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ABSTRACT

A Predictive Model for Secondary RNA Structure

Using Graph Theory and a Neural Network

by

Denise Koessler

In this work we use a graph-theoretic representation of secondary RNA structure

found in the database RAG: RNA-As-Graphs. We model the bonding of two RNA

secondary structures to form a larger structure with a graph operation called merge.

The resulting data from each tree merge operation is summarized and represented

by a vector. We use these vectors as input values for a neural network and train the

network to recognize a tree as RNA-like or not based on the merge data vector.

The network correctly assigned a high probability of RNA-likeness to trees identified

as RNA-like in the RAG database, and a low probability of RNA-likeness to those

classified as not RNA-like in the RAG database. We then used the neural network to

predict the RNA-likeness of all the trees of order 9. The use of a graph operation to

theoretically describe the bonding of secondary RNA is novel.
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1 BACKGROUND

Our understanding of the role of RNA has changed and continues to be redefined.

The role of non-coding RNA in gene regulatory networks places the study of RNA in

the forefront of efforts to understand the complexities in Systems Biology.

1.1 Modeling RNA

RNA structure is divided into three classes: primary, secondary and tertiary. The

RNA sequence is the primary structure. The primary structure forms the secondary

by folding back onto itself. When this folding occurs, it forms Watson-Crick base pairs

with intervening unpaired regions [20]. Unlike secondary protein structures where the

elements of the primary sequence (amino acids) form bonds with nearby amino acids,

the secondary structure of RNA includes the bonding of nucleotides at opposite ends

of the sequence. For example, given the primary RNA sequence AGCGUCACAC-

CCGCGGGGUAAACGCU, its secondary structure will include the Watson-Crick

pairing A-U, G-C, and C-G between the first three nucleotide bases AGC and the

final three bases GCU [20]. These regions occur in four types of structures known

as hairpins, bulges, internal loops and junctions. Paired regions connecting these

are usually referred to as stems. Secondary RNA structure can be represented by a

two-dimensional drawing [20].

In this paper, we begin with theoretical approaches to describe secondary RNA

structure to aid in the prediction of novel RNA structures. Because secondary RNA

is represented by a two-dimensional schematic, graph theory nicely lends itself as a

modeling tool for secondary RNA structure. The basic skeletal structure of secondary

RNA is captured by representing the stems as edges of the graph and the regions with
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unpaired bases as vertices. The resulting graph is a graph known as tree graph, or

simply a tree. The RNA trees used in this work were first developed by Le et al. in

[11] and Morosetti [1] to determine structural similarities in RNA.

The RAG database (RNA-As-Graphs) uses this representation and catalogs all

tree structures for trees up to order 11. Every novel RNA structure is mapped onto a

2D tree model, and then cataloged according to two numerical values: the number of

vertices (n) in the tree and a numerical representation (z) of its topological complexity.

To quantitatively organize and archive all possible RNA tree graph representations, it

is necessary to first generate the collection of all possible trees for a given number of

vertices (n). For example, for the set n = {2, 3, 4, 5, 6, 7, 8, 9}, there are a total of

{1, 1, 2, 3, 6, 11, 23, 47} distinct trees, respectively. Once all possible tree motifs

were generated, Schlick et al. [14] generated the Laplacian matrix representation and

calculated the eigenvalue spectrum (λ1, λ2, . . . , λn) for each tree. According to [14],

the second eigenvalue λ2 measures a motif’s topological complexity. For example, a

more linear tree graph has a lower λ2 value while a highly-branched tree graph has

a high λ2 value. This work catalogs each potential RNA motif by (n, λ2). For easy

reference, each RNA motif has a specific index (n.z), where z represents an integer

corresponding to the λ2 ranking.

The trees with 2 through 8 vertices have been fully classified as known (verified),

candidate, or non-candidate. The research compiled in [3] organizes all known, can-

didate, and non-candidate RNA trees of order 8 or less by a color coding scheme.

Red trees represent known RNA, blue trees are candidate RNA, and black trees are

non-candidate trees. A tree that is either a known tree or candidate tree is referred

to as an RNA-like tree and a non-candidate tree is referred to as not-RNA-like. The
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remaining trees on 9 or higher vertices have not been grouped into these three cate-

gories. This catalog of RNA trees is intended as a tool for searching existing RNAs

and to stimulate the search for candidate RNA motifs not yet discovered in nature

or a laboratory.

There are a number of secondary RNA structure prediction algorithms available

online such as Zuckers MFold [12] and Vienna RFold [8]. Given the primary RNA se-

quence, the web server will return a list of predicted secondary folds. These programs

are based on finding the secondary structure with the total lowest free energy by cal-

culating the free energy of a number of base-pairing schemes and returning the lowest

energy potential secondary structure as the most probable [8, 12]. In the majority

of cases, even for long sequences, the predicted structure is a structure whose tree

representation is a small ordered tree (a tree with fewer than 10 vertices). However,

there are secondary RNA structures whose tree representation is a tree with 10 or

more vertices. For example, the 5S ribosomal RNA Clavibacter michiganensis (RNA

Database ID S73542) has a 10 vertex tree representation.

1.2 Research Description

In this work we consider the possibility that a larger secondary RNA structure

is formed by the bonding of two smaller secondary RNA structures. We model this

bonding process by defining a graph merge that occurs on the vertices of the trees. If

our hypothesis is valid, then larger secondary RNA structures should arise from trees

that are unique to secondary RNA structure, and not from arbitrary trees. That is,

only trees that represent RNA, and hence are thermodynamically stable structures,

can be used to produce a tree which is still stable. We test this hypothesis and find,
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under specified constraints, stable trees are produced by merging two stable trees.

Furthermore, by applying a predictive model, we find that some of the trees in the

RAG database that are listed as candidate RNA structures are not clearly RNA-like

in structure by our method. Our approach is novel, and may be considered as a

valuable tool for refining prediction algorithms. It also illustrates the applicability

of graphs as models, not only for secondary RNA, but for biomolecules in general.

In order to formalize this idea, we introduce the graph-theoretic terminology and

concepts.

1.3 Basic Terminology of Graph Theory

In graph theory, trees have been heavily studied both for application purposes

and for theoretical investigations. As defined in [3], a graph G = (V (G), E(G)) is a

nonempty, finite set of elements called vertices together with a (possibly empty) set of

unordered pairs of distinct vertices of G called edges. The vertex set of G is denoted

by V (G), and the edge set of G is denoted by E(G). Here we consider only simple

graphs, that is, graphs with no loops or multiple edges. A tree is commonly defined

as a connected graph with the property that no two vertices lie on a cycle. These two

properties, connected and acyclic, completely characterize a tree since the removal of

any edge will disconnect the graph, and the addition of any edge will create a cycle.

Further, this implies that any tree with n vertices contains n − 1 edges.

An isomorphism of graphs G and H is a bijection between the vertex sets of G and

H, f : V (G) → V (H), such that any two vertices v and w of G are adjacent in G if and

only if f(v) and f(w) are adjacent in H. This kind of bijection is commonly called an

edge-preserving bijection or a structure-preserving bijection. If an isomorphism exists
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between two graphs, then we say the graphs are isomorphic and we write G ≃ H.

To illustrate these terms, Figure 1 displays two isomorphic trees. Figure 2 shows the

six non-isomorphic trees of order 6. Figure 3 shows the index value and color codes

of the six trees on 6 vertices as shown in [15].

a b

c

d

e

f

g h

i

g

h

f e d c

b

a
i

Figure 1: An Example of Two Isomorphic Trees

Figure 2: The Six Non-Isomorphic Trees of Order 6

Two vertices joined by an edge are said to be neighbors and the degree of a vertex

v in a graph G, denoted by degG(v), is the number of neighbors of v in G. A vertex

of degree one is called a leaf, and its neighbor is called a support vertex. For use in

this paper, a vertex v in a tree T is an internal vertex if it is neither a leaf or support

vertex.
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6.1 : 6.2 : 6.3 :

6.4 : 6.5 : 6.6 :

Figure 3: The Index Value and Color Category for Trees of Order 6 from RAG

Two vertices u and v are said to be identified if they are combined into a single

vertex whose neighborhood is the union of the neighborhoods of u and v. The binary

operation merge of two graphs G1 and G2 forms a new graph Guv by identifying a

vertex u in G1 with a vertex v in G2. Figure4 demonstrates vertex identification at

the colored vertices for the pictured trees.

→

Figure 4: An Example of a Merge of Two Trees
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2 RESULTS AND DISCUSSION

We considered the possibility that a larger secondary RNA structure could be

formed by the bonding of two smaller secondary RNA structures. We modeled this

bonding process by defining a merge operation on two trees. In this research, we

determined all possible tree merges which result in a tree with 9 or fewer vertices.

We used the RNA online-database RAG and the tree color code developed by Schlick

et al. in [14] and discussed in the introduction. Recall that red trees are RNA-

like (known), blue trees are RNA-like (candidates) and black trees are not RNA-like

(non-candidates). Note that in a tree model of a secondary RNA structure, a hairpin

corresponds to a vertex of degree one, internal loops and bulges are vertices of degree

two, and junctions correspond to vertices of degree three or more.

Initially, we hypothesized that the color of the merging trees would be indicative

of the color of the result tree. However, we found that this is not necessarily the case.

Our hypothesis held when merging RNA-like tree motifs at vertices of degree one

(hairpins) or degree two (bulges or internal loops). That is, when identifying vertices

of degree two or less, almost all red to red or red to blue tree merges produced a

red tree. However, this was not always the case when the vertices being identified

included a vertex of high degree (junction).

Using these findings, we trained a neural network to recognize the known classi-

fication of a tree as RNA-like or not RNA-like in structure. The network assigned a

value between 0 and 1 to classify these trees. Table 1 shows the interval values used

to classify the trees as RNA-like or not-RNA-like. Paralleling the work completed in

[10], our artificial neural network was trained on two classes of trees: the known RNA

(red) trees and the non-candidate (black) trees. There are 15 red trees of order 7, 8
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and 9 along with 11 black trees of order 7 and 8.

Table 1: The Key for Categorizing the Neural Network Prediction Values

ANN Value Resulting Category

1.0 - 0.80: Highly-RNA-Like
0.79 - 0.60 RNA-Like
0.59 - 0.40 Unclassifiable
0.39 - 0.20 Not-RNA-Like
0.19 - 0.0 Highly Not-RNA-Like

2.1 Predictions for the Classified RAG Trees

The MLP artificial neural network correctly predicted 100% of the known RAG

trees to have a value greater than 0.50. Further, the network correctly calculated

a prediction value below 0.50 for nine of the eleven black trees. However, two non-

candidate RAG trees, indexed as 7.10 and 8.14, received an MLP prediction value

between 0.60 and 0.50. Therefore, we labeled all trees with an MLP prediction value

within the range 0.59 to .40 as “Unclassifiable”. Table 2 displays the RAG classifica-

tion and corresponding predicted class for each of the classified 26 trees on 7, 8 or 9

vertices.

