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ABSTRACT 

 

Monitoring PC Hardware Sounds in Linux Systems Using the Daubechies D4 Wavelet 

by 

Robert K. Henry 

 

Users of high availability (HA) computing require systems that run continuously, with little or no 

downtime. Modern PCs address HA needs by monitoring operating system parameters such as 

voltage, temperature, and hard drive status in order to anticipate possible system failure. 

However, one modality for PC monitoring that has been underutilized is sound. The application 

described here uses wavelet theory to analyze sounds produced by PC hard drives during 

standard operation. When twenty-nine hard drives were tested with the application and the 

results compared with the drives’ Self-Monitoring, Analysis, and Reporting Technology 

(S.M.A.R.T.) data, the binomial distribution’s low p-value of 0.012 indicated better than chance 

agreement. While the concurrence between the two systems shows that sound is an effective tool 

in detecting hardware failures, the disagreements between the systems show that the application 

can complement S.M.A.R.T. in an HA system. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation for Research 

Users of high availability (HA) computing require systems that run continuously, with 

little or no downtime. One critical technology for achieving high availability is self-monitoring: 

the ability of a system to detect faults and signs of abnormalities. Self-monitoring is particularly 

important in environments such as massively parallel clusters, where downtime can be costly and 

disruptive, and the sheer mass of hardware makes the detection of faults and failures more 

complex and costly. 

To make component failures easier to detect, modern computers often support data 

acquisition devices (DAQ) that monitor operating characteristics such as temperature, voltage, 

and fan speed. A more intelligent device, the Self-Monitoring, Analysis and Reporting 

Technology (S.M.A.R.T.) System, provides data on hard drive operation; basic input/output 

systems (BIOSes) and operating systems have used S.M.A.R.T. technology for years to identify 

abnormalities in hard drives.  

One potentially useful but underutilized modality for detecting failing components in 

computers is sound. Sound has previously been used to detect abnormal system operation in 

automotive and mechanical engineering. Modern automobile engine controls, for instance, use an 

accelerometer to monitor vibrations caused by detonation, and then control spark advance 

accordingly.1 Another project investigated using signals from accelerometers to monitor 

vibration in helicopter transmissions. In this project, accelerometers installed near critical 

                                                 
1  Leonardo Mangeruca, Alberto Ferrari, Alberto Sangiovanni-Vincentelli, Andrea Pierantoni , Michele Pennese, 

System Level Design of Embedded Controllers: Knock Detection, a Case Study in the Automotive Domain, (2003), 
2,  http://www-cad.eecs.berkeley.edu/Respep/Research/asves/paper2003/Mangeruca_date03.pdf (last accessed 
11/8/2005) 
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bearings and gears in the transmission transmit a signal that is analyzed for potential component 

failure.2

Although most computer components are not mechanical, devices such as hard drives and 

cooling fans contain motors and bearings that may make abnormal sounds as they deteriorate. PC 

users often request service when they hear these sounds, which in turn are often used in 

troubleshooting.3, 4

In the case of cluster computing, the task of monitoring sound becomes much more 

difficult. There are three reasons for this. The tendency to house these systems in dedicated 

rooms precludes most users from hearing any sounds at all. Moreover, the number of PCs in 

these rooms makes it less likely that people who do come near the machines will hear abnormal 

noises, or if they do hear a sporadic strange noise, be able to identify the source of that noise.  

1.2 Results 

The research described here produced a Linux-based prototype for a sound-based system 

for detecting and analyzing mechanical hard drive failures. This system uses a built-in sound 

card and a microphone to obtain digital samples of hardware sounds. Once acquired and 

digitized, sounds are decomposed using digital signal processing (DSP) techniques, and checked 

for symptoms of potential failure.  

A design consideration was that the analysis system must present a minimal processing 

load on the system. This constraint was one consideration in choosing wavelet analysis as the 

DSP filter. Wavelets can provide useful filtering in time O(n), where n is the sample size: a 

significant performance improvement over some other DSP techniques. 

                                                 
2 Gary G. Yen and Kuo-Chung Lin, Wavelet Packet Feature Extraction for Vibration Monitoring, 2000, IEEE 

Transactions on Industrial Electronics, Vol, 47, No. 3,  661 
3 Knowledge Base Online Help Topics, “Identifying and troubleshooting hard drive noise issues”, Maxtor 

Corporation, 2005, http://maxtor.custhelp.com/cgi-bin/maxtor.cfg/php/enduser/olh_adp.php?p_faqid=481 
(accessed 7/26/2005) 

4 Service and Support, “How can I tell if the noise or sound my drive is making is normal?”, Western Digital 
Corporation, 2005, http://wdc.custhelp.com/cgi-
bin/wdc.cfg/php/enduser/std_adp.php?p_sid=hEQMvwLh&p_search_text=troubleshooting&p_widx=1&p_faqid=5
68&p_topview=1, (accessed 7/27/2005) 
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The prototype was tested on sounds from unserviceable hard drives. Digital recordings of 

the hard drives were played to the application and the results from the application captured for 

examination. The captured data consisted of χ2 comparisons between digitally filtered samples of 

the input sound and a template prepared to represent a normal quiescent hard drive. Those χ2 

results exceeding a fixed threshold were used to classify hard drives as good or bad. The 

threshold was also studied to determine the optimum value for this parameter.  

The results of the sound testing were compared to the S.M.A.R.T. data extracted from the 

hard drives. These two sets of observations were compared using Cohen’s kappa (κ), a statistical 

measure of observer agreement. Kappa corrects for agreement between the observers due to 

chance but says nothing about the validity of either set of observations. Though S.M.A.R.T. is 

being used to measure the validity of the sound measurement results, S.M.A.R.T. cannot be 

assumed as an infallible benchmark. This makes Kappa a useful comparison tool, because it 

measures the degree of agreement between two observers, either of which may be wrong. 

Comparing the S.M.A.R.T. observations with the sound observations with optimized threshold 

yielded a kappa as high as 0.3446, indicating a fair degree of agreement. 

Agreement between the two observers was also compared using the binomial distribution. 

The binomial distribution is used to calculate the probability of the observers agreeing by 

chance. The p-value was computed for numbers of agreements equal or greater than observed 

numbers with a binomial probability of 50%. To test for significance, the p-value should be as 

low as possible. Though p-values below 0.05 are normally considered significant, the less 

restrictive value of 0.10 was used for this research because of the small number of drives 

available for test and because of inherent differences between sound and S.M.A.R.T. that would 

make perfect agreement impossible. The binomial distribution p-value testing for agreement 

between sound and S.M.A.R.T. by chance was as low as 0.012. This number indicates that there 

is a 0.012 or 1.2% probability that the agreement between the observers is by chance. 

These results, in short, show that sound can be used as an effective indicator for hardware 

condition.  

 13



1.3 Overview of Thesis 

The balance of this thesis is divided into five chapters. Chapter 2 discusses supporting 

technologies for this work, including data acquisition, signal processing, wavelets, sampling 

sound using the PC sound card under Linux, and methods of classifying wavelet data. Chapter 3 

reviews the methodology and scope of the research. Chapter 4 discusses the design of the 

software components used in the system prototype. Chapter 5 examines the results of 

experiments with the prototype to assess the system’s effectiveness. Chapter 6 summarizes the 

thesis, offering suggestions for future work. 
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CHAPTER 2 

BACKGROUND 

This chapter discusses the technologies on which this research is based. Topics covered 

include hardware sensing technology for personal computers (PCs); the Self-Monitoring, 

Analysis and Reporting Technology (S.M.A.R.T.) system for analyzing hard drive performance; 

digital-signal-processing (DSP) techniques for sound analysis; and the Linux sound card 

technology used in this work for handling sound samples. 

2.1 Hardware Sensors 

2.1.1 Basic Sensors 

Large computing systems have long incorporated sensors or data acquisition (DAQ) 

devices to monitor the operation of hardware. For example, in 1977, the Cray-1 computer had a 

monitoring system to detect power and cooling systems malfunctions.5  

In recent years, manufacturers have installed sensors in some personal computers (PCs) 

to monitor physical characteristics such as temperature, voltage, and other measurable quantities 

of the motherboard and peripheral devices. PC sensors obtain data on a system’s hardware and 

provide that data to the host system.  

An example of a common, simple sensor is National Semiconductor’s LM75 temperature 

sensor.6 The LM75 incorporates a sensing element, an analog-to-digital converter (ADC), and 

other digital circuitry for reporting temperatures to the processor. The sensing element delivers a 

voltage signal to the ADC, which computes the digital number that represents the temperature. 

The host machine reads the digital temperature measurement from the device as a 9-bit 2’s-

complement value representing temperatures from -55°C to 125°C with an accuracy of between 

±2°C and ±3°C.  

                                                 
5 Cray-1 Hardware Reference Manual, (1977) http://www.ed-thelen.org/comp-hist/CRAY-1-HardRefMan/CRAY-

1-HRM.html#p2-8 (Accessed 10/10/2004) 
6 Digital Temperature Sensor and Thermal WATCHDOG™ with Two-Wire Interface, National Semiconductor 

Corporation, (1/6/2000) 
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When installed in a computer, the LM75 is mapped to an I/O port that can be queried at 

any time by the host machine and the temperature read directly from the port. The LM75 can 

also be configured to generate an interrupt to the host computer if the measured temperature 

exceeds a specified value. In this configuration, attention from the host computer is required only 

when the system's temperature is of concern. In this case, interrupt handlers on the host computer 

must be designed to read the correct I/O port for the device and correctly interpret the data 

obtained. This means that the software must be designed for the specific computer or must be 

user configurable. 

A more modern DAQ device, National Semiconductor’s multipurpose LM87 sensor, can 

acquire and digitize data from several different sources. The LM87 can measure temperatures 

from an on-chip sensor and accept input from two additional external temperature sensors. In 

addition, the device can sample voltages, measure and control the speeds of two sensor-equipped 

fans, and generate an interrupt when a parameter exceeds its tolerances.7 As in the case of the 

LM75, the LM87’s software controller must be specific to the host computer’s hardware. 

2.1.2 Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T.) 

An additional type of PC sensor system is the Self-Monitoring, Analysis, and Reporting 

Technology (S.M.A.R.T.) found in ATA/IDE and SCSI hard drives.8 S.M.A.R.T. is based on 

IBM’s technology of Predictive Failure Analysis (PFA),9 a technology that IBM first provided to 

customers in 1992.10 S.M.A.R.T. sensors predict hard drive failure by measuring and analyzing a 

hard drive’s operating parameters including head flying height, drive spin-up time, and 

temperature. If head flying height is lower than normal, an above-average possibility of a head 

crash exists. A drive that takes longer than usual to spin up may have bearings that are wearing 

                                                 
7 Serial Interface System Hardware Monitor with Remote Diode Temperature Sensing, National Semiconductor 

Corporation, (9/11/2003), (LM87.pdf) 
8 Mark Evans, SFF Committee Specification for Self-Monitoring, Analysis, and Reporting Technology, Quantum 

Corporation, (4/26/1996) 
9 Playing it S.M.A.R.T, Seagate.com ( ) (accessed 9/26/2004) http://www.seagate.com/support/kb/disc/smart.html
10 PCTechGuide S.M.A.R.T. ( )(accessed 9/26/2004) http://www.pctechguide.com/04disks_SMART.htm
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out.11 When the probability of failure exceeds a given threshold, the drive can warn of imminent 

failure, permitting backup of data and replacement of the component before failure occurs. 

Hughes, et. al. suggest that S.M.A.R.T. does not perform perfectly in reporting impending 

failures without excessive false alarms due to the low failure rate for hard drives, typically 

<1%/year.12  

Normally, a PC’s BIOS checks S.M.A.R.T. data during the power on self-test. 

Parameters that fall outside their threshold values cause the system to signal an error. In addition 

to the BIOS monitoring, several software applications are available for monitoring S.M.A.R.T. 

drive data. Most hard drive manufacturers provide software that reads, analyzes, or displays 

S.M.A.R.T. data for their own or other manufacturers’ drives, and make these applications 

available for download without cost from the manufacturer’s websites. 

Vendor-supported and freeware applications are available that read, monitor, and display 

hard drive S.M.A.R.T. data. An example of a free S.M.A.R.T. application is smartmontools, 

released under the GNU General Public License and available for Windows as well as 

UNIX/Linux.13 Figure 1 presents a smartmontools report for a drive with an excessive raw read 

error rate count. This report indicates that the drive has failed and that its data should be backed 

up promptly.  

The information presented in S.M.A.R.T. drive reports varies, depending on the drive 

manufacturer’s implementation of the S.M.A.R.T. standard. These variations may represent 

choices by manufacturers to ignore parameters that have not been shown to be useful in 

predicting failure for this particular device. 

                                                 
11 Playing it S.M.A.R.T. 
12 Gordon F Hughes, Joseph F Murray, Kenneth Kreutz-Delgado, Charles Elkan, Improved Disk-Drive Failure 

Warnings, IEEE Transactions on Reliability. Vol. 51, no. 3, pp. 350-357. Sep 2002. 
13 Bruce Allen, smartmontools, http://smartmontools.sourceforge.net (2002-4) 
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smartctl version 5.33 [i386-pc-mingw32] Copyright (C) 2002-4 Bruce Allen 
Home page is http://smartmontools.sourceforge.net/ 
 
=== START OF INFORMATION SECTION === 
Device Model:     WDC AC22100H 
Serial Number:    WD-WM3610442859 
Firmware Version: 10.07H11 
User Capacity:    2,111,864,832 bytes 
Device is:        Not in smartctl database [for details use: -P showall] 
ATA Version is:   1 
ATA Standard is:  Exact ATA specification draft version not indicated 
Local Time is:    Wed May 18 14:49:59 2005 Pacific Daylight Time 
SMART is only available in ATA Version 3 Revision 3 or greater. 
We will try to proceed in spite of this. 
SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 82-83 don't show if SMART supported. 
                  Checking for SMART support by trying SMART ENABLE command. 
                  SMART ENABLE appeared to work!  Continuing. 
SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 85-87 don't show if SMART is 
enabled. 
                  Checking to be sure by trying SMART RETURN STATUS command. 
SMART support is: Enabled 
 
=== START OF READ SMART DATA SECTION === 
SMART overall-health self-assessment test result: FAILED! 
Drive failure expected in less than 24 hours. SAVE ALL DATA. 
See vendor-specific Attribute list for failed Attributes. 
 
General SMART Values: 
Offline data collection status:  (0x00) Offline data collection activity 
                                        was never started. 
                                        Auto Offline Data Collection: Disabled. 
Total time to complete Offline 
data collection:                 ( 900) seconds. 
Offline data collection 
capabilities:                    (0x03) SMART execute Offline immediate. 
                                        Auto Offline data collection on/off supp 
ort. 
                                        Suspend Offline collection upon new 
                                        command. 
                                        No Offline surface scan supported. 
                                        No Self-test supported. 
                                        No Conveyance Self-test supported. 
                                        No Selective Self-test supported. 
SMART capabilities:            (0x0002) Does not save SMART data before 
                                        entering power-saving mode. 
                                        Supports SMART auto save timer. 
Error logging capability:        (0x00) Error logging NOT supported. 
                                        No General Purpose Logging support. 
 
SMART Attributes Data Structure revision number: 5 
Vendor Specific SMART Attributes with Thresholds: 
ID# ATTRIBUTE_NAME          FLAG     VALUE WORST THRESH TYPE      UPDATED  WHEN_FAILED 
RAW_VALUE 
  1 Raw_Read_Error_Rate     0x000b   001   001   051    Pre-fail  Always   FAILING_NOW 46445 
  4 Start_Stop_Count        0x0012   092   092   040    Old_age   Always       -       8960 
 10 Spin_Retry_Count        0x0013   100   098   051    Pre-fail  Always       -       0 
 11 Calibration_Retry_Count 0x0013   100   100   051    Pre-fail  Always       -       0 
 12 Power_Cycle_Count       0x0012   001   001   000    Old_age   Always       -       945 
200 Multi_Zone_Error_Rate   0x0009   100   253   051    Pre-fail  Offline      -       0 
 
Warning: device does not support Error Logging 
IOCTL_IDE_PASS_THROUGH does not work on your version of Windows 
Error SMART Error Log Read failed: Function not implemented 
Smartctl: SMART Error Log Read Failed 
Warning: device does not support Self Test Logging 
Error SMART Error Self-Test Log Read failed: Function not implemented 
Smartctl: SMART Self Test Log Read Failed 
Device does not support Selective Self Tests/Logging 

Figure 1. Sample Output from smartctl.exe 
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2.2 Sensing Sound 

Three base technologies are needed to support the detection of hardware faults using 

sound: sensing, or the conversion of sound into electrical signals; digitization, or the conversion 

of signals into digital data, for use in digital computers; and signal processing, or the analysis of 

a signal to detect and distinguish its features. 

