
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

12-2012

Connotational Subtyping and Runtime Class Mutability in Ruby Connotational Subtyping and Runtime Class Mutability in Ruby

Ian S. Dillon
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Dillon, Ian S., "Connotational Subtyping and Runtime Class Mutability in Ruby" (2012). Electronic Theses
and Dissertations. Paper 1497. https://dc.etsu.edu/etd/1497

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F1497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=dc.etsu.edu%2Fetd%2F1497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Connotational Subtyping and Runtime Class Mutability in Ruby

A thesis

presented to

the faculty of the Department of Computer and Information Sciences

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer Science

by

Ian Dillon

December 2012

Dr. Phil Pfeiffer, Chair

Dr. Martin Barrett

Dr. Christopher Wallace

Keywords: ruby, type systems, class mutability

ABSTRACT

Connotational Subtyping and Runtime Class Mutability in Ruby

by

Ian Dillon

Connotational subtyping is an approach to typing that allows an object’s type to change

dynamically, following changes to the object’s internal state. This allows for a more precise

representation of a problem domain with logical objects that have variable behavior. Two

approaches to supporting connotational subtyping in the Ruby programming language were

implemented: a language-level implementation using pure Ruby and a modification to the

Ruby 1.8.7 interpreter. While neither implementation was wholly successful the language-

level implementation created complications with reflective language features like self and

super and, while Ruby 1.8.7 has been obsoleted by Ruby 1.9 (YARV), the results suggest that

Chambers-style, predicate-based runtime type inference could be incorporated into Ruby

with only some reduced interpreter performance.

2

ACKNOWLEDGMENTS

My deepest gratitude to Dr. Donald Sanderson, who introduced me to my subject and

whose guidance helped me through the early, faltering steps of my thesis work. The university

is poorer for his passing.

3

CONTENTS

ABSTRACT . 2

ACKNOWLEDGMENTS . 3

1 INTRODUCTION . 6

1.1 Connotational Subtyping: Rationale 7

1.2 Connotational Subtyping: Difficulties 9

1.3 Implementing Connotational Subtyping in Ruby 10

2 BACKGROUND . 11

2.1 Object-Oriented Programming . 11

2.2 Type . 11

2.2.1 Type Proper . 11

2.2.2 Type In Object-Oriented Type Systems 12

2.3 Runtime Class Mutability . 13

2.3.1 Definition . 13

2.3.2 Mutability Proper . 13

2.3.3 Object Evolution . 14

2.3.4 Predicate Classes . 15

2.4 The Ruby Language . 15

2.5 An Example . 16

3 METHODOLOGY . 19

3.1 Goals . 19

3.2 Experimental Design . 19

3.3 Implementation . 19

4

3.3.1 Requirements . 19

3.3.2 Realization . 20

4 RESULTS . 26

4.1 Correctness . 26

4.2 Performance . 30

5 ANALYSIS . 34

5.1 Correctness . 34

5.2 Performance . 34

5.3 Ease of Use . 35

5.4 Applicability to Other Contexts . 37

5.4.1 Ruby 1.9 . 37

5.4.2 Other Languages . 37

6 CONCLUSION . 40

BIBLIOGRAPHY . 41

APPENDICES . 44

Appendix A: Ruby Interpreter Benchmarks 44

Appendix B: Ruby 1.8.7 ConnSub Patch . 46

VITA . 47

5

1 INTRODUCTION

A common strategy for software system construction treats software as a model of a

problem domain that characterizes the domain’s entities and their relationships [10]. One

such strategy, object-oriented programming (OOP), treats a domain as a collection of logical

objects with interfaces that define the behaviors that other objects may invoke. The OOP

approach supports the use of intrinsic and extrinsic strategies for modeling behavior. In-

trinsic strategies model behaviors as properties of an object’s type, otherwise known as is-a

relationships. Extrinsic strategies model behaviors using auxiliary objects that act on behalf

of a first object, otherwise known as has-a relationships. Is-a and has-a relationships are

used routinely to model problem domains, often in the same system. Their use, moreover,

should be indistinguishable to an observer of a properly implemented system.

Even so, has-a and is-a relationships have distinct properties from the standpoint of lan-

guage and systems implementation. Historically, is-a relationships for objects with changing

behaviors have been avoided by designers of mainstream programming languages. Main-

stream languages like C++, C#, and Java simplify the management of is-a relationships by

assigning static types to language objects, thereby precluding the need for type systems that

model changing behaviors. For such languages, multiple approaches have been devised for

using has-a relationships to approximate dynamic is-a relationships. One such approach, the

Strategy design pattern, models changing behaviors by acquiring and/or dropping references

to a set of auxiliary objects, each of which implements one of the fluctuating behaviors [12].

A second, the State design pattern, models changes of behavior with a state machine, with

each set of expressed behaviors implemented as a distinct class. These state classes, which

are referenced by the original changing object, perform the expected behavior based on the

6

referencing object’s internal state [12]. Such approaches, while serviceable, yield object mod-

els that obscure the domain’s relationships, along with a type system that can’t assure the

type safety of these dynamic changes in object behavior.

These concerns about the limitations of has-a relationships has fostered extensive research

into type systems that allow objects’ types to vary at runtime. This includes the languages

Fickle, Cecil, e , EXPRESS, and modifications to the Java runtime to support forms of object

evolution. This thesis investigates the practicality of applying such research to a popular

contemporary language, Ruby.

1.1 Connotational Subtyping: Rationale

Connotational subtyping is an approach to typing that allows an object’s class to be

reclassified dynamically, following changes to the object’s internal state. In connotational

subtyping, an object with varying behaviors can maintain its identity throughout a computa-

tion while assuming the type most appropriate for the object’s current state. These changes

in type can include changes to that object’s external interface and properties: a capability

that yields a more precise characterization of objects with changing behaviors than can be

obtained with static types, as in languages like C++ and Java. Full implementations of con-

notational subtyping also detect changes in object type and check the validity of operations

on objects automatically, relieving programmers of having to code these checks by hand or

risk doing without.

To appreciate the benefits of connotational subtyping, consider its potential application

in a drawing package that supports polygon objects with a variable number of edges. Model-

ing polygons as subclasses of a Polygon class with edge-count-based subtypes (e.g., triangle,

rectangle, pentagon) would allow for polygon objects whose area methods changed automat-

7

ically as their number of sides changed. The resulting class structure would reflect the actual

taxonomy of polygons, in terms of the relationship between type and method of area com-

putation. This close correspondence between object type and object behavior is especially

useful in languages that support reflection, as a polygon’s current behavior could be detected

by inspecting its external interface. By contrast, a typical design for this package in stati-

cally typed languages would use has-a relationships to approximate these runtime changes

in object type. An arbitrary set of characteristics would first be associated with a “base-

line” abstract object that models each kind of polygons that a user could create. Changes

in object type would be modeled by adding, subtracting, and/or modifying behaviors or

characteristics that vary according to that object’s states: typically, by either

• defining a concrete strategy class for each area method and manually updating ref-

erences to the appropriate area classes in a baseline shape class (cf. [12], Strategy

pattern) or,

• defining a set of state classes for each shape and allowing a base polygon class to select

which to invoke, based on its current number of edges (cf. [12], State pattern).

This has-a-based approach sacrifices the ability to define precise, type-based characteriza-

tions relationships among polygons: i.e., one where Square objects are subtypes of Rect-

angle objects and Triangle objects can assume one of five subtypes, corresponding to the

five different types of triangles.

Design patterns like Strategy and State become unnecessary under connotational sub-

typing. With State, for example, a state designation could be replaced by a class predicate

method that determines an object’s class from that object’s state at the point of method

invocation. In effect, the State pattern becomes a feature of the model’s design. The same

8

is true for Liskov’s abstract devices [18], which rely on exception signaling to respond to

non-implemented behaviors.

