied at the level of the CPU cache in an attempt to increase the efficiency of tight loops where

VASP spends most of its time. The third, reducing message latency, was intended to improve

VASP‟s parallel performance by reducing the time that processes waited for data before

computing with it. The fourth, improving network throughput by reducing network load, was

also intended to improve parallel performance by reducing latency.

 2.1.3.2 Replacing slow code. VASP‟s performance, like that of other applications, is

sensitive to the hardware on which it is run. The initial migration of VASP from PQS to

 15

Blackpearl included the AMD math libraries, which did not perform well on Intel hardware.

Replacing the AMD libraries with Intel libraries produced a quick and easy performance gain.

 2.1.3.3 Prefetching. Prefetching involves the transfer of data from one memory to

another (here, from main memory to a PE's cache) before a code accesses it [7]. Prefetching is

intended to reduce or eliminate the need for computations to wait on data transfers. Most

compilers provide built-in functions (intrinsics) that generate prefetch code. Certain compilers

also offer options that direct the compiler to produce prefetch code in areas where the user

believes that performance gains are possible.

 2.1.3.4 Communication Efficiency. The speed at which a parallel application‟s processes

communicate can affect that application‟s ability to run effectively. The strength of this effect

depends on the frequency of process communication and message size. Latency has the greatest

effect on performance when applications communicate frequently using small messages.

 Communications between a process‟s threads typically exhibit low latency because of

shared address spaces. Communication with a process on the same PE with a separate address

can still be quick, though this may involve copying data from one part of the machine's address

space to another. Communication between processes on separate PEs is slower, due to the need

to send data across a network.

 When a node‟s PEs run threads rather than separate MPI processes, network

communication can be made more efficient. When an MPI process is copying data from one

process to another on the same node, MPI will still use the network to transfer data. Using

threads eliminates MPI networking overhead.

16

2.2 VASP

 VASP is a widely used materials science software package [3] that employs density

functional theory (DFT) to model many-body systems. In materials science, the DFT method is

used to obtain stable structures of molecular and condensed matter systems, and, on the basis of

these structures, to derive their physical and chemical properties. A material‟s structure

determines many of its chemical and physical properties, among them its stability, reactivity,

magnetism, and response to light. Identifying structure is thus among the primary tasks of

computational materials science. A stable structure is characterized by the nuclear positions that

correspond to a minimum of the system‟s total energy. This minimum can be determined by

varying these positions with respect to each other in order to minimize the unit‟s energy

landscape, defined as its total energy relative to the nuclear position.

 DFT is rooted in the observation that all properties of a compound in its most stable state

may be expressed in terms of this state‟s electron density characteristic [8]. Problems in

materials science are commonly framed in terms of complex systems involving many electrons.

DFT simplifies these problems by mapping a system of N electrons and M nuclei onto an

auxiliary model that requires far less computational effort to solve. While the modeled system‟s

N electrons are mutually repelling, the auxiliary model uses N non-interacting electrons, each

moving under the influence of the average repulsion due to all other electrons as well as the

nuclei‟s attractive force. It has been shown that the fictitious system has the same electron

density and the same energy as the real one [8]. It is not known, however, how to exactly

compute the average electronic force. The VASP program operates with certain well-tested

approximations to this quantity.

 17

 A search algorithm implemented in the VASP program, the Conjugate Gradient

Optimization technique[5], efficiently computes a system‟s minimum total energy. The

execution time of this algorithm scales as a third-order polynomial in the number of electrons,

i.e. as aN + bN
2
 + cN

3
. While this scaling behavior is dictated by the nature of DFT, the authors

of VASP kept the prefactor c of the cubic term low, such that it impacts the program

performance only for relatively extensive systems that contain several thousands of electrons.

This feature makes VASP very suitable for studies of condensed matter systems from first

principles.

18

CHAPTER 3

METHODS

3.1 Computing Platforms

3.1.1 PQS

 VASP was originally run on the Parallel Quantum Solutions (PQS) Quantum Cube

system, a 4-node cluster. Each node has two dual core 2.2 GHz AMD Opteron CPUs with 16 GB

of memory. Nodes are configured as pairs of non-uniform memory access (NUMA) processors,

with each processor having 8 GB of directly attached memory.

 PQS‟s nodes are connected with GigE Ethernet using a single switch and single interface

on each node. This connection carries all MPI data transmissions, all MPI control messages, and

the traffic from the shared file system, NFS (Network File System). The cluster is small enough

to provide acceptable file system performance, even with the use of NFS.

 Each node also has about 800GB of disk space. Some of this space, which is local to the

cluster‟s head node, is dedicated to cluster management software. Most of this space is provided

by the nodes‟ local hard disks, which are not shared across the cluster. This makes it difficult to

effectively manage the disk space.

