East Tennessee State University

Digital Commons @ East Tennessee State University

ETSU Faculty Works

Faculty Works

4-1-2017

Force and Motion: An Integrated K-8 Hands-On Approach Supporting the NGSS and CCSS ELA

Laura Robertson

East Tennessee State University, robertle@etsu.edu

Renee Rice Moran

East Tennessee State University, ricemoran@etsu.edu

Chih-Che Tai

East Tennessee State University, taic01@etsu.edu

LaShay Jennings

East Tennessee State University, jenningsjl@etsu.edu

Huili Hong

East Tennessee State University, hongh1@etsu.edu

See next page for additional authors

Follow this and additional works at: https://dc.etsu.edu/etsu-works

Part of the Science and Mathematics Education Commons

Citation Information

Robertson, Laura; Moran, Renee Rice; Tai, Chih-Che; Jennings, LaShay; Hong, Huili; and O'Neal, Diana. 2017. Force and Motion: An Integrated K-8 Hands-On Approach Supporting the NGSS and CCSS ELA. National Science Teacher Association National Conference, Los Angeles, CA. Johnson City: http://www.nsta.org/conferences/schedule2.aspx?id=2017los

This Presentation is brought to you for free and open access by the Faculty Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in ETSU Faculty Works by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.

Force and Motion: An Integrated K-8 Hands-On Approach Supporting the NGSS and CCSS ELA

Copyright Statement

© The Authors. The documents were originally made accessible by the National Science Teachers Association Conference.

Creator(s)

Laura Robertson, Renee Rice Moran, Chih-Che Tai, LaShay Jennings, Huili Hong, and Diana O'Neal

Force and Motion (PS2):

An Integrated K–8 Hands-On Approach Supporting the NGSS and ELA CCSS

National Science Teachers Association Conference 2017

Laura Robertson¹, Renee Rice Moran¹, Chih-Che Tai¹, LaShay Jennings¹, Huili Hong¹, Diana O'Neal²

- ¹ East Tennessee State University: Johnson City, TN
- ² Sulphur Springs School: Jonesborough, TN

Why Science and Literacy Integration?

NGSS Practices	CCSS ELA Practices
S1. Ask questions and define	E1. Demonstrate independence in reading complex
problems	texts, and writing and speaking about them.
S2. Develop and use models.	E2. Build a strong base of knowledge through
S3. Plan and carry out	content rich texts.
investigations.	E3. Obtain, synthesize, and report findings clearly
S4. Analyze and interpret data.	and effectively in response to task and purpose.
S5. Use mathematics and	E4. Construct viable arguments and critique
computational thinking.	reasoning of others.
S6. Construct explanations and	E5. Read, write, and speak grounded in evidence.
design solutions.	E6. Use technology and digital media strategically
S7. Engage in argument from	and capably.
evidence.	E7. Come to understand other perspectives and
S8. Obtain, evaluate and	cultures through reading, listening, and
communicate evidence.	collaborating

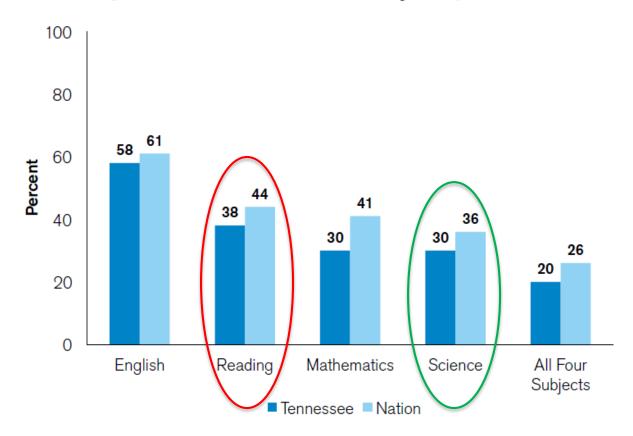
Preparing College/Career Readiness through Integrating Science Learning with Literacy in Grades 4-12 (6-12)

A LEA-IHE-Business Partnership Initiative Supported by TN DOE MSP and THEC ITQ Grants (2015-18)