Connotational subtyping can also provide a clearer characterization of which guard

clauses and sanity checks to enforce at key points in an object’s lifetime. Instead of associat-

ing type-related checks with hand-coded assessments of object state, these checks could be

associated with those types to which they apply. An inferencing algorithm for determining

an object’s current subtype could then apply the checks when determining an object’s type.

This centralizes the implementation of the checks and can reduce redundant code.

1.2 Connotational Subtyping: Difficulties

One difficulty in connotational subtyping is maintaining a computation’s type safety.

Implementations of statically typed systems typically check that an object’s type in context

C is a valid subtype of a type that is permissible at C. Such checks are facilitated by requiring

every object to have exactly one type throughout a computation. In connotational subtyping,

where an object’s type can vary, the types that an expression’s objects will assume relative

to one another may be difficult or impossible to determine at compile time. For this reason,

implementations of connotational subtyping typically defer checks of dynamically varying

references to run time. Similar considerations hold for method invocation, insofar as type

systems must ensure that each object can respond to every type of message it receives.

Other difficulties with changing an object’s class involve class invariants. When an ob-

ject’s class changes, its attributes may need to change to meet the new class’s requirements.

An implementation must manage these changes in attributes. This could include initializing

newly added data items, removing access to deleted items, and transforming items whose

representation and/or value needs to change.

9

1.3 Implementing Connotational Subtyping in Ruby

This thesis explored strategies for implementing connotational subtyping in the Ruby pro-

gramming language. Ruby is a dynamically typed, interpreted object-oriented programming

language with many similarities to Smalltalk [2]. Ruby was selected due to its popularity,

its open source interpreter, its extensive support for runtime metaprogramming, and its

consistent object model.

Two strategies were explored for implementing connotational subtyping in Ruby. One,

a language-level implementation, leveraged Ruby’s dynamic programming capabilities and

the Ruby/DL extension library with an unmodified Ruby interpreter. This language-level

implementation should work with any recent, unmodified Ruby interpreter. The other strat-

egy modified the Ruby 1.8.7-p174 interpreter to directly support connotational subtyping as

a feature of its object model.

Both implementations succeeded, for the most part. The language level implementation

introduced complications with language features like self and super due to the mechanics

of the metaprogramming techniques used.

Both implementations also reduced interpreter performance, with the interpreter level

outperforming the language level implementation. In hindsight, performance could have

been improved with the use of better implementation strategies: i.e., by using a different

class manipulation method for the language-level implementation and by making dynamic

typing optional on a per-class basis for the interpreter-level implementation, as was done for

the language level implementation.

10

2 BACKGROUND

2.1 Object-Oriented Programming

Object-oriented programming is a programming paradigm that uses objects as the pri-

mary units of computation. These objects are instances of classes, which define its objects’

component elements (attributes), including those elements that implement its behaviors

(methods) along with its externally accessible attributes (interface). Classes may inherit

part of their definition from other classes, allowing for polymorphism. Each object in the

program’s runtime has its own state, identity, behaviors, interface, and lifespan. [3] [21]

2.2 Type

2.2.1 Type Proper

In programming languages, a type is a set of shared characteristics for one of a language’s

entities. These characteristics, which commonly include shared operators and attributes, help

to determine what combinations of entities are valid for a computation’s expressions.

The framework a language implements to define types and identify appropriate operations

for types is called a type system. Determining if the interactions between types within a

program are valid is called type checking.

Type systems and type checking algorithms are typically classified as static or dynamic. A

static type system determines a type for every expression through a compile-time analysis of a

program’s properties. Such an analysis is referred to as a static analysis of a program’s types.

A dynamic type system, by contrast, determines the types of a computation’s expressions

and checks them for correctness at runtime. In a typical dynamically typed system, values

are typed but identifiers are untyped: i.e., identifiers may refer to values of differing types

11

throughout the variable’s lifespan. [5]

2.2.2 Type In Object-Oriented Type Systems

Types and classes are related but distinct concepts. In object-oriented programming

(OOP), a class is a factory for instantiating a family of related objects, each of which has a

class-specified state, identity, interface, behavior, and lifetime. A type describes a common

set of behaviors and characteristics that may be shared by multiple entities, including classes.

In most OOP languages type and class are closely related, yet distinct. In classic type

systems, an object’s class is static but its type may change depending on the context of use.

An object may be considered a member of any type for which the object’s class satisfies the

defined characteristics of that type.

A subtype is a type whose behaviors and characteristics are explicitly related to those

of an existing type, called the subtype’s supertype. Typically, subtypes are created from

their supertypes by incrementally changing the supertype’s behaviors or characteristics: i..e,

by adding attributes or deleting or modifying existing attributes. In OOP languages, an

object’s type and applicable supertypes are normally denotational, since an object’s class is

declared at the point of its instantiation. Connotational subtyping differs from denotational

typing by allowing for the dynamic recognition of an object’s class relative to the context in

which that object is used.

12

2.3 Runtime Class Mutability

2.3.1 Definition

The core mechanism for connotational subtyping is runtime class mutability : the ability

for an object’s declared class to change during execution while the object retains its identity.

2.3.2 Mutability Proper

Most languages and systems that support runtime class mutability do so by directly

manipulating an object’s internal class reference. It is this manipulation that introduces the

difficulties of ensuring type safety and maintaining class invariants.

Runtime class mutability, while uncommon in major programming languages, is directly

supported in two languages: the Common Lisp Object System (CLOS) and Smalltalk. CLOS

supports runtime class mutability through the generic function change-class. This function

takes two parameters: an object and a class that the object is to become. The change opera-

tion occurs “in place”, meaning all references to that object remain unchanged, as does that

object’s location in memory. The change-class function retains any attributes in common

between the instance’s old class and new class and initializes any new attributes defined in

new class. CLOS provides an optional method, update-instance-for-different-class,

for changing how these attributes are initialized. The CLOS runtime system invokes this

method on the modified object before returning control to the initial change-class point of

invocation. CLOS, however, leaves it to the developer to ensure that the object can respond

to all method calls supported by that object’s new type [23].

Smalltalk supports runtime class mutability through its become:otherObject function.

Smalltalk objects, however, lose their identity when modified. A call of foo become:bar

13

changes all references to foo in the runtime environment to references to bar. This gives the

appearance of a class change in those contexts that held a reference to foo. As per usual in

Smalltalk, the developer must ensure type safety by ensuring the new object can handle any

future messages [13].

Neither Smalltalk nor CLOS restrict the target class or target object. Neither language,

moreover, attempts to ensure the change operation’s type safety beyond the measures pro-

vided by the language’s normal safeguards.

2.3.3 Object Evolution

Some extensions to existing object oriented languages support safe runtime class muta-

bility by restricting a class change’s target types to subclasses of the object’s current class.

This helps ensure type safety by only extending the available methods and never removing

any methods from the object’s interface, as subclasses can only override inherited methods

or define new methods. This approach is generally called object evolution [7].

One such extension, Schlack’s evolveto [22], is implemented as an extension of the Java

Virtual Machine (JVM) that operates directly on objects. A second JVM-based system,

described in [19], alters class definitions at runtime instead of individual objects, mutating

all of a class’s instances at once. This dynamic classes system is also discussed in [15],

including concerns related to the granularity of class redefinition: i.e., which instances of the

changing class are affected.

Drossopoulou et al.’s Fickle language [8, 9] introduces a reclassification operation that

changes an object’s class membership while maintaining the object’s identity. Type safety is

maintained by supporting two separate class types: state classes, which may be targets for

reclassification, and root classes, the parent classes of all state classes. Root classes contain

14

all the attributes their state subclasses have in common.