2.2.1 Accelerometers and Microphones 

Currently, two types of hardware are commonly used to sense sound: accelerometers and 

microphones. Accelerometers, which measure mechanical forces in an object due to acceleration, 

can be used to detect vibration.14 Some accelerometers can measure frequencies as high as 30 

kHz.15 An example of an accelerometer application is the knock sensor used in most modern 

automobiles to allow the engine control computer to respond to detonation in the combustion 

chamber. The accelerometer is attached to the engine block and responds to vibrations that 

indicate the presence of detonation.16 While attaching the sensor directly to the engine block 

reduces the detection of noise from other sources, it does not eliminate all noise and the 

processing system must deal with this extraneous noise.  

Another application for accelerometers has been in detecting vibration from a helicopter 

transmission. Accelerometers attached near critical points such as bearings and gears produce 

signals of the vibrations that are analyzed for possible failures.17

An accelerometer attached to a hard drive may detect potential problems with the drive, 

but miss sounds from other parts of the computer, such as fans, power supplies, or individual 

electrical components that may emit sounds. Equipping every component with an accelerometer 

                                                 
14 Accelerometer—Frequently Asked Questions, Honeywell, 

http://www.sensotec.com/accelerometer_faq.asp?category=1 (accessed 12/27/2004) 
15 Accelerometer, Model MAQ36, Data sheet, http://www.sensotec.com/pdf/ma341_ma342.pdf  
16 Leonardo Mangeruca, Alberto Ferrari , Alberto Sangiovanni-Vincentelli, 
Andrea Pierantoni , Michele Pennese, System Level Design of Embedded Controllers: Knock Detection, a Case 

Study in the Automotive Domain, (2003) (citeseer.ist.psu.edu/584684.html) (accessed 9/25/2004) 2 
17 Gary G. Yen and Kuo-Chung Lin, Wavelet Packet Feature Extraction for Vibration Monitoring, 2000, IEEE 

Transactions on Industrial Electronics, Vol, 47, No. 3,  661 
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and other concomitant hardware would add to the cost of the system and the required processing 

of multiple signal streams would add to computational complexity. 

A solution to this problem of multiple sound sources might be to place a microphone 

inside the computer case to allow it to listen to all the sounds coming from the computer. This, 

however, presents a different set of problems. A first is ensuring that the microphone is oriented 

to capture sounds from devices likely to produce sounds of interest. This problem arises with 

microphones that have a directional component to their response. For example, microphones 

with unidirectional or cardioid response patterns18 are most attuned to sounds at the front end 

with the response diminishing toward the sides and rear of the microphone.  

If a microphone captures sound from every noise-generating component in a computer 

cabinet, the processing software must distinguish sounds from different sources—a more 

complicated problem than the case of accelerometers attached to individual components. Further 

difficulties arise when environmental noises generated from outside the computer cabinet are 

captured. The processing software must discount these environmental sounds.  

2.2.2 Sampling Sounds 

In order to analyze the sounds detected by a microphone, the analog voltage produced by 

the microphone must be converted into a digital value representing the analog signal, a process 

known as sampling. A device that samples voltage is called an analog to digital converter 

(ADC). The ADC first captures the input voltage using a process known as “sample and hold.” 

This fixes the input voltage so that the ADC circuitry can stabilize long enough to do the 

conversion. The sample represents a snapshot of the signal at a specific moment in time since 

subsequent changes in the input voltage are ignored. The ADC then pigeonholes the voltage 

sample into one of a series of possible stepped values that the ADC can accept. This process is 

known as “quantization.” In this operation, if the sample lies between two permissible digital 

values, the ADC will choose one of the values and assign it to that value. Then, in the final step, 

                                                 
18 Sony Model C-22 FET Condenser Microphone Instruction Manual, Sony Corporation 
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the ADC finds a digital number that can represent the quantized voltage.19 Quantization loses 

some information in the conversion, but the loss is unavoidable since a digital number, unlike an 

analog quantity, can only represent a finite number of possible values. Sampling is repeated at 

specified intervals at a hardware-determined rate, known as the sampling rate, and typically 

measured in units of samples/second or Hertz.  

Some characteristics of an analog signal may be lost if they occur between samples. This 

is a result of components of the signal changing faster than the ADC is sampling, i.e., one of the 

input frequencies is higher than the sampling rate can detect. Nyquist’s Law dictates that the 

highest frequency that can be reliably represented with a series of samples is half that of the 

sampling rate. Higher frequencies in analog signals are either lost or appear as lower frequency 

components.20 This phenomenon, known as aliasing, sounds like a metallic clipping in an audio 

signal.21 Signal samples include noise in addition to the desired signals. Noise frequencies should 

also be considered in choosing a sampling rate, since these may also appear as lower frequency 

components that could be confused with legitimate signals.22

Increasing the sampling rate solves the problem of undersampled signals, but at a cost of 

more expensive DAQ equipment to handle a higher sampling rate, a higher demand on the 

processor, and increased memory requirements. Depending upon the frequencies needed for 

analysis, sampling at a rate higher than the Nyquist frequency may be a waste of system 

resources and may not yield additional data meaningful to the analysis. 

2.2.3 Sampling Programming Practice 

Many contemporary computers come with sound sampling hardware built in. If not, a 

commercially available adapter can be added. These sound devices, commonly referred to as 

sound cards, may do a variety of sound-related tasks including digital sampling, playback, MIDI 

                                                 
19 Dale Grover, Jack Deller, Digital Signal Processing and the Microcontroller, (1999), 124-141 
20 Grover & Deller, 96 
21 Daubechies, Ingrid, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, (1992), 20 
22 Grover & Deller, 96 

 21



synthesis, and sound mixing. These functions are typically available using monaural or multi-

channel signals. Sound cards can sample audio signals without extra equipment other than a 

microphone.  

There are constraints on the use of sound card hardware for monitoring sound. One 

constraint is that sound hardware installed in computers operates in the range of human hearing. 

This may pose a problem if frequencies outside this range are needed to diagnose a potential 

failure. Another potential problem is that differences in sound cards may affect the diagnostic 

tool’s performance when a card is used to monitor hardware. 

Software is required to access data captured by the sound card hardware. In multitasking 

operating systems such as Microsoft Windows or Linux, the operating system manages the sound 

card, handling hardware interrupts and controlling access to the hardware by application 

processes. The UNIX/Linux environment supports two standard application programming 

interfaces (API) for managing sound cards. The now-deprecated Open Sound System (OSS) 

manages sound hardware using the devices-as-files paradigm typical of the UNIX environment. 

Under OSS, reading from /dev/audio or /dev/dsp returns sampled data from a properly initialized 

sampling device.23 The newer, Advanced Linux Sound Architecture (ALSA) supports access to 

sound cards through calls to the ALSA driver.24 ALSA is the standard sound system in Linux 

kernel versions 2.6 and higher.  

ALSA supports the use of callbacks for data access. A callback is a data-processing 

function that an application registers with the ALSA driver. When a callback is in use, the ALSA 

driver accumulates a specified number of sample frames in a buffer that is known to the callback, 

                                                 
23 The Linux Sound HOWTO, http://www.faqs.org/docs/Linux-HOWTO/Sound-HOWTO.html#AEN611 (accessed 

1/11/05) 
24 Matthias Nagorni, ALSA 0.9.0 Howto v.0.0.6, http://www.suse.de/~mana/alsa090_howto.html (accessed 

2/25/2005)  
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then redirects processing to the callback. Callbacks reduce processing overhead by eliminating 

the need for the application to actively monitor (poll) a sound card for incoming data.25

2.3 Analyzing Sounds 

2.3.1 Fourier Transform 

One of the oldest and most widely used methods of analyzing signals and categorizing 

them is the Fourier function, developed by Joseph Fourier in 1807. Fourier showed that every 

continuous periodic function, or signal, can be represented by a sum of sines and cosines as in 

Equation 1.26

  (1) (∑
∞
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++
1

0 sincos
k

kk kxbkxaa )

                                                

Substituting different values for the coefficients ak and bk in Equation 1 yields different 

functions. Conversely, for any differentiable function f, the ak and bk that yield f is determined 

using an algorithm known as the Fourier Transform. The result is a transformation of a time-

domain signal to a frequency-domain representation of that signal. 27

Computing the Fourier Transform for a given signal is a non-trivial operation. For a 

sample size n, the Fourier Transform algorithm involves multiplying an n×n matrix resulting in 

n2 operations. The algorithmic complexity of the Fourier Transform makes it impractical for real-

time signal processing. 28

 
25 Paul Davis, A  Tutorial on using the ALSA Audio API http://equalarea.com/paul/alsa-audio.html#interruptex 

(2002) 
26 Amara Graps, An Introduction to Wavelets, Institute of Electrical and Electronics Engineers, Inc., (1995), 2 
27 Graps, 5 
28 Graps, 5 
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2.3.2 Fast Fourier Transform 

The Fast Fourier Transform (FFT), a faster algorithm for finding Fourier coefficients 

developed by Cooley and Tukey,29, 30 can be applied to samples obtained at evenly spaced 

intervals in time. The FFT algorithm uses the assumption of a fixed sampling rate to compute a 

Fourier matrix product as a product of a few sparse matrices. The resulting algorithm has 

complexity of O(n log2(n)), which is fast enough for practical signal processing. 

An example use of the FFT is presented in Figure 2 and Figure 3. Figure 2 shows a plot 

of an input signal created in the mathematical analysis tool Maple using frequencies of 440, 880, 

1320, and 1760 Hz., with amplitude values of 1, 0.75, 0.4, and 0.1 respectively.31  

Figure 2. Input Signal 

The signal shown in Figure 2 was analyzed using Maple’s FFT function, producing the 

plot in Figure 3. Spikes occur at positions along the x-axis corresponding to the frequencies and 

magnitudes used to create the original signal.  

                                                 
29 Grover & Deller 356 
30 J.C. Cooley and J.W. Tukey, An Algorithm for the Machine Computation of Complex Fourier Series, Math. 

Comp, 19:291-301, 1965
31 Paul Goossens, Spectral Analysis using Maple 6, Maple worksheet, Waterloo Maple Inc.  
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Figure 3. FFT Transform 

A significant weakness of the Fourier transform is its inability to accurately represent 

transient components of a signal.32 This lack of accuracy stems from the use of the periodic sine 

and cosine functions to represent aperiodic signals. An extreme illustration of a Fourier 

representation of a transient signal is presented in Figure 5, which shows the frequency domain 

of the non-periodic pulse from Figure 4. Unlike the discrete frequencies generated by applying the 

FFT to the example in Figure 2, applying an FFT to a pulse yields a broad, continuous range of 

frequencies. The reduced scale in the y-axis indicates that the energy of the pulse is being 

distributed over the range with much lower amplitude. This use of all frequencies makes FFT 

representations of pulses impractical. Because many of the sounds that a computer makes are 

transient, a naive application of Fourier transform may yield inaccurate characterizations of 

possible syndromes.  

                                                 
32 Graps, 5 
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Figure 4. Transient Signal 

 

 

Figure 5. Transient Fourier Transform 

 

2.3.3 Localizing in Time  

One strategy for using FFTs to handle transients is to process selected sections of signal 

at a time. This strategy, the Windowed Fourier Transform (WFT), partitions a signal into 

windows and then applies the FFT to each window. Transients in the signal can be localized to 

somewhere within one of these windows. Errors resulting from sharp transitions at the 

boundaries of a window can be minimized by weighting the window’s center portion.33  

                                                 
33 Graps, 5 
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The WFT, unfortunately, cannot localize transients within windows—a problem when the 

transients themselves represent the “interesting” part of the signal.34 Another issue with the WFT 

is that the resolution of the window is constant for all frequencies. Small windows are best suited 

to localizing short events more accurately. On the other hand, larger windows handle low 

frequencies well, but cannot localize short, high frequency events as well as the small windows. 

A single window size for all signals may not handle those signals as well as a scheme that uses 

varying window sizes for different signal frequencies.35

2.3.4 Wavelets 

Another technique for representing signals in both the time and frequency domains is 

wavelet theory. Wavelets are mathematical functions exhibiting specific characteristics that 

make them particularly useful for analyzing transient signals. One desirable feature of a wavelet 

function is that it should exhibit compact support—that is, return non-zero values only over a 

finite domain. The function can be scaled with appropriately chosen coefficients to approximate 

an input signal and since the wavelet only exists within a specified range, it can be used to 

approximate transient signals. Wavelet coefficients can be chosen to approximate either large or 

small windows, thereby allowing the wavelet to localize short-interval, high-frequency events or 

to handle low frequencies.36  

There are two general types of wavelet transforms, continuous and discrete. The 

continuous wavelet transform is generally represented by Equation 2. 

                                                 
34 Graps, 6 
35 ibid 
36 Graps, 2 
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In the continuous wavelet shown in Equation 2, the coefficients a and b represent the 

scaling and translation of a wavelet function,ψ, to allow it to approximate an input signal. The 

other version of the wavelet transform, the discrete wavelet transform, is shown by Equation 3 37

 ( ) ( )∫ −= −−
dtnbtatfafT mmwav

nm 00
2

0, )( ψ  (3) 

In the discrete wavelet transform shown in Equation 3, the values a0 and b0 assume 

discrete values. There are two types of discrete wavelet transforms: transforms that use frames, 

non-independent sets of vectors, and transforms in which ψ and f(t) are carefully chosen to be 

orthogonal. In the case of orthogonal transforms, the wavelet,ψ, is scaled by the scaling function 

f(t). Sometimes f(t) is designated by φ orϕ. The family of wavelet functions ψ a, b is sometimes 

referred to as the mother wavelet38 or analyzing wavelet.39  

2.3.5 Haar Wavelet 

One of the first wavelets was the Haar wavelet, described in 1910 by Hungarian 

mathematician Alfréd Haar. Unlike the Fourier transform, which is a linear combination of sines 

and cosines, the Haar wavelet consists of a simple step function varying between -1 to 1 over a 

range of 0 to 1, with the function having a value of zero otherwise. The Haar function is shown 

in Equation 4 and depicted in Figure 6. 

                                                 
37 Daubechies, 3 
38 ibid 
39 Graps, 5 
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Figure 6. Haar Wavelet 
 

Associated with the Haar wavelet function ψ is a scaling function,φ, shown in Equation 5 

and depicted in Figure 7.40
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40 Daubechies, 137 
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Figure 7. Haar Scaling Function 
 

Outside of [0,1], the Haar wavelet is zero, exhibiting compact support. Orthogonality 

holds when the inner product of the wavelet function and the scaling function is 0, as determined 

by evaluating Equation 6.41  

  (6)  

The Haar wavelet has deficiencies that make it less useful for time localization.

∫
∞

∞−

= 0)()( dxxx ψφ

42 The wavelet, 

however, is simple and easy to program. It has been put to many uses, including image 

compression and the teaching of wavelet theory. 

2.3.6 Daubechies Wavelet 

Other wavelets have been proposed in addition to the Haar wavelet, including the 

Mexican Hat,43 Sinc, Morlet,44 and Gabor.45 Yet another family of wavelets, proposed by Ingrid 

Daubechies, exhibits compact support and orthogonality and is useful as a filter and for time 

localization of signals. The Daubechies wavelet is defined by a recursive function, shown in 

Equation 7. 
                                                 

41 C. Sidney Burrus, Ramesh A. Gopinath, and Haitao Guo, Introduction to Wavelets and Wavelet Transforms, 
1998, Prentice Hall 

42 Daubechies, 10 
43 Daubechies, 75 
44 Daubechies, 76 
45 Daubechies, 84 
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The various Daubechies wavelets differ in the number of non-zero terms. The 

Daubechies wavelet of interest here, sometimes called the D4 because it has 4 non-zero terms or 

vanishing moments, can be determined by recursively evaluating Equation 8 over an arbitrary 

number of iterations, n.  
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The refining coefficients P0 through P3 for Equation 8 are46  
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When Equation 8 is evaluated over an arbitrary number of iterations, the scaling function 

φ(x) emerges, as shown in Figure 8. The mother wavelet function ψ(x) can be computed from the 

scaling wavelet function φ(x) using Equation 9, with the resulting wavelet shown in Figure 9. 