Local Education Agents

Institute of Higher Ed

Business Partners

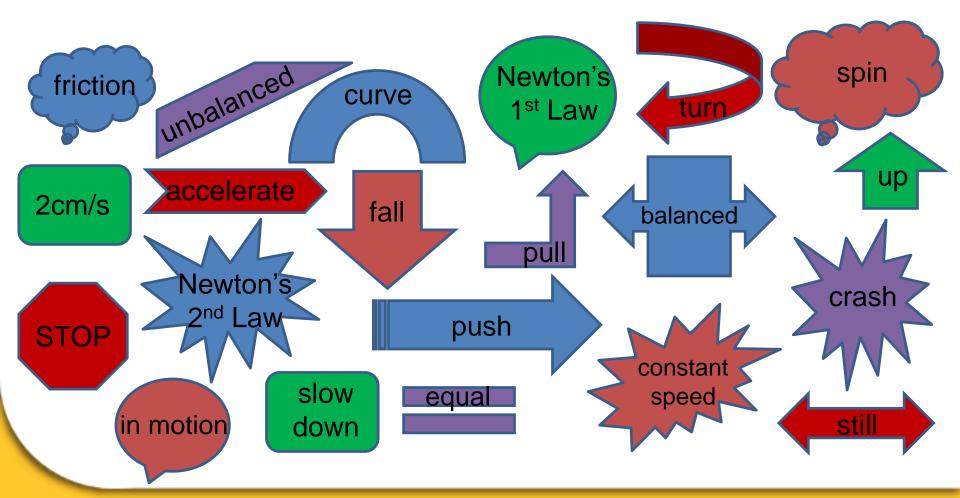


Picture of College Readiness

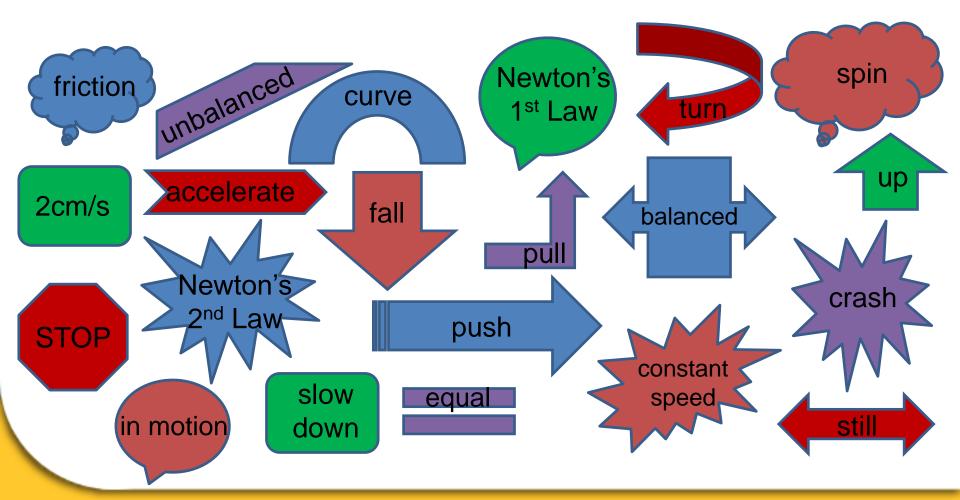
Percent of 2016 ACT-Tested High School Graduates Meeting ACT College Readiness Benchmarks by Subject

Research Questions

- RQ1: How does cross-discipline instruction benefit and enrich each subject discipline?
- **RQ2**: How does integration of science learning with literacy in G4-12 impact students' learning in schools?


Word Splash

- Comprehension and vocabulary strategy
- Interactive activity that engages and motivates
- Sets a clear purpose for learning


(Burns, 2006)

Use the materials in your bag to demonstrate the following words.

Sort the words into two categories of forces: balanced forces & unbalanced forces.

Which claim(s) can be supported with evidence?

Claim 1

- Balanced = not moving
- Unbalanced = moving

Claim 2

- Balanced = no change in motion
- Unbalanced = change in motion

Claim 3

- Balanced = zero net force
- Unbalanced ≠ zero net force

NGSS Performance Expectations

3rd Grade

- 3-PS2-1. Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
- 3-PS2-2. Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.

Middle Grades

- MS-PS2-1. Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.
- MS-PS2-2. Plan an
 investigation to provide
 evidence that the change
 in an object's motion
 depends on the sum of
 the forces on the object
 and the mass of the
 object.

Pairing ELA and Science Practices

CCSS ELA Practices

- E1.Demonstrate independence in reading complex texts, and writing and speaking about them.
- E2. Build a strong base of knowledge through content rich texts.
- E3. Obtain, synthesize, and report findings clearly and effectively in response to task and purpose.
- E4. Construct viable arguments and critique reasoning of others.
- E5. Read, write, and speak grounded in evidence.
- E6. Use technology and digital media strategically and capably.
- E7. Come to understand other perspectives and cultures through reading, listening, and collaborating.

NGSS Science Practices

- S1. Ask questions and define problems.
- S2. Develop and use models.
- S3. Plan and carry out investigations.
- S4. Analyze and interpret data.
- S5. Use mathematics and computational thinking.
- S6. Construct explanations and design solutions.
- S7. Engage in argument from evidence.
- S8. Obtain, evaluate and communicate evidence.