For a more comprehensive discussion of object evolution, different types of object evolu-

tion, and potential implementation strategies, see [7].

2.3.4 Predicate Classes

The work most similar to connotational subtyping is Chambers’s predicate classes. Cham-

bers’s type system introduces a new class type that extends normal classes with a predicate

statement that characterizes objects from that class. Any group of predicate classes that is

a subclass of a normal class represents a subset of the instances of the superclass that satisfy

their individual predicate statements. As an instance of the common superclass changes

state throughout its lifespan, that object’s type changes to whatever predicate subclass is

best satisfied by that object’s predicate statement. Class membership changes, which oc-

cur without programmer intervention, are determined at runtime during method dispatch.

While an object may lose or gain methods and fields as its type changes, the changes are

restricted to the predicate subclasses of the object’s declared normal class [6].

2.4 The Ruby Language

Ruby is an object-oriented programming language developed by Yukihiro Matsumoto in

the mid-1990’s [2]. Its object model is similar to Smalltalk, in that all values are objects

and methods are invoked through message passing rather than function calls. Ruby allows

classes to handle runtime message passing errors by implementing method missing, similar

to Smalltalk’s doesNotUnderstand: method. The Ruby interpreter invokes method missing

when an object is passed a message to which it doesn’t respond. Classes in Ruby are “open”,

in that methods may be re-defined, added, or removed at any point after the class’s initial

15

declaration. This allows developers to add functionality to classes defined externally or in

base Ruby classes like String or Fixnum. Ruby also supports first-class functions through

its lambda construct. The combined use of Ruby’s reflective capabilities, open classes, and

first-class functions allows for flexible metaprogramming.

Ruby is dynamically typed, with all type checking performed at runtime. Ruby is duck

typed : i.e., an object that supports those methods that are invoked in a given context is

deemed valid for that context [24]. Calling an unsupported method results in a runtime error.

Ruby also supports type introspection, the ability to query an object’s type at runtime. This

allows a developer to ensure an object being acted upon supports a specific implementation

of a required method.

2.5 An Example

Gamma et al. describe the use of the State pattern to implement objects for manag-

ing TCP connections [12]. In their design a class, TCPConnection, models the connection

with a remote server as perceived by one of that server’s client processes (see Figure 1).

This TCPConnection class maintains a reference to a state class, TCPState in the example,

which defines an abstract interface for the allowable actions for the client-server connec-

tions current state. These actions are implemented in TCPState’s concrete subclasses: i.e.,

TCPEstablished, TCPListen, and TCPClosed. As the TCPConnection object’s state changes

during its lifespan, the TCPState reference held by TCPConnection is modified to reference

a new concrete state object. Gamma et al.’s design, shown in Figure 1, requires the TCP-

Connection class to define a method for every action that can be taken at any point during

a client-server session, including actions, like message sending, that are not permissible for

all states.

16

Acknowledge()
ActiveOpen()
Close()
PassiveOpen()
ProcessOctet()
Send()
Synchronize()

TCPConnection Acknowledge()
ActiveOpen()
Close()
PassiveOpen()
Send()
Synchronize()
Transmit()

ChangeState()

TCPState

Transmit()
Close()

TCPEstablished
Send()

TCPListen
ActiveOpen()
PassiveOpen()

TCPClosed

state

Figure 1: TCPConnection State Pattern Class Structure

In a connotational subtyping-based implementation of this functionality, the connection’s

state changes could be modeled directly and managed by the runtime system (see Figure 2).

This simplifies the class structure, eliminating the need for a separate TCPState class and

also the need to model all possible actions in the abstract TCPConnection class.

Acknowledge()
Synchronize()

TCPConnection

Transmit()
Close()

TCPEstablished
Send()

TCPListen
ActiveOpen()
PassiveOpen()

TCPClosed

Figure 2: TCPConnection Connotational Subtyping Class Structure

This example assumes that the class-determining code is present in the TCPConnection

17

parent class. Using connotational subtyping, an object would be initially created as an

instance of the base TCPConnection. As the object’s internal state changes, its class would

transition from TCPEstablished to TCPListen and, finally, to TCPClosed. Eliminating the

need for a common interface allows the connotationally subtyped object’s public interface

to model just the appropriate actions for the object’s current state. Thus, introspection and

reflection can be used to accurately determine an object’s current abilities and the object’s

implemented behaviors would be appropriate for its current state.

This use of connotational subtyping also eliminates a form of coupling that the State

pattern requires. In the State pattern example, the concrete state classes are aware of their

sibling classes as each class must handle state transitions through the ChangeClass method.

Since class transitions in the connotational subtyping example are automatic, the knowledge

of state transitions can be centralized in the class determination code in TCPConnection,

eliminating the need for concrete state subclasses to reference their sibling classes.

18

3 METHODOLOGY

3.1 Goals

This investigation sought to discover the difficulties and feasibility of implementing con-

notational subtyping in a modern object-oriented programming language. Starting with

an established programming language allowed the work to begin from an established base

and to observe how connotational subtyping would integrate into an existing object model.

This research’s criteria for evaluating this implementation are impact on interpreter perfor-

mance, correctness, ease of use, and implementation portability; i.e., the ability to reuse the

implementation with different architectures or versions of the language.

3.2 Experimental Design

The research was conducted by completing and benchmarking two different implemen-

tations of connotational subtyping. One, a language-level implementation, used standard

Ruby programming language constructs to implement connotational subtyping. The other,

an interpreter-level implementation, modified Ruby’s internals to incorporate connotational

subtyping into the language itself. The implementations were then benchmarked for perfor-

mance, reviewed for correctness, and evaluated for ease of use.

3.3 Implementation

3.3.1 Requirements

A programming language suitable for implementing connotational subtyping must be

dynamically typed, as the type of expressions involving connotationally subtyped object

may be indeterminate. This research also used a free, open-source implementation, due

19

to funding constraints. Other key requirements for language selection included support

for an interpreter for ease of manipulation and support for metaprogramming, due to the

experimental design, which involved language-level implementation and the need to support

runtime changes to classes.

3.3.2 Realization

Ruby was selected as the language for the thesis work because of its open source inter-

preter, extensive support for runtime metaprogramming, and consistent object model. The

1.8.7 version of Ruby was chosen for this thesis because of the simplified abstract syntax

tree (AST) evaluation used in Ruby 1.8.

Ruby 1.9 proved less well suited for this work, due to the introduction of the YARV (Yet

Another Ruby VM) byte-code compiler and virtual machine in the interpreter’s implemen-

tation. YARV complicated object manipulation by introducing bytecode compilation and

more complex strategies for AST evaluation, such as inline method caching.

3.3.2.1 Language Level

Connotational subtyping was implemented at the language level by first developing a

method for safely modifying an object’s declared class at runtime, then combining it with a

second method for intercepting method calls on objects. Intercepting method calls provides a

place to re-evaluate and change the receiving object’s class per the class determining method

of the connotationally typed receiver.

This work used the strategy for modifying an object’s class employed by Florian Groß’s

Evil Ruby project [14] and Jeremy Evans’s evilr extension [11]. Evil Ruby uses the Ruby/DL

extension, which provides access to the dynamic linker, to extend Ruby functionality by di-

20

rectly manipulating the running Ruby interpreter’s structures in memory. Evil Ruby extends

Ruby’s Object and Class classes to support the manipulation of object flags, modification

of inheritance chains, and instance variable sharing between two objects. The class-changing

ability is provided by extending the Object class with the class= method. Evilr replicates

the features of Evil Ruby, but is written as a C extension instead of pure Ruby.

