4-1-2017

Force and Motion: An Integrated K-8 Hands-On Approach Supporting the NGSS and CCSS ELA

Laura Robertson
East Tennessee State University, robertle@etsu.edu

Renee Rice Moran
East Tennessee State University, ricemoran@etsu.edu

Chih-Che Tai
East Tennessee State University, taic01@etsu.edu

LaShay Jennings
East Tennessee State University, jenningsjl@etsu.edu

Huili Hong
East Tennessee State University, hongh1@etsu.edu

See next page for additional authors

Follow this and additional works at: https://dc.etsu.edu/etsu-works

Part of the Science and Mathematics Education Commons

Citation Information

This Presentation is brought to you for free and open access by the Faculty Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in ETSU Faculty Works by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.
Force and Motion: An Integrated K-8 Hands-On Approach Supporting the NGSS and CCSS ELA

Copyright Statement
© The Authors. The documents were originally made accessible by the National Science Teachers Association Conference.

Creator(s)
Laura Robertson, Renee Rice Moran, Chih-Che Tai, LaShay Jennings, Huili Hong, and Diana O'Neal

This presentation is available at Digital Commons @ East Tennessee State University: https://dc.etsu.edu/etsu-works/1312
Force and Motion (PS2): An Integrated K–8 Hands-On Approach Supporting the NGSS and ELA CCSS

National Science Teachers Association Conference 2017
Laura Robertson1, Renee Rice Moran1, Chih-Che Tai1, LaShay Jennings1, Huili Hong1, Diana O’Neal2

1 East Tennessee State University: Johnson City, TN
2 Sulphur Springs School: Jonesborough, TN
<table>
<thead>
<tr>
<th>NGSS Practices</th>
<th>CCSS ELA Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1. Ask questions and define problems</td>
<td>E1. Demonstrate independence in reading complex texts, and writing and speaking about them.</td>
</tr>
<tr>
<td>S2. Develop and use models.</td>
<td>E2. Build a strong base of knowledge through content rich texts.</td>
</tr>
<tr>
<td>S3. Plan and carry out investigations.</td>
<td>E3. Obtain, synthesize, and report findings clearly and effectively in response to task and purpose.</td>
</tr>
<tr>
<td>S4. Analyze and interpret data.</td>
<td>E4. Construct viable arguments and critique reasoning of others.</td>
</tr>
<tr>
<td>S5. Use mathematics and computational thinking.</td>
<td>E5. Read, write, and speak grounded in evidence.</td>
</tr>
<tr>
<td>S6. Construct explanations and design solutions.</td>
<td>E6. Use technology and digital media strategically and capably.</td>
</tr>
<tr>
<td>S7. Engage in argument from evidence.</td>
<td>E7. Come to understand other perspectives and cultures through reading, listening, and collaborating</td>
</tr>
<tr>
<td>S8. Obtain, evaluate and communicate evidence.</td>
<td></td>
</tr>
</tbody>
</table>
Preparing College/Career Readiness through Integrating Science Learning with Literacy in Grades 4-12 (6-12)
A LEA-IHE-Business Partnership Initiative Supported by TN DOE MSP and THEC ITQ Grants (2015-18)
Percent of 2016 ACT-Tested High School Graduates Meeting ACT College Readiness Benchmarks by Subject

- **English**: 58% (Tennessee), 61% (Nation)
- **Reading**: 38% (Tennessee), 44% (Nation)
- **Mathematics**: 30% (Tennessee), 41% (Nation)
- **Science**: 30% (Tennessee), 36% (Nation)
- **All Four Subjects**: 20% (Tennessee), 26% (Nation)
Research Questions

• **RQ1**: How does cross-discipline instruction benefit and enrich each subject discipline?

• **RQ2**: How does integration of science learning with literacy in G4-12 impact students’ learning in schools?
Word Splash

• Comprehension and vocabulary strategy
• Interactive activity that engages and motivates
• Sets a clear purpose for learning

(Burns, 2006)
Use the materials in your bag to demonstrate the following words.

- Newton’s 1st Law
- Newton’s 2nd Law
- Curve
- Spin
- Unbalanced
- Curve
- Fall
- Pull
- Balanced
- Push
- Constant speed
- Accelerate
- 2cm/s
- Slow down
- Equal
- In motion
- Still
- Crash
- Up
- Stop
Sort the words into two categories of forces: balanced forces & unbalanced forces.

- Newton’s 1st Law
- Newton’s 2nd Law
- curve
- fall
- push
- pull
- balanced
- unbalanced
- friction
- accelerate
- 2cm/s
- stop
- in motion
- slow down
- equal
- constant speed
- up
- turn
- spin
- crash
- still
Which claim(s) can be supported with evidence?

Claim 1
• Balanced = not moving
• Unbalanced = moving

Claim 2
• Balanced = no change in motion
• Unbalanced = change in motion

Claim 3
• Balanced = zero net force
• Unbalanced ≠ zero net force
3rd Grade

- **3-PS2-1.** Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

- **3-PS2-2.** Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.

Middle Grades

- **MS-PS2-1.** Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.