 Each node runs a modified version of SUSE Linux Enterprise Desktop 10 (SLED 10),

which includes a set of cluster-management utilities like those provided by the Platform Rocks

cluster toolkit provided on Blackpearl. These tools are exclusive to PQS systems and were not

extensively studied in this research.

3.1.2 Blackpearl

 Blackpearl, East Tennessee State University‟s (ETSU) principal computer cluster, is a

Dell blade system with 60 nodes. Each node has a dual core Intel Xeon 5160 CPU, running at 3

 19

GHz with hyperthreading enabled. The head node has 8 GB of memory and 8 GB of swap space.

Each compute node has 4 GB of memory and 4 GB of swap space. All nodes are connected by a

Gigabit Ethernet connection.

 At the time when this work was done, Blackpearl ran Rocks 4.4, a modified version of

Red Hat Enterprise Linux that supports tools for remote file and program installation, remote

command execution, and cluster monitoring and management. One of these tools, Rolls, allows

for Rocks to be installed and customized in a large scale, deploying and installing large packages

of software on client nodes automatically and in a consistent way.

 Blackpearl uses three file systems: EXT3 for intra-node file access, NFS with a shared 16

GB partition for sharing home directories, and ibrixfs, a 2.6 TB filesystem for cross-node file

sharing. There is currently no formal policy regarding what data should be put on ibrixfs versus

shared across NFS on the home directories.

3.1.3 PQS vs. Blackpearl

 Overall, Blackpearl is more powerful than PQS. Blackpearl has 120 dual-threaded CPUs

to PQS‟s 16 CPUs. Each of Blackpearl‟s CPUs is also faster. While PQS has more memory per

node (16 GB vs. 4 GB), Blackpearl has 240 GB of memory overall to PQS‟s 64 GB of memory.

Blackpearl‟s Intel based nodes support a Uniform Memory Access (UMA) [7]

architecture. PQS‟s Opteron-based nodes support a Non-Uniform Memory Architecture

(NUMA) [7], with each dual core CPU having direct access to 8 GB of memory.

 Both systems are interconnected with Gigabit Ethernet switches. Because PQS‟s switches

support 4 nodes as opposed to Blackpearl‟s 60, PQS will have a greater peak throughput per

node.

20

 PQS uses NFS as its shared file system, a classic standard [11] that has shown major

limitations in terms of scaling up. The primary bottleneck to NFS has been its single server

architecture. NFS‟s performance degrades as a function of the number of clients and the amount

of additional network traffic [6]. Blackpearl runs the IBRIX Fusion filesystem on a dedicated

network attached storage system.

 Blackpearl‟s performance also depends on how well tasks can be partitioned among its

nodes. This dependence on partitioning also increases the extent to which performance can

depend on fast communication.

3.2 Performance Measurement Tools

3.2.1 Gprof

 The Gprof profiling tool is a standard Linux utility [4]. Support for Gprof-based profiling

is built into the gcc compiler and enabled with the -p flag. When profiling is enabled, gcc inserts

code into a compiled program that records where the program spends its time. When a program

finishes running it writes these performance metrics to an external file. This file can then be

processed using gprof to get statistics for amount of time spent in certain functions, as well as

call chains that show which functions call other functions.

 The biggest advantage of gprof is its availability: gprof is packaged with the gcc compiler

as part of the standard Linux distribution. Gprof also has a minimal impact on program run time,

allowing for fast profiling. Gprof, however, is limited in the information it collects. It cannot

profile individual particular lines of code, or system calls, or program executions that fail to exit

normally.

 21

3.2.2 Valgrind

 Valgrind produces results that are similar to Gprof‟s, but in significantly more detail [13].

Rather than profiling by instrumenting the code, Valgrind simulates a code‟s execution, enabling

it to estimate cycle counts and cache behavior. Using Valgrind, one can measure how long

individual lines of code take to run. This level of detail can be used to determine which of an

execution‟s loops use the most CPU time and which function calls take the longest. This is

detailed enough to identify individual calls to functions at specific locations that gprof does not

provide. Valgrind also does not require a program to be modified, only that the program be

compiled with debug symbols.

 Using Valgrind, however, can slow a program‟s execution by as much as 100 times[13].

This slowdown limits the Valgrind‟s usefulness to smaller datasets that can be run quickly,

Because longer runs would be impractical.

3.2.3 mpiP

 Gprof and Valgrind are limited to measuring CPU run time: neither code measures the

runtime of code in the application itself, including time spent on tasks like disk IO and network

communication. To measure the time spent in MPI calls the library mpiP was used [10]. MpiP

uses special hooks built into MPI libraries to record how long individual MPI functions run and

how long MPI waits for network activity. Gprof and Valgrind cannot provide this information

because their architecture limits them to computational tasks. MpiP, however, only measures the

time spent in MPI functions—not the time spent on computation. This means that mpiP‟s output

must be augmented with data from other profiling tools to obtain a comprehensive view of the

program's runtime.