-1 0 1 2 3

Figure 8. D4 Scaling Function φ 
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46 Daubechies, 235 
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Figure 9. D4 Wavelet ψ 
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The D4 wavelet function is neither smooth nor symmetrical and has a fractal self-

similarity characteristic.47 This wavelet ψ can be used to analyze signals by finding coefficients 

Cn,k satisfying Equation 10.48  
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Since the wavelet is compactly supported, it is not necessary to sum from -∞ to ∞: the 

wavelet is zero beyond the interval [-1, 3]. Once determined, the scaling coefficients Cn,k may be 

used to reconstruct the original signal by scaling and translating φ to obtain a good 

approximation to the signal being analyzed. The coefficients may be manipulated in various 

ways before reconstructing the signal to provide filtering of the input signal or signal 

compression. In this research, the coefficients were only used to characterize the input signal; the 

reconstruction of the original signal was unnecessary. 

As an example of signal analysis with the D4 wavelet, consider an analysis of the 

function sin (πt) where 0 < t < 1 and zero everywhere else, or
⎩
⎨
⎧ <<

=
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tt
tf

0
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)(
π

. 

 Using the Daubechies D4 transform, the curve can be approximated by finding values for the 

                                                 
47 Amara Graps, “An Introduction to Wavelets,” IEEE Computational Science and Engineering, (Summer 1995), 7  
48 Edward Aboufadel, Daubechies Wavelet¸ Maple worksheet, 2001, Waterloo Maple, Inc. 
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scaling and translation coefficients a and b. The resulting approximation taken from a Maple 

Worksheet using just a few coefficients is presented in Figure 10.49  

In the example shown, the Maple worksheet computes the coefficients using numerical 

integration. This technique demonstrates the wavelet principle but is too slow and complex to 

use as a filtering system.  

 

Figure 10. Wavelet Approximation 
 

 
2.3.7 Multiresolution Analysis and the Fast Wavelet Transform (FWT) 

A faster way of finding coefficients of a discrete wavelet is Multiresolution Analysis. 

Multiresolution Analysis finds wavelet coefficients by successively downsampling the signal to 

lower resolutions. At each stage, the signal is represented by half as many samples as in the 

previous stage, filtering out high frequencies that cannot be represented at the lower resolution.50  

                                                 
49 Aboufadel 
50 Daubechies, 129 
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This principle can be illustrated by representing a simple sine signal with Haar wavelets. 

Figure 11 represents a sine function and Figure 12 represents the sine function downsampled 

using the Haar wavelet, with seven iterations of multiresolution analysis. These figures may 

suggest that all that has been done is to sample the signal at a lower resolution, and that is 

partially true. However, re-sampling a signal at a lower resolution or sampling density introduces 

noise, as determined by Nyquist’s Law, which dictates that a signal must be sampled at twice the 

highest frequency represented in the signal. Sampling at a lower rate, or downsampling by 

throwing away every other datum, would introduce aliasing noise into the signal. If high 

frequencies are removed from a signal by downsampling, the high frequencies that cannot be 

represented at the lower resolution must first be filtered from the signal to avoid introducing 

aliasing noise. 

 

Figure 11. Sine 

 

Figure 12. Haar Approximation 

 

At each step in the Multiresolution analysis, the signal is filtered, removing high 

frequencies that would produce aliasing in the downsampled signal. However, these high 

frequencies contain information about time-localized events, so it is desirable to preserve this 

information separately. The input signal can be separated into a high-frequency component 

representing detail and a low-frequency component to be processed further in the next iteration. 
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This technique is also known as a Quadrature Mirror Filter or QMF.51 Figure 13 depicts the 

Multiresolution Analysis filter. V0 represents a vector of lower level elements, V1 represents the 

next level with the detail information removed, and W1 represents the detail information that was 

removed from V1. The down arrows represent downsampling. The elements V1 and W1 now 

contain half as many elements as V0 due to the downsampling. 

 

 

Figure 13. Multiresolution Analysis 

V0 
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The QMF is applied iteratively to the signal, separating high frequencies into a signal 

representing high-frequency time events and a signal containing lower frequencies. The process 

is repeated on the Vx vector as often as needed or until one datum is left. The one remaining 

element should approximate the average of the sample.52 This Multiresolution analysis process is 

sometimes referred to as the pyramid algorithm or ladder algorithm.  illustrates the process of 

iteratively applying the method depicted in Figure 13. At each level the signal is filtered with 

high-pass data saved as the detail vector Wx; low pass data is then processed in the next iteration, 

as illustrated in Figure 13. 

  

                                                 
51 Daubechies, 161 
52 Wim Sweldens and Peter Schröder, Building Your Own Wavelets at Home, In Wavelets in Computer Graphics,. 

ACM SIGGRAPH Course notes (1996), 20 
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Figure 14. Multiresolution Tree 
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If V0 contains N elements, then both V1 and W1 will consist of 
2
N  elements. Since every 

level has half as many elements as the level above it, the total number of levels is . A 

restriction on the size of N is that it must be a power of 2 or N = 2

)(log2 N

levels.  

The multiresolution algorithm processes half of the input values at each level. The first 

level processes 
2
N elements, the next level processes half of the remaining elements or

4
N , and 

so on. The total number of operations to complete the transform is ∑
=1 2k

k

N  or an algorithmic 

complexity of order O(N), a significant improvement over the FFTs complexity of O(n log2(n)).  

A characteristic of Multiresolution Analysis is that the frequencies represented at each 

level do not evenly subdivide the frequency space. For example, if a signal is sampled at 

44,100 Hz, the sampling rate for music CDs, then the sampling rate of the next level will be half 

the original rate or 22,050 Hz. Each subsequent level will have a sampling rate half the rate of 

the level before. The frequency subdivision is not evenly spaced as it is in FFT. This is a tradeoff 
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made in signal analysis. At the lower levels, time localization is good at the expense of frequency 

resolution. At the upper levels, frequency resolution is good, but there is little time localization. 

This relationship has been compared to Heisenberg’s Uncertainty Principle, suggesting that we 

can localize time or resolve frequencies but not both.53 Wavelet-based Multiresolution Analysis 

offers a useful compromise to the problem of analyzing in both time and frequency domains. 

2.3.8 Lifting 

Historically, wavelets have been constructed based upon Fourier series. The wavelets 

built in this way are termed first generation wavelets. A new way of constructing wavelets has 

been proposed that allows a spatial construction without Fourier analysis. These wavelets are 

termed second generation and are built using a method referred to as lifting. The basic idea is to 

take advantage of the correlated structure of the signal.54  

A signal consists of a stream of ordered data that is divisible into even and odd numbered 

elements. The expected high degree of correlation between the odd and even sets of elements 

allows either set to predict the values in the other, using prediction functions of the form: 

d = xeven - P(xodd) 

This is reversible, since from d and an odd value the even value can be recovered: 

xeven = P(xodd) + d 

If subsampling is accomplished by selecting the even elements, aliasing will occur. To 

eliminate this problem, the even values are replaced with a smoothed value using an update 

operator: 

s = xeven + U(d) 

which can be easily inverted by: 

xeven = s - U(d) 

                                                 
53 Björn Jawerth and Wim Sweldens, An overview of Wavelet Based Multiresolution Analysis, SIAM Rev. 36 

(1994), no. 3, 377412 
54 Ingrid Daubechies and Wim Sweldens, Factoring Wavelet Transforms into Lifting Steps, 1996, 2 
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and then xodd is recovered from d and xeven, as above.55

The Haar wavelet can be computed with lifting using just two statements of C code 

where a represents even and b represents odd elements:  

b -= a; a += b/2; 56

The inverse is easily accomplished by reversing the order and changing the operators: 

a -= b/2; b += a; 57

These operations overwrite the locations that contain the original data with the 

transformed values, thereby eliminating the need for temporary storage. The simple update 

operator in this example, an arithmetic average of two values, reflects the simplicity of the Haar 

transform. More complex wavelets, such as the D4, require more complicated factoring in order 

to use lifting.58  

2.3.9 Wavelet Packets 

Dr. Ronald A. Coifman extended wavelet theory by treating the wavelet transform as a 

special case of the Wavelet Packet Transform.59 The fast wavelet transform described in §2.3.7 

and presented in Figure 14 produces a partial tree, obtained by transforming the low-pass filtered 

component at each level and leaving the high-pass component as output. Coifman’s algorithm 

transforms the high-pass component as well, thereby generating a full binary tree, illustrated in 

Figure 15.60 Coifman claims that this transformation provides a more general solution of 

wavelets, providing more information about the signal. Since there are more calculations 

required to construct this tree, this transform loses the O(n) algorithmic complexity offered by 

the Fast Wavelet Transform or Multiresolution Analysis. 

 

                                                 
55 Ingrid Daubechies and Wim Sweldens, 1-3 
56 Wim Sweldens and Peter Schröder 
57 ibid 
58 Ingrid Daubechies and Wim Sweldens, 15-16 
59 Graps, 10 
60 M.A. Cody, “The Wavelet Packet Transform," Dr. Dobb's Journal, Vol 19, Apr. 1994, pp. 44-46, 50-54. 
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Figure 15. Wavelet Packet Tree 

 

2.4 Classifying Signals 

Procedures have also been developed for classifying signals by comparing their wavelet 

coefficients to coefficients from known signals.61 These procedures include the ANOVA F-test,62 

neural networks,63 and dot product.64 Possible solutions might also be found in standard 

statistical techniques such as logistic regression or chi-square.  

2.5 Wavelet Software Solutions 

The wavelet software applications listed below are available on the Internet and from 

other sources. Unfortunately, none of these codes could be used in this project. Some, like the 

math software plug-ins, could not be used to develop a stand-alone application. Other wavelet 

software packages were distributed in binary, included source code that would not have adapted 

well to this project, or were unavailable due to licensing issues. 

                                                 
61 Daubechies, 55 
62 J. Raz and B. Turetsky, "Wavelet ANOVA and fMRI", in Proc. SPIE: Wavelet Applications in Signal and Image 

Processing, vol. 3813, pp. 561--570, 1999. 
63 Gary G. Yen and Kuo-Chung Lin, Wavelet Packet Feature Extraction for Vibration Monitoring, 2000, IEEE 

Transactions on Industrial Electronics, Vol, 47, No. 3,  660 
64 Speech Recognition using Daubechies Wavelets 

http://www.owlnet.rice.edu/~elec431/projects97/Dynamic/main.html  (accessed 12/20/2004) 
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• Rice University provides the Rice Wavelet Toolbox (RWT) for Matlab (http://www-

dsp.rice.edu/software/rwt.shtml). RWT, which interfaces with Matlab, provides 1D 

and 2D wavelet and filter bank design, analysis, and processing. Matlab 

(http://www.mathworks.com) is required in order to use RWT. Neither Matlab nor 

RWT was evaluated for this project. 

• Wavelet Explorer, from Wolfram Research, Inc. (http://www.wolfram.com), runs 

only with Mathematica, another product of Wolfram Research, Inc. Neither 

Mathematica nor Wavelet Explorer was evaluated for this project. 

• The Maple applications center includes a Maple-based implementation of the D4 

wavelet by Edward Aboudafel and an accompanying worksheet 

(http://www.maplesoft.com/applications/app_center_view.aspx?AID=965). Both 

proved useful for this project, but not for the prototype proper. No other wavelet 

toolboxes were found for Maple.  

• Bear Products International (http://www.bearcave.com) offers software products by 

Ian and Linda Kaplan. Their web site includes wavelet articles and source code that 

can be downloaded free of charge. Unfortunately, their implementations of wavelets 

appeared to be incomplete. Though the articles were useful, other more direct 

literature sources were used for this paper.  

• Liftpack is a wavelet software package for processing wavelets using the lifting 

scheme written by Gabriel Fernández, Senthil Periaswamy, and Wim Sweldens. Since 

its primary focus is on image processing, it was deemed unsuitable for this project. 

Source code can be downloaded from http://www.cs.dartmouth.edu/~sp/liftpack.  

• X-Window Wavelet Packet Laboratory (XWPL) is available for download from 

http://math.yale.edu/pub/wavelets/software/xwpl/html/xwpl.html. The web site notes 

that XWPL source code will not be released. 

• Wavelets with Integer Lifting (http://www.cs.kuleuven.ac.be/~wavelets) is published 

under the GNU General Public License. The package, which appears to focus on 
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image analysis, did not lend itself easily to adaptation to this project. The license 

included with the C++ source code restricts its distribution for uses other than 

research. 

• Wave, another C++ wavelet framework for images  

(http://herbert.the-little-red-haired-girl.org/en/software/wavelet), is a collection of 

beta software written by Martin Andreas Dietze. The code appeared unsuitable for 

this project because of its emphasis on image processing.  

• Daubwave is a C program for wavelet analysis using the Daubechies system of 

wavelets written by Steven Gollmer. It can be found at several sites online including 

PC Magazine’s shareware library 

(http://shareware.pcmag.com/product.php%5Bid%5D45149%5Bcid%5D93%5BSiteI

D%5Dpcmag). It supports forward and inverse wavelet transforms on signals using 

several versions of the Daubechies wavelets, including the D4, which can be user 

selected at runtime. The program, which was designed as a file-based console 

interface application, would have required modification for this project. The license 

requires the author’s permission before distributing modified code, which would have 

restricted its use in this project. 

• ImageLib, a library of C++ functions for image processing, includes some wavelet 

software. It can be downloaded from http://dsp7.ee.uct.ac.za/~brendt/srcdist and is 

free under the GNU GPL. It did not appear to lend itself readily to use in this project 

because of its emphasis on image processing. 

• Amara Graps’ website (http://www.amara.com/current/wavesoft.html) lists additional 

wavelet software. The site includes wavelet articles and links to other wavelet-related 

web sites (http://www.amara.com/current/wavelet.html), including some of those 

listed here. 
• Another source of information on wavelets, The Wavelet Digest website 

(http://www.wavelet.org) offers an archive of past wavelet articles, software, and 
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messages. A search of the archive and of past messages only revealed the software 

site of the BearCave (listed above). 
2.6 Summary 

While the Fast Fourier Transform is a powerful tool for signal processing, there are better 

tools available for processing signals containing transients. Wavelets preserve time domain 

information in the signal, but the Haar wavelet does not filter well. The better choice of wavelet 

is the Daubechies D4. The D4 wavelet offers a compromise between good filtering performance, 

computational efficiency, and ease of implementation. The Fast Wavelet Transform is a more 

efficient method of finding coefficients for the discrete wavelet and executes in O(n) time, an 

important advantage. Finally, lifting should offer a useful advantage by eliminating the need for 

allocating new storage space for the transform results. 
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CHAPTER 3 

METHODOLOGY 

This chapter discusses the development of the prototype software, resources available to 

the project, limitations and constraints on the results, consistent method of evaluating the success 

of the prototype, and licensing issues. 

3.1 Software Specification 

The objective of the project was to develop a software application, using standard PC 

hardware, that monitors a PC for sounds that indicate abnormal hardware operation, and reports 

these problems to the user, while imposing a minimal computing load on the host system.  

Since the ultimate target was to be a Beowulf Cluster, the application needed to run on 

the Linux operating system. In order to maintain currency, the system used the ALSA API, the 

most recent Linux sound API. For efficiency, the system was designed to be interrupt-driven 

using the ALSA callback feature. In order to reduce costs, the system used a standard PC sound 

card, requiring only the addition of a microphone to monitor the hardware. 

3.2 Programming Environment 

A Hewlett-Packard Pavilion 6535 with Gentoo 2005.0, incorporating the Linux kernel 

version 2.6.11, was used as the development platform and for software testing. ALSA version 

1.0.8 was installed with the Gentoo distribution, and the built-in sound card tested for proper 

operation. This machine was used to prototype the application and to test the prototype. The 

GNU GCC compiler, version 3.3.5, was used for development under Linux. Some development 

and testing work was also done in Windows using Microsoft Visual C++ version 6.0. 

3.3 Prototype Development 

There were four major stages to this study: the development of a filter module, 

development of the sound data acquisition scheme, development of a classifier, and verification 

of the application. After a search of the DSP literature suggested the use of the Daubechies D4 

wavelet for filtering sound, work was directed toward finding or developing software to 

implement D4. From the background investigation on Linux sound APIs, ALSA was determined 
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to be the preferred system to acquire sound data from the sound card. The search for a wavelet 

classifier revealed few options, and the chi-square method was chosen.  

To verify the prototype, failures were simulated by playing recorded sounds from 

collected hard drives to the system. The results were then compared to the S.M.A.R.T. data 

obtained from those hard drives. 