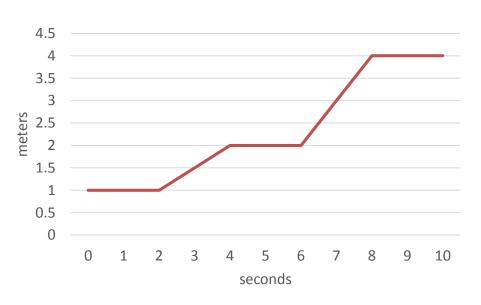
Acting Out Newton's Laws

Video by Diana O'Neal

Newton's Three Laws of Motion

	Formula	Keywords/ Logic argumentation	Hands-on
			Activities
First Law	ΣF =0	Keywords: Force: Balanced forces/ zero net forces Motion.: Inertia of motion (Status quo) Argumentation:	Wine glasses with different papersWine glasses with coins, paperboard
		Balanced net forces ⇒ constant motion (velocity = direction + speed)	
Second Law	ΣF ≠0	 Keywords: Force: Unbalanced forces/ non-zero net forces Motion: Change of motion Argumentation: Unbalanced net forces ⇒ motion change (direction and/or speed). The change also is proportional to mass. 	 Motion detector- position, velocity, acceleration, time Motion encoder system
Third Law	F _{action} -F _{reaction}	 Keywords: F: Forces occur in pair Motion: Action on an object and Reaction on a subject Argumentation: Action is performed ⇒ reaction exists simultaneously equal in magnitude and opposite in direction. 	Balloon Jet activitiesSkating board activities

Hands-on Activities for Newton's Three Laws


A. First Law

- 1. Wine glasses with different papers
- 2. Wine glasses with coins, paperboard

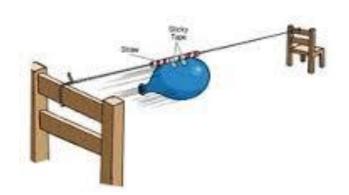
Hands-on Activities for Newton's Three Laws

B. Second Law

1. Motion detector: **position**, velocity, acceleration, **time**Task one: Describe the movement and perform it.

Task Two:

Draw a diagram and perform it: You start standing close to the device. Hold 3 seconds. Walk 3 meters away from the device for 3 seconds. Hold for another 3 seconds, and then walk 2 meters away from the device for another 3 seconds.

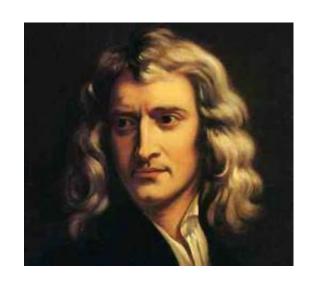

2. Motion <u>encoder</u> system for more precise experiments

Hands-on Activities for Newton's Three Laws

C. Third Law

1. Balloon Jet activities

Project-based Approach:


- Design a team recipe about how to make a balloon move as far as possible (identify variables, procedures)
- Measure an average speed in your experiment setting
- 3. Describe how speed would change during your experiment setting Limitation: move your balloon horizontally
- 2. Skating board activities (Prediction-Observation-Explanations)
- You push a wall
- You and your teammate push each other
- You push your teammate but she/he doesn't push you.
- You pull your teammate (with a rope) but she/he does nothing.

What is Newton's Mind/Best for Newton's Laws

Two Big Picture Questions:

1. Why THREE? Is it a complete set of (hypothetical) theories / (empirical) laws that can describe forces and motion on an object?

2.
$$\Sigma F = 0$$

 $\Sigma F \neq 0$
 F_{action} and $-F_{reaction}$

Should we start from scientific definitions or should we start from hands-on activities?

Implications of Newton's Third Law

For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton's third law). (MS-PS2-1)

Let's think about a concept of LOVE.

Love is an art of loving and being loved.

Keyword: ?

Interaction!

Using Graphic Novels to Understand Science

 How is the use of text changing in the science classroom?

Why Graphic Novels?

- Globalization has led to an emergence of greater reliability on visual modes of communication.
- New technologies make interactive, nonlinear, and hypertextual forms of communication possible.
- Graphic novels increase motivation.
- Graphic novels may help students connect with content that they struggle comprehending from their textbook. (Hassett & Schieble, 2007; Jimenez & Meyer, 2016)

Graphic Novel:

A Crash Course in Forces and Motion with Max Axiom Super Scientist

Your Task in Small Groups

- 1) Read the pages of the graphic novel provided.
- 2) As a group, fill in the empty speech bubble with text that illustrates Newton's 1st Law.
- 3) Discuss why you choose the particular piece of text you inserted.
- 4) Compare your text to that of the original author's text.

Connecting graphic novels to writing and technology: Story Visualizer

Tasks that provide opportunities for students to use spatial skills to imagine, visualize, and create lead us towards multimodal and multidimensional literacy (Spellman, Jones, & Katsio-Loudis, 2014).

Wrap-Up

Concluding Video

Title:

Producers

Alvin Tai 6th Grade, University School Johnson City, TN

<u>Emily Tai</u> 3rd Grade, University School Johnson City, TN

Questions and Comments

Contact Information

- Chih-Che Tai <u>taic01@etsu.edu</u>
- Laura Robertson <u>robertle@etsu.edu</u>
- Renee Rice Moran ricemoran@etsu.edu