2.2 Predictions for the Unclassified RAG Trees

After using the MLP to predict the classified RAG trees, we calculated the pre-

diction value for the 43 unclassified trees on 9 vertices from the RAG online web

database. For these 43 trees, the MLP predicted a total of 22 trees to represent RNA

motifs: 18 trees were highly-RNA-like and four were only RNA-like. Further, there

were 14 trees which the artificial neural network predicted to not represent RNA sec-
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Table 2: The Prediction Values for the Classified RAG Trees

RAG Color ANN ANN RAG Color ANN ANN
Index Class Prediction Result Index Class Prediction Result

7.1 Red 1.00000 Highly RNA-Like 8.19 Black 0.33309 Not-RNA-Like
7.10 Black 0.59091 Unclassifiable 8.20 Red 0.69128 RNA-Like
7.11 Black 0.00045 Highly Not-RNA-Like 8.21 Black 0.00747 Highly Not-RNA-Like
7.2 Red 0.99860 Highly RNA-Like 8.22 Black 0.00437 Highly Not-RNA-Like
7.3 Red 0.99990 Highly RNA-Like 8.23 Black 0.00001 Highly Not-RNA-Like
7.6 Red 0.99721 Highly RNA-Like 8.3 Red 0.99796 Highly RNA-Like
7.9 Black 0.43130 Unclassifiable 8.5 Red 0.99991 Highly RNA-Like
8.10 Red 0.99994 Highly RNA-Like 8.7 Red 0.99815 Highly RNA-Like
8.11 Red 0.99682 Highly RNA-Like 8.9 Black 0.75935 RNA-Like
8.14 Black 0.52998 Unclassifiable 9.6 Red 0.99991 Highly RNA-Like
8.15 Red 0.56343 Unclassifiable 9.11 Red 0.99993 Highly RNA-Like
8.17 Black 0.36524 Not-RNA-Like 9.13 Red 0.99740 Highly RNA-Like
8.18 Black 0.00595 Highly Not-RNA-Like 9.27 Red 0.99795 Highly RNA-Like

ondary structure: 10 trees were highly not-RNA-like with four trees grouping into

the not-RNA-like category. Overall, the MLP calculated an unclassifiable value for

seven of the 43 trees. These values are listed in Table 3.

Table 3: The Prediction Values for the Unclassified RAG Trees

RAG Color ANN ANN RAG Color ANN ANN
Index Class Prediction Result Index Class Prediction Result

9.1 Unknown 1.00000 Highly RNA-Like 9.32 Unknown 0.00464 Highly Not-RNA-Like
9.10 Unknown 0.99874 Highly RNA-Like 9.33 Unknown 0.99897 Highly RNA-Like
9.12 Unknown 0.99724 Highly RNA-Like 9.34 Unknown 0.81259 Highly RNA-Like
9.14 Unknown 0.99722 Highly RNA-Like 9.35 Unknown 0.25818 Not-RNA-Like
9.15 Unknown 0.48019 Unclassifiable 9.36 Unknown 0.39903 Not-RNA-Like
9.16 Unknown 0.58718 Unclassifiable 9.37 Unknown 0.11790 Highly Not-RNA-Like
9.17 Unknown 0.99660 Highly RNA-Like 9.38 Unknown 0.57340 Unclassifiable
9.18 Unknown 0.99993 Highly RNA-Like 9.39 Unknown 0.00576 Highly Not-RNA-Like
9.19 Unknown 0.81428 Highly RNA-Like 9.4 Unknown 0.99840 Highly RNA-Like
9.2 Unknown 0.99888 Highly RNA-Like 9.40 Unknown 0.00238 Highly Not-RNA-Like
9.20 Unknown 0.58342 Unclassifiable 9.41 Unknown 0.00025 Highly Not-RNA-Like
9.21 Unknown 0.64473 RNA-Like 9.42 Unknown 0.69128 RNA-Like
9.22 Unknown 0.28250 Not-RNA-Like 9.43 Unknown 0.00756 Highly Not-RNA-Like
9.23 Unknown 0.84883 Highly RNA-Like 9.44 Unknown 0.40451 Unclassifiable
9.24 Unknown 0.99705 Highly RNA-Like 9.45 Unknown 0.00441 Highly Not-RNA-Like
9.25 Unknown 0.62696 RNA-Like 9.46 Unknown 0.00434 Highly Not-RNA-Like
9.26 Unknown 0.99942 Highly RNA-Like 9.47 Unknown 0.00002 Highly Not-RNA-Like
9.28 Unknown 0.36067 Not-RNA-Like 9.5 Unknown 0.72341 RNA-Like
9.29 Unknown 0.83375 Highly RNA-Like 9.7 Unknown 0.99875 Highly RNA-Like
9.3 Unknown 0.99840 Highly RNA-Like 9.8 Unknown 0.99909 Highly RNA-Like
9.30 Unknown 0.52189 Unclassifiable 9.9 Unknown 0.55979 Unclassifiable
9.31 Unknown 0.00769 Highly Not-RNA-Like
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2.3 A Comparative Analysis

A predictive tool based on domination parameters was used in [10] to classify all

the trees on 7, 8 and 9 vertices. Here we compare our results to the original tree

categories determined in [14] to results found in [10] and [15]. Our comparison is

summarized in Table 4.

Table 4: A Comparative Analysis of the Results from [10], [15] and this Paper

RAG Domination Bonding RAG Domination Bonding
RAG Color Predicted Predicted RAG Color Predicted Predicted
Index Class Class Class Index Class Class Class

7.1 Red RNA-Like Highly-RNA-Like 8.17 Black Not-RNA-Like Not-RNA-Like
7.10 Black Not-RNA-Like Unclassifiable 8.18 Black Not-RNA-Like Highly-Not-RNA-Like
7.11 Black Not-RNA-Like Highly-Not-RNA-Like 8.19 Black Not-RNA-Like Not-RNA-Like
7.2 Red RNA-Like Highly-RNA-Like 8.20 Red RNA-Like RNA-Like
7.3 Red RNA-Like Highly-RNA-Like 8.21 Black Not-RNA-Like Highly-Not-RNA-Like
7.6 Red RNA-Like Highly-RNA-Like 8.22 Black Not-RNA-Like Highly-Not-RNA-Like
7.9 Black Not-RNA-Like Unclassifiable 8.23 Black Not-RNA-Like Highly-Not-RNA-Like
8.10 Red RNA-Like Highly-RNA-Like 8.3 Red RNA-Like Highly-RNA-Like
8.11 Red RNA-Like Highly-RNA-Like 8.5 Red RNA-Like Highly-RNA-Like
8.14 Black Not-RNA-Like Unclassifiable 8.7 Red RNA-Like Highly-RNA-Like
8.15 Red RNA-Like Unclassifiable 8.9 Black Not-RNA-Like RNA-Like
9.1 Unkwn RNA-Like Highly-RNA-Like 9.31 Unkwn RNA-Like Highly-Not-RNA-Like
9.10 Unkwn RNA-Like Highly-RNA-Like 9.32 Unkwn Not-RNA-Like Highly-Not-RNA-Like
9.11 Red RNA-Like Highly-RNA-Like 9.33 Unkwn RNA-Like Highly-RNA-Like
9.12 Unkwn RNA-Like Highly-RNA-Like 9.34 Unkwn RNA-Like Highly-RNA-Like
9.13 Red RNA-Like Highly-RNA-Like 9.35 Unkwn Not-RNA-Like Not-RNA-Like
9.14 Unkwn RNA-Like Highly-RNA-Like 9.36 Unkwn Not-RNA-Like Not-RNA-Like
9.15 Unkwn Not-RNA-Like Unclassifiable 9.37 Unkwn Not-RNA-Like Highly-Not-RNA-Like
9.16 Unkwn RNA-Like Unclassifiable 9.38 Unkwn RNA-Like Unclassifiable
9.17 Unkwn RNA-Like Highly-RNA-Like 9.39 Unkwn Not-RNA-Like Highly-Not-RNA-Like
9.18 Unkwn RNA-Like Highly-RNA-Like 9.4 Unkwn RNA-Like Highly-RNA-Like
9.19 Unkwn RNA-Like Highly-RNA-Like 9.40 Unkwn Not-RNA-Like Highly-Not-RNA-Like
9.2 Unkwn RNA-Like Highly-RNA-Like 9.41 Unkwn Not-RNA-Like Highly-Not-RNA-Like
9.20 Unkwn RNA-Like Unclassifiable 9.42 Unkwn RNA-Like RNA-Like
9.21 Unkwn RNA-Like RNA-Like 9.43 Unkwn RNA-Like Highly-Not-RNA-Like
9.22 Unkwn RNA-Like Not-RNA-Like 9.44 Unkwn RNA-Like Unclassifiable
9.23 Unkwn Not-RNA-Like Highly-RNA-Like 9.45 Unkwn Not-RNA-Like Highly-Not-RNA-Like
9.24 Unkwn RNA-Like Highly-RNA-Like 9.46 Unkwn Not-RNA-Like Highly-Not-RNA-Like
9.25 Unkwn Not-RNA-Like RNA-Like 9.47 Unkwn Not-RNA-Like Highly-Not-RNA-Like
9.26 Unkwn RNA-Like Highly-RNA-Like 9.5 Unkwn RNA-Like RNA-Like
9.27 Red RNA-Like Highly-RNA-Like 9.6 Red RNA-Like Highly-RNA-Like
9.28 Unkwn Not-RNA-Like Not-RNA-Like 9.7 Unkwn RNA-Like Highly-RNA-Like
9.29 Unkwn RNA-Like Highly-RNA-Like 9.8 Unkwn RNA-Like Highly-RNA-Like
9.3 Unkwn RNA-Like Highly-RNA-Like 9.9 Unkwn Not-RNA-Like Unclassifiable
9.30 Unkwn RNA-Like Unclassifiable

All three studies agreed on the classification of nine of the eleven non-candidate
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(black) tree graphs. The two exceptions are graphs 7.9 and 7.10, which our study

found to be unclassifiable. Further, with the exception of tree 8.15, all three research

studies concluded that all known (red) tree graphs on 7, 8 and 9 vertices were RNA

like based on their respective structural calculations. The model in [10] predicted tree

8.15 to be RNA-like in structure, however, their predictive model reported the highest

amount of error for the classifications of this tree. We calculated a 0.56 likelihood

that tree 8.15 contains RNA-like structure. As a result, both predictive models were

unable to confidently classify tree 8.15.

Most notably, the predictive model used in previous RNA motif research supports

the major results of this paper. As seen in Table 4, the predictive model in [10] classi-

fied 29 of the 43 unknown RNA trees to be RNA-like. When examining these results,

the authors of [10] felt their model over-predicted the class of RNA-like tree graphs.

Accordingly, we found a total of 18 trees to be highly-RNA-like in structure. Of those,

17 of the 18 trees in the highly-RNA-like category from this study were included to

be RNA-like from the results compiled by [10]. Consequently, the predictive model

of our study narrowed the class of RNA-like motifs from previous findings.

Additionally, of the 12 trees on 9 vertices that we predicted to be not-RNA-like

in structure from our model, previous findings agreed with 10 of those classifications.

The model in [10] predicted trees 9.31 and 9.43 to be RNA-like, whereas we found both

motifs to be highly not-RNA-like. From the other direction, of the 14 trees predicted

in [10] to be not-RNA-like in structure, our prediction agreed with 12 of the 14.

Trees 9.23 and 9.25 are both predicted to be not RNA-like in [10], but are classified

as potential RNA structures in our study. Hence, our predictive model provided more

descriptive information about the structural classification of the unknown RAG tree
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motifs on 9 vertices than the findings from [10].

In summary, when we compared our results with those in [10], we found two

improvements. First, our neural network outcomes were not solely RNA-like or not

RNA-like. Rather, our model assigned a probability, which is a measurement of a

tree’s RNA likeness. Second, our model predicted fewer of the trees on 9 vertices to

be RNA-like, and thus seemed to be a more discriminating predictive tool.
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3 METHODS

We use graph theory to model the bonding of secondary RNA structures and a

predictive neural network to quantify our results.

3.1 Graph Theoretic Model

The binary operation merge of two trees T1 and T2 forms a new larger tree Tuv

by identifying a vertex u in T1 with a vertex v in T2. Merging two trees of n and m

vertices produces nm total trees, some of which can be isomorphic, and each resulting

tree has a total of n + m − 1 vertices.

To accurately model RNA bonding, we must consider all possible vertex identifica-

tions between two RNA tree models. For example, there are 12 possible vertex iden-

tifications for merging trees 3.1 and 4.2. Of these 12 merges, the four non-isomorphic

trees are shown in Figure 5. Figure 6 displays the official RAG identification and

color classes for the trees from Figure 5.

Our research determined all possible merges forming trees on 9 and fewer vertices.

When tracking the information from all possible vertex identifications between two

trees, the resulting trees were noted and their frequencies counted. For example, in

Figure 6, the merge of tree 3.1 and 4.2 resulted in the following tree set: 3.1 + 4.2 =

{6.2, 6.4, 6.5, 6.6}. Trees 6.2, 6.4, 6.5 and 6.6 occurred with frequencies 6, 3, 2,

and 1 respectively. Additionally, we noted the type and degree of the vertices at each

merge. Table 5 displays all the information for the vertex identifications of the merges

between trees 3.1 and 4.2.