Ruby’s internal object model is based on the three core structures RBasic, RObject, and

RClass:

struct RBasic {
unsigned long f l a g s ;
VALUE k l a s s ;

} ;

struct RObject {
struct RBasic ba s i c ;
struct s t t a b l e ∗ i v t b l ;

} ;

struct RClass {
struct RBasic ba s i c ;
struct s t t a b l e ∗ i v t b l ;
struct s t t a b l e ∗m tbl ;
VALUE super ;

} ;

Ruby uses variables of type VALUE, an alias for the unsigned long data type, to reference

internal structs. Ruby casts VALUE to the specific struct type as needed. Ruby’s RObject

struct is one of several built-in Ruby internal representations of user-created objects in Ruby.

RObject, like RString, RArray, RHash and other built-in Ruby primitive representations, has

its own internal type.

All of Ruby’s internal type structs contain an RBasic struct. This struct’s klass pointer

references the instance of the RClass struct that represents the object’s declared class. The

RClass struct’s super pointer, which references a class’s superclass, helps to define an ob-

21

ject’s inheritance hierarchy. These relationships are depicted in Figure 3, which shows the

in-memory struct relationships created by this example of a class declaration and instantia-

tion:

class ExClass
a t t r a c c e s s o r : name

end

e x o b j e c t = ExClass . new

ex_object <RObject>

iv_table

flags
RBasic

klass

Object <RClass>

iv_table

flags
RBasic

klass

m_table
super

ExClass <RClass>

iv_table

flags
RBasic

klass

m_table
super

Figure 3: RObject and RClass in Memory

Evil Ruby and evilr modify an object’s class at runtime by changing the klass pointer to

reference the RClass of another class, with some restrictions. Ruby uses internal type flags

to identify built-in types like String, Hash, and Array, each of which has a distinct internal

struct. Ruby treats these base types as mutually incompatible, restricting class changes to

classes with the same internal struct. For example, an object with a class derived from

String may not change to Hash because the missing internal RHash struct would cause a

segmentation fault on the next attempted access.

Ruby metaprogramming techniques were used to intercept method calls on connota-

22

tionally typed objects. Class declarations for connotationally typed classes were augmented

with a module, ConnotationalSubtyping, that intercepts and alters the definitions of newly

defined methods as those methods are added to a class’s definition. The ConnotationalSub-

typing module exploits two metaprogramming-related features of Ruby’s interpreter. The

first, a class method hook called method added, is invoked when a new method is defined

in a class. The other, the alias method, allows an existing method to be overridden but

maintained under a new name. The module that intercepts and alters method definitions

essentially replaces a method with a new “wrapper” method that first calls the method

cs det, which determines the current object’s current class. This wrapper method then

changes the current object’s class handle, if necessary, before invoking the original method.

This mechanism could be described as a simplified form of aspect-oriented programming that

treats method invocation as a join point and cs det as the advice [17]. The completed mod-

ule, Listing 1, uses the Module.included method to add the method added class method to

classes that import the module.

Listing 1: ConnotationalSubtyping Module
module Connotat ionalSubtyping

def s e l f . i nc luded (base)
base . extend ClassMethods

end

module ClassMethods
def method added (method name)

return i f [: i n i t i a l i z e , : c s de t , : c s c l a s s chang ed] . i n c lude ?(method name) or @added
@added = true
se l f . c l a s s e v a l <<−END

a l ia s method ” c s #{method name}” , ”#{method name}”
def #{method name }(∗ args)

k l a s s = c s d e t
i f s e l f . class != k l a s s

o l d k l a s s , s e l f . class = s e l f . class , k l a s s
s e l f . c s c l a s s chang ed (o l d k l a s s) i f s e l f . r e spond to ? (: c s c l a s s chang ed)

end
se l f . send (: c s #{method name } , ∗ args)

end
END
@added = fa l se

end
end

end

23

The ConnotationalSubtyping module assumes that the class determining code is con-

tained in a method called cs det that returns a result of type Class. The module also

invokes the method cs class changed when an object’s class is changed. This gives the

object an opportunity to react to a class change: e.g., to initialize instance variables or

checking class invariants.

This language level implementation of connotational subtyping allows a developer to

selectively and explicitly apply connotational subtyping to a class hierarchy. The Connot-

ationalSubtyping module only affects classes and the descendants of classes that import

it, making these class structures easier to manage while reducing the overhead on the overall

system. The language level implementation is also portable across multiple Ruby interpreter

versions and requires no modifications to the interpreter.

3.3.2.2 Interpreter Level

Like the language level implementation, modifying the Ruby interpreter to support conno-

tational subtyping required combining the methods for changing an object’s class at runtime

and intercepting method calls on objects. Similar to language level implementation, an ob-

ject’s class is modified by manipulating the klass pointer of the object’s underlying RObject

struct to reference a different RClass struct.

To intercept method calls on objects, the interpreter’s NODE CALL handler, which evaluates

nodes in the Ruby AST, was changed to determine if the current receiver is connotationally

subtyped. Because this check is performed on all program objects, a mechanism was needed

to determine whether an object was connotationally subtyped. The current implementation

tests for connotationally subtyped objects by checking if an object responds to the method

cs det. Once the interpreter determines that an object is connotationally subtyped it calls

24

the object’s cs det method to determine that object’s class. If the call to cs det returns

a class that differs from an object’s current class, that object’s klass pointer is changed

to refer to the Class returned by cs det. If the current receiver’s class was changed and

the object responds to cs class changed then it is also called on the receiver. Method

invocation then proceeds normally and the original method is called on the receiver.

25

4 RESULTS

4.1 Correctness

The modified interpreters support the creation of connotationally subtyped class struc-

tures like the TCPConnection example from Figure 2 (page 17). The following code in Listing

2 implements the class structure from Figure 2, using the state of the @socket instance vari-

able to determine the appropriate subclass for a TCPConnection object. Unlike the Design

Patterns example in Figure 1 (page 17), which uses separate instances of each concrete state

class, an instance of the connotationally subtyped TCPConnection class below maintains its

identity and instance variables as its class changes.

Listing 2: Ruby TCPConnection Example
class TCPConnection

def i n i t i a l i z e
@socket = : open

end

def c s d e t
case @socket

when : open
return TCPListen

when : e s t a b l i s h ed
return TCPEstablished

when : c l o s ed
return TCPClosed

else
r a i s e ”TCPConnection in unknown s t a t e . ”

end
end

def acknowledge
. . .

end

def synchron ize
. . .

end
end

class TCPListen < TCPConnection
def send

send SYN, r e c e i v e SYN, ASK, e t c .
@socket = : e s t a b l i s h ed

end
end

class TCPClosed < TCPConnection
def ac t i v e open

send SYN, r e c e i v e SYN, ASK, e t c .

26

@socket = : e s t a b l i s h ed
end

def pas s ive open
@socket = : open

end
end

class TCPEstablished < TCPConnection
def t ransmit (o c t e t)

@socket . p r o c e s s o c t e t o c t e t
end

def c l o s e
send FIN , r e c e i v e ACK of FIN
@socket = : c l o s ed

end
end

The strategies used here for implementing connotational subtyping, however, can also

cause certain otherwise correct programs to fail. The ConnotationalSubtyping module

could cause correctly terminating programs that consume at least half of an interpreter’s

call stack to fail due to stack overflow. Invoking a wrapped method in a class that includes

the ConnotationalSubtyping module consumes two stack frames, one for the core method

and one for the wrapping code. This doubling of call stack space requirements could cause

recursive calls to connotationally subtyped methods to exhaust the interpreter’s stack depth

in half the number of calls that would be required by a non-connotationally subtyped method.

Reaching the maximum call stack depth causes a fatal error in the interpreter, halting

program execution. Increasing the call stack depth requires either using ulimit where

available or re-compiling the Ruby interpreter with a higher stack size flag.