22

3.3 Optimization Strategies

 VASP was analyzed several times to determine its most time consuming operations.

After VASP was profiled, the performance of VASP‟s sequential codes was optimized, followed

by that of its parallel codes.

 The optimization of VASP‟s sequential performance began with VASP‟s linear algebra

and Fast Fourier Transform (FFT) routines, which consumed much of VASP‟s time. The original

linear algebra routines were replaced with faster libraries optimized for Blackpearl‟s CPUs.

Work was also done to improve the performance of the FFT routines built into VASP using

prefetch directives.

 Other optimization strategies included optimizing VASP‟s inter-process communication.

This included changing VASP so that it limited group communication to a fixed number of

processes and replacing some VASP processes with threads.

3.3.1 Replacing Slow Code.

 The version of VASP that was installed on PQS included AMD-specific math libraries.

The initial VASP port to Blackpearl used these math libraries to ensure that VASP worked

correctly. The initial step to improving the performance of VASP on Blackpearl was to replace

these libraries with Intel's math libraries.

3.3.2 Prefetching.

 Initially, VASP‟s FFT routines appeared to be a good candidate for prefetch

optimizations. Profiling in Valgrind indicated that FFT functions spent most of their time in a

few loops. Two attempts were made to use prefetching to improve VASP performance: a first,

aggressive attempt that used prefetch intrinsics as often as possible, and a second, less aggressive

attempt that only used the prefetch intrinsics when entering a loop.

 23

3.3.3 Improved Network Communications.

 The original, PQS version of VASP used a fairly simple call to MPI_alltoall function call

to distribute arrays to the nodes. MPI_alltoall accepts as input two N-element arrays, where N is

the number of active MPI processes. MPI_alltoall distributes these values over the network,

sending element i in the first array to the MPI process with rank i, and receiving element j in the

second array from the process of rank j. This communication strategy scaled well for up to 16

processes. When it was moved to Blackpearl, the use of more than 17 CPUs degraded wall clock

performance.

 VASP was recompiled to use a different algorithm for its communication. This

alternative algorithm subdivides the global communicator into different subgroups. Specifically,

the algorithm divides an x-process network into m groups of n processes, where n is configured

at compile time and m is

Communication is managed as a sequence of m+1 rounds: m rounds involving communication

amongst individual groups of processes, one group at a time, followed by a final round where

one process in each group communicates with one process in each of the other groups. This

strategy reduces the number of processes that communicate, keeping the program from

overwhelming the network.

3.3.4 Converting Processes to Threads.

 The initial build of VASP allocated one process per PE. This is the simplest way of

deploying a code in a cluster environment. Each process had its own memory space and all

communication, even between PEs on the same node, used the network. While this is effective

24

for a few nodes, increasing the number of nodes and MPI processes increases overhead from

MPI communication.

 One approach to reducing MPI overhead is to alter VASP to spawn threads to manage

local CPUs rather than doing so through MPI. The first approach for threading VASP used here

involved threading concurrent iterations of VASP loops. The second used parallel libraries

instead of sequential libraries. The Intel BLAS libraries were the first target, because a

substantial amount of compute time was done in the BLAS routines and making them parallel

only involved a new link procedure.

 25

CHAPTER 4

DATA

4.1 Initial Benchmark on PQS

 VASP was benchmarked on PQS using Hg bench, an input included with VASP. The

chart below shows wall clock time as a function of the number of CPUs.

 VASP‟s efficiency relative to the number of processors in use was then computed, using

the formula (2) in section 2.1.2.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

o
u

sa
n

d
s

o
f

se
c
o

n
d

s

Number of PEs

Figure 1. VASP Walltime on PQS

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 o

f
o

p
ti

m
a

l

Number of PEs

Figure 2. VASP Efficiency on PQS

26

 The marked drop in efficiency from 2 to 3 processors is likely due to PQS‟s architecture.

PQS, a NUMA architecture, consists of 4 nodes each with 2 dual core Opteron CPUs each,

where each dual core CPU has access to its own separate sets of memory for a total of 16 PEs.

4.2 Initial Blackpearl Benchmarks

 VASP was initially benchmarked on Blackpearl with Hg bench, without hyperthreading

technology. The nodes were restricted to using the two real cores available per node.

 In general Hg bench ran twice as fast on Blackpearl as on PQS. This speedup can be

attributed primarily to Blackpearl‟s faster CPUs. The efficiency numbers also show

improvement.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

o
u

sa
n

d
s

o
f

se
c
o

n
d

s

Number of PEs

Figure 3. VASP Walltime on Blackpearl

 27

 Blackpearl also has a higher efficiency: at 16 nodes it runs at 60% of the optimal speed

compared to PQS's 48%.