For all 94 graphs on 2 through 9 vertices, every possible vertex identification

resulting in a graph on 9 or fewer vertices was calculated and recorded. Table A
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RAG Index: 4.2 RAG Index: 3.1

Merge 1

Merge 3

Merge 2

Merge 4

Figure 5: The Four Non-Isomorphic Resulting Trees when Merging Trees 3.1 and 4.2

Table 5: The Data Table Produced from the Tree Merge Between RAG Trees

3.1 and 4.2

3.1 and 4.2 v ∈ V (3.1) v ∈ V (4.2) Results Total
Merge: deg(v) Type deg(u) Type Graph Color Graphs

1 1 Leaf 1 Leaf 6.2 Red 6
2 2 Support 1 Leaf 6.4 Blue 3
3 1 Leaf 3 Support 6.5 Black 2
4 2 Support 3 Support 6.6 Red 1
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6.2

6.5

6.4

6.6

Figure 6: The RAG Identification and Color Classes for the Trees from Figure 5

(see appendix) displays the vertex identification results for all tree merges. Informa-

tion from Table A was translated into data vectors. Each data vector displayed the

composition information for the result tree in the following manner:

[〈c1, c2, deg(v1), deg(v2)〉 , 〈y1, y2〉], where for i ∈ {1, 2},

ci =



















1, if Ti is red or blue

0, Ti is black,

deg(vi) is the degree of the identified vertex of Ti, and

y1 = 1 and y2 = 0 if the result tree is an RNA-like tree, and

y1 = 0 and y2 = 1 if the result tree is not RNA-like.

3.2 An Artificial Neural Network

In their numerical form as data vectors, the vertex identification results were used

to predict the RNA-like status of the 43 unclassified trees on 9 vertices. The data
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vectors from the 15 known (red) tree graphs on 7, 8 and 9 vertices along with the

data vectors of the 11 non-candidate (black) tree graphs on 7 and 8 vertices made up

the training data. To check the validity of our model, we then predicted the status

of the 26 known tree classifications on 7, 8 and 9 vertices. Then, the model was

used as a predictive tool for the 43 unclassified trees of order nine. This research

paralleled previous work by the authors in [10]. In this section, we discuss the details

of designing, training and using an artificial neural network as a prediction tool.

3.2.1 Description

Following the network created in [10], our approach was to train a multi-layer

perceptron (MLP) artificial neural network using a standard back-propagation algo-

rithm. Results from a back-propagation MLP can be independently reproduced by

other researchers and can also provide information beyond simple predictions [10].

The 3-layer MLP was used to predict the RNA-like status of the trees. The first

layer, or input layer, contained four perceptrons corresponding to the data vector

from one vertex identification of the complete merge between two trees. The last

layer, or output layer, consisted of two perceptrons with activations y1 and y2, where

y1 = 1 and y2 = 0 if the result tree, which corresponded to the input data vector, was

predicted to be an RNA tree and where y1 = 0 and y2 = 1 if the result tree was not

RNA-like. The middle layer, or hidden layer, contained 24 perceptrons. The weights

between the input and hidden layers were denoted by wjk and the weights between

the hidden and output layers were denoted by αij.
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3.2.2 Implementation

The data vectors from the vertex identifications of the 26 trees on 7, 8 or 9 vertices

that either are an RNA tree or not an RNA-like tree determined the training set

TS = {(pi, qi)}26
i=1

where pi = 〈pi
1, pi

2, pi
3, pi

4〉 is the data vector, qi = 〈1, 0〉 if the tree is known or

predicted to be an RNA tree, and qi = 〈0, 1〉 if the tree is not RNA-like. The back-

propagation algorithm is used to implement a gradient following minimization of the

total squared error

E =
1

2

26
∑

i=1

||y(pi) − qi||2

where y(pi) = 〈y1(p
i), y2(p

i)〉 is the output due to an input of pi and the norm is

generated by the corresponding dot product.

The weights were initially assigned random values close to 0. Then, for each pair

(pi, qi), the weights αjk were adjusted using

αjk → αjk + λδjξk

where ξk = σ

(

∑

ωkjp
i
j − θk

)

, where λ > 0 is a fixed parameter called the learning

rate, and where

δj = yj(1 − y1)(q
i
j − yj).

The weights ωkr were adjusted using

ωkl → ωkl + λpl
iξk(1 − ξk)

2
∑

j=1

αjkδj

In each training session, the patterns were randomly permuted to avoid bias, and

training continued until E was sufficiently close to 0 [2].
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The MLP artificial neural network was trained and tested by predicting comple-

ments. During this procedure, the vertex identification data vectors of the 26 classified

tree motifs were randomly partitioned into a training set and a complement set. Pre-

dicting complements was performed with 15% of the data vectors in the complement

set for each trial.

The network was trained using the data not in the complement until the total

squared error was close to 0 (approximately 10,000 iterations for each of the 5 repe-

titions of the classifier experiment). Once the network had been trained, it was used

to predict the classification of the data in the complement set. This is known as

leave-v-out cross-validation. According to [18], cross-validation is a reliable measure

of the generalization error of the network when the training set is not too large. In

each of the 5 repetitions of the classifier experiment, the root-mean-square error for

the complement predictions was less than 5% of the class value of 1 (i.e., below 0.05).

In order to most accurately utilize our data, each tree’s final classification was

calculated as an average of a linear combination of prediction values from the vertex

identifications. To do so, we began this procedure by using the MLP to predict the

value for each vertex identification for a given tree. Then, this value was multiplied

by a weight which refers to the total number of graph isomorphisms for the vertex

identification. This weight was noted for each identification and can be referenced in

the “Total Graphs” column of Table A (see appendix). To normalize the result, the

linear combination of all the vertex identification values was divided by the sum of

the weights. This final average determined the prediction value for the tree. Table 6

outlines this procedure for tree 7.9.
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Table 6: An Example of the Algorithm used to Determine the Prediction Value for

Tree 7.9

a[7.9] := 4 ∗ RNANet : −Classify(〈1, 1, 1, 3〉); a[7.9] := 〈0.95945, 3.52754〉
b[7.9] := 2 ∗ RNANet : −Classify(〈1, 0, 1, 2〉); b[7.9] := 〈0.00030, 1.99985〉
c[7.9] := 1 ∗ RNANet : −Classify(〈1, 1, 2, 2〉); c[7.9] := 〈0.97666, 0.02253〉
d[7.9] := 4 ∗ RNANet : −Classify(〈1, 1, 2, 1〉); d[7.9] := 〈3.95652, 0.05185〉
e[7.9] := 6 ∗ RNANet : −Classify(〈1, 1, 1, 3〉); e[7.9] := 〈1.43917, 5.29130〉

Class[7.9] := a[7.9]+b[7.9]+c[7.9]+d[7.9]+e[7.9]
17 Class[7.9] := 〈0.43130, 0.64077〉

Once the MLP was fully trained, the network was used to predict the classification

of the 26 red or black RAG trees on 7, 8 and 9 vertices. For these trees, the final

MLP prediction values ranged from 1.0 to 0.0. As a result, the key in Table 1 uses a

range to classify the final values.
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4 CONCLUSIONS

Using a tree representation of secondary RNA structure, we modeled the creation

of a larger structure from the bonding of two smaller structures by considering all

combinatorial possibilities. We modeled the bonding with a graph operation called

(vertex) merge. Data from this process included information on the degrees of the

vertices identified in the merge and the classification of substructures. We created

data vectors and then utilized these data vectors from known RNA trees on 7, 8 and

9 vertices together with the data vectors from the non-candidate RNA trees on 7 and

8 vertices to create and train a neural network to recognize a tree as RNA-like or

not-RNA-like in structure. We applied this predictive tool to categorize known RNA

classifications and to predict unknown RNA trees.

The results for the 15 red trees of orders seven, eight, and nine agreed with the

classifications from the RAG database and previous research in [10]. Further, our

neural network correctly classified 9 of the 11 black, or non-candidate, trees on 7 and

8 vertices to agree with previous research. However, the authors of [10] felt their

model over-predicted the class of RNA-like trees for those 43 unclassified trees on 9

vertices. Their results classified 29 of the unknown trees as RNA-like in structure,

and 14 as not-RNA-like. As a result, our study narrowed down the class of highly-

RNA-like tree structures on 9 vertices from the 29 predicted in [10] to 18 according

to the values calculated by the MLP artificial neural network.

We revealed that graphical operations from the field of mathematical graph the-

ory can successfully model secondary RNA motifs. Further, we demonstrated that

these numerical values from these operations can enable the training of an artificial

neural network to recognize the difference between likely and unlikely RNA struc-
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tures. These findings, along with those from previous predictive models, exhibited

the power of mathematical graph theory as an effective modeling method. By rep-

resenting bimolecular structures with graph theory, modern researchers can enter an

extensive and unexplored field of quantitative biology.

Although trees have previously been used to model secondary RNA structure, the

applications of techniques from graph theory have been limited. There are numerous

binary operations on graphs, such as the Cartesian product and graph join. As far

as we know, our application of graph merge to model RNA binding is novel and has

proven to be a valuable tool.

As a follow up to this study, future research could combine the data from [10, 14]

and this paper to create a more powerful predictive model. A more intelligent artificial

neural network, or another predictive tool, could utilize all three sets of data to predict

the classifications for all the RAG trees. Additionally, future projects could examine

the effect of other graphical invariants and operations on the structural properties

of the RAG motifs. Another potential research project could be to use the ideas

of our research, and those from [10], to examine the structural components of the

unclassified RAG trees on 10 vertices from [15].
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APPENDICES

Appendix A: Literature Review

RAG: RNA-As-Graphs Web Resource

Unlike the previous RNA databases which have focused on archiving known RNA

primary, secondary and tertiary structures, T. Schlick, D. Fera, N. Kim, N. Shif-

feldrim, J. Zorn, U. Laserson, and H. Gan developed an approach in [14] for cata-

loging and classifying all possible RNA structures. Their methods are based on the

topological properties of RNA secondary motifs. The secondary structures of RNA,

such as bulges, loops, junctions, and stems, strongly correlate with their functional

properties. As a result, classifying RNA by their secondary topologies aids in the

identification of new RNAs and stimulates the search for candidate RNA motifs not

yet discovered in nature or a laboratory.

The RNA-As-Graphs (RAG) database models existing, candidate, and non-candidate

RNA structures using graph theory. As shown in Figure 7, when converting existing

RNA secondary representations to tree graphs, Schlick et al. [14] followed the follow-

ing rules: (1) A bulge, hairpin loop, or internal loop is considered a vertex (•) when

there is more than one unmatched nucleotide or non-complementary base pair; (2) A

junction, the location where three or more stems meet, is a vertex; (3) The 3
′

and 5
′

ends of a helical stem are considered a vertex; (4) An RNA stem with more than one

complementary base pair is represented as an edge (−); (5) the complementary base

pairs are AU, GC and GU. It is necessary to note that these tree graph representations

do not specify the exact sequence or the length of an RNA molecule, even though

the length can be approximated. Furthermore, these graphs do not specify geometric
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Figure 7: The Modeling Method Used by Schlick et al. for the RAG Web Resource

This figure was copied from [14] with the author’s permission.

aspects of the secondary structure. These models solely represent the connectivity of

an RNA motif.

Every novel RNA structure is mapped onto a 2D tree model and then cataloged

according to two numerical values: the number of vertices (n) in each graph and

a numerical representation (z) of its topological complexity. To quantitatively or-

ganize and archive all possible RNA tree graph representations, it is necessary to

first generate the collection of all possible tree graphs for a given number of ver-

tices (n). For example, for the set n = {2, 3, 4, 5, 6, 7, 8, 9}, there are a total

of {1, 1, 2, 3, 6, 11, 23, 47} distinct tree graphs, respectively. Once all possible

tree motifs were generated, Schlick et al. in [14] generated the Laplacian matrix

representation and calculated the eigenvalue spectrum {λ1, λ2, . . . , λn} for each tree.
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According to [14], the second eigenvalue λ2 measures a motif’s topological complexity.