Stack overflow errors can also result from self-referential calls to Ruby’s cs det method.

A call on connotationally subtyped class method C#m from a class C’s cs det method invokes

C#cs det due to C#m’s being wrapped by the ConnotationalSubtyping module. Any reference

to self#m in C#cs det will cause C#cs det and C#m to repeatedly call one another until

the interpreter’s maximum call stack depth is reached. This problem doesn’t occur in the

modified interpreter implementation, as methods invoked on self do not trigger class re-

27

evaluation so cs det is not called. This reduces the potential confusion of an object’s class

changing while its state is in flux.

A similar situation arises with references to super, due to ConnotationalSubtyping’s

use of the Object#send method to invoke the originally called method in its method aliasing

code. The problem occurs because Object#send uses standard method dispatch, which in-

vokes a method’s “lowest” implementation. If a method that has been aliased by

ConnotationalSubtyping invokes super and the superclass’s implementation of the method

has also been aliased, then the superclass’s wrapping code’s call to Object#send will invoke

the “lowest” implementation of the method, leading to a recursive loop when the super

invocation is reached again. This error does not occur in the modified interpreter implemen-

tation.

A final concern relates to the failure of Evil Ruby and evilr to correctly manage singleton

classes. Ruby allows developers to define new methods that are specific to a particular

instance of a class, as well as to override existing methods. These object-specific methods

are called singleton methods. The Ruby interpreter implements singleton methods by creating

a hidden Class object, a singleton class, whose method table contains the definition for the

singleton methods. This new singleton class is then inserted in the class inheritance chain

between the object and the object’s original class (cf. Figure 4).

28

friday <RObject>

iv_table

flags
RBasic

klass

Object <RClass>

iv_table

flags
RBasic

klass

m_table
super

Dog <RClass>

iv_table

flags
RBasic

klass

m_table
super

(a) Initial state

friday <RObject>

iv_table

flags
RBasic

klass

Object <RClass>

iv_table

flags
RBasic

klass

m_table
super

Dog <RClass>

iv_table

flags
RBasic

klass

m_table
super

'friday <RClass>

iv_table

flags
RBasic

klass

m_table
super

(b) Singleton class created

friday <RObject>

iv_table

flags
RBasic

klass

Object <RClass>

iv_table

flags
RBasic

klass

m_table
super

Dog <RClass>

iv_table

flags
RBasic

klass

m_table
super

'friday <RClass>

iv_table

flags
RBasic

klass

m_table
super

(c) Object’s klass pointer updated

Figure 4: A singleton class being created

The interpreter’s method dispatch for a modified object checks the singleton class be-

fore moving up the class’s super pointer to the originally declared class. So any method

definitions specific to an object would first be found in the singleton class’s set of method

definitions.

Neither Evil Ruby nor evilr checks the object’s klass pointer to determine if the im-

mediate Class being referenced is a singleton class. So when the class= method modifies

the object’s klass pointer the object loses the singleton class reference, removing all sin-

gleton methods that had been defined. The modified interpreter implementation, however,

maintains the references to all singleton classes for the object being modified. If an object’s

immediate klass reference is a singleton class, denoted by the FL SINGLETON flag, the sin-

gleton class’s super pointer is changed to reference the object’s new RClass struct. This

results in the object’s class being changed while maintaining the object’s klass reference to

an associated singleton class.

29

4.2 Performance

To determine how the connotational subtyping modifications affected the interpreter, the

modified and unmodified Ruby 1.8 interpreters were compared using the Ruby Benchmark

Suite (RBS) and its micro-benchmarks group of tests [4]. The micro-benchmarks test set is

intended to measure the overall performance of core Ruby functionalities in different imple-

mentations and does not use any of the features of connotational subtyping. All benchmarks

were run on a 1.6Ghz Intel Atom CPU with 2GB of RAM running Ubuntu 11 and the Linux

3.0 kernel. All benchmarks were run ten times and the value of these runs was recorded as

the result.

The results of the RBS benchmarks of the modified and stock Ruby 1.8 interpreters are

included in Appendix A (Ruby Interpreter Benchmarks) on page 44. An impression of the

results can be obtained from Figure 5, which compares the total percentage of benchmarks

at or below the percentage change in benchmark completion time.

30

0 25 50 75 100 125 150 175

10

20

30

40

50

60

70

80

90

100

Change in benchmark completion time (%)

B
en

ch
m

ar
k
s

at
or

b
el

ow
co

m
p
le

ti
on

ti
m

e
ch

an
ge

(%
)

Figure 5: RBS results, comparing percentage of benchmarks at or below percentage change
in completion time

To compare the performance of the connotational subtyping features, a new single bench-

mark was developed. This benchmark iterated a single object’s class membership through

three classes in series, e.g. ClassA→ClassB→ClassC→ClassA, etc., with each class change

being considered an iteration. This new single benchmark was then executed for 100, 1,000,

and 10,000 iterations for each of the following four Ruby configurations:

• The modified Ruby 1.8 interpreter (v1.8-connsub)

• The stock Ruby 1.9 interpreter using the ConnotationalSubtyping module and the

evilr extension for class mutability (v1.9 evilr)

• The stock Ruby 1.8 interpreter using the ConnotationalSubtyping module and the

31

evilr extension for class mutability (v1.8 evilr)

• The stock Ruby 1.8 interpreter using the ConnotationalSubtyping module and the Evil

Ruby extension for class mutability (v1.8 Evil Ruby)

The results of this initial execution produced the results table in Figure 6 and graph in

Figure 7.

Input Size v1.8 EvilRuby v1.8 evilr v1.9 evilr v1.8-connsub
100 1.16961 0.001755 0.000858881 0.000156
1,000 11.982608 0.017863 0.00799318 0.001341
10,000 120.784384 0.18203 0.083585888 0.013164

Figure 6: First connotational subtyping benchmark completion time, in seconds

0 20 40 60 80 100 120

v1.8 EvilRuby

v1.8 evilr

v1.9 evilr

v1.8-connsub

120.784384

0.18203

0.08358589

0.013164

11.982608

0.017863

0.00799318

0.001341

1.16961

0.001755

0.00085888

0.000156

Completion time in seconds

10,000

1,000

100

Figure 7: First connotational subtyping benchmark completion time, in seconds

A second, more intensive round of tests was then conducted with evilr v1.8, evilr v1.9,

32

and v1.8-connsub. These tests, which increased the number of class change iterations to

10,000, 100,000, and 1,000,000, produced the results table in Figure 8 and graph in Figure

9.

Input Size v1.8 evilr v1.9 evilr v1.8-connsub
10,000 0.1633 0.082 0.0119
100,000 1.6382 0.8449 0.119
1,000,000 16.4835 8.4994 1.1945

Figure 8: Second connotational subtyping benchmark completion time, in seconds

−2 0 2 4 6 8 10 12 14 16 18

v1.8 evilr

v1.9 evilr

v1.8-connsub

16.4835

8.4994

1.1945

1.6382

0.8449

0.119

0.1633

0.082

0.0119

Completion time in seconds

1,000,000

100,000

10,000

Figure 9: Second connotational subtyping benchmark completion time, in seconds

The increased completion times were consistent with the linear rate of growth seen in the

first test. The results of all benchmarks are analyzed in Section 5.2, Performance.