4.3 Blackpearl with Hyperthreading

 Running Blackpearl with hyperthreading produced the following execution times:

 Blackpearl‟s CPU scheduler assigned tasks to real PEs first before scheduling tasks on

the hyperthreading PEs. This policy resulted in a huge drop in run time as is seen in the diagrams

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 o

f
o

p
ti

m
a

l

Number of PEs

Figure 4. VASP Efficiency on Blackpearl

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8

T
h

o
u

sa
n

d
s

o
f

se
c
o

n
d

s

Number of PEs

Figure 5. VASP Walltime with Hyperthreading

28

shown in 4.2 after the second PE was added, but little after the third and fourth. The efficiency

numbers reflect this.

 It is interesting to note the lack of major drops in efficiency following the addition of the

5
th

 PE. The addition of this 5
th

 PE required the addition of a second node, thereby incurring

networking costs.

4.4 Profiling VASP with Gprof

 After the initial benchmarking VASP was rebuilt with the gprof option enabled. This

provided more detailed information about where VASP was spending its execution time. VASP

was run on four PEs and the results were combined into a single dataset.

Table 1. Gprof Data

% time cumulative

seconds

self seconds Calls Self

Ksec/Call

Total

Ksec/Call

Function name

20.99 8548.17 8548.17 835,081,188 0 0 fpassm_

15.66 14922.9 6374.72 zmmkern32pack_

10.12 19044.72 4121.82 342,546,198 0 0 ipassm_

6.95 21872.86 2828.14 dmmkernt_

5.77 24221.34 2348.48 2,015,051 0 0 fftwav_

5.63 26515.64 2294.3 424 0.01 0.03 rmm_diis_mp_eddrmm_

3.91 28107.04 1591.4 4,036,406 0 0 map_forward_

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8

%
 o

f
o

p
ti

m
al

Number of PEs

Figure 6. VASP Efficiency with Hyperthreading

 29

Table 1. (continued)

2.7 29204.49 1097.44 1,062,622 0 0 hamil_mp_eccp_

2.65 30282.62 1078.13 123,043 0 0 hamiltmu_

2.27 31205.24 922.62 zgexblkmatn_

2.26 32123.41 918.17 dmmkern_

2.01 32939.82 816.41 2,022,423 0 0 map_scatter_

1.54 33566.14 626.32 347,680 0 0 vhamil_

1.12 34023.86 457.72 286,843 0 0 nonlr_mp_rpromu_

1.1 34470.89 447.03 zgeblk2matn_

 The profile data omits functions that account for less than 1% of VASP‟s runtime, along

with call data for library functions, including call counts.

4.5 Replacing Libraries

 The initial profiling work used a version of VASP that was compiled with the PQS math

libraries. Replacing the AMD math libraries (ACML) with Intel math libraries (MKL) yielded

speed gains of 16%, 80%, and 16%, as shown below.

 The cause of the second run's huge gain is unknown. Most likely, this is the result of

VASP making an exceptionally lucky guess.

20

25

30

35

40

45

50

0 1 2 3 4

T
h

o
u

sa
n

d
s

o
f

se
c
o

n
d

s

Run number

Figure 7. Walltime After Replacing Libraries

acml

mkl

30

4.6 Profiling with Valgrind

 VASP was then profiled with Valgrind, which was about 10 times slower than Gprof.

This provided a detailed characterization of function operation, including counts of individual

instruction execution and cache usage data.

Table 2. Valgrind Instruction Count and Cache Behavior
Ir

(millions)

Dr

(millions)

Dw

(millions)

I1mr D1mr D1mw I2mr D2mr D2mw Function

163,974 107,158 5,288 74,494 381,397,167 397,573,573 74,494 180,127 367,846 fpassm_

81,158 54,416 5,116 136 77,564,201 38,827,298 136 19,407,582 38,792,439 wave_mp_w
finit_

6,930 5,157 484 144 27 20,145,550 144 27 20,145,550 wave_mp_all

ocw_
6,189 1,620 775 15 152 13 15 152 13 rane_

5,875 2,744 309 2,305,347 85,361,450 3,306,151 486,604 44,750,392 11,815 0x00000000

0087E710

4,700 2,970 473 844 293 19,726,906 823 92 19,726,045 MAIN__

1,894 411 167 54,735 53,194,765 20,991,342 10,740 30,801,380 793,969 rpro_

1,067 69 380 732 7,216,566 48,450,969 732 7,214,877 41,014,654 fftwav_

772 444 43 242 4,472 119,361 137 3 119,272 gen_index_

756 315

164 78 6,651,754 13,144 78 0 4,728 mgrid_mp_g

en_rc_sub_g

rid_

 Fields in this table that start with 'I' and „D‟ characterize operations involving instructions

and data, respectively. The 'r', 'w', „mr‟, and „mw‟ designations refer to reads, writes, misreads,

and miswrites. Misreads are reads where the cache lacks the requested data, with 1 meaning

Level 1 cache and 2 meaning Level 2 cache. Miswrites are writes where cache does not have the

requested information to update.