For example, a more linear tree graph has a lower λ2 value while a highly-branched

tree graph has a high λ2 value. Then, this work catalogs each potential RNA motif

by (n, λ2). For easy reference, each RNA motif then has a specific index (n.z), where

z represents an integer corresponding to the λ2 ranking.

There are other aspects of the RAG database described in [14]. However, for

the intentions of this thesis, it is necessary to close this review with a description of

Schlick’s clustering analysis of the RNA tree graphs. As previously stated, the RNA’s

topological complexity is described by Laplacian eigenvalues. However, these numbers

can also be used to predict the RNA topologies that are likely to occur naturally.

Schlick et al. [14] applied the method of Partitioning Around Medoids (PAM) to

assemble the enumerated RNA tree graphs into RNA-like and non-RNA clusters or

groups. The RNA-like cluster must contain predominately existing RNA topologies

and the non-RNA cluster must contain few or no natural RNA motifs in it. Then,

those clustered into the RNA-like category which have not been identified naturally

became known as candidate trees. Those grouped into the non-RNA category were

labeled as non-candidate trees.

The trees with 2 through 8 vertices have been fully classified as existing, candidate

or non-candidate. However, there are only four trees on greater than 8 vertices which

have been found to be existing RNA motifs. As a result, the remaining trees on 9 or

higher vertices have not been grouped into the existing, candidate, or non-candidate

categories. Finally, the online web database [15] takes one additional step to catalog

these secondary motifs. This database pictures all existing RNA trees as as a red

graphs, the candidate trees are colored blue, and the non-candidate trees are black.
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The research compiled in [14] uniquely organizes all known, candidate, and non-

candidate RNA motifs by schematic graphical representations. This catalog of RNA

tree graphs is intended as a tool for searching existing RNAs and for discovering ad-

ditional RNA molecules. According to [14], their main goals were to systematically

catalog all possible RNA motif libraries, rank RNA motifs with different degrees of

topological complexity and stimulate the search for candidate RNA motifs not yet

discovered in nature or a laboratory.
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A Quantitative Analysis of Secondary RNA Structures Using Domination Based

Parameters on Trees

Based on the work compiled in [14], D. Knisley et al. [9] used the RAG online

database to classify the RNA motifs based on graphical invariants. According to

Knisley et al. [9], using tree graphs as models of RNA, proteins and nucleic acids

is fertile ground for the discovery of new and innovative methods for the numerical

characterization of these biological molecules. Furthermore, the information gathered

from the analysis of graph theoretic models plays a vital role in assisting protein

structure prediction algorithms. As a result, this work centralized on identifying

structural characteristics of secondary RNA models.

Given the library of trees generated in [14], the work in [9] analyzed the structural

properties of the RNA tree motifs to classify them as RNA-like or non-RNA models.

In particular, they used domination based invariants, properties of graphs that are

fixed under graph isomorphisms, whose definitions can be found in [6]. In calculat-

ing and tabulating a multitude of graphical invariants for each tree from the RAG

database, Knisley et al. [9] noticed that the domination parameters behaved in two

distinct ways with respect to the Laplacian eigenvalues discussed in [14]. The domina-

tion (γ), total domination(γt), and global alliance (γa) numbers tended to decrease as

the eigenvalues increased. Further, the locating-domination (γL) and differentiating-

domination (γD) numbers tended to increase as the eigenvalues increased. As a result,

they grouped these invariants into two classes, namely P1 and P2. These parameters

are defined as follows:

P1 = γ+γt+γa

n
and P2 = γL+γD

n
.

Dividing each parameter by the total number of vertices in the tree (n) normalized
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the results. A third parameter, P ∗
2 was defined as follows:

P ∗
2 = γL + γD + n · λ2

The work completed in [9] then applied logistic models to predict the probability

that a tree is a native RNA structure based on the three parameters P1, P2, and P ∗
2

described above. Two different logistic models were estimated using SAS, one based

on P1 and P2 and another model based on P1 and P ∗
2 . These logistic models correctly

classified 100% of existing and non-candidate RNA tree models. When considering

trees on 7 or 8 vertices, the logistic model classified ten of the twelve candidate RNA

trees to be RNA-like and two of the twelve candidate trees to be non-RNA models.

These results can be seen in Table 7.

The research in [9] utilized logistic models to predict the probability that a tree

from the RAG database is an existing or non-candidate RNA structure. These lo-

gistic models were created with domination based invariants from graph theory and

correctly classified all existing and non-candidate RNA tree motifs on 7 and 8 vertices.
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Table 7: The Status and Prediction for Trees with Seven and Eight Vertices from [9]

Domination
Vertices ID P(Native) P(Native) RAG Predicted

Model 1 Model 2 Status Status

7 1 1.00000 1.00000 known RNA-Like
7 2 0.99898 0.99991 known RNA-Like
7 3 1.00000 1.00000 known RNA-Like
7 4 0.00040 0.00392 candidate Not-RNA-Like
7 5 0.99951 0.99991 candidate RNA-Like
7 6 0.99834 0.99908 known RNA-Like
7 7 0.99911 0.99908 candidate RNA-Like
7 8 1.00000 1.00000 candidate RNA-Like
7 9 0.00000 0.00000 non-candidate Not-RNA-Like
7 10 0.00000 0.00000 non-candidate Not-RNA-Like
7 11 0.00002 0.00000 non-candidate Not-RNA-Like
8 1 1.00000 1.00000 candidate RNA-Like
8 2 1.00000 1.00000 candidate RNA-Like
8 3 1.00000 1.00000 known RNA-Like
8 4 0.98853 0.99359 candidate RNA-Like
8 5 1.00000 1.00000 known RNA-Like
8 6 0.99049 0.99359 candidate RNA-Like
8 7 1.00000 1.00000 known RNA-Like
8 8 0.96824 0.95104 candidate RNA-Like
8 9 0.00124 0.00269 non-candidate Not-RNA-Like
8 10 1.00000 1.00000 known RNA-Like
8 11 1.00000 1.00000 known RNA-Like
8 12 1.00000 1.00000 candidate RNA-Like
8 13 0.00040 0.00034 candidate Not-RNA-Like
8 14 0.00196 0.00269 non-candidate Not-RNA-Like
8 15 0.99659 0.99359 known RNA-Like
8 16 1.00000 1.00000 candidate RNA-Like
8 17 0.00073 0.00034 non-candidate Not-RNA-Like
8 18 0.00000 0.00000 non-candidate Not-RNA-Like
8 19 0.00000 0.00000 non-candidate Not-RNA-Like
8 20 1.00000 1.00000 known RNA-Like
8 21 0.00154 0.00034 non-candidate Not-RNA-Like
8 22 0.00000 0.00000 non-candidate Not-RNA-Like
8 23 0.00000 0.00000 non-candidate Not-RNA-Like
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Using a Neural Network to Identify Secondary RNA Structures Quantified by

Graphical Invariants

As a follow up to the research presented in [9], D. Knisley et al. employed a predic-

tive model in [10] to analyze the RNA motifs from the RAG online database of [15].

Their work also provides additional information about RNA secondary structures.

According to their research, the class of non-coding RNAs is rapidly expanding, and

evidence suggests that half of the human RNAs are for non-coding purposes [10].

This motivates the creation of a comprehensive database of RNA motifs with both

structural and sequential information. Accordingly, their research parallels previous

work described in [9]. However, it expands upon these previous findings by applying

a predictive model to recognize RNA-like or non-RNA-like secondary structures.

The key component of the research in [10] derives from the application of an

artificial neural network to classify the unknown tree structures on 9 vertices from

the RAG online database. Knisley et al. [10] trained an artificial neural network

using the same parameters P1 and P2, from [9] along with some additional invariants.

The definitions of the following invariants can be found in [10]. First, Knisley et al.

[10] created the line graph, denoted L(T ), for each tree in the RAG online database

and then calculated the radius (rad(L)), diameter (diam(L)), and the block (B) for

each line graph. These invariants were normalized into a third parameter P3 where

‖B‖ is the number of blocks in the line graph and n is the number of vertices in the

line graph:

P3 = diam(L(T ))+rad(L(T ))+‖B‖
n

Using P1, P2, and P3 as their graph theoretic parameters, Knisley et al. [10]

trained a multi-layer perceptron (MLP) artificial neural network using a standard
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back propagation algorithm. There are twenty-two trees of order 7 or 8 which are

verified to be existing RNA motifs or classified as not-RNA-like (non-candidate) tree

structures. There are four trees of order 9 which represent existing RNA motifs.

With the parameter information of these twenty-six classified trees, an artificial neural

network was trained and tested using leave one out (LOO) cross-validation. For these

twenty-six motifs, Table 8 (from [10]) displays each known tree’s classification and

corresponding prediction error from the artificial neural network.

Table 8: Error in Predicting the Class of the Given Tree using Leave One Out Cross

Validation: Class = 1 if Tree is RNA-Like, Class = 0 if not RNA-Like

Tree Class Error Tree Class Error
7.1 1 3.22636E-08 8.14 0 2.86665E-05
7.2 1 6.06176E-05 8.15 1 0.210246175
7.3 1 5.29676E-08 8.17 0 0.020610822
7.6 1 4.35718E-05 8.18 0 7.11512E-09
7.9 0 3.67912E-08 8.19 0 3.0159E-08
7.10 0 6.13133E-09 8.20 1 2.60021E-07
7.11 0 3.136E-09 8.21 0 0.020787623
8.3 1 3.19055E-08 8.22 0 2.04457E-07
8.5 1 2.68612E-08 8.23 0 5.2509E-09
8.7 1 4.32724E-06 9.6 1 3.14169E-08
8.9 0 3.72807E-05 9.11 1 1.10466E-06
8.10 1 5.86222E-07 9.13 1 0.002645342
8.11 1 3.81045E-08 9.27 1 5.74173E-07

Following its training, the MLP was used to predict whether or not the candidate

trees of orders 7 or 8 and the unclassified trees of order 9 were RNA-like or not

RNA-like based on their respective three parameter values. These results are shown

in Table 9.

The research presented in [10] demonstrates that when secondary RNA motifs are

represented by tree models and quantified with graphical invariants, their mathemat-
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Table 9: Predictions for the 55 Unclassified Trees from [10]

Tree Class StDev Tree Class StDev
7.4 0.30894009 0.059897352 9.2 0.977981363 0.03237958
7.5 0.963595271 0.044234638 9.21 0.999997116 7.81E-06
7.7 0.999900712 0.000222055 9.22 0.030237041 0.007916403
7.8 0.999999663 4.30E-07 9.23 4.64E-07 1.23E-06
8.1 0.999999775 3.32E-07 9.24 0.999971294 5.19E-05
8.2 0.999999552 7.27E-07 9.25 9.32E-08 1.99E-07
8.4 0.998541188 0.004658326 9.26 0.999860004 0.000365012
8.6 0.998541188 0.004658326 9.28 1.69E-05 2.10E-05
8.8 0.999995579 8.72E-06 9.29 0.999999319 8.96E-07
8.12 0.999995579 8.72E-06 9.3 0.999971294 5.19E-05
8.13 0.014562009 0.001888189 9.31 0.977981363 0.03237958
8.16 0.999995579 8.72E-06 9.32 1.27E-06 2.21E-06
9.1 0.999999871 1.99E-07 9.33 0.58286479 0.056754084
9.2 0.999996962 1.02E-05 9.34 0.973029577 0.013048741
9.3 0.977981363 0.03237958 9.35 3.38E-06 4.69E-06
9.4 0.999999809 2.68E-07 9.36 0.047779882 0.029252496
9.5 0.999993215 2.02E-05 9.37 1.69E-05 2.10E-05
9.7 0.999997116 7.81E-06 9.38 0.998666897 0.00214774
9.8 0.999997116 7.81E-06 9.39 2.24E-07 5.27E-07
9.9 0.00014299 0.000150072 9.4 4.13E-08 7.92E-08
9.1 0.999971294 5.19E-05 9.41 3.68E-05 7.86E-05
9.12 0.999999566 6.33E-07 9.42 0.999997632 2.87E-06
9.14 0.999999764 3.16E-07 9.43 0.973029577 0.013048741
9.15 0.004035487 0.000863529 9.44 0.095946916 0.014793406
9.16 0.477586547 0.074602833 9.45 2.76E-07 5.15E-07
9.17 0.999802708 0.000223001 9.46 2.37E-08 4.47E-08
9.18 0.999999597 5.96E-07 9.47 3.60E-07 1.01E-06
9.19 0.999998844 2.27E-06

ical properties can be indicative of novel RNA structure. Further, this work shows

that these numerical parameters classify RNA secondary structure well enough so

that an artificial neural network can be trained to recognize the difference.
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Appendix B: Table A