3.4 Filtering 

The filtering algorithm chosen needed to be efficient in order to minimize the processing 

load on the system. The algorithm also needed to detect transients in the signal since many kinds 

of hardware produce intermittent noises such as clicks or knocks. The Daubechies D4 wavelet 

(cf. §2.3.6) was chosen as the filtering technique; wavelet packets (cf. § 2.3.9) were rejected as 

too complex for this project. A search of the Internet (cf. §2.5) failed to find existing D4 software 

packages that would be suitable for this project. A lifting factoring scheme was tested65 but when 

modeled in Excel the algorithm did not function properly, returning values inconsistent with 

those expected. It was assumed that the Daubechies and Swelden algorithm was correct and that 

the Excel model was incorrectly implemented, but the error could not be found and the algorithm 

was rejected. A simpler implementation of the D4, based on a variation on the Haar wavelet with 

lifting, was tested and chosen as the filtering algorithm. Since the application does not require 

reconstruction of the signal, no inverse transform algorithm was implemented. 

A C++-based object-oriented design was chosen for the wavelet module so that the 

wavelet functions would be completely self-contained and the module could be easily 

incorporated in other applications on other platforms. Design features of the D4 C++ class are 

discussed in Chapter 4. 

3.4.1 Collection of Failed Components 

Unserviceable hardware devices were collected for study from the East Tennessee State 

University Computer and Information Science Department’s “Providing Area Schools with 
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Technical Assistance” (PASTA) project. PASTA is a capstone project for undergraduates in the 

ETSU Computer Science Department’s IT concentration that refurbishes old university 

computers for distribution to local public schools.  

Disk drives quickly became the focus of this study, since most of the PASTA-provided 

components were hard drives. Happily, hard drives are also a major component of computers and 

one of the most significant sources of sound. The focus on hard drives was not intended to ignore 

the importance of other hardware components, but it did limit the scope of the results.  

3.4.2 Obtaining Hard Drive Data 

The sounds generated by the failed hard drives were recorded in a digital WAV sound 

file for playback during initial testing of the application. These digital recordings were used to 

help design the system software and to test the prototype.  

The hard drives were also classified by condition to form a basis of comparison for the 

software application. One test of a hard drive’s condition is to determine whether the operating 

system or BIOS can recognize the drive. This technique can be useful since an electrically 

unresponsive drive is considered bad. Another test is to determine whether files can be read on 

the drives. This technique was rejected because there was no convenient way to test for file 

corruption due to drive failure. Software is available from drive manufacturers to test drives 

using data-destructive tests such as the “write all zeros” test. According to the documentation, a 

full test of this type could take several hours or overnight to complete.66 A third method of 

determining hard drive condition is to obtain S.M.A.R.T. data from the drives using a 

S.M.A.R.T. software application. Hard drives that do not support S.M.A.R.T. were excluded 

from the study since it would have been impossible to apply the S.M.A.R.T. test to those drives. 

In addition, the S.M.A.R.T. technology has become standard in contemporary hard drives. 
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 The software that was used for S.M.A.R.T. testing was the freely available 

smartmontools application smartctl (cf. §2.1.2). Hard drives were installed in removable hard 

drive racks, and mounted into rack-equipped PCs, for easier testing. Hard drives that could not 

be physically mounted in the hard drive rack were excluded from testing. 

3.4.3 Testing of Wavelet Transform Class  

Initial development of the wavelet class was done using Microsoft Visual C++ 6.0 with 

further development work in Linux after a Linux machine became available. The wavelet 

transform class was tested during development using simulated and actual signals recorded from 

the collection of hard drives. The initial wavelet transform was constructed in an Excel 

worksheet so that the iterations could be verified. After experiments with the Excel prototype 

confirmed the algorithm’s validity, the transform was implemented as a C++ class and 

implemented as a DLL. The DLL was then linked to a Maple worksheet, and used successfully 

to transform the Daubechies D4 φ function and display the result in a 3D plot. A console-based 

test application was developed to test the D4 wavelet class and verify correct function of the 

member functions. This application was successfully compiled and run, using Microsoft’s VC++ 

compiler and GNU’s GCC compiler.  

In addition to testing constructed functions, a Maple worksheet was adapted to import the 

WAV sound recordings and display animated plots of the transforms. This demonstration 

illustrated the kinds of data that might be expected from the hard drives in an actual system.  

3.5 Sound Sampling 

The ALSA API (cf. §2.2.3) was determined to be the preferred Linux API for accessing 

the sound card. The prototype application was adapted from an interrupt-driven playback shown 

in the ALSA tutorial. Since this code was licensed under the GNU GPL, the modified code for 

this research was also released under the GPL. The prototype was developed incrementally by 

getting it to display captured sound samples, then by adding the wavelet class, and finally by 

adding the classifier.  
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3.6 Classifier 

Several classification schemes presented in Section 2.4 were considered for this project. 

Neural-net-based classification was rejected because the work of training a neural net was 

considered too complex for the prototype. Authors who suggested the ANOVA F-test67 or dot 

product68 as wavelet classifiers did not report sufficiently satisfactory results to warrant 

investigating these approaches. A statistical approach called the logistic regression was also 

rejected as impractical because of the need to recalculate coefficients each time a change was 

made to the hardware being monitored.  

The classification approach that was chosen was chi-square, abbreviated χ2
. χ2 is a 

powerful, simple, and easy-to-implement algorithm that allows distributions of categorical data 

to be compared. χ2, unfortunately, may also be computationally less efficient than some other 

techniques. Further development on the classifier is left as future work. 

3.7 Limitations 

Thirty-two hard drives were obtained for testing. Three of these were excluded: one that 

did not support S.M.A.R.T. and two that were too large to fit in the test rack. The statistical 

validity of testing with N = 29 may be an issue. 

The hard drives tested were removed from computers being refurbished rather than being 

randomly sampled from the general population of all hard drives. This means that the statistical 

results obtained cannot be directly applied to the population of all hard drives and should only be 

used to determine the validity of SonMon with these particular drives. 

The hard drives collected typically were older drives that were not similar to drives 

currently in production. Applicability of results obtained from these drives to current drives may 

also be an issue. 
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The development machine was equipped with an Intel Pentium II 466 MHz processor. 

This machine with this processor sufficed for software development but it is unlikely to be 

similar to the target Beowulf Cluster machines. A more powerful processor may execute the 

software more quickly, but this assumption was not tested. 

3.8 Licensing 

The ALSA code modified for this research was adapted from an ALSA tutorial.69 This 

tutorial is licensed under the GNU General Public License. Under the terms of the GPL, 

modified code may be freely released to the public. Pursuant to the provisions of the GPL, the 

SonMon code presented in the appendix may be distributed freely under the terms of the GPL.  

Unlike the ALSA code fragment, the D4 wavelet class was developed independently by 

the author. Since it is identified as a separate component of the application, it is not covered by 

the GPL. However, in the interest of further development of this research and the concept of 

monitoring computers via sound, the D4 wavelet code may also be freely distributed under the 

terms of the GPL.  

The text of the GNU General Public License can be found in the appendix. The GPL text 

should be included with any redistribution of modified versions of the application described here. 

3.9 Summary 

The wavelet transform was developed by modeling the algorithm in Excel, then coding 

the class in C++. The ALSA code fragment used for this research was adapted from the ALSA 

tutorial. Since the ALSA tutorial is released under the GNU GPL, the modified code is also 

released under the GPL. The classifier was developed as an implementation of the χ2 statistical 

technique.  
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audio.html#interruptex  
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CHAPTER 4 

THE APPLICATION 

This chapter discusses the software design and operating principles of the SonMon 

prototype (name derived from the Latin root Sonus, meaning sound and the word monitor). The 

first section presents an overview of system operation. The following sections discuss SonMon’s 

major components, with a description of the module design and explanation of module operation. 

4.1 Overview of SonMon 

The SonMon prototype, implemented in C++, demonstrates the viability of monitoring 

PC hardware using sound. The system acquires sound from a microphone connected to the PC’s 

built-in sound card, transforms the data using the Daubechies D4 wavelet transform in a 

Multiresolution Analysis algorithm, and compares the resulting set of wavelet transform 

coefficients to a template. 

Figure 16 illustrates SonMon’s operation. The system loops continuously, analyzing 

signals from the microphone and sending messages when the system detects faults. The 

comparison algorithm constructs a histogram by counting specific coefficient values, compares 

the counts in each histogram bin with a template using χ2 to compute an error score, and sums 

the χ2 value over the entire histogram. A message is issued when the χ2 total exceeds a pre-

determined threshold. When used as part of a statistical test, χ2 test results are converted into a 

probability score based on the χ2 distribution. In this application, conversion to a probability is 

unnecessary, and the χ2 number alone is used to evaluate the comparison. 

4.2 D4 Wavelet Class 

The D4 wavelet class was initially developed and tested in Windows using Microsoft 

VC++ 6.0. The D4 class was verified by compiling it into a Windows DLL for use with a Maple 

worksheet. The DLL code first instantiates a wavelet object, then passes data from the Maple 

worksheet to the wavelet, invokes the transform function, and returns the data to Maple in a two-

dimensional array. The code for the DLL is included in the appendix. 
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Figure 16. SonMon System Operation 
 

4.2.1 Description of Code 

As described in Section 2.5, a search for existing D4 wavelet software yielded no 

satisfactory codes. Consequently, wavelet software was developed from the Daubechies 

formulas. The wavelet software was developed as a C++ class in order to make the wavelet 

module portable to other platforms. The class has been compiled and tested on both Linux and 

Windows platforms without modification. Since SonMon does not require an inverse wavelet 

transform, no inverse function was developed in the D4 class. While lifting as described in 

Chapter 2 is appealing due to its ability to reuse the input array, the algorithm found in the 

referenced work70 produced unexpected results when tested in an Excel worksheet simulation. 

The algorithm that was used was based on direct calculation using the Daubechies D4 formulas. 

This version worked correctly when tested in an Excel worksheet giving expected results and 
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worked again when tested in Maple. This algorithm also conserves memory by reusing its input 

array to calculate the transform. 

The D4 wavelet class encapsulates the wavelet data, applies the D4 wavelet transform, 

and provides access to the transformed data. Data used by the transform are held in a 1024-

element array of double-precision floating-point variables. This array, which initially contains 

incoming data, is repeatedly overwritten over the course of the transform. Double-precision 

floating-point variables are required because the D4 wavelet transform multiplies each element 

with real coefficients. Because the incoming data and the transformed data use the same array, 

no additional storage is required to process and store the transform except for a fixed set of 

temporary variables in the transform function. When a new stream of samples arrives, the data 

input function accepts the data elements and stores them sequentially in the array maintaining 

time ordering of the data. 

The transform function will not execute until all 1024 elements have been loaded. The 

function returns 0 on successful completion and -1 on failure. Attempts to transform previously 

transformed data are ignored, since this would produce undefined results; the function returns 0 

instead, to indicate that the already transformed data are still available. The transform function 

will not execute again until the class’s reset function is called and 1024 elements of new data are 

loaded. 

The transform function stores the result of the transform in the same data array used for 

input data by interleaving the coefficient results within the array. Subsequent iterations of the 

transform access appropriate interleaved values and leave coefficient values from previous 

iterations undisturbed. Interleaving data eliminates the need to sort intermediate coefficients into 

separate V and W vectors following each iteration of the transform algorithm. 

Access to the interleaved transform coefficients is supported by two accessor functions: 

getLevel and getLevelSq. Each accessor function takes two integers as arguments. The first, 

which represents the level of the transform, is a value between 0-9, corresponding to the ten (i.e., 

log21024) levels obtained by applying the D4 transform to 1024 elements of data. The second 
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parameter is index of the desired element within that level. The only difference between these 

functions is that getLevelSq squares the data before returning it.  

The D4 wavelet class was tested by code inspection and by incorporating it into a 

Windows DLL function to allow testing using Maple. A Maple-based test suite was used to test 

the class’s operation on several mathematical functions, including the D4 φ function, to ensure 

that the class returned expected results. A test application written for C++ was also used to test 

for proper operation of the member functions. This test application included hard-coded data for 

the D4 φ function. A D4 transform of φ should return all 0’s except for one non-zero value at the 

highest level. The test application tested all accessor member functions by displaying the 

transform values. The member function that returns the number of values in each level of the 

transform was also tested demonstrating that it returned the correct value for each specified 

wavelet level. 

4.2.2 Spike Signal Demonstration 

To demonstrate the wavelet class, the D4 transform was applied to the spike signal 

depicted in Figure 4, the results of which are presented in Figure 17. Figure 17 was prepared 

using Maple linked to the Windows DLL containing the D4 wavelet class. The axis “Level” in 

Figure 17 indicates the iterations of the Multiresolution analysis where level 0 is the first pass 

and level 10 is the end of the transform. The X-axis corresponds to the number of elements in 

each iteration. Although there are 1024 elements in the original signal and 512 elements in level 

0 of the transform, only 100 elements are depicted in this plot, with the rest omitted for clarity. 

The line of spikes is sometimes referred to as a “ridge” and the irregular values as “ribs.” 

Compared to the FFT transform in Figure 5, this analysis retains distinct information about the 

original signal. 
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Figure 17. Wavelet Transform Of Spike 

 

4.3 Main Function 

The main function initializes the system and then enters an idle loop, leaving the callback 

function to monitor system sounds. Initialization consists of setting operating parameters for the 

sound card and registering the ALSA callback function async_callback with ALSA. The system 

is initialized to allow interleaved operation with only one input channel, data format as little-

endian 16-bit signed, and 44,100 samples/second operation. The sampling rate parameter can be 

changed, but any changes to the sampling rate may also necessitate changes to the detection 

parameters.  

4.4 Callback Function 

The callback function, async_callback, is invoked by way of a sound-card interrupt when 

the sound card accumulates 1024 unprocessed frames of data. The sound-card interrupt is 

handled by the operating system, which transfers control to ALSA. ALSA, in turn, transfers 

control to async_callback, which copies data from the ALSA buffer to the wavelet object via the 

ALSA function snd_read and the wavelet object’s add function. When all 1024 frames have 

been copied, the wavelet object’s transform function is invoked, performing the D4 wavelet 

transform.  
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After the D4 transform function has executed, the callback function calls the classify 

function to classify the transformed data. If the χ2 value returned by classify exceeds a pre-

determined threshold (cf. line 79, sonmon.c, Appendix B), async_callback sends a fault message 

to standard output. (In a production version of SonMon, error messages would be dispatched 

independently of interrupt processing; the callback would set a flag and main would send fault 

messages, during periodic awakenings from sleep.) Resettable flags help to ensure that only one 

message is displayed for each good/bad transition rather than to display a message for each fault. 

4.5 Classify Function 

The classify function first constructs a histogram by binning its inputs. Binning is the 

operation of counting the number of elements that lie within specified values as if the numbers 

were being pigeonholed into bins. After binning the elements, classify then compares the counts 

in this histogram to a template, yielding a χ2 score. Finally, classify uses this score to rate the 

match between the input signal and the template. 

4.5.1 Histogram 

A histogram is a count of objects that fit a set of specified criteria. The histogram 

generated by classify counts the number of wavelet coefficients at each level that can be assigned 

to a set of pigeonholes or bins. The histogram is constructed from data returned by the wavelet 

class’s getLevelSq function. The coefficients returned by getLevelSq are squared, which 

simplifies binning by eliminating the need to handle negative numbers. Since most of the data 

appear to cluster near 0, a non-linear bin arrangement was chosen that uses a first bin that 

contains values in the range [0,26), and ten progressively larger bins, where each bin is twice the 

size of its predecessor. The twelfth and final bin contains all values above 217 or 131,072. This 

non-linear bin arrangement, which allows the bins to fill more evenly, proved adequate for 

classifying the data obtained for this research. One area of future work might be to test other 

possible bin arrangements to determine optimum performance. 

The current algorithm for binning uses a linear search on bin ranges to map each 

(squared) coefficient to its proper bin. This algorithm, while inefficient (O(n2)), was sufficient 
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for testing the prototype. A more efficient algorithm for binning this data should be used in a 

production version of SonMon. 

Histograms for the wavelet tree’s higher levels may not support useful classifications of 

input data. A histogram generated from the tree’s top level, which contains one value, is plainly 

ambiguous. A histogram generated from the tree’s second level, which contains two elements, is 

marginally more useful. Currently, classify uses the wavelet’s lower 6 levels. These levels 

contain more high frequency detail, which could be filtered by ignoring those levels. Higher 

levels of the wavelet contain more thoroughly filtered levels that may contain meaningful 

information. Future work could determine which levels of the wavelet are most useful.  

4.5.2 Chi-Square Comparison 

When the histogram has been completed for a single level, a χ2 comparison is used to 

evaluate the match between the histogram and a template. The χ2 results for each comparison are 

summed and the function returns the total χ2. The prototype currently compares the lowest six 

levels of the wavelet (cf. §4.5.1). Another possible problem with the χ2 algorithm is that it 

potentially violates the χ2 rule of thumb that dictates that the minimum count in the template be 

at least five. 