- **MS-PS2-2.** Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Pairing ELA and Science Practices

<table>
<thead>
<tr>
<th>CCSS ELA Practices</th>
<th>NGSS Science Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1. Demonstrate independence in reading complex texts, and writing and speaking about them.</td>
<td>S1. Ask questions and define problems.</td>
</tr>
<tr>
<td>E2. Build a strong base of knowledge through content rich texts.</td>
<td>S2. Develop and use models.</td>
</tr>
<tr>
<td>E3. Obtain, synthesize, and report findings clearly and effectively in response to task and purpose.</td>
<td>S3. Plan and carry out investigations.</td>
</tr>
<tr>
<td>E5. Read, write, and speak grounded in evidence.</td>
<td>S5. Use mathematics and computational thinking.</td>
</tr>
<tr>
<td>E7. Come to understand other perspectives and cultures through reading, listening, and collaborating.</td>
<td>S8. Obtain, evaluate and communicate evidence.</td>
</tr>
</tbody>
</table>
Acting Out Newton’s Laws

• Video by Diana O’Neal
Newton’s Three Laws of Motion

<table>
<thead>
<tr>
<th>First Law</th>
<th>Formula</th>
<th>Keywords/ Logic argumentation</th>
<th>Hands-on Activities</th>
</tr>
</thead>
</table>
| | $\Sigma F = 0$ | **Keywords:**
Force: Balanced forces/ zero net forces
Motion.: Inertia of motion (Status quo)
Argumentation:
Balanced net forces \Rightarrow constant motion (velocity = direction + speed) | • Wine glasses with different papers
• Wine glasses with coins, paperboard |

<table>
<thead>
<tr>
<th>Second Law</th>
<th>Formula</th>
<th>Keywords/ Logic argumentation</th>
<th>Hands-on Activities</th>
</tr>
</thead>
</table>
| | $\Sigma F \neq 0$ | **Keywords:**
Force: Unbalanced forces/ non-zero net forces
Motion: Change of motion
Argumentation:
Unbalanced net forces \Rightarrow motion change (direction and/or speed). The change also is proportional to mass. | • Motion detector- position, velocity, acceleration, time
• Motion encoder system |

<table>
<thead>
<tr>
<th>Third Law</th>
<th>Formula</th>
<th>Keywords/ Logic argumentation</th>
<th>Hands-on Activities</th>
</tr>
</thead>
</table>
| | $F_{\text{action}} - F_{\text{reaction}}$ | **Keywords:**
F: Forces occur in pair
Motion: Action on an object and Reaction on a subject
Argumentation:
Action is performed \Rightarrow reaction exists simultaneously equal in magnitude and opposite in direction. | • Balloon Jet activities
• Skating board activities |
Hands-on Activities for Newton’s Three Laws

A. First Law
1. Wine glasses with different papers
2. Wine glasses with coins, paperboard
Hands-on Activities for Newton’s Three Laws

B. Second Law

1. Motion detector: **position**, velocity, acceleration, **time**

 Task one: Describe the movement and perform it.

 ![Graph showing motion over time]

 Task Two:
 Draw a diagram and perform it: *You start standing close to the device. Hold 3 seconds. Walk 3 meters away from the device for 3 seconds. Hold for another 3 seconds, and then walk 2 meters away from the device for another 3 seconds.*

2. Motion **encoder** system for more precise experiments
Hands-on Activities for Newton’s Three Laws

C. Third Law

1. Balloon Jet activities

 Project-based Approach:
 1. Design a team recipe about how to make a balloon move as far as possible (identify variables, procedures)
 2. Measure an average speed in your experiment setting
 3. Describe how speed would change during your experiment setting

 Limitation: move your balloon horizontally

2. Skating board activities (Prediction-Observation-Explanations)
 - You push a wall
 - You and your teammate push each other
 - You push your teammate but she/he doesn’t push you.
 - You pull your teammate (with a rope) but she/he does nothing.
Two Big Picture Questions:

1. Why THREE?
 Is it a complete set of (hypothetical) theories / (empirical) laws that can describe forces and motion on an object?

2. $\Sigma F = 0$
 $\Sigma F \neq 0$
 F_{action} and $-F_{\text{reaction}}$

 Should we start from scientific definitions or should we start from hands-on activities?
Implications of Newton’s Third Law

For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton’s third law). (MS-PS2-1)

Let’s think about a concept of LOVE.

Love is an art of loving and being loved.

Keyword: Interaction!
Using Graphic Novels to Understand Science

• How is the use of text changing in the science classroom?
Why Graphic Novels?

- Globalization has led to an emergence of greater reliability on visual modes of communication.
- New technologies make interactive, nonlinear, and hypertextual forms of communication possible.
- Graphic novels increase motivation.
- Graphic novels may help students connect with content that they struggle comprehending from their textbook. (Hassett & Schieble, 2007; Jimenez & Meyer, 2016)
Graphic Novel: A Crash Course in Forces and Motion with Max Axiom Super Scientist

What a perfect day...

...even though everything feels turned upside down.

Spinning, flying, jumping, and falling are just some of the amazing ways to move.

But there's a lot of science behind the zoom-zoom around us.

In fact, the world is full of all kinds of motion.

Everything that moves needs a force to get it moving.

Back for another jump, already?

You bet!

A force is any push or pull on an object. Bungee jumping depends on a force called gravity.

Gravity is the reason I fall down, not up or sideways.

If a force pulls objects toward each other and it keeps us on the earth.
Your Task in Small Groups

1) Read the pages of the graphic novel provided.
2) As a group, fill in the empty speech bubble with text that illustrates Newton’s 1st Law.
3) Discuss why you choose the particular piece of text you inserted.
4) Compare your text to that of the original author’s text.
Connecting graphic novels to writing and technology: Story Visualizer

Tasks that provide opportunities for students to use spatial skills to imagine, visualize, and create lead us towards multimodal and multidimensional literacy (Spellman, Jones, & Katsio-Loudis, 2014).
Wrap-Up
Title:

Producers

Alvin Tai
6th Grade, University School
Johnson City, TN

Emily Tai
3rd Grade, University School
Johnson City, TN
Contact Information

• Chih-Che Tai – taic01@etsu.edu
• Laura Robertson – robertle@etsu.edu
• Renee Rice Moran – ricemoran@etsu.edu