The Complete Table of all Vertex Identifications from all Tree Merges

RAG DATA FROM DATA FROM
Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total

Merged Color Type (v) Color Type (v) Graph Color Graphs

2.1+2.1 Red Leaf 1 Red Leaf 1 3.1 Red 4
2.1+3.1 Red Leaf 1 Red Leaf 1 4.1 Red 4
2.1+3.1 Red Leaf 1 Red Support 2 4.2 Blue 2
2.1+4.1 Red Leaf 1 Red Leaf 1 5.1 Red 4
2.1+4.1 Red Leaf 1 Red Support 2 5.2 Red 4
2.1+4.2 Red Leaf 1 Blue Leaf 1 5.2 Red 6
2.1+4.2 Red Leaf 1 Blue Support 3 5.3 Red 2
2.1+5.1 Red Leaf 1 Red Leaf 1 6.1 Blue 4
2.1+5.1 Red Leaf 1 Red Support 2 6.2 Red 4
2.1+5.1 Red Leaf 1 Red Internal 2 6.3 Blue 2
2.1+5.2 Red Leaf 1 Red Leaf 1 6.2 Red 2
2.1+5.2 Red Leaf 1 Red Leaf 1 6.3 Blue 4
2.1+5.2 Red Leaf 1 Red Support 2 6.4 Blue 2
2.1+5.2 Red Leaf 1 Red Support 3 6.5 Black 2
2.1+5.3 Red Leaf 1 Red Leaf 1 6.5 Black 8
2.1+5.3 Red Leaf 1 Red Support 4 6.6 Red 2
2.1+6.1 Red Leaf 1 Blue Leaf 1 7.1 Red 4
2.1+6.1 Red Leaf 1 Blue Support 2 7.2 Red 4
2.1+6.1 Red Leaf 1 Blue Internal 2 7.3 Red 4
2.1+6.2 Red Leaf 1 Red Leaf 1 7.2 Red 2
2.1+6.2 Red Leaf 1 Red Leaf 1 7.3 Red 4
2.1+6.2 Red Leaf 1 Red Support 2 7.4 Blue 2
2.1+6.2 Red Leaf 1 Red Support 3 7.5 Blue 2
2.1+6.2 Red Leaf 1 Red Internal 2 7.6 Red 2
2.1+6.3 Red Leaf 1 Blue Leaf 1 7.3 Red 4
2.1+6.3 Red Leaf 1 Blue Support 2 7.6 Red 4
2.1+6.3 Red Leaf 1 Blue Support 3 7.7 Blue 2
2.1+6.3 Red Leaf 1 Blue Leaf 1 7.8 Blue 2
2.1+6.4 Red Leaf 1 Blue Leaf 1 7.6 Red 8
2.1+6.4 Red Leaf 1 Blue Support 3 7.9 Black 4
2.1+6.5 Red Leaf 1 Black Support 4 7.10 Black 2
2.1+6.5 Red Leaf 1 Black Leaf 1 7.5 Blue 2
2.1+6.5 Red Leaf 1 Black Leaf 1 7.7 Blue 6
2.1+6.5 Red Leaf 1 Black Support 2 7.9 Black 2
2.1+6.6 Red Leaf 1 Red Leaf 1 7.10 Black 10
2.1+6.6 Red Leaf 1 Red Support 5 7.11 Black 2
2.1+7.1 Red Leaf 1 Red Leaf 1 8.1 Blue 4
2.1+7.1 Red Leaf 1 Red Support 2 8.2 Blue 4
2.1+7.1 Red Leaf 1 Red Internal 2 8.3 Red 4
2.1+7.1 Red Leaf 1 Red Internal 2 8.5 Red 2
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RAG DATA FROM DATA FROM
Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total

Merged Color Type (v) Color Type (v) Graph Color Graphs

2.1+7.10 Red Leaf 1 Black Leaf 1 8.14 Black 2
2.1+7.10 Red Leaf 1 Black Support 2 8.19 Black 2
2.1+7.10 Red Leaf 1 Black Leaf 1 8.21 Black 8
2.1+7.10 Red Leaf 1 Black Support 5 8.22 Black 2
2.1+7.11 Red Leaf 1 Black Leaf 1 8.22 Black 12
2.1+7.11 Red Leaf 1 Black Support 6 8.23 Black 2
2.1+7.2 Red Leaf 1 Red Leaf 1 8.2 Blue 2
2.1+7.2 Red Leaf 1 Red Leaf 1 8.3 Red 4
2.1+7.2 Red Leaf 1 Red Support 2 8.4 Blue 2
2.1+7.2 Red Leaf 1 Red Support 3 8.6 Blue 2
2.1+7.2 Red Leaf 1 Red Internal 2 8.7 Red 2
2.1+7.2 Red Leaf 1 Red Internal 2 8.8 Blue 2
2.1+7.3 Red Leaf 1 Red Leaf 1 8.10 Red 2
2.1+7.3 Red Leaf 1 Red Internal 2 8.11 Red 2
2.1+7.3 Red Leaf 1 Red Internal 3 8.12 Blue 2
2.1+7.3 Red Leaf 1 Red Leaf 1 8.3 Red 2
2.1+7.3 Red Leaf 1 Red Leaf 1 8.5 Red 2
2.1+7.3 Red Leaf 1 Red Support 2 8.7 Red 2
2.1+7.3 Red Leaf 1 Red Support 2 8.8 Blue 2
2.1+7.4 Red Leaf 1 Blue Internal 2 8.13 Blue 2
2.1+7.4 Red Leaf 1 Blue Support 3 8.9 Black 4
2.1+7.5 Red Leaf 1 Blue Leaf 1 8.12 Blue 6
2.1+7.5 Red Leaf 1 Blue Support 4 8.14 Black 2
2.1+7.5 Red Leaf 1 Blue Internal 2 8.15 Red 2
2.1+7.5 Red Leaf 1 Blue Leaf 1 8.6 Blue 2
2.1+7.5 Red Leaf 1 Blue Support 2 8.9 Black 2
2.1+7.6 Red Leaf 1 Red Leaf 1 8.11 Red 4
2.1+7.6 Red Leaf 1 Red Support 2 8.13 Blue 2
2.1+7.6 Red Leaf 1 Red Support 3 8.15 Red 2
2.1+7.6 Red Leaf 1 Red Leaf 1 8.16 Blue 2
2.1+7.6 Red Leaf 1 Red Internal 3 8.17 Black 2
2.1+7.6 Red Leaf 1 Red Leaf 1 8.8 Blue 2
2.1+7.7 Red Leaf 1 Blue Leaf 1 8.12 Blue 4
2.1+7.7 Red Leaf 1 Blue Support 2 8.17 Black 4
2.1+7.7 Red Leaf 1 Blue Leaf 1 8.20 Red 4
2.1+7.7 Red Leaf 1 Blue Internal 4 8.21 Black 2
2.1+7.8 Red Leaf 1 Blue Leaf 1 8.10 Red 6
2.1+7.8 Red Leaf 1 Blue Support 2 8.16 Blue 6
2.1+7.8 Red Leaf 1 Blue Internal 3 8.20 Red 2
2.1+7.9 Red Leaf 1 Black Leaf 1 8.15 Red 4
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RAG DATA FROM DATA FROM
Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total

Merged Color Type (v) Color Type (v) Graph Color Graphs

2.1+7.9 Red Leaf 1 Black Leaf 1 8.17 Black 6
2.1+7.9 Red Leaf 1 Black Support 3 8.18 Black 2
2.1+7.9 Red Leaf 1 Black Support 4 8.19 Black 2
2.1+8.1 Red Leaf 1 Blue Leaf 1 9.1 Unknown 4
2.1+8.1 Red Leaf 1 Blue Support 2 9.2 Unknown 4
2.1+8.1 Red Leaf 1 Blue Internal 2 9.4 Unknown 4
2.1+8.1 Red Leaf 1 Blue Internal 2 9.6 Red 4
2.1+8.10 Red Leaf 1 Red Leaf 1 9.11 Red 2
2.1+8.10 Red Leaf 1 Red Support 2 9.17 Unknown 2
2.1+8.10 Red Leaf 1 Red Leaf 1 9.18 Unknown 4
2.1+8.10 Red Leaf 1 Red Support 2 9.26 Unknown 4
2.1+8.10 Red Leaf 1 Red Internal 2 9.27 Red 2
2.1+8.10 Red Leaf 1 Red Internal 3 9.29 Unknown 2
2.1+8.11 Red Leaf 1 Red Leaf 1 9.14 Unknown 4
2.1+8.11 Red Leaf 1 Red Support 2 9.24 Unknown 4
2.1+8.11 Red Leaf 1 Red Leaf 1 9.27 Red 4
2.1+8.11 Red Leaf 1 Red Internal 3 9.30 Unknown 4
2.1+8.12 Red Leaf 1 Blue Leaf 1 9.19 Unknown 2
2.1+8.12 Red Leaf 1 Blue Leaf 1 9.21 Unknown 2
2.1+8.12 Red Leaf 1 Blue Support 2 9.22 Unknown 2
2.1+8.12 Red Leaf 1 Blue Leaf 1 9.29 Unknown 4
2.1+8.12 Red Leaf 1 Blue Internal 2 9.30 Unknown 2
2.1+8.12 Red Leaf 1 Blue Internal 4 9.31 Unknown 2
2.1+8.12 Red Leaf 1 Blue Support 2 9.44 Unknown 2
2.1+8.13 Red Leaf 1 Blue Leaf 1 9.24 Unknown 8
2.1+8.13 Red Leaf 1 Blue Support 3 9.28 Unknown 4
2.1+8.13 Red Leaf 1 Blue Leaf 1 9.33 Unknown 2
2.1+8.13 Red Leaf 1 Blue Support 3 9.35 Unknown 2
2.1+8.14 Red Leaf 1 Black Leaf 1 9.15 Unknown 2
2.1+8.14 Red Leaf 1 Black Support 2 9.25 Unknown 2
2.1+8.14 Red Leaf 1 Black Leaf 1 9.31 Unknown 8
2.1+8.14 Red Leaf 1 Black Support 2 9.32 Unknown 2
2.1+8.14 Red Leaf 1 Black Internal 2 9.36 Unknown 2
2.1+8.15 Red Leaf 1 Red Leaf 1 9.20 Unknown 2
2.1+8.15 Red Leaf 1 Red Support 2 9.28 Unknown 2
2.1+8.15 Red Leaf 1 Red Leaf 1 9.30 Unknown 6
2.1+8.15 Red Leaf 1 Red Leaf 1 9.34 Unknown 2
2.1+8.15 Red Leaf 1 Red Support 4 9.36 Unknown 2
2.1+8.15 Red Leaf 1 Red Internal 3 9.37 Unknown 2
2.1+8.16 Red Leaf 1 Blue Leaf 1 9.26 Unknown 4
2.1+8.16 Red Leaf 1 Blue Leaf 1 9.27 Red 4
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RAG DATA FROM DATA FROM
Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total