The χ2 threshold value is hard-coded at 1000 and was initially arrived at by trial and 

error. Optimization of the threshold value is discussed in Chapter 5. 

4.6 Templates 

The template used in this work was prepared by modifying the code to output histograms 

to a text file. The modifications to the code can be found in lines 96, 133-140, 155, 371, and 387 

of the sonmon.c code shown in the appendix. These lines may be uncommented and the code 

recompiled to activate these lines. They produce an output file, D4Output.txt, containing the 

histogram data as well as the χ2 value calculated on the current template. The prototype’s 

template histogram was generated from a representative data block from one of the drives that 
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S.M.A.R.T. had evaluated as good: one that represented the sound of the drive’s steady state 

operation. 

4.7 Summary 

The D4 class is a mature code: one that can be used in final versions of the SonMon 

application. The main function and the callback function should be modified for use in a 

production application. The prototype is not suitable for production use but has features to allow 

its use for further development and proof of concept.  

The classify function may need to be modified for further use. Changes to the histogram 

code may be required and a provision to allow multiple histograms should be added. 
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CHAPTER 5 

RESULTS 

5.1 Introduction 

SonMon was evaluated by comparing its classifications of 29 hard drives with 

S.M.A.R.T. data obtained from those drives. These test drives were provided through ETSU’s 

PASTA program (cf. §3.4.1). Sound recordings were obtained of these drives by connecting 

them to power but not to a computer. S.M.A.R.T. data then were extracted from these drives by 

connecting each drive to a computer and running an application to extract the S.M.A.R.T. data. 

Test results were obtained from SonMon by running it with the sound recordings of the drives. 

The SonMon test results were compared with the S.M.A.R.T. data to determine whether SonMon 

had obtained similar results. S.M.A.R.T. was used to determine the condition of the drives and 

SonMon was evaluated for its ability to agree with the S.M.A.R.T. data. 

In addition to S.M.A.R.T. data, digital sound recordings were obtained from each hard 

drive using Microsoft Sound Recorder. Because some hard drives contained possibly sensitive 

data and because of the weight, bulk, and delicate nature of the hard drive themselves, they could 

not be physically transported. Therefore, recordings were taken on a notebook computer for 

portability. These recordings were used to evaluate SonMon rather than monitoring the hard 

drives directly. The recordings offered the additional advantage of allowing significant events to 

be isolated and repeated, a task that would be difficult to do when working directly with the 

drives. 

The results from evaluating the error counts using SonMon were compared to the results 

obtained from S.M.A.R.T. One test used is Cohen’s kappa (κ), which showed fair agreement 

between SonMon and S.M.A.R.T. The Binomial Distribution was used to compare the counts of 

good and bad drives between SonMon and S.M.A.R.T. to test the hypothesis that any agreement 

was by chance. A p-value was calculated from the binomial to test if the probability of 

agreement was better than chance. If SonMon is performing as expected, this probability should 
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be a value less than 5%. However, a less strict 10% confidence level may be justified because of 

expected inconsistencies between SonMon and S.M.A.R.T. results. 

5.2 S.M.A.R.T. Test Procedure 

To obtain S.M.A.R.T. data from the sample hard drives, each drive was installed in a PC 

computer equipped with a removable hard drive rack. The computer was configured so that its 

internal hard drive was installed on IDE 0 and could boot the machine into either Windows or 

Linux. So that the drives could operate independently of the main hard drive, the removable hard 

drive rack containing the suspect drives under test was connected to IDE1, and the drives in each 

case were jumper-configured as master. With the computer configured in this way, an 

inoperative hard drive would not keep the machine from booting from the primary hard drive. 

The drives were tested with the PC running Windows. The tests were repeated on some 

drives using Linux, to confirm that drives would not respond to the PC’s system BIOS or 

Windows had suffered electrical failure. Smartctl version 5.33 was used to attempt to obtain 

S.M.A.R.T. data from the drive. The smartctl command used was: 

smartctl -a -T verypermissive /dev/hdb 

The smartctl -a option retrieves all data from the drive. The -T option with the 

“verypermissive” setting forces smartctl to ignore S.M.A.R.T. errors. This option was chosen 

after some drives ignored the default “normal” setting and falsely reported that unimplemented 

S.M.A.R.T. features were enabled. The smartctl manual reports this as a possible outcome.71 A 

drive was considered to have properly responded to S.M.A.R.T. if smartctl displayed the 

S.M.A.R.T. data section as well as the drive’s information section. A sample smartctl report is 

shown in Figure 1. 

Some drives responded to smartctl with an information section but did not return any 

S.M.A.R.T. data beyond the drive ID. In these cases, the messages returned from smartctl 

                                                 
71 Bruce Allen, smartctl man pages  (accessed 7/18/2005) smartmontools.sourceforge.net/man/smartctl.8.html
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indicated that S.M.A.R.T. was available but not enabled. In these cases the smartctl command 

“smartctl –s on” was used in an attempt to enable S.M.A.R.T., and then the original 

smartctl request was repeated. If the drive continued to fail to respond to smartctl with 

S.M.A.R.T. data, the drive was classified as having failed.  

5.3 S.M.A.R.T. Test Evaluation 

The results of the S.M.A.R.T. tests are presented in Table 1. Eleven drives were classified 

as good, including ten that were classified as good by S.M.A.R.T., and one drive that had 

previously failed a S.M.A.R.T. test (according to a S.M.A.R.T. report), but that was now passing 

its test and functioning normally. Of the remaining nineteen, eighteen were classified as bad, 

after failing the S.M.A.R.T test; failing to respond with S.M.A.R.T. data, even after an attempted 

reenabling of S.M.A.R.T.; or failing to respond at all. A remaining drive could not be tested 

using available hardware.  

Table 1. S.M.A.R.T. Test Results   
  Test Result Bad Good 
S.M.A.R.T. reports “passed”  10 
S.M.A.R.T. reports “Passed” with a past history of failure  1 
S.M.A.R.T. reports “failed” 2  
Drive did not respond with S.M.A.R.T. data 5  
Drive did not respond at all 11  
TOTAL, by category 18 11 

 

5.4 SonMon Test Results 

To test SonMon, sound recordings of sample hard drives were played into a microphone 

connected to a Linux computer. SonMon was tested with recorded sound from the sample hard 

drives. Recordings were obtained using a Dell 600m computer with a Sony Model C-22 FET 

condenser microphone connected to the computer’s mic input. Recordings were made using the 

Microsoft Sound Recorder utility with a sampling rate of 48,000 samples/second and 16-bit 

monaural samples. A high sampling rate was chosen to maximize fidelity. The microphone was 

positioned approximately ½″ from the left side of the drive, as viewed from the connector end. 

For consistency, settings were held constant during a recording session. Because the recordings 
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were made in two separate sessions, and since Windows Volume Control has no convenient way 

of setting the microphone volume control numerically, it was difficult to keep the volume setting 

consistent.  

Two different computers were used to do the recordings. The Dell 600m computer used 

to record the first session failed and the second recording session was done with a different 

system board installed, introducing possible inconsistencies between the recordings in the set. 

Efforts were made to match the volume between recordings, but some variation may exist. 

Rather than analyze the digital sound files directly, the recordings were played from a 

Windows desktop computer into a Linux machine running SonMon, capturing the sounds using a 

Sony C-22 FET microphone placed in front of one of the speakers. This arrangement was 

intended to simulate how the system would operate when monitoring a PC computer. The 

desktop computer used for sound reproduction was a Pentium II 400 MHz machine using a Tyan 

S1846SLA system board equipped with Panasonic EAB 710P speakers. The microphone was 

placed in front of one of the speakers and the Windows volume control was manually adjusted to 

minimize the error counts displayed by SonMon. 

Sound recordings were used instead of monitoring the hard drives directly for reasons of 

convenience. The SonMon computer was located in a different building from the lab that housed 

the donor disk drives. Permission could not be obtained to remove hard drives that contained 

sensitive data from the donor lab intact. Even if such permission had been granted, the collection 

of hard drives would have been bulky and difficult to move. Recordings facilitated the transfer of 

data between the labs. The recordings also allowed sound events of interest to be isolated and 

played repeatedly to verify results. 

The χ2 algorithm used in SonMon is sensitive to the sound input volume. If the sound 

being sampled exactly matches the sound used to create the template being used, the χ2 will 

return a value of zero. Any deviation from a perfect match results in greater values. While testing 

SonMon, the volume control of the playback machine was adjusted to minimize the number of χ2 

error counts. Once the volume was adjusted, the test was re-run to obtain the test data output file. 
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Since the SonMon prototype is currently configured to monitor only steady state sounds, 

Microsoft Sound Recorder was used to extract steady-state sounds from the original recordings, 

removing the sounds of drive startup and shutdown. Hard drive startup usually includes the 

sound of the drive spinning up and some head access during initialization. Shutdown sounds 

include the sound of the power supply switch being turned off and the drive spinning down. 

Typically, these intervals included the first 5-7 seconds at the beginning of each recording and 

approximately 10 seconds from the end of each recording. The remaining sounds were 

representative of steady state operation. Some of the drives exhibited abnormal sounds during 

this operation and detecting these abnormal sounds is an objective of SonMon.  

The volume control for the microphone was set at 100% using alsamixer. Any fine 

adjustments in sound volume were accomplished at the playback computer using its Windows 

volume control.  

SonMon was modified slightly to write χ2 scores to a text file by uncommenting lines 96, 

155, 371, and 387 of the sonmon.c code shown in the appendix. Compiling SonMon with these 

lines un-commented causes SonMon to write error values to a file named D4Output.txt in the 

same directory as SonMon. This code outputs error scores to D4Output.txt until SonMon 

terminates. The D4Output.txt file was subsequently renamed with hard drive ID numbers for 

identification and the file imported into Microsoft Excel for evaluation. In Excel, χ2 values 

exceeding the threshold of 1000 currently coded into SonMon were counted, and the error counts 

were tabulated.  

Because SonMon produces very high error values and large numbers of error counts 

when no sound is being received, there were a series of large numbers in the output file at the 

start until the recording was started. A drop in error values in the input file were taken as the start 

of the test recording and the point where very high values returned to the no-signal level was 

taken as the end. Only the values corresponding to the recording were included in the analysis. 

When the data were imported into Excel, χ2 values greater than the threshold value used 

in SonMon were counted. Counts of 0 were considered good and drives with large χ2 counts 
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were considered bad. Drives with non-zero counts close to 0 were classified as suspicious and 

tabulated separately from the other two groups. Using an initial threshold value of 1,000, these 

drives typically had error counts ranging between 1 and 20.  

Because the length of the input recordings varied between drives, the number of total 

frames produced by SonMon varied. Since this variation in total frames could affect the 

evaluation of these suspicious drives, the error count was also calculated as a percent of total for 

those drives. The total number of frames for each drive averaged 901, with a maximum of 1,357 

and a minimum of 583. Because SonMon was sampling at 44,100 Hz. and there were 1,024 

points in each frame, 901 frames corresponds to approximately 21 seconds of sampling time with 

the range of recording times of between 31 and 13 seconds.  

Eleven drives were classified as good because they had error counts of 0, indicated by 

there being no χ2 values greater than 1,000. Seven drives had error counts greater than 20, 

indicated by the count of χ2 values exceeding 1,000. The remaining drives had error counts 

ranging between 1 and 20, qualifying them as suspicious. Since these drives lie in a boundary, 

they were tabulated separately. The results of the tests are shown in Table 2. 

Table 2. SonMon Results 
Test Evaluation Number
Good 11 
Suspicious 11 
Bad 7 
Total 29 

 

5.5 Evaluation of Results 

This comparison of S.M.A.R.T. tests with SonMon tests is less than ideal, since the tests 

assess different indicators of disk drive performance. SonMon cannot identify hard drive failures 

that produce no characteristic sound: for example, a failure resulting from a broken signal wire or 

a malfunctioning disk cache chip. The drive may spin up and sound normal but will not function 

because of the electrical failure. On the other hand, SonMon may detect faults that S.M.A.R.T. 

misses because they have not yet deteriorated to the point of failure. For example, the one good 
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hard drive that had a failure incident in its S.M.A.R.T. history (cf. §5.3) exhibits abnormal 

sounds that were detected by SonMon.  

The SonMon template is currently optimized to “listen” for abnormal operation when the 

drive is spinning and not being accessed. Configuring SonMon to monitor other normal 

operations like normal head movement during normal drive access, spin up, and shut down will 

be left for future work. SonMon might not be expected to monitor spin up and shut down when 

the computer is being started up or shut down, since SonMon may be inactive during these 

phases of computer operation. If the hard drive is being placed into standby in order to save 

energy, then SonMon might be used to monitor hard drive spin up or shut down during these 

periods. SonMon has not been tested with these and other hardware device sounds due to the 

constraints under which this research was conducted, and the low numbers of sample 

components available for this research. 

Because of these issues and the low data sample, the usual 5% level of confidence for 

statistical comparison was abandoned, in favor of a less rigorous 10% level of confidence.  

All drives with non-zero error counts were classified as bad and drives with error counts 

of 0 were considered good. The drives that were listed in Table 2 as suspicious were classified as 

bad for purposes of evaluation of SonMon. This is the only unambiguous partition possible. The 

evaluations for the S.M.A.R.T. tests and the results from SonMon tests are combined in Table 3. 

 

Table 3. S.M.A.R.T. vs. SonMon 
  SonMon 
  good bad

good 6 5 
S.M.A.R.T.

bad 5 13 
 

5.5.1 Agreement of Observers Test, Kappa 

A common statistical test for quantifying agreement between two observers is Cohen’s 

kappa (κ). Kappa is a value ranging between 0 and 1 that determines the degree with which two 
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observers agree on a data set. A kappa of 0 corresponds to an agreement that is no better than 

random chance while a kappa of 1 indicates perfect agreement.  

Kappa for Table 3 was 0.2677, indicating moderate agreement between the evaluations 

by S.M.A.R.T. and SonMon.  

5.5.2 Probabilities of Disagreement 

Another statistical test that may be applied to the data is to calculate the probability of 

disagreements between S.M.A.R.T. and SonMon. Table 3 shows that there were 5 cases in which 

S.M.A.R.T. indicated that the drive was good and SonMon indicated that the drive was bad. The 

probability of this case, P(BSonMon|GSMART) is 29
5  or 0.17. Similarly, Table 3 shows that there 

were also 5 cases in which S.M.A.R.T. showed the drive was bad while SonMon indicated the 

drive was good. The probability of this case, P(GSonMon|BS.M.A.R.T.), is also 29
5 .  

5.5.3 Binomial Distribution  

The binomial distribution is used as the primary means of determining agreement 

between S.M.A.R.T. and SonMon. For the binomial distribution test, the null hypothesis h0 is 

that the probability of agreement is by chance or π=0.5. The alternative hypothesis ha is that the 

probability is better than chance or π > 0.5. Since out of 29 drives, there were 19 agreements, the 

p-value is the sum of the binomial probabilities where x ≥ 19, a calculation which yields a 

p-value of p=0.068. This p-value is less than the expected confidence value of 0.10 so h0, the 

hypothesis that the agreement is by chance is rejected. SonMon and S.M.A.R.T. do agree within 

the expected level of confidence.  

5.6 Improving Performance 

5.6.1 Templates 

The template used in the foregoing tests was a histogram generated from one of the good 

hard drives (cf. §4.5.1, 4.6). While the system can identify sounds similar to ones in the template, 

other sound conditions will need to be evaluated before classifying a drive as bad or good.  
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An example of a different event is the sounds produced by read/write head movement 

during disk access. These sounds will not match the template used in the tests. A separate 

template is needed to identify normal disk access as well as any other normal sound that may not 

be identified by the template used in the SonMon prototype. Furthermore, each installation of the 

software should have a customized template or set of templates that are unique to that 

installation. Using a generic template that does not consider individual variations between 

systems will produce mediocre results.  

While the foregoing tests yielded satisfactory results, there was room for improvement in 

accuracy. The drives that were classified as good by S.M.A.R.T. had an approximately even 

chance of being classified correctly by SonMon (cf. Table 3). In addition, drives that SonMon 

classified as good had an approximately even chance of having been similarly classified by 

S.M.A.R.T.  

5.6.2 Threshold Value 

Adjusting the threshold value used to evaluate the χ2 score produced by the classify 

function could also have improved SonMon’s ability to classify disk drives, relative to the set of 

disk drives used in this experiment.  

