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ABSTRACT

Rocket Powered Flight as a Perturbation to the Two–Body Problem

by

Clayton Jeremiah Clark

The two body problem and the rocket equation r̈+ǫ α ṙ+ k
r3 r = 0 have been expressed

in numerous ways. However, the combination of the rocket equation with the two

body problem has not been studied to any degree of depth due to the intractability of

the resulting non-linear, non-homogeneous equations. The goal is to use perturbation

techniques to approximate solutions to the combined two body and rocket equations.
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1 THE TWO BODY PROBLEM

In this chapter we will discuss the background of the rocket equation. We will also

discuss solutions to the two body problem. We will review a previous problem and see

how perturbation techniques can be applied to the two body problem with a rocket.

1.1 Background

The two body problem was first solved by Sir Isaac Newton, and since then, it has

been expressed in a number of different ways. Similarly, the rocket equation was first

developed in 1903 by Konstantin Tsiolkovsky to explain the operation of a rocket

with the absence of gravity. However, the combination of the rocket equation with

the two body problem has not been studied to any degree of depth due to the in-

tractability of the resulting non-linear, non-homogeneous equations. In this project,

we will use perturbation techniques to approximate solutions to the combined two

body and rocket equations.

1.2 Kepler’s Problem

We first discuss results leading to the work on the two-body problem. These results

were used in the simulations created during Spring 2004. These formulas can be found

in the classical celestial mechanics text written by Harry Pollard. [3]

First, let us consider the behavior of a particle attracted to a fixed center. In this

thesis, if u is a vector, then u = ‖u‖. Also, the following definitions will be important.

8



Definition 1.1 If a particle has a position r(t) at time t, then its angular velocity is

L = r × v

where v = ṙ is the velocity, which is the time derivative, of r(t).

Definition 1.2 A particle is said to be attracted to a fixed center if its position

r(t) at time t satisfies a differential equation of the form

r̈ = −f(r)
r

r

where f(r) is positive and differentiable except possibly at the origin.

Proposition 1.3 If a particle with position r(t) is attracted to a fixed center, then

its angular velocity L is constant.

Proof: Differentiating L with respect to t yields

dL

dt
=

dr

dt
× v + r × dv

dt

= v × v + r ×
(

−f(r)
r

r

)

= 0 . ¤

Since L is constant and is perpendicular to v(t) for all times t for which it is defined,

the motion of a particle attracted to a fixed center is necessarily in a plane. We

assume that the plane is the xy-plane and that the x-axis corresponds to the position

of the particle at time t = 0 (as long as it is not the origin). Also, if we define

u = 〈cos(θ), sin(θ)〉 , u′ = 〈− sin(θ), cos(θ)〉

9



where θ is the polar angle, then r = ru and

v =
dr

dt
u + ru′dθ

dt
.

It follows that

r × u = r2dθ

dt
(u × u′) .

If A(t) denotes the area swept out by the position vector from time 0 to time t, then

in polar coordinates

dA

dt
=

1

2
r2dθ

dt
=

L

2
.

Since L is constant, the position vector of a particle attracted to a fixed center sweeps

out equal areas in equal times (Kepler’s second law).

The next 2 theorems combined are known as Sundman’s theorem of total collapse.

Theorem 1.4 If a particle subject to attraction by a fixed center starts from rest(i.e.,

v = 0 at some instant t = 0), then the motion is along a line through the origin.

Proof: Since v = 0 at time t = 0, the angular velocity L = 0 at time t = 0, and

since L is constant, it is zero for all times where r(t) is defined. Note that

d

dt

(r

r

)

=
(r × v) × r

r3
=

L × r

r3
.

Then for all times t where the position is defined, we have

d

dt

(r

r

)

=
0 × r

r3
= 0 .

This means r

r
remains constant. Thus, the particle must be traveling toward the

center of the force along a straight line. ¤
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In this chapter, the forcing function is the inverse square law

f(r) =
k

r2
.

Notice that f(r) > 0 for all r 6= 0.

Theorem 1.5 If a particle starts from rest in an inverse square field, then it must

collide with the center of force in a finite length of time.

