Hearing Loss in the Dental Office: The Effects of High Speed Dental Drills on Dentists' Hearing

Krisztina Johnson
East Tennessee State University

Jacek Smurzynski
East Tennessee State University, smurzyns@etsu.edu

Saravanan Elangovan
East Tennessee State University, elangova@etsu.edu

Marc Fagelson
East Tennessee State University, fagelson@etsu.edu

Follow this and additional works at: https://dc.etsu.edu/etsu-works

Part of the [Speech Pathology and Audiology Commons](https://dc.etsu.edu/etsu-works)

Citation Information

This Presentation is brought to you for free and open access by the Faculty Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in ETSU Faculty Works by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.
Hearing Loss in the Dental Office: The Effects of High Speed Dental Drills on Dentists' Hearing

Copyright Statement
This document was originally published by the National Hearing Conservation Association.
Hearing loss in the dental office: The effects of high speed dental drills on dentists' hearing

Krisztina B. Johnson, B.S., Jacek Smurzynski, Ph.D., Marc Fagelson, Ph.D., Saravanan Elangovan, Ph.D.
Department of Audiology and Speech-Language Pathology, East Tennessee State University, Johnson City, TN

INTRODUCTION

The earliest dental drills date from ancient Egypt, approximately 9,000 years ago. Scottish inventor James Nasmyth used a coiled wire spring drill in 1829. The first air-driven drill was introduced in 1868 by American George Green. Plug-in electric drills became available in 1908. Each of these developments increased the speed of the drill. Today’s high speed dental drills have a rotational speed of 300,000-400,000 r.p.m. (Hyson, 2002). They sound like high-pitched sirens (Wilson et al., 1990) with the spectrum covering mostly the frequency range from 5 to 10 kHz, and the overall level reaching up to 100 dBA. Temporary hearing loss may occur after a 6-hour common workday (Bali et al., 2007). Permanent hearing loss starts to develop after five years of practicing (Gibbets et al., 2006). Many dental professionals are unaware of the potentially hazardous consequences of noise exposure and it is very rare for any of them to wear hearing protection.

METHODS

Participants

Twenty-two (2 females, 20 males) actively-practicing dentists (practice time 5 months to 32 years); age range from 18 to 65 years. Participants were selected based on their hearing thresholds: 35 dB HL or better across frequency range 250-8000 Hz.

Testing periods

• Baseline testing: to screen subjects for study.
• Before work/after work testing: to detect possible TTS, and the effects of wearing hearing protection.

Hearing protection

DentalEar system: developed by General Hearing Instruments; medical grade silicone; attenuated filter protector system.

Techniques

Middle Ear Analyzer: test was used to rule out middle ear abnormality.

Tympanometry: low frequency tympanometry (226 Hz) probe tone; Acoustic reflexes: 500 Hz, 1000 Hz, and 4000 Hz ipsi and contralateral. Pure tone air conduction audiology:

250, 500, 1000, 1500, 2000, 3000, 4000, 6000, and 8000 Hz.

Pure tone bone conduction audiology:

500, 1000, 2000, and 4000 Hz.

Distortion Product Otoacoustic Emissions (DPOAEs): DP-grams measured using Mimosa Acoustics HearID hardware/software with L1=65 dB SPL, L2=55 dB SPL, f2/f1 =1.2, 4 points/oct with f1 in the 0.5-8 kHz range. Data points with S/N>3 dB were considered valid.

Tympanometry: low frequency tympanometry (226 Hz) probe tone; Acoustic reflexes: 500 Hz, 1000 Hz, and 4000 Hz ipsi and contralateral. Pure tone air conduction audiology:

250, 500, 1000, 1500, 2000, 3000, 4000, 6000, and 8000 Hz.

Pure tone bone conduction audiology:

500, 1000, 2000, and 4000 Hz.

CONCLUSIONS

1) According to OSHA guidelines, employees must use hearing protection when an 8-hour time-weighted average exceeds 85 dBA. However, because some dentists may experience a TTS with exposures well below that average, the Dental Research Center should consider revising those noise exposure guidelines for dental professionals.

2) TTS produced by dental drilling may lead to permanent hearing loss.

3) Routine hearing evaluation and use of hearing protection is recommended.

4) Adoption of electric dental hand-pieces will likely not solve the noise exposure problem, since the high-speed suction was often as intense as the dental hand-piece.

5) Group audiometric data do not reveal a statistically significant TTS. However, some individual data revealed susceptibility to the noise; as we cannot predict susceptibility, all dentists should be encouraged to use hearing protection.

REFERENCES

Acknowledgements: Supported by NHCA, Dr. William Dyer, Becky McConnell, Dental subjects, Dr. Jody Little of DentalEar, and Mary Chapman of PCB Piezotronics Group Companies.