Merged Color Type (v) Color Type (v) Graph Color Graphs

2.1+8.16 Red Leaf 1 Blue Support 2 9.33 Unknown 4
2.1+8.16 Red Leaf 1 Blue Support 3 9.34 Unknown 2
2.1+8.16 Red Leaf 1 Blue Internal 3 9.38 Unknown 2
2.1+8.17 Red Leaf 1 Black Leaf 1 9.30 Unknown 4
2.1+8.17 Red Leaf 1 Black Support 2 9.35 Unknown 2
2.1+8.17 Red Leaf 1 Black Support 3 9.37 Unknown 2
2.1+8.17 Red Leaf 1 Black Leaf 1 9.38 Unknown 4
2.1+8.17 Red Leaf 1 Black Internal 4 9.39 Unknown 2
2.1+8.17 Red Leaf 1 Black Leaf 1 9.44 Unknown 2
2.1+8.18 Red Leaf 1 Black Leaf 1 9.37 Unknown 12
2.1+8.18 Red Leaf 1 Black Support 4 9.40 Unknown 4
2.1+8.19 Red Leaf 1 Black Leaf 1 9.36 Unknown 4
2.1+8.19 Red Leaf 1 Black Leaf 1 9.39 Unknown 8
2.1+8.19 Red Leaf 1 Black Support 3 9.40 Unknown 2
2.1+8.19 Red Leaf 1 Black Support 5 9.41 Unknown 2
2.1+8.2 Red Leaf 1 Blue Internal 2 9.10 Unknown 2
2.1+8.2 Red Leaf 1 Blue Leaf 1 9.2 Unknown 2
2.1+8.2 Red Leaf 1 Blue Support 2 9.3 Unknown 2
2.1+8.2 Red Leaf 1 Blue Leaf 1 9.4 Unknown 4
2.1+8.2 Red Leaf 1 Blue Support 3 9.5 Unknown 2
2.1+8.2 Red Leaf 1 Blue Internal 2 9.7 Unknown 2
2.1+8.2 Red Leaf 1 Blue Internal 2 9.8 Unknown 2
2.1+8.20 Red Leaf 1 Red Leaf 1 9.29 Unknown 6
2.1+8.20 Red Leaf 1 Red Support 2 9.38 Unknown 6
2.1+8.20 Red Leaf 1 Red Leaf 1 9.42 Unknown 2
2.1+8.20 Red Leaf 1 Red Internal 4 9.43 Unknown 2
2.1+8.21 Red Leaf 1 Black Leaf 1 9.31 Unknown 4
2.1+8.21 Red Leaf 1 Black Support 2 9.39 Unknown 4
2.1+8.21 Red Leaf 1 Black Leaf 1 9.43 Unknown 6
2.1+8.21 Red Leaf 1 Black Support 5 9.45 Unknown 2
2.1+8.22 Red Leaf 1 Black Leaf 1 9.32 Unknown 2
2.1+8.22 Red Leaf 1 Black Support 2 9.41 Unknown 2
2.1+8.22 Red Leaf 1 Black Leaf 1 9.45 Unknown 10
2.1+8.22 Red Leaf 1 Black Internal 5 9.46 Unknown 2
2.1+8.23 Red Leaf 1 Black Leaf 1 9.46 Unknown 14
2.1+8.23 Red Leaf 1 Black Internal 7 9.47 Unknown 2
2.1+8.3 Red Leaf 1 Red Leaf 1 9.11 Red 2
2.1+8.3 Red Leaf 1 Red Internal 2 9.12 Unknown 2
2.1+8.3 Red Leaf 1 Red Internal 2 9.14 Unknown 2
2.1+8.3 Red Leaf 1 Red Support 3 9.21 Unknown 2
2.1+8.3 Red Leaf 1 Red Leaf 1 9.4 Unknown 2
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RAG DATA FROM DATA FROM
Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total

Merged Color Type (v) Color Type (v) Graph Color Graphs

2.1+8.3 Red Leaf 1 Red Leaf 1 9.6 Red 2
2.1+8.3 Red Leaf 1 Red Support 2 9.7 Unknown 2
2.1+8.3 Red Leaf 1 Red Support 2 9.8 Unknown 2
2.1+8.4 Red Leaf 1 Blue Internal 2 9.13 Red 4
2.1+8.4 Red Leaf 1 Blue Leaf 1 9.7 Unknown 8
2.1+8.4 Red Leaf 1 Blue Support 3 9.9 Unknown 4
2.1+8.5 Red Leaf 1 Red Support 2 9.10 Unknown 4
2.1+8.5 Red Leaf 1 Red Internal 2 9.14 Unknown 4
2.1+8.5 Red Leaf 1 Red Leaf 1 9.18 Unknown 2
2.1+8.5 Red Leaf 1 Red Support 3 9.19 Unknown 2
2.1+8.5 Red Leaf 1 Red Leaf 1 9.6 Red 4
2.1+8.6 Red Leaf 1 Blue Support 4 9.15 Unknown 2
2.1+8.6 Red Leaf 1 Blue Internal 2 9.16 Unknown 2
2.1+8.6 Red Leaf 1 Blue Internal 2 9.20 Unknown 2
2.1+8.6 Red Leaf 1 Blue Leaf 1 9.21 Unknown 6
2.1+8.6 Red Leaf 1 Blue Leaf 1 9.5 Unknown 2
2.1+8.6 Red Leaf 1 Blue Support 2 9.9 Unknown 2
2.1+8.7 Red Leaf 1 Red Leaf 1 9.10 Unknown 2
2.1+8.7 Red Leaf 1 Red Leaf 1 9.12 Unknown 4
2.1+8.7 Red Leaf 1 Red Support 2 9.13 Red 2
2.1+8.7 Red Leaf 1 Red Support 3 9.16 Unknown 2
2.1+8.7 Red Leaf 1 Red Leaf 1 9.17 Unknown 2
2.1+8.7 Red Leaf 1 Red Internal 3 9.22 Unknown 2
2.1+8.7 Red Leaf 1 Red Internal 2 9.24 Unknown 2
2.1+8.8 Red Leaf 1 Blue Support 2 9.13 Red 2
2.1+8.8 Red Leaf 1 Blue Leaf 1 9.14 Unknown 4
2.1+8.8 Red Leaf 1 Blue Support 3 9.20 Unknown 2
2.1+8.8 Red Leaf 1 Blue Internal 2 9.24 Unknown 2
2.1+8.8 Red Leaf 1 Blue Leaf 1 9.26 Unknown 2
2.1+8.8 Red Leaf 1 Blue Internal 3 9.44 Unknown 2
2.1+8.8 Red Leaf 1 Blue Leaf 1 9.8 Unknown 2
2.1+8.9 Red Leaf 1 Black Leaf 1 9.16 Unknown 4
2.1+8.9 Red Leaf 1 Black Leaf 1 9.22 Unknown 6
2.1+8.9 Red Leaf 1 Black Support 3 9.23 Unknown 2
2.1+8.9 Red Leaf 1 Black Support 4 9.25 Unknown 2
2.1+8.9 Red Leaf 1 Black Internal 2 9.28 Unknown 2
3.1+3.1 Red Leaf 1 Red Leaf 1 5.1 Red 4
3.1+3.1 Red Leaf 1 Red Support 2 5.2 Red 4
3.1+3.1 Red Support 2 Red Support 2 5.3 Red 1
3.1+4.1 Red Leaf 1 Red Leaf 1 6.1 Blue 4
3.1+4.1 Red Support 2 Red Leaf 1 6.2 Red 2

46



RAG DATA FROM DATA FROM
Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total

Merged Color Type (v) Color Type (v) Graph Color Graphs

3.1+4.1 Red Leaf 1 Red Support 2 6.3 Blue 4
3.1+4.1 Red Support 2 Red Support 2 6.5 Black 2
3.1+4.2 Red Leaf 1 Blue Leaf 1 6.2 Red 6
3.1+4.2 Red Support 2 Blue Leaf 1 6.4 Blue 3
3.1+4.2 Red Leaf 1 Blue Support 3 6.5 Black 2
3.1+4.2 Red Support 2 Blue Support 3 6.6 Red 1
3.1+5.1 Red Leaf 1 Red Leaf 1 7.1 Red 4
3.1+5.1 Red Support 2 Red Leaf 1 7.2 Red 2
3.1+5.1 Red Leaf 1 Red Support 2 7.3 Red 4
3.1+5.1 Red Support 2 Red Support 2 7.5 Blue 2
3.1+5.1 Red Support 2 Red Internal 2 7.7 Blue 1
3.1+5.1 Red Leaf 1 Red Internal 2 7.8 Blue 2
3.1+5.2 Red Support 2 Red Support 3 7.10 Black 1
3.1+5.2 Red Leaf 1 Red Leaf 1 7.2 Red 2
3.1+5.2 Red Leaf 1 Red Leaf 1 7.3 Red 4
3.1+5.2 Red Support 2 Red Leaf 1 7.4 Blue 1
3.1+5.2 Red Leaf 1 Red Support 2 7.6 Red 4
3.1+5.2 Red Leaf 1 Red Support 3 7.7 Blue 2
3.1+5.2 Red Support 2 Red Support 2 7.9 Black 1
3.1+5.3 Red Leaf 1 Red Support 4 7.10 Black 2
3.1+5.3 Red Support 2 Red Support 4 7.11 Black 1
3.1+5.3 Red Leaf 1 Red Leaf 1 7.5 Blue 8
3.1+5.3 Red Support 2 Red Leaf 1 7.9 Black 4
3.1+6.1 Red Leaf 1 Blue Leaf 1 8.1 Blue 4
3.1+6.1 Red Leaf 1 Blue Internal 2 8.10 Red 4
3.1+6.1 Red Support 2 Blue Internal 2 8.12 Blue 2
3.1+6.1 Red Support 2 Blue Leaf 1 8.2 Blue 2
3.1+6.1 Red Leaf 1 Blue Support 2 8.3 Red 4
3.1+6.1 Red Support 2 Blue Support 2 8.6 Blue 2
3.1+6.2 Red Leaf 1 Red Internal 3 8.12 Blue 2
3.1+6.2 Red Support 2 Red Internal 3 8.14 Black 1
3.1+6.2 Red Leaf 1 Red Internal 2 8.16 Blue 2
3.1+6.2 Red Support 2 Red Internal 2 8.17 Black 1
3.1+6.2 Red Leaf 1 Red Leaf 1 8.2 Blue 2
3.1+6.2 Red Support 2 Red Leaf 1 8.4 Blue 1
3.1+6.2 Red Leaf 1 Red Leaf 1 8.5 Red 4
3.1+6.2 Red Leaf 1 Red Support 2 8.7 Red 2
3.1+6.2 Red Support 2 Red Leaf 1 8.8 Blue 2
3.1+6.2 Red Support 2 Red Support 2 8.9 Black 1
3.1+6.3 Red Leaf 1 Blue Leaf 1 8.10 Red 2
3.1+6.3 Red Leaf 1 Blue Support 2 8.11 Red 4
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RAG DATA FROM DATA FROM
Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total