 Reducing the threshold tends to result in more good drives being classified as marginal 

or bad, and more marginal drives being classified as bad. For a threshold value of 900, for 

example, 4 drives are classified as good by both S.M.A.R.T. and SonMon, and 17 drives 

classified as bad by both. Seven drives classified by S.M.A.R.T. as being good were classified as 

bad by SonMon and one drive that S.M.A.R.T. detected as bad was passed as good by SonMon. 

SonMon and S.M.A.R.T. agreed on the evaluation of 21 drives and disagreed on 8 drives. These 

results are summarized in Table 4. 
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Table 4. Threshold 900 Results 

  SonMon 
900 

  good bad
good 4 7 

S.M.A.R.T.
bad 1 17 

 

Computing kappa for Table 4 yields a value of 0.3446. This value indicates improved 

agreement between S.M.A.R.T. and SonMon. Computing the p-value for the 21 agreements out 

of 29 drives, the binomial distribution for x≥21 for this case shows that the p-value has improved 

to 0.012. This p-value suggests rejecting the h0 case, since it is less than the 0.10 level of 

confidence. The adjustment to the threshold value improves the significance score while slightly 

increasing the number of false alarms. With the threshold at 900, seven good drives were 

classified as bad by SonMon, as compared to threshold value of 1000 where only five good 

drives were incorrectly classified as bad. The big benefit came from the change correctly 

classifying as bad nearly all the drives that S.M.A.R.T. had classified as bad.  

Increasing the threshold shifts results in the other direction. More bad drives are passed 

as marginal or good, and more marginal drives are classified as good. The result of using a 

threshold of 1100 is shown in Table 5.  

Table 5. S.M.A.R.T. vs. SonMon  
with Threshold 1100 Results 

  SonMon 
1100 

  good bad
good 10 1 

S.M.A.R.T.
bad 9 9 

 

Calculating kappa for Table 5 yields a value of 0.358. This kappa is approximately the 

same as the kappa for the threshold = 900 case, indicating that agreement is similar. The 

binomial distribution p-value for this case is the same as for the threshold = 1,000 case, i.e., p = 
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0.068. In this case, only one good drive was classified as bad while half the bad drives were 

passed as good. 

To find the optimum value for the threshold, threshold values were evaluated for a range 

of values from 800 to 1100 at intervals of 10. The results, showing correct and incorrect counts 

and the associated binomial p-value, are displayed in Table 6. Those p-values less than 0.10, the 

confidence level chosen for this part of the project, are highlighted in the table to show those 

values that are lower than the confidence value of 0.10. 

Table 6. Threshold Values and Binomial p-values 
Threshold Agree Disagree p 

800 18 11 0.132465
810 18 11 0.132465
820 18 11 0.132465
830 18 11 0.132465
840 18 11 0.132465
850 18 11 0.132465
860 18 11 0.132465
870 18 11 0.132465
880 19 10 0.068023
890 21 8 0.01206 
900 21 8 0.01206 
910 21 8 0.01206 
920 19 10 0.068023
930 18 11 0.132465
940 17 12 0.229129
950 17 12 0.229129
960 18 11 0.132465
970 18 11 0.132465
980 18 11 0.132465
990 19 10 0.068023
1000 19 10 0.068023
1010 19 10 0.068023
1020 19 10 0.068023
1030 20 9 0.030714
1040 17 12 0.229129
1050 17 12 0.229129
1060 17 12 0.229129
1070 18 11 0.132465
1080 18 11 0.132465
1090 18 11 0.132465
1100 18 11 0.132465
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From Table 6, it can be seen that the choices of threshold values of 900 and 1000 were 

fortunate. The program’s response to changes in threshold values appears to be very critical. In 

view of these results, the choice of threshold value should be made carefully. 

5.6.3 Histograms 

Another opportunity for improving performance is in optimizing the histogram template 

used to evaluate the wavelet coefficients. The template used in the current prototype was 

obtained by modifying the software to export a sample of histogram values to a file. The code to 

export the histogram is included in the code shown in the appendix. Sonmon.c lines 96, 133-140, 

155, 371, and 387 should be un-commented and the application re-compiled in order to activate 

this feature.  

The text file obtained from SonMon with the modifications can be imported into a 

spreadsheet for study. The objective is to find a histogram frame that corresponds to a sound that 

represents a normal mode of operation. The histogram currently in use represents a quiescent 

state with no head activity. After sampling the sounds for a few seconds, SonMon should be 

terminated with the ctrl-C key. The data will be stored in the D4Output.txt file. To build a 

histogram, the numbers are copied from the chosen histogram block into the array declaration at 

the head of the application and the application is re-compiled.  

A histogram template should yield a χ2 value of 0 when a sound identical to the sound 

used to create the template is encountered. No values smaller than 0 can exist but mismatches 

between the test sound and the template will result in positive values. Normal sounds may not 

always match the template and additional templates may be needed to match the histogram. 

SonMon needs a feature added to allow the successive matching of multiple histograms. An 

example of the need for multiple histograms is the normal sounds of read/write head access. A 

histogram template that matches the sound of the spinning platter will probably classify the 

sounds of normal head access as an error. A second histogram, optimized for head access sounds, 

could identify this as normal operation. To completely evaluate system sounds, a series of 
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templates should be used to test all normal sounds, and only after all templates are unable to 

match the sound would the system issue an error message. 

Optimizing histograms and modifying the code to allow multiple templates will be left as 

future work.  

5.7 Summary 

Since hard drives exhibit different failure modes, a high level of agreement between 

S.M.A.R.T. and SonMon was not expected. Optimizing the threshold parameter for SonMon 

produced better performance than expected in the restricted test being applied.  

Another potential concern was a failure during the course of the experiment to optimize 

the histogram template for individual hard drives. Despite the fact that the hard drives were 

produced by different manufacturers and were of differing sizes and designs, the single-template 

classifications of good and bad hard drive conditions were acceptable: a customized template 

was not needed for each hard drive. This result was unexpected. 

Only one type of sound was submitted to SonMon to evaluate the performance of the 

system; other kinds of sounds that SonMon may encounter in a computer were ignored. A 

production version of SonMon would need to recognize several normal modes of operation so 

that these conditions will not be erroneously identified as failures. More work is needed on 

SonMon in order for it to be applied as a practical tool to monitor computer systems.  
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CHAPTER 6 

CONCLUSIONS  

Based on the test results of SonMon, sound can be used to detect abnormal hardware 

operation. A production quality application to monitor sound remains an unrealized goal, but the 

prototype provided here demonstrates the viability of the monitoring approach.  

The results also indicate that SonMon is not a stand-alone solution to the problem. Hard 

drive faults exist that are impossible for SonMon to detect. For example, electrical signal failures 

in which the drive runs and makes normal sounds but does not respond to the system will not be 

detected by SonMon. These types of failures are detected by a S.M.A.R.T. monitoring 

application such as smartmontools. It is recommended that S.M.A.R.T. monitoring tools such as 

smartmontools be used in conjunction with a sound monitoring hardware system such as 

SonMon. 

Future Work 

Error handling in SonMon should be improved. Currently, if the return code from 

snd_pcm_readi function indicates that an error has occurred, the application exits with a “broken 

pipe” error message. Typically, this error occurs with a sound card overrun where ALSA was not 

able to handle the incoming data before it was overwritten with newer data. SonMon should be 

modified to recover from overruns without interrupting the system. If an overrun occurs, the lost 

data are not critical to SonMon’s successful operation and the system can be restarted. 

Currently, the histogram template that is compared to the wavelet output histogram is 

hard-coded. Hard coding the histograms template is bad practice and histogram data should be 

loaded at startup from a data file. The threshold value for chi-square should also be loaded from 

a file, as well as parameters such as, sampling rate, microphone volume control setting and other 

mixer settings, and IP or name of client machine where the error message should be sent.  

Since the sound input level affects the accuracy of the detection system, the sound card’s 

microphone volume control should be controlled automatically to normalize input to the system. 
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The automatic volume control must be carefully designed so that the SonMon detection system 

would not mistake automatic volume control changes for hardware faults.  

A “Leaky Bucket” algorithm should be considered for reporting failure. Instead of 

triggering on a single error, the system could allow a number of errors to accumulate over a 

period of time before signaling a failure.  

It might also be beneficial to configure the production application as a daemon so that it 

can run in the background as a system service.  

SonMon should be designed with standard Linux features such as command line options. 

SonMon should at minimum support the -h and --help options, which would display a help 

message. Other command line options allowing user configuration or adjustments may be added 

as may be desired by users. A command line option allowing multiple configuration files so that 

users could experiment with different histogram settings would be useful. A command line 

option to allow SonMon to export histogram data so that users could build their own histogram 

sets would be useful. 

SonMon or its components should be investigated for suitability for use with other types 

of signals that may be present in a computer. Other signals present in a computer include 

electrical noise or sounds beyond the limits of the built-in sound card or microphone. The 

wavelet filtering class may be useful with these sounds. 
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APPENDICES 

Appendix A: Glossary 

Filter—system of hardware or software that modifies the frequency content of a signal 

Frequency-Domain—representation of signals as a function of frequency. Usually the result of a 

transformation function such as Fourier or Wavelet transform. 

GNU—Project to develop free software for UNIX systems. The name GNU is a recursive 

acronym for “GNU’s Not UNIX.” More information on the GNU project can be found at 

http://www.gnu.org  

GNU GPL—General Public License—Distribution license for most GNU software. Under the 

GPL, the software source code may be used freely, without royalty, and modified without 

permission. the GPL that software modified from a GPL source must also made available 

under the GPL. The text of the GPL may be seen at http://www.gnu.org/licenses/gpl.html  

High-pass Filter—Filter that sends high frequency components of a signal to the output while 

attenuating low frequency components. 

Low-pass Filter— Filter that sends low frequency components of a signal to the output while 

attenuating high frequency components. 

Maple—A mathematics modeling program for solving mathematical problems and creating 

interactive technical applications. A product of Waterloo Maple, Inc. 

http://www.maplesoft.com  

Quadrature Mirror Filter (QMF)—Symmetric filter bank which splits signals into two bands. 

Wavelet analysis via multiresolution analysis constitutes such a filter. 

Rib—Individual datum on a wavelet ridge 

Ridge—Curve formed in the wavelet time-frequency plane by maxima in the wavelet transform 

Template—In SonMon, a set of histogram values being used for comparison with the wavelet 

data being read. Not to be confused with a C++ template. 

Time-domain—representation of signals as a function of time. The usual way of representing 

signals. Sometimes referred to as spatial-domain. 
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1 Appendix B: Source Code 

2 D4.h 

3 /* declaration file for D4 wavelet multi-resolution analysis 
4  
5  Programmer: Robert K. Henry 
6  Project: D4 
7  Date created: 11/25/2004 
8  Last modified: 8/18/2005 
9  Purpose: An implementation of the Daubechies D4 wavelet  

10     multi-resolution analysis 
11  Description: 
12     Data are added into the member item "data" using the  
13     method "add()". Since the size of "data" is 1024, no more 
14     1024 elements can be added.  
15  
16     When data array is full with 1024 items, indicated by the counter 
17     "index," then the transformation function "transform()" 
18     may be invoked. Transform will not function unless 1024  
19     elements have been loaded. 
20  
21     The method "transform()" performs a forward D4 transform using 
22     multi-resolution analysis. Since there are 1024 elements 
23     in the input, there will be 10 levels of analysis. No inverse 
24     transform is provided. 
25  Copyright:  
26    SonMon copyright (c) Robert Henry, 2005 
27  
28    This file is part of SonMon 
29     
30    SonMon is free software; you can redistribute it and/or modify 
31    it under the terms of the GNU General Public License as published by 
32    the Free Software Foundation; either version 2 of the License, or 
33    (at your option) any later version. 
34     
35    SonMon is distributed in the hope that it will be useful, 
36    but WITHOUT ANY WARRANTY; without even the implied warranty of 
37    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
38    GNU General Public License for more details. 
39     
40    You should have received a copy of the GNU General Public License 
41    along with SonMon; if not, write to the Free Software 
42    Foundation, Inc., 51 Franklin St, Fifth Floor,  
43    Boston, MA  02110-1301  USA 
44 */ 
45  
46 class d4   
47 { 
48 public: 
49  double getMax(int level);    //Returns the largest element 
50 in specified transform level 
51  double getMin(int level);    //Returns the smallest 
52 element in specified transform level 
53  double getLevelSq(int item, int level); // Squares values before returning 
54 them 
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55  double getLevel(int item, int level); //accessor for data by level 
56  double getRaw(int a);     // Accessor for data in 
57 unsorted order 
58  int maxIndex(int level);    // Returns number of elements 
59 for level 
60  void reset();       //initializes for 
61 reloading with new data 
62  int transform();      //performs 
63 forward transform 
64  void add(double item);     //adds one data item to 
65 data 
66  d4(); 
67  virtual ~d4(); 
68  
69 protected: 
70  const double p0, p1, p2, p3; 
71  unsigned int index; //number of elements currently in data array 
72  double data[1024];  //input data and storage for transform 
73  double maxValue[10]; //maximum value in specified level 
74  double minValue[10]; //minimum value in specified level 
75  bool already_transformed; 
76 }; 
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1 D4.cpp 

2 /* Implementation of D4 Multi-resolution analysis 
3  
4  Programmer: Robert K. Henry 
5  Project: D4 
6  Date created: 11/25/2004 
7  Last modified: 8/18/2005 
8  Purpose: An implementation of the Daubechies D4 wavelet  
9     multi-resolution analysis 

10  Description: 
11     Data are added into the member item "data" using the  
12     method "add()". Since the size of "data" is 1024, no more 
13     1024 elements can be added.  
14  
15     When data is full with 1024 items, indicated by the counter 
16     "index," then the transformation function "transform()" 
17     may be invoked. Transform will not function unless 1024  
18     elements have been loaded. 
19  
20     The method "transform()" performs a forward D4 transform using 
21     multi-resolution analysis. Since there are 1024 elements 
22     in the input, there will be 10 levels of analysis.  
23   
24  Copyright:  
25    SonMon copyright (c) Robert Henry, 2005 
26  
27    This file is part of SonMon 
28     
29    SonMon is free software; you can redistribute it and/or modify 
30    it under the terms of the GNU General Public License as published by 
31    the Free Software Foundation; either version 2 of the License, or 
32    (at your option) any later version. 
33     
34    SonMon is distributed in the hope that it will be useful, 
35    but WITHOUT ANY WARRANTY; without even the implied warranty of 
36    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
37    GNU General Public License for more details. 
38     
39    You should have received a copy of the GNU General Public License 
40    along with SonMon; if not, write to the Free Software 
41    Foundation, Inc., 51 Franklin St, Fifth Floor,  
42    Boston, MA  02110-1301  USA 
43 */ 
44  
45 #include "D4.h" 
46  
47 d4::d4():p0(0.683012702), p1(1.183012702), p2(0.316987298), p3(-0.183012702), 
48 index(0), already_transformed(false) 
49 { 
50 } 
51  
52 d4::~d4() 
53 { 
54 } 
55  
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56 // Function name : d4::add 
57 // Description     : Adds one data item to data array. 
58 // Return type  : void  
59 // Argument         : double item 
60 void d4::add(double item)  
61 { 
62  if (index < 1024)  
63  { 
64   data[index] = item; 
65   index++; 
66  } 
67 } 
68  
69 // Function name : d4::transform 
70 // Description     : Peforms a forward wavelet transform using the Daubechies 
71 //      D4 and multiresolution analysis 
72 //       Data is left in the original array 
73 //       Original data is destroyed. 
74 //          1024 elements must have already been loaded using add() 
75 // Return type  : int,  
76 //      0 if successful (1024 elements were available) 
77 //      -1 if unsuccessful (input wasn't full with 1024 elements) 
78 //       or transform has already been executed on data 
79 int d4::transform() 
80 { 
81  int i; 
82   
83  double a0,a1,a2,a3; 
84  if ((index == 1024) && (!already_transformed)) 
85  { 
86   unsigned int step = 1; 
87   unsigned int increment = 2; 
88   unsigned int level = 0; //used as index for min & max 
89   while (step < index) 
90   { 
91    for ( i=0;i<1024;i+=increment) 
92    { 
93     //load temp data 
94     a0 = data[i]; 
95     a1 = data[i + step]; 
96  
97     // For last elements, end of data may reach beyond end of array 
98     // if so, enter zeros for these two elements 
99     if ((i + 2 * step) > 1023)  