4.7 Prefetch

 Manual prefetch directives were added in an attempt to reduce cache misses for the

function fpassm. To measure prefetch run times a base time was compared to subsequent runs

where groups of prefetch instructions were inserted. Valgrind was used to locate a specific loop

that saw the most cache misses. This loop looked to be two loops for performing FFTs in VASP.

 31

 Initially the prefetching was done for both loops in fpassm for the FFT algorithm.

Subsequent runs were made with prefetching done either for the innermost loop or only for the

outermost loop.

Table 3. Modified Prefetch Behavior Walltime

 Seconds % run time

(compared to base)

Base 45,678.547 100%

All inner and outer 56,877.301 125%

First time in outer

loop

45,793.243 100.3%

First time in inner

loop

46,058.19 100.8%

4.8 Scaling Up to More PEs

 The next step to improving VASP's performance was to measure how VASP scaled up

beyond the original 16 nodes for which it was originally optimized for.

 Data point 17 is missing from the results because VASP terminated for unknown reasons.

Data for PEs above 23 were not measured because runs were taking over 24 hours (86,400

seconds).

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
h

o
u

sa
n

d
s

o
f

se
c
o

n
d

s

Number of PEs

Table 8. Large Scale Walltime

32

4.9 mpiP

 The use of additional PEs was causing VASP to run considerably slower. To determine

the effect of additional nodes on performance, VASP was compiled and executed with mpiP, a

library that generates MPI performance statistics. The interesting data is excerpted below.

Table 4. mpiP Task Data

Task AppTime MPITime MPI%

0 4.42E+03 3.04E+03 68.69

1 4.42E+03 3.06E+03 69.05

2 4.42E+03 3.10E+03 70.14

3 4.42E+03 3.09E+03 69.86

4 4.42E+03 3.03E+03 68.46

5 4.42E+03 3.03E+03 68.57

6 4.42E+03 3.07E+03 69.37

7 4.42E+03 3.15E+03 71.3

8 4.42E+03 3.04E+03 68.6

 In this table 'Task' is the MPI process‟s rank, 'AppTime' is the wall time, MPITime is the

total time the program spent in MPI functions and MPI% is the percentage of the time the

program spent in MPI functions compared to the walltime. MpiP also notes where MPI functions

were called from and how long each takes.

Table 5. mpiP Function Data

Call Site Time App% MPI% COV

Waitall 33 1.37E+08 51.62 74.58 0.01

Waitall 38 1.50E+07 5.67 8.19 0.01

Waitall 10 1.22E+07 4.61 6.66 0

Isend 33 3.52E+06 1.33 1.92 0.01

Waitall 9 3.13E+06 1.18 1.7 0.17

Waitall 40 3.01E+06 1.13 1.64 0.31

Allreduce 50 2.04E+06 0.77 1.11 0.26

 This table, 'Call', shows the mpiP profile for an MPI function. Site numbers are mpiP-

assigned identifiers for instances of MPI functions. 'Time' is the aggregate time spent in the

function. 'App%' is the percentage of the total application time spent in the function while

'MPI%' is the percent of the MPI time in the function. 'COV' is the coefficient of variation

 33

between the processes, indicating how much each process varied from each other in that function

call.

Table 6. mpiP File and Function Data

ID Lev File/Address Line Parent_Funct MPI_Call

33 0 mpi.f90 1176 M_alltoall_z Irecv

38 0 mpi.f90 1316 M_sumf_d Irecv

10 0 mpi.f90 1328 M_sumf_d Irecv

9 0 fftmpi_map.f90 415 map_backward Irecv

40 0 fftmpi_map.f90 361 map_forward Irecv

50 0 mpi.f90 1410 M_sum_d Allreduce

 This table relates mpiP function IDs to source codes. 'Lev' is a field identifying Pcontrol

Level, an advanced function of mpiP that was not used. 'File/Address' has either the file name or

the function address if the file name is unavailable. 'Line' is the line number in the source code.

'Parent Funct' is the name of the function containing the MPI call. 'MPI Call' is the name of the

MPI function call.

 Unfortunately some of this information is not reliable. For instance, function ID 33 says

that the parent function is M_alltoall_z and that it is on line 1176 of the file mpi.f90. However,

line 1176 in mpi.f90 is in function M_alltoall_d. This is probably due to compiler optimizations,

because the real M_alltoall_z is only a call to M_alltoall_d with some minor input parameter

alterations.