Merged Color Type (v) Color Type (v) Graph Color Graphs

3.1+6.3 Red Leaf 1 Blue Leaf 1 8.13 Blue 4
3.1+6.3 Red Support 2 Blue Support 2 8.15 Red 2
3.1+6.3 Red Support 2 Blue Leaf 1 8.16 Blue 1
3.1+6.3 Red Leaf 1 Blue Support 3 8.20 Red 2
3.1+6.3 Red Support 2 Blue Support 3 8.21 Black 1
3.1+6.3 Red Support 2 Blue Leaf 1 8.7 Red 2
3.1+6.4 Red Support 2 Blue Leaf 1 8.13 Blue 4
3.1+6.4 Red Leaf 1 Blue Support 3 8.17 Black 4
3.1+6.4 Red Support 2 Blue Support 3 8.19 Black 2
3.1+6.4 Red Leaf 1 Blue Leaf 1 8.8 Blue 8
3.1+6.5 Red Leaf 1 Black Leaf 1 8.12 Blue 6
3.1+6.5 Red Leaf 1 Black Support 2 8.15 Red 2
3.1+6.5 Red Support 2 Black Leaf 1 8.17 Black 3
3.1+6.5 Red Support 2 Black Support 2 8.18 Black 1
3.1+6.5 Red Leaf 1 Black Support 4 8.21 Black 2
3.1+6.5 Red Support 2 Black Support 4 8.22 Black 1
3.1+6.5 Red Leaf 1 Black Leaf 1 8.6 Blue 2
3.1+6.5 Red Support 2 Black Leaf 1 8.9 Black 1
3.1+6.6 Red Leaf 1 Red Leaf 1 8.14 Black 10
3.1+6.6 Red Support 2 Red Leaf 1 8.19 Black 5
3.1+6.6 Red Leaf 1 Red Support 5 8.22 Black 2
3.1+6.6 Red Support 2 Red Support 5 8.23 Black 1
3.1+7.1 Red Leaf 1 Red Leaf 1 9.1 Unknown 4
3.1+7.1 Red Leaf 1 Red Internal 2 9.11 Red 4
3.1+7.1 Red Leaf 1 Red Internal 2 9.18 Unknown 2
3.1+7.1 Red Support 2 Red Internal 2 9.19 Unknown 1
3.1+7.1 Red Support 2 Red Leaf 1 9.2 Unknown 2
3.1+7.1 Red Support 2 Red Internal 2 9.21 Unknown 2
3.1+7.1 Red Leaf 1 Red Support 2 9.4 Unknown 4
3.1+7.1 Red Support 2 Red Support 2 9.5 Unknown 2
3.1+7.10 Red Leaf 1 Black Leaf 1 9.15 Unknown 2
3.1+7.10 Red Support 2 Black Leaf 1 9.25 Unknown 1
3.1+7.10 Red Leaf 1 Black Leaf 1 9.31 Unknown 8
3.1+7.10 Red Leaf 1 Black Support 2 9.36 Unknown 2
3.1+7.10 Red Support 2 Black Leaf 1 9.39 Unknown 4
3.1+7.10 Red Support 2 Black Support 2 9.40 Unknown 1
3.1+7.10 Red Leaf 1 Black Support 5 9.45 Unknown 2
3.1+7.10 Red Support 2 Black Support 5 9.46 Unknown 1
3.1+7.11 Red Leaf 1 Black Leaf 1 9.32 Unknown 12
3.1+7.11 Red Support 2 Black Leaf 1 9.41 Unknown 6
3.1+7.11 Red Leaf 1 Black Support 6 9.46 Unknown 2
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RAG DATA FROM DATA FROM
Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total

Merged Color Type (v) Color Type (v) Graph Color Graphs

3.1+7.11 Red Support 2 Black Support 6 9.47 Unknown 1
3.1+7.2 Red Support 2 Red Support 3 9.15 Unknown 1
3.1+7.2 Red Leaf 1 Red Internal 2 9.17 Unknown 2
3.1+7.2 Red Leaf 1 Red Leaf 1 9.2 Unknown 2
3.1+7.2 Red Leaf 1 Red Support 3 9.21 Unknown 2
3.1+7.2 Red Support 2 Red Internal 2 9.22 Unknown 1
3.1+7.2 Red Leaf 1 Red Internal 2 9.26 Unknown 2
3.1+7.2 Red Support 2 Red Leaf 1 9.3 Unknown 1
3.1+7.2 Red Support 2 Red Internal 2 9.44 Unknown 1
3.1+7.2 Red Leaf 1 Red Leaf 1 9.6 Red 4
3.1+7.2 Red Leaf 1 Red Support 2 9.7 Unknown 2
3.1+7.2 Red Support 2 Red Leaf 1 9.8 Unknown 2
3.1+7.2 Red Support 2 Red Support 2 9.9 Unknown 1
3.1+7.3 Red Support 2 Red Leaf 1 9.10 Unknown 1
3.1+7.3 Red Leaf 1 Red Support 2 9.12 Unknown 2
3.1+7.3 Red Leaf 1 Red Support 2 9.14 Unknown 2
3.1+7.3 Red Support 2 Red Support 2 9.16 Unknown 1
3.1+7.3 Red Leaf 1 Red Leaf 1 9.18 Unknown 2
3.1+7.3 Red Support 2 Red Support 2 9.20 Unknown 1
3.1+7.3 Red Support 2 Red Leaf 1 9.26 Unknown 1
3.1+7.3 Red Leaf 1 Red Internal 2 9.27 Red 2
3.1+7.3 Red Leaf 1 Red Internal 3 9.29 Unknown 2
3.1+7.3 Red Support 2 Red Internal 2 9.30 Unknown 1
3.1+7.3 Red Support 2 Red Internal 3 9.31 Unknown 1
3.1+7.3 Red Leaf 1 Red Leaf 1 9.4 Unknown 2
3.1+7.3 Red Leaf 1 Red Leaf 1 9.6 Red 2
3.1+7.3 Red Support 2 Red Leaf 1 9.7 Unknown 1
3.1+7.4 Red Leaf 1 Blue Leaf 1 9.10 Unknown 8
3.1+7.4 Red Support 2 Blue Leaf 1 9.13 Red 4
3.1+7.4 Red Leaf 1 Blue Support 3 9.22 Unknown 4
3.1+7.4 Red Support 2 Blue Support 3 9.25 Unknown 2
3.1+7.4 Red Leaf 1 Blue Internal 2 9.33 Unknown 2
3.1+7.4 Red Support 2 Blue Internal 2 9.35 Unknown 1
3.1+7.5 Red Leaf 1 Blue Support 2 9.16 Unknown 2
3.1+7.5 Red Leaf 1 Blue Leaf 1 9.19 Unknown 6
3.1+7.5 Red Support 2 Blue Support 2 9.23 Unknown 1
3.1+7.5 Red Leaf 1 Blue Support 4 9.31 Unknown 2
3.1+7.5 Red Support 2 Blue Support 4 9.32 Unknown 1
3.1+7.5 Red Leaf 1 Blue Internal 2 9.34 Unknown 2
3.1+7.5 Red Support 2 Blue Internal 2 9.37 Unknown 1
3.1+7.5 Red Support 2 Blue Leaf 1 9.44 Unknown 3
3.1+7.5 Red Leaf 1 Blue Leaf 1 9.5 Unknown 2
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RAG DATA FROM DATA FROM
Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total

Merged Color Type (v) Color Type (v) Graph Color Graphs

3.1+7.5 Red Support 2 Blue Leaf 1 9.9 Unknown 1
3.1+7.6 Red Support 2 Red Leaf 1 9.13 Red 1
3.1+7.6 Red Leaf 1 Red Leaf 1 9.14 Unknown 4
3.1+7.6 Red Leaf 1 Red Support 2 9.24 Unknown 2
3.1+7.6 Red Support 2 Red Leaf 1 9.24 Unknown 2
3.1+7.6 Red Leaf 1 Red Leaf 1 9.26 Unknown 2
3.1+7.6 Red Support 2 Red Support 2 9.28 Unknown 1
3.1+7.6 Red Leaf 1 Red Support 3 9.30 Unknown 2
3.1+7.6 Red Support 2 Red Leaf 1 9.33 Unknown 1
3.1+7.6 Red Support 2 Red Support 3 9.36 Unknown 1
3.1+7.6 Red Leaf 1 Red Internal 3 9.38 Unknown 2
3.1+7.6 Red Support 2 Red Internal 3 9.39 Unknown 1
3.1+7.6 Red Leaf 1 Red Leaf 1 9.8 Unknown 2
3.1+7.7 Red Leaf 1 Blue Leaf 1 9.21 Unknown 4
3.1+7.7 Red Support 2 Blue Leaf 1 9.22 Unknown 2
3.1+7.7 Red Leaf 1 Blue Leaf 1 9.29 Unknown 4
3.1+7.7 Red Leaf 1 Blue Support 2 9.30 Unknown 4
3.1+7.7 Red Support 2 Blue Support 2 9.37 Unknown 2
3.1+7.7 Red Support 2 Blue Leaf 1 9.38 Unknown 2
3.1+7.7 Red Leaf 1 Blue Internal 4 9.43 Unknown 2
3.1+7.7 Red Support 2 Blue Internal 3 9.45 Unknown 1
3.1+7.8 Red Leaf 1 Blue Leaf 1 9.11 Red 6
3.1+7.8 Red Support 2 Blue Leaf 1 9.17 Unknown 3
3.1+7.8 Red Leaf 1 Blue Support 2 9.27 Red 6
3.1+7.8 Red Support 2 Blue Support 2 9.34 Unknown 3
3.1+7.8 Red Leaf 1 Blue Internal 3 9.42 Unknown 2
3.1+7.8 Red Support 2 Blue Internal 3 9.43 Unknown 1
3.1+7.9 Red Leaf 1 Black Leaf 1 9.20 Unknown 4
3.1+7.9 Red Support 2 Black Leaf 1 9.28 Unknown 2
3.1+7.9 Red Support 2 Black Leaf 1 9.35 Unknown 3
3.1+7.9 Red Leaf 1 Black Support 3 9.37 Unknown 2
3.1+7.9 Red Leaf 1 Black Support 4 9.39 Unknown 2
3.1+7.9 Red Support 2 Black Support 3 9.40 Unknown 1
3.1+7.9 Red Support 2 Black Support 3 9.41 Unknown 1
3.1+7.9 Red Leaf 1 Black Leaf 1 9.44 Unknown 6
4.1+4.1 Red Leaf 1 Red Leaf 1 7.1 Red 4
4.1+4.1 Red Leaf 1 Red Support 2 7.3 Red 8
4.1+4.1 Red Support 2 Red Support 2 7.7 Blue 4
4.1+4.2 Red Support 2 Blue Support 3 7.10 Black 2
4.1+4.2 Red Leaf 1 Blue Leaf 1 7.2 Red 6
4.1+4.2 Red Leaf 1 Blue Support 3 7.5 Blue 2
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Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total

Merged Color Type (v) Color Type (v) Graph Color Graphs
4.1+4.2 Red Support 2 Blue Leaf 1 7.6 Red 6
4.1+5.1 Red Leaf 1 Red Leaf 1 8.1 Blue 4
4.1+5.1 Red Leaf 1 Red Internal 2 8.10 Red 2
4.1+5.1 Red Support 2 Red Support 2 8.12 Blue 4
4.1+5.1 Red Support 2 Red Internal 2 8.20 Red 2
4.1+5.1 Red Support 2 Red Leaf 1 8.3 Red 4
4.1+5.1 Red Leaf 1 Red Support 2 8.5 Red 4
4.1+5.2 Red Support 2 Red Support 3 8.12 Blue 2
4.1+5.2 Red Support 2 Red Support 2 8.17 Black 2
4.1+5.2 Red Leaf 1 Red Leaf 1 8.2 Blue 2
4.1+5.2 Red Support 2 Red Support 3 8.21 Black 2
4.1+5.2 Red Leaf 1 Red Leaf 1 8.3 Red 4
4.1+5.2 Red Support 2 Red Leaf 1 8.7 Red 2
4.1+5.2 Red Leaf 1 Red Support 2 8.8 Blue 2
4.1+5.2 Red Support 2 Red Leaf 1 8. 11 Red 4
4.1+5.3 Red Leaf 1 Red Support 4 8.14 Black 2
4.1+5.3 Red Support 2 Red Leaf 1 8.15 Red 8
4.1+5.3 Red Support 2 Red Support 4 8.22 Black 2
4.1+5.3 Red Leaf 1 Red Leaf 1 8.6 Blue 8
4.1+6.1 Red Leaf 1 Blue Leaf 1 9.1 Unknown 4
4.1+6.1 Red Leaf 1 Blue Internal 2 9.18 Unknown 4
4.1+6.1 Red Support 2 Blue Support 2 9.21 Unknown 4
4.1+6.1 Red Support 2 Blue Internal 2 9.29 Unknown 4
4.1+6.1 Red Support 2 Blue Leaf 1 9.4 Unknown 4
4.1+6.1 Red Leaf 1 Blue Support 2 9.6 Red 4
4.1+6.2 Red Leaf 1 Red Support 2 9.10 Unknown 2
4.1+6.2 Red Support 2 Red Leaf 1 9.14 Unknown 4
4.1+6.2 Red Leaf 1 Red Support 3 9.19 Unknown 2
4.1+6.2 Red Leaf 1 Red Leaf 1 9.2 Unknown 2
4.1+6.2 Red Support 2 Red Support 2 9.22 Unknown 2
4.1+6.2 Red Leaf 1 Red Internal 2 9.26 Unknown 2
4.1+6.2 Red Support 2 Red Support 3 9.31 Unknown 2
4.1+6.2 Red Support 2 Red Internal 2 9.38 Unknown 2
4.1+6.2 Red Leaf 1 Red Leaf 1 9.6 Red 4
4.1+6.2 Red Support 2 Red Leaf 1 9.7 Unknown 2
4.1+6.3 Red Leaf 1 Blue Leaf 1 9.11 Red 2
4.1+6.3 Red Support 2 Blue Leaf 1 9.12 Unknown 4
4.1+6.3 Red Leaf 1 Blue Support 2 9.14 Unknown 4
4.1+6.3 Red Support 2 Blue Leaf 1 9.27 Red 2
4.1+6.3 Red Leaf 1 Blue Support 3 9.29 Unknown 2
4.1+6.3 Red Support 2 Blue Support 2 9.30 Unknown 4