100     { 
101      a2 = 0; 
102     } 
103     else 
104     { 
105      a2 = data[i + 2 * step]; 
106     } 
107  
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108     // Last two elements are checked independently 
109     if ((i + 3 * step) > 1023) 
110     { 
111      a3 = 0; 
112     } 
113     else 
114     { 
115      a3 = data[i + 3 * step]; 
116     } 
117      
118     //low-pass filter 
119     data[i] = (a0 * p0 +  
120        a1 * p1 +  
121        a2 * p2 +  
122        a3 * p3) / 2; 
123  
124     //high-pass filter--detail 
125     data[i+step] = (a0 * p3 -  
126         a1 * p2 +  
127         a2 * p1 -  
128         a3 * p0) / 2; 
129  
130     //find min & max 
131     if (i > 0) //if this is the first number just copy the first 
132 number 
133     {      
134      if (maxValue[level] < data[i+step]) maxValue[level] = 
135 data[i+step]; 
136      if (minValue[level] > data[i+step]) minValue[level] = 
137 data[i+step]; 
138     } 
139     else 
140     { 
141      minValue[level] = maxValue[level] = data[i+step]; 
142     } 
143    } 
144  
145    step *= 2; 
146    increment *= 2; 
147    level ++; 
148   } 
149   already_transformed = true; 
150   return 0; 
151  } 
152  else 
153  { 
154   return -1; 
155  } 
156 } 
157  
158  
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159 // Function name : d4::reset 
160 // Description     : Resets the state of the object to initial state with 
161 //      no elements loaded. 
162 // Return type  : void  
163 void d4::reset() 
164 { 
165  index = 0; 
166  already_transformed = false; 
167 } 
168 // Function name : d4::getRandom 
169 // Description     : Returns data item at random from the specified level 
170 //      in the tree.  
171 //       Check the number of items at the specified level using 
172 //      maxIndex(). 
173 // Return type  : double  
174 // Argument         : int item 
175 // Argument         : int level 
176 double d4::getLevel(int item, int level) 
177 { 
178  int i = 1; 
179  int b = i << level; 
180  int a = b << 1; 
181  if (item*a+b > 1024) throw ("D4: Index out of range"); 
182  return data[item*a+b]; 
183 } 
184  
185  
186 // Function name : d4::getLevelSq 
187 // Description     : Returns data item at random from the specified level 
188 //      in the tree. Each element is squared 
189 //       Check the number of item at the specified level using 
190 //      maxIndex(). 
191 // Return type  : double  
192 // Argument         : int item 
193 // Argument         : int level 
194 double d4::getLevelSq(int item, int level) 
195 { 
196  int i = 1; 
197  int b = i << level; 
198  int a = b << 1; 
199  if (item*a+b > 1024) throw ("D4: Index out of range"); 
200  return data[item*a+b] * data[item*a+b]; 
201 } 
202  
203 // Function name : d4::getRaw 
204 // Description     : Returns the elements in the data array without respect 
205 //      to the tree structure 
206 // Return type  : double 
207 // Argument         : int a 
208 double d4::getRaw(int a) 
209 { 
210  return data[a]; 
211 } 
212  
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213 // Function name : d4::maxIndex 
214 // Description     : Returns the maximum index number of elements at 
215 //      each level of the tree 
216 // Return type  : int -- maximum number of elements at this level 
217 // Argument         : int level 
218 int d4::maxIndex(int level) 
219 { 
220  int i = 1024; 
221  return i >> (level + 1); 
222 } 
223 double d4::getMax(int level) 
224 { 
225  if (level > 10) level = 10; 
226  if (level < 0) level = 0; 
227  return maxValue[level]; 
228 } 
229  
230 double d4::getMin(int level) 
231 { 
232  if (level > 10) level = 10; 
233  if (level < 0) level = 0; 
234  return minValue[level]; 
235 } 
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1 

2 

sonmon.c 

Main Program 

3 /* Read data from sound card using ALSA under Linux 
4         Programmer: Robert K. Henry 
5         Project: SonMon 
6         Date created: 5/11/2005 
7         Last modified: 8/18/2005 
8         Purpose: Read data from sound card in Linux using ALSA 
9                    Asynchronous technique using callback function 

10         Description: 
11       Main opens a PCM device under ALSA and sets the hardware 
12       and software configurations. 
13   
14       Main then registers a callback function, 
15       async_callback(). 
16   
17       When the sound card capture device has received 
18       1024 data elements, or "frames" 
19       the callback function activates and extracts the 
20       captured data and stores 
21       it in the array buf. Buf consists of 16-bit signed 
22       numbers so the sound card is 
23       configured to deliver 16-bit little-endian values using the 
24       parameter SND_PCM_FORMAT_S16_LE. 
25   
26       When the callback function has extracted 1024 frames, 
27       the frames are then 
28       processed. 
29   
30  Copyright: SonMon copyright (c) Robert Henry, 2005 
31   
32       Modified from "A Tutorial on Using the ALSA Audio API"  
33       Copyright (C)- Paul Davis, 2002 
34       http://equalarea.com/paul/alsa-audio.html#interruptex 
35       License: All code in the document is licensed under 
36        the GNU Public License. 
37     
38    This file is part of SonMon 
39     
40    SonMon is free software; you can redistribute it and/or modify 
41    it under the terms of the GNU General Public License as published by 
42    the Free Software Foundation; either version 2 of the License, or 
43    (at your option) any later version. 
44          
45    SonMon is distributed in the hope that it will be useful, 
46    but WITHOUT ANY WARRANTY; without even the implied warranty of 
47    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
48    GNU General Public License for more details. 
49             
50    You should have received a copy of the GNU General Public License 
51    along with SonMon; if not, write to the Free Software 
52    Foundation, Inc., 51 Franklin St, Fifth Floor,  
53    Boston, MA  02110-1301  USA    
54  */ 
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55  
56 #include <stdio.h> 
57 #include <unistd.h> 
58 #include <stdlib.h> 
59 #include <errno.h> 
60 #include <alsa/asoundlib.h> 
61 #include "D4.h" 
62 #include <iostream> 
63 #include <fstream> 
64 #include <string> 
65 #include <string.h> 
66 using namespace std; 
67  
68 snd_pcm_t *capture_handle; 
69 short buf[4096]; 
70 char debugstring[30] = "No Frames Read"; 
71 char success[30] = "Frames successfully read"; 
72 char *device = "plughw:0,0";                    /* sound device */ 
73 unsigned int rate = 44100;                      /* stream rate */ 
74 int count = 0;     //used for debugging 
75 int icounter; //used for debugging 
76 int lcounter; // and index for counting wavelet levels 
77 int i, j, k; 
78 int score; 
79 int scoreThreshold = 1000; 
80 int displayState = 0; 
81  
82 d4 w; // a wavelet object 
83 snd_pcm_uframes_t buffer_size; 
84 snd_pcm_uframes_t period_size = 1024; 
85 double bins[12] = {64, 128, 512, 1024, 2048, 4096, 8192, 16384, 
86        32768, 65536, 131072}; 
87 int histogram[13]; 
88 int histogramTemplate[6][13]={ 
89       {135, 57, 76, 83, 141, 20, 0, 0, 0, 0, 0, 0, 0}, 
90       {32, 8, 13, 22, 70, 45, 40, 17, 9, 0, 0, 0, 0}, 
91       {12, 6, 6, 7, 26, 19, 26, 19, 6, 1, 0, 0, 0}, 
92       {13, 6, 6, 11, 19, 8, 1, 0, 0, 0, 0, 0, 0}, 
93       {7, 4, 6, 4, 9, 2, 0, 0, 0, 0, 0, 0, 0}, 
94       {5, 3, 2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0}}; 
95  
96 //fstream fout; //uncomment to export files 
97  
98 struct async_private_data { 
99     signed short *samples; 

100     snd_pcm_channel_area_t *areas; 
101     double phase; 
102 }; 
103 int classify () 
104 { 
105  double element; 
106  int chi; 
107  int count; 
108   
109  chi = 0; 
110   
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111  for (j=0;j<6;j++) 
112  { 
113   //clear histogram to accept a new count for this level of the wavelet 
114   for (i = 0; i < 13; i++) histogram[i] = 0; 
115   //step through this level of the wavelet 
116   for (i=0; i<w.maxIndex(j); i++) 
117   { 
118    //get an element from the wavelet and store it locally 
119    element = w.getLevelSq(i,j); 
120    k = 0; 
121  
122    //find which bin the element fits into 
123    while ((element > bins[k]) && (k < 12)) 
124    { 
125     k++; 
126    } 
127    //increment the count for the histogram bin which matched--or the 
128 last bin if it didn't match 
129    histogram[k]++; 
130   } 
131  
132   // print histogram values to file 
133   //***Uncomment the next 5 lines to export histogram to a file. 
134  
135   //fout << "level = " << j << endl; 
136   //for (i=0;i<13;i++) 
137   //{ 
138   // fout << histogram[i] << ", "; 
139   //} 
140   //fout << "end" << endl; 
141  
142   // go through the histogram and calculate chi-square scores 
143   // for each bin, adding it to the total 
144   for (i=0;i<13;i++) 
145   { 
146    // if the template value is zero, skip this part to avoid 
147    // a divide by zero error 
148    if (histogramTemplate[j][i] > 0) 
149    { 
150     count = histogram[i]-histogramTemplate[j][i]; 
151     chi += count*count/histogramTemplate[j][i]; 
152    } 
153   } 
154  } 
155  //fout << chi << endl; //uncomment to export chi-square score to a file 
156  return chi; //return the chi-square total 
157 } 
158  
159 // Function name : async_callback 
160 // Description     : 
161 // Return type  : void 
162 // Argument         : ahandler, a pointer to the function's arguments 
163 // Description  : An ALSA callback. When ALSA is interrupted by  
164 //      the sound card, 
165 //      ALSA executes this function to handle the capture data. 

static void async_callback(snd_async_handler_t *ahandler) { 166 
    snd_pcm_t *handle = snd_async_handler_get_pcm(ahandler); 167 
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168     // short *data = snd_async_handler_get_callback_private(ahandler); 
169     // signed short *samples = data->samples; 
170     snd_pcm_sframes_t avail; 

    int err; 171 
ate(handle); 172     avail = snd_pcm_avail_upd

    while (avail >= period_size) { 173 
eriod_size); 174         err = snd_pcm_readi(handle, buf, p

        if (err < 0) { 175 
)); 176             printf("Read error: %s\n", snd_strerror(err

177             exit(EXIT_FAILURE); 
        } 178 

{         if (err != period_size) 179 
d %i expected %li\n", err, period_size); 180             printf("Read error: Rea

181             exit(EXIT_FAILURE); 
182         } 
183  w.reset(); 
184  
185  for (icounter = 0; icounter < 1024; icounter++) w.add(buf[icounter]); 
186  w.transform(); 
187  //for (icounter = 0; icounter< w.maxIndex(4);icounter++)  
188  //  printf(" %4.2f",w.getLevel(icounter,4)); 
189  score = classify(); 

 //printf("%d\n", score); 190 
)  191  if (score >  scoreThreshold

192  { 
193   if (displayState == 0) 
194   { 
195    printf("Chi-square exceeds %d\n", score); 
196    displayState = 1; 
197   } 
198  } 
199  else 
200  { 
201   if (displayState == 1) 
202   { 
203    printf("Chi-square ok %d\n", score); 
204    displayState = 0; 
205   } 
206  } 

  207 
intf("end\n");  //pr208 

avail_update(handle); 209         avail = snd_pcm_
210     } 
211 } 

 212 
in(int argc, char *argv[]) { ma213 

program\n"); 214     //fprintf(stderr, "starting 
215     snd_pcm_hw_params_t *hw_params; 

    snd_pcm_sw_params_t *sw_params; 216 
er; 217     snd_pcm_sframes_t frames_to_deliv

218     int nfds; 
219     int err; 
220      
221      
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222     //Instead of using SND_PCM_NONBLOCK or SND_PCM_ASYNC for the last value  
223     // of snd_pcm_open, the last value must be "0".  
224     //Otherwise the card won't start 
225     if ((err = snd_pcm_open(&capture_handle, device, 
226   SND_PCM_STREAM_CAPTURE,0)) < 0) { 
227         fprintf(stderr, "cannot open audio device %s (%s)\n", 
228         device, 
229         snd_strerror(err)); 
230         exit(1); 
231     } 
232      
233     //Allocate a hw_params element 
234     if ((err = snd_pcm_hw_params_malloc(&hw_params)) < 0) { 
235         fprintf(stderr, "cannot allocate hardware parameter structure 
236 (%s)\n", 
237         snd_strerror(err)); 
238         exit(1); 
239     } 
240      
241     //Initialize the hw_params element with default values. 
242     if ((err = snd_pcm_hw_params_any(capture_handle, hw_params)) < 0) { 
243         fprintf(stderr, "cannot initialize hardware parameter structure 
244 (%s)\n", 
245         snd_strerror(err)); 
246         exit(1); 
247     } 
248      
249     //Set access type to interleaved. There will only be 1 channel but 
250 interleaved will work anyway 
251     if ((err = snd_pcm_hw_params_set_access(capture_handle, hw_params, 
252 SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) { 
253         fprintf(stderr, "cannot set access type (%s)\n", 
254         snd_strerror(err)); 
255         exit(1); 
256     } 
257      
258     //Set format to 16-bit signed little-endian. Little endian will work on  
259     // an Intel machine but this might need to be changed for other hardware.  
260     //16-bit signed is expected for the DSP system. A larger bit size might 
261     // work on some hardware but might not be portable 
262     if ((err = snd_pcm_hw_params_set_format(capture_handle, hw_params, 
263 SND_PCM_FORMAT_S16_LE)) < 0) { 
264         fprintf(stderr, "cannot set sample format (%s)\n", 
265         snd_strerror(err)); 
266         exit(1); 
267     } 
268      
269     //set the rate. Rate will be user-configurable 
270     if ((err = snd_pcm_hw_params_set_rate_near(capture_handle, hw_params, 
271 &rate, 0)) < 0) { 
272         fprintf(stderr, "cannot set sample rate (%s)\n", 
273         snd_strerror(err)); 
274         exit(1); 
275     } 
276      
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277     //Set the number of channels to 1. Only one channel will be analyzed. 
278     if ((err = snd_pcm_hw_params_set_channels(capture_handle, hw_params, 1)) 
279 < 0) { 
280         fprintf(stderr, "cannot set channel count (%s)\n", 
281         snd_strerror(err)); 
282         exit(1); 
283     } 
284      
285     //Set the above specified paramters 
286     if ((err = snd_pcm_hw_params(capture_handle, hw_params)) < 0) { 
287         fprintf(stderr, "cannot set parameters (%s)\n", 
288         snd_strerror(err)); 
289         exit(1); 
290     } 
291      
292     snd_pcm_hw_params_free(hw_params); 
293      
294             /* tell ALSA to wake us up whenever 1024 or more frames 
295                 of playback data can be delivered. Also, tell 
296                 ALSA that we'll start the device ourselves. 
297              */ 
298      
299     //Allocate space for a sw_params data element 
300     if ((err = snd_pcm_sw_params_malloc(&sw_params)) < 0) { 
301         fprintf(stderr, "cannot allocate software parameters structure 
302 (%s)\n", 
303         snd_strerror(err)); 
304         exit(1); 
305     } 
306     //snd_pcm_sw_params_current initializes sw_params with current software 
307 settings 
308     if ((err = snd_pcm_sw_params_current(capture_handle, sw_params)) < 0) { 
309         fprintf(stderr, "cannot initialize software parameters structure 
310 (%s)\n", 
311         snd_strerror(err)); 
312         exit(1); 
313     } 
314     //Set avail min inside a software configuration container. 
315     //Sets Minimum avail frames to consider PCM ready, 1024 
316     if ((err = snd_pcm_sw_params_set_avail_min(capture_handle, sw_params, 
317 1024)) < 0) { 
318         fprintf(stderr, "cannot set minimum available count (%s)\n", 
319         snd_strerror(err)); 
320         exit(1); 
321     } 
322      
323     //Sets start threshold in frames. 0 in this case. 
324     //PCM is automatically started when playback frames available to PCM are 
325 >= threshold 
326     //or when requested capture frames are >= threshold 
327     if ((err = snd_pcm_sw_params_set_start_threshold(capture_handle, 
328 sw_params, 0)) < 0) { 
329         fprintf(stderr, "cannot set start mode (%s)\n", 
330         snd_strerror(err)); 
331         exit(1); 
332     } 
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333     //Install PCM software configuration defined by params. 
334     if ((err = snd_pcm_sw_params(capture_handle, sw_params)) < 0) { 
335         fprintf(stderr, "cannot set software parameters (%s)\n", 
336         snd_strerror(err)); 
337         exit(1); 
338     } 
339      
340 /* the interface will interrupt the kernel every 1024 frames, and ALSA 
341     will wake up this program very soon after that. 
342  */ 
343      
344     //Prepare PCM for use. 
345     if ((err = snd_pcm_prepare(capture_handle)) < 0) { 
346         fprintf(stderr, "cannot prepare audio interface for use (%s)\n", 
347         snd_strerror(err)); 
348         exit(1); 
349     } 
350      
351     //struct async_private_data data; 
352     snd_async_handler_t *ahandler; 
353     int  count; 
354      
355     period_size = 1024; 
356     //printf("setting up callback\n"); 
357     err = snd_async_add_pcm_handler(&ahandler, capture_handle, 
358 async_callback, &buf); 
359     if (err < 0) { 
360         printf("Unable to register async handler\n"); 
361         exit(EXIT_FAILURE); 
362     } 
363      
364     err = snd_pcm_start(capture_handle); 
365     if (err < 0) { 
366         printf("Start error: %s\n", snd_strerror(err)); 
367         exit(EXIT_FAILURE); 
368     } 
369  
370  //open output file  
371  //fout.open("D4Output.txt", ios::out); //uncomment to export data to file 
372  
373     //display copyright notice 
374    printf("SonMon, Copyright (C) 2005 Robert Henry\n SonMon comes with 
375 ABSOLUTELY NO WARRANTY;\n This is free software, and you are welcome\n to 
376 redistribute it under certain conditions;\n See copy file for details.\n\n"); 
377     
378     /* because all other work is done in the signal handler, 
379      *         suspend the process */ 
380      
381     while (1) { 
382         sleep(1); 
383     } 
384      
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385     printf(debugstring); 
386     snd_pcm_close(capture_handle); 
387  //fout.close();   //uncomment if exporting to a file. 
388     exit(0); 
389 } 
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1 

2 

Makefile 

A simple make file for use in Linux to build the system 

3 all: sonmon 
4  
5 sonmon: sonmon.o D4.o 
6  g++ sonmon.o D4.o -lasound -o sonmon 
7   
8 D4.o: D4.cpp 
9  g++ D4.cpp -c 

10  
11 sonmon.o: sonmon.c 
12  g++ sonmon.c -c 
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1 

2 

3 

d4dll.cpp 

Builds the wavelet into a DLL suitable for use with the mathematics analysis application 

Maple. 