4.10 Limiting Communication

 After establishing that the system‟s performance bottleneck was the MPI_alltoallv

function, MPI_alltoallv was replaced with another function that restricts communication. The

function, M_alltoall_d, exchanges the rows and columns of a square matrix that is distributed

across all nodes. The M_alltoall_d function has two different built-in implementations: one that

uses the MPI collective operation, MPI_alltoall and one that uses MPI_isend and MPI_irecv

34

pairs across groups of CPUs. Switching from MPI_alltoall to using proc groups produced

dramatic improvements. The following chart was produced using 56 PEs.

 As noted in section 4.8, using more than 23 PEs caused VASP to run for more than a day.

With PROC_GROUP set to 3, VASP completed in about 37 minutes (2,237 seconds). The most

likely cause of this dramatic increase seemed to be the reduction of collisions on the network.

 With these dramatic improvements VASP was benchmarked again, going up to 56 PEs.

This was done with 2 PEs on each node, eschewing the use of the hyperthreading option. Two

runs were done and the chart below is the average of the two runs.

0

5

10

15

20

25

1 2 3 4 8 16

T
h

o
u

sa
n

d
s

o
f

se
c
o

n
d

s

PROC_GROUP

Figure 9. PROC_GROUP Walltime

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

T
h

o
u

sa
n

d
s

o
f

se
c
o

n
d

s

Number of PEs

Figure 10. VASP with PROC_GROUP 3 Walltime

 35

 While the speed gained from adding additional PEs diminishes quickly after about 30

PEs, at no time does the speed get notably worse. After these benchmarks were complete VASP

was benchmarked using hyperthreading for 112 PEs. This benchmark run took 7,145 seconds,

compared to the non hyperthreading 56 PE run which took 2,272 seconds. This indicated that

PROC_GROUP greatly reduced the networking inefficiency, but not to the degree where

hyperthreading can be used without losing all performance gain to the network cost.

4.11 Adjusting MPI Block Size

 VASP allows the maximum size of MPI communications to be set when VASP is

compiled. By default, VASP uses the number of double precision floating point elements as the

measure of MPI communication size. VASP was benchmarked at the default 500 elements and

with 400 element, 600 element and 1,000 element sizes.

 The default size proved to be the best size. Changing the size of MPI messages only

seemed to hurt performance.

0

500

1000

1500

2000

2500

3000

3500

400 500 600 1000

S
ec

o
n

d
s

MPI BLOCK SIZE

Figure 11. VASP MPI_BLOCK_SIZE Walltime

36

4.12 Threading

 The original strategy for threading VASP was to alter VASP‟s FFT algorithms (ipassm

and fpassm) to use OpenMP directives in the main loops computing the FFT. This approach

produced versions of VASP that crashed due to memory access errors attributable to an

incomplete knowledge of the algorithms being used. The second approach was to replace the

FFT algorithms in VASP with the FFT functions found in the Intel math library (Intel MKL),

which supports the use of threads to compute FFTs.

 With VASP rebuilt to use threaded routines for the most computationally intensive tasks

VASP was rebenchmarked on 29 nodes. These benchmarks use a more complex molecular

model than previous benchmarks to make any speed increases more pronounced. Because an

additional node was available at the time these benchmarks were done, they were run on 29

nodes instead of the 28 nodes used previously.

 The X axis shows the number of threads a VASP process spawns above the number of

processes MPI assigns to each node. The runs not using hyperthreading used 58 PEs, such as in

0
2
4
6
8

10
12
14
16
18
20

2 4 1 2 1

1 1 2 2 4

T
h

o
u

sa
n

d
s

o
f

se
c
o

n
d

s

Threads per process

Processes per node

Figure 12. VASP Threads and Processes Walltime

 37

the first and second bars on the chart. The runs using hyperthreading ran on 116 nodes, as shown

in the chart‟s other three bars.

4.13 Readjusting Communication Group Size

 After reducing the number of processes communicating in VASP the PROC_GROUP

setting was retuned for the new environment.

 This chart shows that a larger PROC_GROUP, after VASP was modified to use threads

to exploit additional PEs, were beneficial.

48

48.5

49

49.5

50

50.5

51

51.5

52

52.5

53

2 3 4 5 6 7 8 9 10 11 12

T
h

o
u

sa
n

d
s

o
f

se
c
o

n
d

s

PROC_GROUP size

Figure 13. VASP PROC_GROUP with Threads Walltime

38

CHAPTER 5

ANALYSIS

 The initial transfer of VASP source code from PQS to Blackpearl VASP made VASP

84% faster running on a single PE, using the same libraries and compilers. The figures in section

4.1 and 4.2 show that this trend continues up to 16 PEs, the maximum on PQS. The chart in

section 4.3 indicates that hyperthreading was detrimental, causing VASP to execute 25% slower

when using the PEs in two nodes.