33

5 ANALYSIS

5.1 Correctness

Although the language-level and interpreter-level implementations of connotational sub-

typing supported automatic runtime class changes, each had shortcomings that should be

addressed in future work. The native Ruby implementation should be improved by modifying

the class= method of Evil Ruby and evilr to account for singleton classes while walking the

target object’s class hierarchy. A filter should also be included with the Connotational-

Subtyping module that selects, either by pattern matching method names or by a static

list, the set of methods that the ConnotationalSubtyping module should “wrap” with

alias method to intercept method invocation for class re-evaluation. This would improve

performance by limiting aliasing to the methods to which class re-evaluation should apply

while making it possible to safely alias inherited methods.

5.2 Performance

Roughly speaking, the impact of connotational subtyping on interpreter performance

decreased in proportion to the number of immediate objects that a benchmark manipulated.

Immediate objects are frequently used objects that are stored directly in the pointers that

Ruby uses to reference its object heap, rather than in the heap proper. Immediate objects

are of types Fixnum and Symbol and values true, false, and nil.

The impact of connotational subtyping on interpreter performance is less noticeable for

those benchmarks that primarily manipulate immediate objects or whose processing is dom-

inated by syscalls, i.e. sockets and filesystem I/O. The impact increases as the number of

non-primitive, heap stored objects being manipulated increases. A few benchmarks showed

34

an improvement in the modified Ruby 1.8 interpreter of less than 1%. These slight improve-

ments can be attributed to slight testbed environment and environment differences as the

minimum and maximum results of these benchmarks overlap for the two tested interpreters.

The two anomalous results in eval.rb and read large.rb, however, were consistent across

multiple runs of either benchmark and may possibly be attributed to different compiler

optimizations or system call library performance.

The performance comparison of the connotational subtyping implementations show the

inefficiency of Evil Ruby’s Ruby-based in-memory struct manipulation as compared to the

native C extensions used by evilr. The second set of connotational benchmark results make

the base performance improvements of Ruby 1.9 apparent, with the Ruby 1.9 benchmarks

completing in roughly 50% of the time of the same ConnotationalSubtyping configura-

tion in Ruby 1.8. However, the modified Ruby 1.8 interpreter still outperforms the Ruby

1.9 ConnotationalSubtyping module configuration, due to the overhead of language-level

method wrapping.

5.3 Ease of Use

One point of confusion with both implementations is determining at runtime if a particu-

lar class or object is connotationally subtyped. The modified interpreter treats objects that

respond to cs det as connotationally subtyped and all external invocations of methods on

that object trigger cs det. Checking if an object responds to cs det can be done at runtime

using Object#responds to?. This means that any descendants of a class that implement

cs det are also considered connotationally subtyped, as they inherit their ancestor’s cs det.

Connotational subtyping can also be restricted to a particular object via a singleton method

implementation of cs det.

35

One point of confusion with both implementations is determining at runtime if a particu-

lar class or object is connotationally subtyped. The modified interpreter relies on convention

for determining connotational subtyping: if an object responds to cs det then it is con-

sidered connotationally subtyped and all external invocations of methods on that object

trigger cs det. Checking if an object responds to cs det can be done at runtime using

Object#responds to?. This means that any descendants of a class that implements cs det

are also considered connotationally subtyped, as they have inherited their ancestor’s imple-

mentation of cs det. Connotational subtyping can also be restricted to a particular object

via a singleton method implementation of cs det.

The language-level implementation, however, requires the explicit inclusion of the Connot-

ationalSubtyping module into a class. Once this module has been imported then its effects

also apply to any descendant classes. It’s possible to determine if a class or any of its an-

cestors include ConnotationalSubtyping through the Kernel#include? method. Another

possible point of confusion in the language-level implementation is the ConnotationalSub-

typing module’s use of the method added callback method. The method added class hook

only updates methods that are defined after a class imports ConnotationalSubtyping.

Methods that are present in a class prior to the import won’t be wrapped by the module

and thus won’t trigger the class evaluation code. This includes all methods inherited from

a superclass. So while it’s possible to determine if a class has included the Connotational-

Subtyping module, it’s difficult to determine what subset of the class’s methods can trigger

class re-evaluation. Additionally, any other code that overrides method added in a class that

includes the ConnotationalSubtyping module will silently break the module’s wrapping of

newly defined methods.

36

5.4 Applicability to Other Contexts

5.4.1 Ruby 1.9

The language-level implementation in the ConnotationalSubtyping module will work

on any Ruby version supported by Evil Ruby or evilr. This currently includes Ruby 1.8.x

and Ruby 1.9.2.

The modifications made to the Ruby 1.8.7 interpreter for connotational subtyping are

specific to the 1.8.x versions of Ruby and will not work in the Ruby 1.9.x versions due to

the introduction of the YARV virtual machine in the baseline interpreter. Further research

would be needed to determine how to best implement connotational subtyping in Ruby 1.9,

given the introduction of the Ruby virtual machine and the added runtime performance

enhancements like inline method caching, stack caching, and specialized compiled virtual

machine instructions.

The modified interpreter would best be improved by introducing a new class type,

csclass, with associated internal flags. This would make it unnecessary to check for cs det

to determine if type re-evaluation is appropriate. Currently, the necessity of checking for

cs det at every method invocation and the inability to cache the checks’ results are the main

drags on interpreter performance. Instead, the interpreter could simply check the internal

type of the receiver’s class, a much simpler and faster operation.

5.4.2 Other Languages

This research was originally inspired by the draft proposals of the EXPRESS standards

working group. The initial research advisor, the late Dr. Donald Sanderson, was a member

of this committee. The EXPRESS data modeling language was standardized as part of the

37

ISO 10303 for the representation and exchange of product manufacturing information [16].

During the WG11’s draft proposals for the next version of EXPRESS, the connotational

subtype was introduced.

A connotational subtype allows an instance of a particular supertype to be used

as if it were a subtype instance also even though the instance is not declared to

be of that particular subtype. The connotational subtype construct directs an

information base to treat a supertype instance as if it were a subtype instance if

it meets all constraints specified in the subtype. [20]

The constraints of a connotational subtype were predicates on its supertype’s attributes,

as connotational subtypes could not contain explicit attribute declarations. Variables de-

clared as a connotational subtype’s supertype would become members of the connotational

subtype when the state of the variable’s attributes satisfied the declared predicate state-

ments of the connotational subtype’s definition. At that point the variable would be a valid

value for functions that used values of the connotational subtype as parameters. The work-

ing group’s draft included an example of a pensioner connotational subtype of a person

supertype and a pension function that would only accept valid pensioner parameters.

ENTITY person ;
name : personal name ;
age : natura l ;
. . .

END ENTITY;

ENTITY pens ioner
CONNOTATIONAL SUBTYPE OF (person) ;
WHERE

old : age > 65 ;
END ENTITY;

38

FUNCTION pens ion (sub j e c t : pens ioner) : REAL;
. . .

END FUNCTION;

Ultimately, connotational subtype declarations were removed from the working group’s

draft proposal.

The connotational subtyping implementation presented here may also be applicable to

another popular interpreted programming language, Python [1]. Similar to the class=

method used in this work, Python supports object class mutability by allowing an object’s

class attribute to be changed after instantiation. Python’s metaprogramming support

would also allow the same aspect-oriented programming approach to wrap method invocation

as used in the Ruby language-level implementation.

39

6 CONCLUSION

The research presented here shows connotational subtyping as a promising, feasible ad-

dition to the Ruby environment. While both connotational subtyping implementations im-

plemented the base features of connotational subtyping, the language-level connotational

subtyping implementation potentially impacted Ruby language features and reduced in-

terpreter performance more than the interpreter-level implementation. The language-level

implementation, however, was more portable than the interpreter-level modifications.

The techniques used in this research could be most improved by determining a new con-

notational determinant approach other than the cs det convention, like a new declared class

type or internal type flag. This would allow for selective application of connotational sub-

typing and the elimination of object checks in the interpreter-level implementation, reducing

the performance impact of the interpreter modification.