4 /* 
5  Programmer:  Robert K. Henry 
6  Project: D4 
7  Date created: 12/4/2004 
8  Last modified: 8/2/2005 
9  Purpose: Interface the D4 wavelet to DLL for Maple 

10  Description: 
11     Data are supplied in the array input. Input is fixed at 1024 
12     elements. The input array MUST be defined in Maple as a c_order 
13     array in row-major order. Maple arrays default to Fortran_order 
14     or column-major order. In a 1-dimensional array the two  
15     configurations will be the same. The output array MUST be  
16     declared in Maple using the Maple C_order option. 
17  
18     The DLL copies the data to the wavelet class and invokes the  
19     transform function. The resulting transform is returned in the  
20     two-dimensional array "output". Like the input array, this array 
21     must also be a C-style row-major order array and is pre-defined in 
22     Maple. The array must be 512x10 but only half these elements will 
23     be used since the output array is triangular. 
24  
25  Compiling: 
26  to compile with Microsoft VC++, first set the environment variables with 
27   vcvars32.bat 
28  
29  Then invoke the compiler with  
30   cl d4dll.cpp D4.cpp -Gz -LD -link -export:d44Maple 
31   
32  Using in Maple: 
33  The DLL must be declared in Maple. This can be done with: 
34  > d4_CTrans := 
35  >  define_external("d44Maple", LIB="d4trans.dll", 
36  >   input::ARRAY(1..1024,float[8]), 
37  >   output::ARRAY(1..512,1..10,float[8])): 
38  
39  where the name of the DLL is "d4trans.dll" 
40  
41  The output array MUST be declared as C_order like this: 
42   d1C:=Matrix(1..10,1..512,datatype=float[8],order=C_order): 
43 */ 
44 #include "D4.h" 
45  
46 __declspec(dllexport) void d44Maple( double input[1024], double 
47 output[10][512]) 
48 { 
49  // it is assumed that the input array is 1024 
50  // and the output array is 10 x 512 
51  
52     int i, level; 
53     double t; 
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54  d4 h; 
55  h.reset(); // to make sure the object starts fresh each time 
56  
57     for( i = 0; i < 1024; i++ ) h.add(input[i]); 
58  
59  h.transform(); 
60  
61     for( level = 0; level < 10; level++){ 
62   for( i = 0; i < h.maxIndex(level); i++){ 
63    t = h.getLevelSq(i, level); 
64    //output[level+i*10] = t; 
65    output[level][i] = t; 
66   } 
67  }  
68 }  

 92



Appendix C: Gnu General Public License 

Version 2, June 1991 
Copyright (C) 1989, 1991 Free Software Foundation, Inc.   
51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA 
 
Everyone is permitted to copy and distribute verbatim copies 
of this license document, but changing it is not allowed. 
Preamble 

The licenses for most software are designed to take away your freedom to share and change it. 
By contrast, the GNU General Public License is intended to guarantee your freedom to share and 
change free software--to make sure the software is free for all its users. This General Public 
License applies to most of the Free Software Foundation's software and to any other program 
whose authors commit to using it. (Some other Free Software Foundation software is covered by 
the GNU Lesser General Public License instead.) You can apply it to your programs, too.  
When we speak of free software, we are referring to freedom, not price. Our General Public 
Licenses are designed to make sure that you have the freedom to distribute copies of free 
software (and charge for this service if you wish), that you receive source code or can get it if 
you want it, that you can change the software or use pieces of it in new free programs; and that 
you know you can do these things.  
To protect your rights, we need to make restrictions that forbid anyone to deny you these rights 
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you 
if you distribute copies of the software, or if you modify it.  
For example, if you distribute copies of such a program, whether gratis or for a fee, you must 
give the recipients all the rights that you have. You must make sure that they, too, receive or can 
get the source code. And you must show them these terms so they know their rights.  
We protect your rights with two steps: (1) copyright the software, and (2) offer you this license 
which gives you legal permission to copy, distribute and/or modify the software.  
Also, for each author's protection and ours, we want to make certain that everyone understands 
that there is no warranty for this free software. If the software is modified by someone else and 
passed on, we want its recipients to know that what they have is not the original, so that any 
problems introduced by others will not reflect on the original authors' reputations.  
Finally, any free program is threatened constantly by software patents. We wish to avoid the 
danger that redistributors of a free program will individually obtain patent licenses, in effect 
making the program proprietary. To prevent this, we have made it clear that any patent must be 
licensed for everyone's free use or not licensed at all.  
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The precise terms and conditions for copying, distribution and modification follow.  
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 

0. This License applies to any program or other work which contains a notice placed by the 
copyright holder saying it may be distributed under the terms of this General Public License. The 
"Program", below, refers to any such program or work, and a "work based on the Program" 
means either the Program or any derivative work under copyright law: that is to say, a work 
containing the Program or a portion of it, either verbatim or with modifications and/or translated 
into another language. (Hereinafter, translation is included without limitation in the term 
"modification".) Each licensee is addressed as "you".  
Activities other than copying, distribution and modification are not covered by this License; they 
are outside its scope. The act of running the Program is not restricted, and the output from the 
Program is covered only if its contents constitute a work based on the Program (independent of 
having been made by running the Program). Whether that is true depends on what the Program 
does.  
1. You may copy and distribute verbatim copies of the Program's source code as you receive it, 
in any medium, provided that you conspicuously and appropriately publish on each copy an 
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to 
this License and to the absence of any warranty; and give any other recipients of the Program a 
copy of this License along with the Program.  
You may charge a fee for the physical act of transferring a copy, and you may at your option 
offer warranty protection in exchange for a fee.  
2. You may modify your copy or copies of the Program or any portion of it, thus forming a work 
based on the Program, and copy and distribute such modifications or work under the terms of 
Section 1 above, provided that you also meet all of these conditions:  
a) You must cause the modified files to carry prominent notices stating that you changed the files 
and the date of any change.  
b) You must cause any work that you distribute or publish, that in whole or in part contains or is 
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third 
parties under the terms of this License.  
c) If the modified program normally reads commands interactively when run, you must cause it, 
when started running for such interactive use in the most ordinary way, to print or display an 
announcement including an appropriate copyright notice and a notice that there is no warranty 
(or else, saying that you provide a warranty) and that users may redistribute the program under 
these conditions, and telling the user how to view a copy of this License. (Exception: if the 
Program itself is interactive but does not normally print such an announcement, your work based 
on the Program is not required to print an announcement.)  
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These requirements apply to the modified work as a whole. If identifiable sections of that work 
are not derived from the Program, and can be reasonably considered independent and separate 
works in themselves, then this License, and its terms, do not apply to those sections when you 
distribute them as separate works. But when you distribute the same sections as part of a whole 
which is a work based on the Program, the distribution of the whole must be on the terms of this 
License, whose permissions for other licensees extend to the entire whole, and thus to each and 
every part regardless of who wrote it.  
Thus, it is not the intent of this section to claim rights or contest your rights to work written 
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative 
or collective works based on the Program.  
In addition, mere aggregation of another work not based on the Program with the Program (or 
with a work based on the Program) on a volume of a storage or distribution medium does not 
bring the other work under the scope of this License.  
3. You may copy and distribute the Program (or a work based on it, under Section 2) in object 
code or executable form under the terms of Sections 1 and 2 above provided that you also do one 
of the following:  
a) Accompany it with the complete corresponding machine-readable source code, which must be 
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software 
interchange; or,  
b) Accompany it with a written offer, valid for at least three years, to give any third party, for a 
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1 
and 2 above on a medium customarily used for software interchange; or,  
c) Accompany it with the information you received as to the offer to distribute corresponding 
source code. (This alternative is allowed only for noncommercial distribution and only if you 
received the program in object code or executable form with such an offer, in accord with 
Subsection b above.)  
The source code for a work means the preferred form of the work for making modifications to it. 
For an executable work, complete source code means all the source code for all modules it 
contains, plus any associated interface definition files, plus the scripts used to control 
compilation and installation of the executable. However, as a special exception, the source code 
distributed need not include anything that is normally distributed (in either source or binary 
form) with the major components (compiler, kernel, and so on) of the operating system on which 
the executable runs, unless that component itself accompanies the executable.  
If distribution of executable or object code is made by offering access to copy from a designated 
place, then offering equivalent access to copy the source code from the same place counts as 
distribution of the source code, even though third parties are not compelled to copy the source 
along with the object code.  
4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided 
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program 
is void, and will automatically terminate your rights under this License. However, parties who 
have received copies, or rights, from you under this License will not have their licenses 
terminated so long as such parties remain in full compliance.  
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5. You are not required to accept this License, since you have not signed it. However, nothing 
else grants you permission to modify or distribute the Program or its derivative works. These 
actions are prohibited by law if you do not accept this License. Therefore, by modifying or 
distributing the Program (or any work based on the Program), you indicate your acceptance of 
this License to do so, and all its terms and conditions for copying, distributing or modifying the 
Program or works based on it.  
6. Each time you redistribute the Program (or any work based on the Program), the recipient 
automatically receives a license from the original licensor to copy, distribute or modify the 
Program subject to these terms and conditions. You may not impose any further restrictions on 
the recipients' exercise of the rights granted herein. You are not responsible for enforcing 
compliance by third parties to this License.  
7. If, as a consequence of a court judgment or allegation of patent infringement or for any other 
reason (not limited to patent issues), conditions are imposed on you (whether by court order, 
agreement or otherwise) that contradict the conditions of this License, they do not excuse you 
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your 
obligations under this License and any other pertinent obligations, then as a consequence you 
may not distribute the Program at all. For example, if a patent license would not permit royalty-
free redistribution of the Program by all those who receive copies directly or indirectly through 
you, then the only way you could satisfy both it and this License would be to refrain entirely 
from distribution of the Program.  
If any portion of this section is held invalid or unenforceable under any particular circumstance, 
the balance of the section is intended to apply and the section as a whole is intended to apply in 
other circumstances.  
It is not the purpose of this section to induce you to infringe any patents or other property right 
claims or to contest validity of any such claims; this section has the sole purpose of protecting 
the integrity of the free software distribution system, which is implemented by public license 
practices. Many people have made generous contributions to the wide range of software 
distributed through that system in reliance on consistent application of that system; it is up to the 
author/donor to decide if he or she is willing to distribute software through any other system and 
a licensee cannot impose that choice.  
This section is intended to make thoroughly clear what is believed to be a consequence of the 
rest of this License.  
8. If the distribution and/or use of the Program is restricted in certain countries either by patents 
or by copyrighted interfaces, the original copyright holder who places the Program under this 
License may add an explicit geographical distribution limitation excluding those countries, so 
that distribution is permitted only in or among countries not thus excluded. In such case, this 
License incorporates the limitation as if written in the body of this License.  
9. The Free Software Foundation may publish revised and/or new versions of the General Public 
License from time to time. Such new versions will be similar in spirit to the present version, but 
may differ in detail to address new problems or concerns.  
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Each version is given a distinguishing version number. If the Program specifies a version number 
of this License which applies to it and "any later version", you have the option of following the 
terms and conditions either of that version or of any later version published by the Free Software 
Foundation. If the Program does not specify a version number of this License, you may choose 
any version ever published by the Free Software Foundation.  
10. If you wish to incorporate parts of the Program into other free programs whose distribution 
conditions are different, write to the author to ask for permission. For software which is 
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we 
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving 
the free status of all derivatives of our free software and of promoting the sharing and reuse of 
software generally.  
NO WARRANTY 
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO 
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE 
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS 
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND 
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE 
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR 
CORRECTION.  
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN 
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY 
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE 
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, 
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR 
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU 
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY 
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN 
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  
END OF TERMS AND CONDITIONS 
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Appendix D: Results Summary 
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Connor CA905DG No Response 969 2 0.21 13 1.34 
IBM TVLF1297 No Response 883 1 0.11 18 2.04 
Maxtor 00990202-19661-76P-H2UH No Response 1047 2 0.19 2 0.19 
Maxtor A348F6VCDA43A No S.M.A.R.T. 1002 154 15.37 264 26.35 

Maxtor E40AR3LA 
FAILED 
Seek_Error_Rate 744 20 2.69 99 13.31 

Maxtor E40BFG9A No Response 981 981 100 981 100 
Maxtor K309T6JA Passed 905 0 - 0 - 
Maxtor K607NJ1A Passed 793 0 - 0 - 
Maxtor L306XGDA No S.M.A.R.T. 967 18 1.86 48 4.96 
Maxtor T1RNZVFC No Response 948 0 - 1 0.11 
Maxtor W40S52VA Passed 837 0 - 0 - 
Quantum 79112173912 No Response 1008 0 - 1 0.10 
Quantum 97X1802B No Response 1099 40 3.64 54 4.91 
Quantum SG-035NTD-12547-15E-15RG Passed 838 1 0.12 1 0.12 
Western 
Digital WM 342 197 3562 No Response 1072 382 35.63 530 49.44 
Western 
Digital WM 356 043 2191 Passed 977 4 0.41 21 2.15 
Western 
Digital WM 361 044 2859 

FAILED 
Raw_Read_Error_Rate 663 0 - 3 0.45 

Western 
Digital WM 361 214 3523 No S.M.A.R.T. 711 0 - 1 0.14 
Western 
Digital WM 408 031 9718 Passed 1318 1 0.08 2 0.15 
Western 
Digital WM 408 032 8026 No Response 583 297 50.94 351 60.21 
Western 
Digital WM 408 071 0209 

Passed—history of 
Raw_Read_Error_Rate 674 2 0.30 17 2.52 

Western 
Digital WM 627 362 1072 Passed 879 5 0.57 25 2.84 
Western 
Digital WM 627 362 7493 Passed 922 0 - 3 0.33 
Western 
Digital WS 342 200 0122 No S.M.A.R.T. 1357 325 23.95 412 30.36 
Western 
Digital WT 336 017 2647 Passed 659 0 - 4 0.61 
Western 
Digital WT 359 004 9279 No Response 858 3 0.35 75 8.74 
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Western 
Digital WT 364 105 0014 No Response 708 0 - 0 - 
Western 
Digital WT 473 311 2127 No S.M.A.R.T. 797 2 0.25 16 2.01 
Western 
Digital WT 473 311 6705 Passed 942 0 - 0 - 
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