 Improving VASP at the source code level proved more difficult than anticipated.

Attempting to make substantial changes to the program‟s source code or its algorithms usually

resulted in runtime errors. For example, the attempts to use OpenMP to convert the FFT

functions built into VASP never succeeded. The prefetch code was at best negligibly slower.

 When computing FFTs VASP uses a pair of loops, an inner loop and an outer loop. The

first prefetch strategy that was an attempt to prefetch data for the entry into the outer loop and the

entry into the inner loop. Because this first attempt yielded runtimes that were substantially

worse than the original, a second attempt was made, using prefetch directives to only prefetch

the first iteration of the loop. This was done on the assumption that the CPU cache may fetch the

next loop iteration after accessing the first. This was done first for the outer loop and then the

inner loop.

 As seen in the chart in section 4.7, all prefetching strategies resulted in slower execution.

The Valgrind data in section 4.6 suggested that some cache optimization in the functions fpassm

and ipassm would improve performance. The exact cause of this slowdown is difficult to

determine, as documentation on CPU cache behavior is difficult to find. A reasonable

 39

assumption is that the manual prefetch instructions interfered with the normal cache behavior,

introducing additional memory and cache contention.

 Most gains were realized from making better use of the existing codes and supporting

their operations with faster libraries. As seen in the chart in section 4.5, using the Intel MKL

libraries for BLAS produced a 16% improvement in speed. The AMD libraries, most notably

zmmkern32pack_ and dmmkernt, accounted for more than a quarter (28%) of the profiled run

time as shown in the gprof data in section 4.4. About 31% of the run time was consumed by

ipassm and fpassm, which are integer and floating-point versions of an algorithm to perform 1-D

FFTs on multiple datasets.

 The chart in section 4.8 showed that VASP was having trouble scaling up after 17 PEs.

An analysis of the sequential execution data indicated that VASP‟s use of the network needed to

be analyzed. The mpiP data in section 4.9 showed that the MPI network communication was

taking up 70% of the VASP walltime. The same data also showed that almost 75% of this MPI

time was spent in a single function: an MPI barrier meant to ensure that all processes complete

an action before continuing. This meant that something in that function was stalling the rest of

the program.

 Moving away from the MPI collective operations and restricting the maximum number of

processes with which each process ordinarily communicates proved vital to efforts to scale up.

The data in section 4.10 shows that restricting VASP nodes to communicating with 3 nodes at a

time was optimal. The resulting speed up was probably the result of reduced network contention.

Limited experimentation with block sizes following this adjustment suggested that the default

MPI message size of 500 bytes per block is probably optimal for VASP.

40

 VASP, when launched as an MPI job, is normally launched as a set of processes. By

default, one process was launched for each PE. For example, when running on 56 PEs, 2 VASP

processes would be launched on 28 nodes. The default procedure for using hyperthreading on 28

nodes was to launch 4 VASP processes on 28 nodes. This strategy created jobs that used MPI

communication primitives to exchange information between processes on the same node.

 To improve communication efficiency, VASP was rebuilt to use threaded routines for the

BLAS functions and ipassm and fpassm were replaced with the FFT routines in the Intel MKL.

In the chart in section 4.12, the bar in the middle, which shows the effect of running 1 thread per

process and 2 processes per node, is comparable to previous benchmarks, except that the run

used 58 PEs instead of 56 PEs. This execution completed in 4,972 seconds. Using 2 threads per

process and 1 process per node, VASP ran in 4,012 seconds: that is, in 80.7% of the time.

 When using hyperthreading VASP ran with 116 PEs. This was done with three

configurations, one where there was 1 process per node with 4 threads, one with 2 processes per

node, and 2 threads per process, and 4 processes per node with a single thread per process. With

1 process per node VASP ran in 3,776 seconds. With 2 processes per node VASP ran in 4,255

seconds. With 4 processes per node VASP ran in 17,915 seconds.

 Because the Intel MKL was used both BLAS and FFT routines, using the threaded

version boosted the performance of both groups of routines. While it would be possible to isolate

individual gains from threading each of these routines, this data is not relevant to an analysis of

VASP as a whole.

 41

CHAPTER 6

CONCLUSION

 When VASP was first moved to Blackpearl the main focus for improving performance

was to measure and refine the single threaded performance of each VASP process. Replacing the

BLAS libraries improved performance. Inserting manual prefetch instructions reduced

performance. The gains from improving the performance of individual VASP processes were not

very large compared to the challenges of scaling up to use more PEs. Reducing the number of

nodes that communicated simultaneously allowed the application to effectively exploit more

PEs. Using threads to use all of a node‟s PEs resulted in the most substantial gains in

performance.