40

BIBLIOGRAPHY

[1] Python programming language. http://www.python.org/, Jan 2011.

[2] Ruby programming language. http://www.ruby-lang.org/en/, Jan 2011.

[3] Abadi, M., and Cardelli, L. A Theory of Objects. Springer-Verlag, Secaucus, NJ,

1996.

[4] Cangiano, A. Ruby benchmarks suite. https://github.com/acangiano/

ruby-benchmark-suite, Jan 2011.

[5] Cardelli, L., Donahue, J., Jordan, M., Kalsow, B., and Nelson, G. Type

systems. In The Computer Science and Engineering Handbook (1997), CRC Press,

pp. 2208–2236.

[6] Chambers, C. Predicate classes. In Proceedings of the 7th European Conference

on Object-Oriented Programming (London, UK, 1993), ECOOP ’93, Springer-Verlag,

pp. 268–296.

[7] Cohen, T., and Gil, J. Y. Three approaches to object evolution. In Proceedings of

the 7th International Conference on Principles and Practice of Programming in Java

(New York, NY, USA, 2009), PPPJ ’09, ACM, pp. 57–66.

[8] Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., and Giannini, P.

Fickle: Dynamic object re-classification. In Proceedings of the 15th European Confer-

ence on Object-Oriented Programming (London, UK, UK, 2001), ECOOP 01, Springer-

Verlag, pp. 130–149.

41

http://www.python.org/
http://www.ruby-lang.org/en/
https://github.com/acangiano/ruby-benchmark-suite
https://github.com/acangiano/ruby-benchmark-suite

[9] Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., and Giannini, P.

More dynamic object reclassification: Fickle ii. ACM Trans. Program. Lang. Syst. 24

(March 2002), 153–191.

[10] Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[11] Evans, J. evilr. https://github.com/jeremyevans/evilr, Jan 2011.

[12] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley Professional, Boston, MA, USA,

1994.

[13] Goldberg, A., and Robson, D. Smalltalk-80 : The Language. Addison-Wesley,

Reading, MA, 1989.

[14] Groß, F. evil-ruby. http://code.google.com/p/evil-ruby/, Jan 2011.

[15] Hjálmtýsson, G., and Gray, R. Dynamic c++ classes: a lightweight mechanism

to update code in a running program. In Proceedings of the annual conference on

USENIX Annual Technical Conference (Berkeley, CA, USA, 1998), ATEC ’98, USENIX

Association, pp. 6–6.

[16] ISO 10303-11:2004. Industrial automation systems and integration - Product data

representation and exchange - Part 11: Description methods: The EXPRESS language

reference manual. ISO, Geneva, Switzerland.

[17] Kiczales, G., and Hilsdale, E. Aspect-oriented programming. SIGSOFT Softw.

Eng. Notes 26 (September 2001), 313–.

42

https://github.com/jeremyevans/evilr
http://code.google.com/p/evil-ruby/

[18] Liskov, B. Keynote address - data abstraction and hierarchy. SIGPLAN Not. 23

(January 1987), 17–34.

[19] Malabarba, S., Pandey, R., Gragg, J., Barr, E., and Fritz Barnes, J.

Runtime support for type-safe dynamic java classes. In ECOOP 2000 Object-Oriented

Programming, E. Bertino, Ed., vol. 1850 of Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 2000, pp. 337–361.

[20] N81, I. ISO/WD 10303-11 Product data representation and exchange: Description

methods: The EXPRESS language reference manual. ISO, Geneva, Switzerland, 1999.

[21] Page-Jones, M. Fundamentals of object-oriented design in UML. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, 2000.

[22] Schalck, R. Object evolution: Adding runtime class mutability to the jvm. Master’s

thesis, Massachusetts Institute of Technology, January 2005.

[23] Steele, G. L. Common LISP: The Language, 2nd ed. Digital Press, Bedford, MA,

1990.

[24] Thomas, D., Fowler, C., and Hunt, A. Programming Ruby 1.9: The Pragmatic

Programmers’ Guide, 3rd ed. Pragmatic Bookshelf, 2009.

43

APPENDICES

Appendix A: Ruby Interpreter Benchmarks

Results are completion times in seconds.

Benchmark File Input Size Ruby 1.8.7 Ruby 1.8.7-connsub Completion Time Change (%)
read large.rb 100 21.5054344 17.8400463 -17.04
eval.rb 1000000 11.8469212 11.3008363 -4.61
dirp.rb 10000 5.4305368 5.3851004 -0.84
app tak.rb 9 24.5429233 24.3950791 -0.6
app tak.rb 8 9.3381135 9.3064831 -0.34
so ackermann.rb 7 1.8677968 1.8617144 -0.33
app tarai.rb 3 11.1119703 11.0759606 -0.32
app tak.rb 7 3.2231326 3.2173925 -0.18
lucas lehmer.rb 19937 321.9907925 321.8465024 -0.04
simple connect.rb 1 5.0470602 5.0452239 -0.04
lucas lehmer.rb 9941 41.2846923 41.2932507 0.02
simple connect.rb 100 5.0853819 5.0869957 0.03
simple server.rb 1 5.0434871 5.0451347 0.03
simple server.rb 100 5.0484228 5.0504225 0.04
lucas lehmer.rb 11213 59.0862135 59.1315689 0.08
lucas lehmer.rb 9689 38.2324514 38.2651066 0.09
pi.rb 10000 9.4993914 9.5098154 0.11
simple connect.rb 500 5.2545103 5.2652134 0.2
app tarai.rb 4 13.3509637 13.4174644 0.5
app fib.rb 30 4.5319245 4.5653849 0.74
app fib.rb 35 50.15053 50.6084618 0.91
regex dna.rb 20 13.3037538 13.4352638 0.99
app tarai.rb 5 16.1093574 16.3034291 1.2
mbari bogus2.rb 1 1.5213026 1.546515 1.66
count shared thread.rb 1 0.2452542 0.2533421 3.3
count shared thread.rb 4 0.2446285 0.2527832 3.33
count shared thread.rb 16 0.2454466 0.2538465 3.42
count multithreaded.rb 4 0.0981475 0.1015154 3.43
count multithreaded.rb 8 0.1962461 0.2031188 3.5
count multithreaded.rb 2 0.0491283 0.0508628 3.53
count multithreaded.rb 1 0.0246464 0.0255306 3.59
so exception.rb 500000 36.9332461 38.384544 3.93
count shared thread.rb 2 0.2438142 0.2535413 3.99
count multithreaded.rb 16 0.3945088 0.4118931 4.41
count shared thread.rb 8 0.2444724 0.255249 4.41
list.rb 10000 15.1278532 15.9059888 5.14
quicksort.rb 1 14.9775395 15.8269178 5.67
simple server.rb 100000 9.9024801 10.472057 5.75
mbari bogus1.rb 1 0.8884958 0.9437024 6.21
reverse compliment.rb 1 20.3273011 21.7283162 6.89
socket transfer 1mb.rb 10000 6.4084512 6.8887912 7.5