51



RAG DATA FROM DATA FROM
Trees THE 1st TREE THE 2nd TREE RESULTS
to be Tree Vert. deg Tree Vert. deg RAG Tree Total
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4.1+6.3 Red Leaf 1 Blue Leaf 1 9.4 Unknown 4
4.1+6.3 Red Support 2 Blue Support 3 9.43 Unknown 2
4.1+6.4 Red Support 2 Blue Leaf 1 9.24 Unknown 8
4.1+6.4 Red Support 2 Blue Support 3 9.39 Unknown 4
4.1+6.4 Red Leaf 1 Blue Support 3 9.44 Unknown 4
4.1+6.4 Red Leaf 1 Blue Leaf 1 9.8 Unknown 8
4.1+6.5 Red Support 2 Black Leaf 1 9.16 Unknown 2
4.1+6.5 Red Leaf 1 Black Support 2 9.20 Unknown 2
4.1+6.5 Red Leaf 1 Black Leaf 1 9.21 Unknown 6
4.1+6.5 Red Support 2 Black Leaf 1 9.30 Unknown 6
4.1+6.5 Red Leaf 1 Black Support 4 9.31 Unknown 2
4.1+6.5 Red Support 2 Black Support 2 9.37 Unknown 2
4.1+6.5 Red Support 2 Black Support 4 9.45 Unknown 2
4.1+6.5 Red Leaf 1 Black Leaf 1 9.5 Unknown 2
4.1+6.6 Red Leaf 1 Red Leaf 1 9.15 Unknown 10
4.1+6.6 Red Leaf 1 Red Support 5 9.32 Unknown 2
4.1+6.6 Red Support 2 Red Leaf 1 9.36 Unknown 10
4.1+6.6 Red Support 2 Red Support 5 9.46 Unknown 2
4.2+4.2 Blue Support 3 Blue Support 3 7.11 Black 1
4.2+4.2 Blue Leaf 1 Blue Leaf 1 7.4 Blue 9
4.2+4.2 Blue Leaf 1 Blue Support 3 7.9 Black 6
4.2+5.1 Blue Support 3 Red Support 2 8.14 Black 2
4.2+5.1 Blue Leaf 1 Red Internal 2 8.16 Blue 3
4.2+5.1 Blue Leaf 1 Red Leaf 1 8.2 Blue 6
4.2+5.1 Blue Support 3 Red Internal 2 8.21 Black 1
4.2+5.1 Blue Support 3 Red Leaf 1 8.6 Blue 2
4.2+5.1 Blue Leaf 1 Red Support 2 8.8 Blue 6
4.2+5.2 Blue Leaf 1 Red Support 2 8.13 Blue 3
4.2+5.2 Blue Support 3 Red Leaf 1 8.15 Red 2
4.2+5.2 Blue Leaf 1 Red Support 3 8.17 Black 3
4.2+5.2 Blue Support 3 Red Support 2 8.19 Black 1
4.2+5.2 Blue Support 3 Red Support 3 8.22 Black 1
4.2+5.2 Blue Leaf 1 Red Leaf 1 8.4 Blue 3
4.2+5.2 Blue Leaf 1 Red Leaf 1 8.7 Red 6
4.2+5.2 Blue Support 3 Red Leaf 1 8.9 Black 1
4.2+5.3 Blue Support 3 Red Leaf 1 8.18 Black 4
4.2+5.3 Blue Leaf 1 Red Support 4 8.19 Black 3
4.2+5.3 Blue Support 3 Red Support 4 8.23 Black 1
4.2+5.3 Blue Leaf 1 Red Leaf 1 8.9 Black 12
4.2+6.1 Blue Support 3 Blue Support 2 9.15 Unknown 2
4.2+6.1 Blue Leaf 1 Blue Leaf 1 9.2 Unknown 6
4.2+6.1 Blue Leaf 1 Blue Internal 2 9.26 Unknown 6
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4.2+6.1 Blue Support 3 Blue Internal 2 9.31 Unknown 2
4.2+6.1 Blue Support 3 Blue Leaf 1 9.5 Unknown 2
4.2+6.1 Blue Leaf 1 Blue Support 2 9.8 Unknown 6
4.2+6.2 Blue Leaf 1 Red Leaf 1 9.10 Unknown 6
4.2+6.2 Blue Leaf 1 Red Support 2 9.13 Red 3
4.2+6.2 Blue Support 3 Red Leaf 1 9.20 Unknown 2
4.2+6.2 Blue Support 3 Red Support 2 9.25 Unknown 1
4.2+6.2 Blue Leaf 1 Red Leaf 1 9.3 Unknown 3
4.2+6.2 Blue Support 3 Red Support 3 9.32 Unknown 1
4.2+6.2 Blue Leaf 1 Red Internal 2 9.33 Unknown 3
4.2+6.2 Blue Support 3 Red Internal 2 9.39 Unknown 1
4.2+6.2 Blue Leaf 1 Red Support 3 9.44 Unknown 3
4.2+6.2 Blue Support 3 Red Leaf 1 9.9 Unknown 1
4.2+6.3 Blue Support 3 Blue Leaf 1 9.16 Unknown 2
4.2+6.3 Blue Leaf 1 Blue Leaf 1 9.17 Unknown 3
4.2+6.3 Blue Leaf 1 Blue Support 2 9.24 Unknown 6
4.2+6.3 Blue Support 3 Blue Leaf 1 9.34 Unknown 1
4.2+6.3 Blue Support 3 Blue Support 2 9.36 Unknown 2
4.2+6.3 Blue Leaf 1 Blue Internal 3 9.38 Unknown 3
4.2+6.3 Blue Support 3 Blue Internal 3 9.45 Unknown 1
4.2+6.3 Blue Leaf 1 Blue Leaf 1 9.7 Unknown 6
4.2+6.4 Blue Leaf 1 Blue Leaf 1 9.13 Red 12
4.2+6.4 Blue Support 3 Blue Leaf 1 9.28 Unknown 4
4.2+6.4 Blue Leaf 1 Blue Support 3 9.35 Unknown 6
4.2+6.4 Blue Support 3 Blue Support 3 9.41 Unknown 2
4.2+6.5 Blue leaf 1 Black Leaf 1 9.22 Unknown 9
4.2+6.5 Blue Support 3 Black Leaf 1 9.23 Unknown 1
4.2+6.5 Blue leaf 1 Black Support 2 9.28 Unknown 3
4.2+6.5 Blue Support 3 Black Leaf 1 9.37 Unknown 3
4.2+6.5 Blue Leaf 1 Black Support 4 9.39 Unknown 3
4.2+6.5 Blue Support 3 Black Support 2 9.40 Unknown 1
4.2+6.5 Blue Support 3 Black Support 4 9.46 Unknown 1
4.2+6.5 Blue leaf 1 Black Leaf 1 9.9 Unknown 3
4.2+6.6 Blue Leaf 1 Red Leaf 1 9.25 Unknown 15
4.2+6.6 Blue Support 3 Red Leaf 1 9.40 Unknown 5
4.2+6.6 Blue Leaf 1 Red Support 5 9.41 Unknown 3
4.2+6.6 Blue Support 3 Red Support 5 9.47 Unknown 1
5.1+5.1 Red leaf 1 Red Leaf 1 9.1 Unknown 4
5.1+5.1 Red Leaf 1 Red Support 2 9.6 Red 8
5.1+5.1 Red Support 2 Red Support 2 9.19 Unknown 4
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5.1+5.1 Red leaf 1 Red Internal 2 9.11 Red 4
5.1+5.1 Red Leaf 1 Red Internal 2 9.29 Unknown 4
5.1+5.1 Red Internal 2 Red Internal 2 9.42 Unknown 1
5.1+5.2 Red Support 2 Red Leaf 1 9.10 Unknown 2
5.1+5.2 Red Support 2 Red Leaf 1 9.14 Unknown 4
5.1+5.2 Red Internal 2 Red Leaf 1 9.17 Unknown 1
5.1+5.2 Red Leaf 1 Red Leaf 1 9.2 Unknown 2
5.1+5.2 Red Leaf 1 Red Support 3 9.21 Unknown 2
5.1+5.2 Red Internal 2 Red Leaf 1 9.27 Red 2
5.1+5.2 Red Support 2 Red Support 3 9.31 Unknown 2
5.1+5.2 Red Internal 2 Red Support 2 9.38 Unknown 1
5.1+5.2 Red Leaf 1 Red Leaf 1 9.4 Unknown 4
5.1+5.2 Red Internal 2 Red Support 3 9.43 Unknown 1
5.1+5.2 Red Support 2 Red Support 2 9.44 Unknown 2
5.1+5.2 Red Leaf 1 Red Support 2 9.8 Unknown 2
5.1+5.3 Red Leaf 1 Red Support 4 9.15 Unknown 2
5.1+5.3 Red Support 2 Red Leaf 1 9.20 Unknown 8
5.1+5.3 Red Support 2 Red Support 4 9.32 Unknown 2
5.1+5.3 Red Internal 2 Red Leaf 1 9.34 Unknown 4
5.1+5.3 Red Internal 2 Red Support 4 9.45 Unknown 1
5.1+5.3 Red Leaf 1 Red Leaf 1 9.5 Unknown 8
5.2+5.2 Red Leaf 1 Red Leaf 1 9.12 Unknown 4
5.2+5.2 Red Support 2 Red Leaf 1 9.13 Red 2
5.2+5.2 Red Support 3 Red Leaf 1 9.22 Unknown 2
5.2+5.2 Red Leaf 1 Red Support 2 9.24 Unknown 4
5.2+5.2 Red Leaf 1 Red Leaf 1 9.3 Unknown 1
5.2+5.2 Red Leaf 1 Red Support 3 9.30 Unknown 4
5.2+5.2 Red Support 2 Red Support 2 9.35 Unknown 1
5.2+5.2 Red Support 3 Red Support 2 9.39 Unknown 2
5.2+5.2 Red Support 3 Red Support 3 9.45 Unknown 1
5.2+5.2 Red Leaf 1 Red Leaf 1 9.7 Unknown 4
5.2+5.3 Red Leaf 1 Red Leaf 1 9.16 Unknown 8
5.2+5.3 Red Leaf 1 Red Support 4 9.25 Unknown 1
5.2+5.3 Red Support 2 Red Leaf 1 9.28 Unknown 4
5.2+5.3 Red Leaf 1 Red Support 4 9.36 Unknown 2
5.2+5.3 Red Support 3 Red Leaf 1 9.37 Unknown 4
5.2+5.3 Red Support 2 Red Support 4 9.41 Unknown 1
5.2+5.3 Red Support 3 Red Support 4 9.46 Unknown 1
5.2+5.3 Red Leaf 1 Red Leaf 1 9.9 Unknown 4
5.3+5.3 Red Leaf 1 Red Leaf 1 9.23 Unknown 16
5.3+5.3 Red Support 4 Red Leaf 1 Unknown 8
5.3+5.3 Red Support 4 Red Support 4 9.47 Unknown 1
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