 In the future, more research into the most efficient communication patterns would seem

to be the best course to achieve additional gains in performance. One idea is to implement self-

tuning collective operations that can adjust their method of communication to optimize

performance. The fact that the MPI standard has an operation that is precisely what is needed but

unusable due to poor performance seems counterintuitive.

42

REFERENCES

[1] Krste. Asanovic, Rastislav Bodik, Bryan Catanzaro, Joseph Gebis, Parry Husbands, Kurt

Keutzer, David Patterson, William Plishker, John Shalf, Samuel Williams, and Katherine

Yelick. "The landscape of parallel computing research: a view from Berkeley." Technical

report, Electrical Engineering and Computer Sciences, University of California at

Berkeley, 2006.

[2] C. Gordon Bell, "Multis: A New Class of Multiprocessor Computers", Science, Vol. 228,

1985, 462-467.

[3] J. Furthmueller, J. Hafner, G. Kresse, "Ab initio calculation of the structural and electronic

properties of carbon and boron nitride using ultrasoft pseudopotentials", Physical Review

B 50, 1993, 15606.

[4] GNU Gprof, http://sourceware.org/binutils/docs-2.20/gprof/index.html (retrieved May 2010).

[5] G.H.Golub, C.F.Van Loan. Matrix Computation, 2nd ed. Baltimore, 1989.

[6] James Hall, Roberto Sabatino, Simon Crosby, Ian Leslie, Richard Black, "Counting the

Cycles: a Comparative Study of NFS Performance over High Speed Networks," lcn, pp.8,

22nd Annual IEEE International Conference on Local Computer Networks (LCN'97),

1997.

[7] J. L. Hennessy and D. A. Patterson Computer Architecture: A Quantitative Approach: 4th

Ed. Morgan-Kaufman Publishers, San Mateo, CA, 2006.

[8] P. Hohenberg, W. Kohn, "Inhomogeneous Electron Gas", Physical Review 136, 1964, B864-

B871.

http://sourceware.org/binutils/docs-2.20/gprof/index.html

 43

[9] Message Passing Interface Forum, "MPI: A Message-Passing Interface Standard Version

2.2", http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm, September 2009

(retrieved May 2010).

[10] "mpiP: Lightweight, Scalable MPI Profiling", http://mpip.sourceforge.net/, April 2010

(retrieved May 2010).

[11] Bill Nowicki, "NFS: Network File System Protocol Specification,"

http://www.ietf.org/rfc/rfc1094.txt, March 1989 (retrieved July 2010).

[12] Gavin J. Pringle, "Optimisation of VASP on HPCx"

http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0414.pdf, (retrieved July

2010).

[13] "Valgrind User Manual", http://valgrind.org/docs/manual/manual.html, August 2009

(retrieved May 2010).

http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm
http://mpip.sourceforge.net/
http://www.ietf.org/rfc/rfc1094.txt
http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0414.pdf
http://valgrind.org/docs/manual/manual.html

44

APPENDIX

SELECTED TERMS

PE: A PE, often also called a CPU, is the individual computing element. In recent times

individual processors are engineered with multiple 'cores'. Multicore technology allows a

computer with a single socket to have multiple PEs and thus run multiple programs at the same

time. This thesis treats a processor with two cores as equivalent to two processors with a single

core: i.e., as two PEs. Intel hyper-threading will cause each PE to look like two PEs. For the

purpose of this thesis, each virtual PE is counted as a PE, except when noted otherwise.

FFT: A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete

Fourier transform, a mathematical mapping that is used by the VASP program to evaluate some

of the basic quantities involved in DFT simulations.

Hyperthreading: A feature of certain Intel CPUs, formally called hyperthreading technology.

Special hardware allows an individual PE to present itself to the OS as two virtual PEs,

theoretically allowing the OS to better use the single physical PE.

Node: A node is an individual computer, physically separated from the other nodes and

connected by a network.

Compiler Intrinsic: Often shortened to just 'intrinsic' is a function that is part of the compiler,

rather than part of a library. For example, the Intel compiler has an intrinsic for prefetching,

where the programmer inserts what looks like a normal function call which the compiler will

replace with assembly instructions for prefetching data.

 45

VITA

MATTHEW BAKER

Personal Data: Date of Birth: August 16, 1983

 Place of Birth: Memphis, Tennessee

 Marital Status: Single

Education: High school, Franklin Road Academy

 B.S. Computer Science, East Tennessee State University,

 Johnson City, Tennessee 2007

 M.S. Computer Science with concentration in Applied Computer

 Science, East Tennessee State University, Johnson City, Tennessee

 2010

Professional Experience: Teaching Assistant, East Tennessee State University,

 College of Business and Technology, 2007-2009

	A Study of Improving the Parallel Performance of VASP.
	Recommended Citation

	Abstract