44

socket transfer 1mb.rb 1000000 6.425749 6.9157005 7.62
so count words.rb 100 10.7745652 11.9730053 11.12
gc array.rb 1 111.3326223 124.7799331 12.08
open many files.rb 50000 1.3877207 1.555942 12.12
pi.rb 1000 0.1189384 0.1336277 12.35
write large.rb 100 1.5902022 1.7880267 12.44
nsieve.rb 9 56.8482811 64.4837949 13.43
so sieve.rb 4000 201.2101978 233.3200739 15.96
sum file.rb 100 48.3162139 57.5910469 19.2
knucleotide.rb 1 5.912883 7.2048609 21.85
word anagrams.rb 1 30.7776168 37.8031013 22.83
observ.rb 100000 3.107488 3.9006581 25.52
list.rb 1000 0.1716147 0.2163399 26.06
cal.rb 500 7.1927796 9.1665633 27.44
so object.rb 1500000 15.6182469 20.1241125 28.85
so object.rb 1000000 10.3666143 13.4047793 29.31
so object.rb 500000 5.1654646 6.6961243 29.63
fannkuch.rb 10 343.9747739 466.5089542 35.62
fannkuch.rb 8 2.4506278 3.3465067 36.56
fannkuch.rb 6 0.0271181 0.0371088 36.84
gc mb.rb 3000000 10.6502768 14.6588186 37.64
nsieve bits.rb 8 70.0853772 97.2319317 38.73
gc mb.rb 1000000 3.4374878 4.7952594 39.5
gc mb.rb 500000 1.6160679 2.2919708 41.82
meteor contest.rb 1 113.9658035 161.7425033 41.92
binary trees.rb 1 171.4013777 258.2266448 50.66
primes.rb 3000 16.6459297 25.1207017 50.91
app pentomino.rb 1 281.3741009 433.944056 54.22
so array.rb 9000 20.1325928 33.2439908 65.13
gc string.rb 1 23.6143011 39.142657 65.76
spectral norm.rb 100 2.6598786 4.4913595 68.86
app mandelbrot.rb 1 6.8674468 11.809018 71.96
fasta.rb 1000000 104.9711296 196.6912696 87.38
monte carlo pi.rb 10000000 47.7505442 90.9536009 90.48
so matrix.rb 60 5.7104449 11.796188 106.57
nbody.rb 100000 28.1060031 58.0879835 106.67
mergesort hongli.rb 3000 14.7900841 31.7051712 114.37
mandelbrot.rb 1 191.3900902 410.3141781 114.39
fractal.rb 5 17.3982213 37.5277137 115.7
mergesort.rb 1 6.9734991 15.2878785 119.23
partial sums.rb 2500000 67.0803714 147.0711519 119.25
so lists.rb 1000 28.4659886 75.0532411 163.66
so lists small.rb 1000 5.6987926 15.0316634 163.77

45

Appendix B: Ruby 1.8.7 ConnSub Patch

d i f f −rupN /usr / l o c a l /rvm/ s r c /ruby−1.8.7−p174// eva l . c ruby−1.8.7−p174−connsub// eva l . c
−−− / usr / l o c a l /rvm/ s r c /ruby−1.8.7−p174// eva l . c
+++ ruby−1.8.7−p174−connsub// eva l . c
@@ −3500 ,6 +3501 ,38 @@ rb eva l (s e l f , n)

ruby current node = node ;
SET CURRENT SOURCE() ;

+
+ VALUE o i t ype = TYPE(recv) ;
+ i f (recv != s e l f && o i t yp e != T FIXNUM && o i t ype != T NIL && o i t yp e != T FALSE &&

→o i t yp e != T TRUE && o i t yp e != T UNDEF && o i t ype != T SYMBOL) {
+ ID c s d e t = rb i n t e r n (” c s d e t ”) ;
+ i f (rb ob j r e spond to (recv , c s det , Qtrue)) {
+ i f (o i t yp e == T DATA) {
+ rb r a i s e (rb eTypeError , ”%s has an i n t e r n a l type o f T DATA and cannot be

→Connotat iona l ly Subtyped . ” , rb c lass2name (CLASS OF(recv))) ;
+ }
+
+ ID c s k l a s s = r b f u n c a l l (recv , c s det , 0) ;
+ ID o l d k l a s s = r b c l a s s r e a l (CLASS OF(recv)) ;
+ i f (TYPE(c s k l a s s) != T CLASS) {
+ rb r a i s e (rb eTypeError , ”%s : : c s d e t must re turn an in s t ance o f type Class ” ,

→ rb c lass2name (CLASS OF(recv))) ;
+ }
+ i f (c s k l a s s != o l d k l a s s) {
+ i f (o i t yp e != TYPE(r b o b j a l l o c (c s k l a s s))) {
+ rb r a i s e (rb eTypeError , ” I n t e r n a l types o f %s and %s not compatible f o r

→Connotat ional Subtyping . ” , rb c lass2name (o l d k l a s s) , rb c lass2name (c s k l a s s)) ;
+ }
+
+ i f (FL TEST(CLASS OF(recv) , FL SINGLETON)) {
+ RCLASS(RBASIC(recv)−>k l a s s)−>super = c s k l a s s ;
+ } else {
+ RBASIC(recv)−>k l a s s = c s k l a s s ;
+ }
+
+ ID c s ch ang e c l a s s = rb i n t e r n (” c s c l a s s chang ed ”) ;
+ i f (rb ob j r e spond to (recv , c s change c l a s s , Qtrue)) {
+ rb f u n c a l l (recv , c s change c l a s s , 1 , o l d k l a s s) ;
+ }
+ }
+ }
+ }

r e s u l t = r b c a l l (CLASS OF(recv) , recv , node−>nd mid , argc , argv , 0 , s e l f) ;
}
break ;

d i f f −rupN /usr / l o c a l /rvm/ s r c /ruby−1.8.7−p174// ver s ion . c ruby−1.8.7−p174−connsub// vers ion . c
−−− / usr / l o c a l /rvm/ s r c /ruby−1.8.7−p174// ver s ion . c 2008−05−31 09:37:06.000000000 −0400
+++ ruby−1.8.7−p174−connsub// ver s ion . c 2012−04−30 16:20:28.539500956 −0400
@@ −39,7 +39 ,7 @@ I n i t v e r s i o n ()

r b d e f i n e g l o b a l c o n s t (”RUBYPLATFORM” , p) ;
r b d e f i n e g l o b a l c o n s t (”RUBYPATCHLEVEL” , INT2FIX(RUBYPATCHLEVEL)) ;

− s np r i n t f (d e s c r i p t i on , s izeof (d e s c r i p t i o n) , ” ruby %s (%s %s %d) [%s] ” ,
+ snp r i n t f (d e s c r i p t i on , s izeof (d e s c r i p t i o n) , ” ruby %s (%s %s %d connsub) [%s] ” ,

RUBY VERSION, RUBY RELEASE DATE, RUBY RELEASE STR,
RUBY RELEASE NUM, RUBYPLATFORM) ;

ruby de s c r i p t i on = de s c r i p t i o n ;

46

VITA

IAN DILLON

Education: B.S. Computer Science, East Tennessee State Univerity,

Johnson City, Tennessee 2004

M.S. Computer Science (conc. Applied Computer Science),

East Tennessee State University, Johnson City, Tennessee 2012

Honors and Awards: Upsilon Pi Epsilon Honors Society

47

	Connotational Subtyping and Runtime Class Mutability in Ruby
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	INTRODUCTION
	Connotational Subtyping: Rationale
	Connotational Subtyping: Difficulties
	Implementing Connotational Subtyping in Ruby

	BACKGROUND
	Object-Oriented Programming
	Type
	Type Proper
	Type In Object-Oriented Type Systems

	Runtime Class Mutability
	Definition
	Mutability Proper
	Object Evolution
	Predicate Classes

	The Ruby Language
	An Example

	METHODOLOGY
	Goals
	Experimental Design
	Implementation
	Requirements
	Realization

	RESULTS
	Correctness
	Performance

	ANALYSIS
	Correctness
	Performance
	Ease of Use
	Applicability to Other Contexts
	Ruby 1.9
	Other Languages

	CONCLUSION
	BIBLIOGRAPHY
	APPENDICES
	Appendix A: Ruby Interpreter Benchmarks
	Appendix B: Ruby 1.8.7 ConnSub Patch
	VITA