Proof: The acceleration due to gravity acting upon the rocket is given as

r̈ = − k

r2
r (1)

where k is a positive constant depending only on the units chosen and the source of

attraction. So,

ṙ · r̈ = − k

r2
r · ṙ (2)

and

v2 − k

r
= h (3)

where h is constant. This implies

v2 = h +
k

r
→ ∞ (4)

as r approaches 0. Therefore, it is only a finite amount of time t before the object

reaches the center. ¤

As we look at the behavior of particles, we can also look at the relationship between

the position r, velocity v and angular momentum L.
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Theorem 1.6 The velocity, position, and angular momentum are related by the equa-

tion

v2 = ṙ2 + L2r−2 .

Proof: Let a = r, b = v in the vector formula

(a · b)2 + ‖a × b‖2 = a2b2 . (5)

Where the standard vector formulas are

‖a × b‖ = ab sin(θ)

and

a · b = ab cos(θ) .

That is we can write equation (5) as

(r · v)2 + ‖r × v‖2 = r2v2 .

Since L = ‖r × v‖, we have

(r · v)2 + L2 = r2v2 .

Dividing both sides by r2 yields

v2 = (r · v)2 r−2 + L2r−2 .

Since r = (r · r)
1

2 , we have

ṙ =
1

2
(r · r)−

1

2 (v · r + r · v)

= (r · r)−
1

2 (r · v)

= r−1 (r · v) .

12



Hence,

ṙ2 = r−2 (r · v)2 .

Recall that

v2 = (r · v)2 r−2 + L2r−2 .

Thus we may conclude that

v2 = ṙ2 + L2r−2 . ¤

Kepler’s problem is the differential equation

r̈ =
−k

r3
r .

In order to show that solutions to Kepler’s problem are conic sections, we may use

the Lenz vector.

Definition 1.7 The Lenz Vector for the Kepler problem is defined as

F = −k

r
r + v × L .

Theorem 1.8 The Lenz vector, F, is constant.

Proof: The definition of the Lenz vector implies that

dF

dt
=

k

2r3

(
d

dt
r · r

)

r − k

r
v + v̇ × L

=
k

r3
[(r · v) r − (r · r)v] +

(−k

r3
r

)

× L

=
k

r3
[r × (r × v)] − k

r3
[r × (r × v)]

= 0 . ¤
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Theorem 1.9 (Kepler’s First Law) Solutions to Kepler’s problem are conics.

Proof: By taking the dot product of the Lenz vector and the position vector, we

obtain

F · r =
−k

r
r · r + (v × L) · r .

Which is

rc cos(θ) = −kr + (r × v) · L .

Where c = ‖F‖ is constant. So

r [k + c cos(θ)] = L2 .

Which implies

r =
L2

k + c cos(θ)

=
L2/k

1 + c/k cos(θ)

=
L2/k

1 + e cos(θ)
.

Where e is the eccentricity of the conic. ¤

Lets look more closely at the orbit of the rocket by showing that it can be described

as a conic.

Theorem 1.10 If 0 < e < 1 or e > 1 the semi-major axis of the corresponding conic

has length a given by the formula

ka|e2 − 1| = L2 .

Where e is the eccentricity of the orbit and k is a constant defined such that

k = MG .
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Proof: We begin with the formula for an conic,

r =
L2/k

1 + e cos(θ)
.

At the closest point we have

r(0) =
L2/k

1 + e cos(0)

so

r(0) =
L2/k

1 + e
.

At the furthest point we have

r(π) =
L2/k

1 + e cos(π)

so

r(π) =
L2/k

1 − e
.

If we add the two lengths together, we get

r(0) + r(π) = 2a

then

L2/k

1 + e
+

L2/k

1 − e
= 2a .

Multiplying both sides of the equation by the identity

(1 + e)(1 − e) = 1 − e2

we have

2L2

k
= 2a(1 − e2) .
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Thus,

L2 = ak(1 − e2) .

Therefore, for 0 < e < 1 and e > 1 the equation becomes

L2 = ak|1 − e2|

with a the length of the semi-major axis of the corresponding conic. ¤

Upon consideration of the magnitude of the angular momentum of the rocket (L),

we consider the orbit of the particle. The following shows that Kepler’s Third Law is

a corollary to Kepler’s Second Law, given that the period p of a particle is the time

it takes to sweep out the area once.

Theorem 1.11 (Kepler’s Third Law) If 0 < e < 1, then

p =

(
2π√

k

)

a
3

2

Proof: The total area (A) of an ellipse is

A = πa2(1 − e2)1/2

and we know that

L 6= 0 ⇒ dA

dt
=

L

2
.

Then at time t we have

A =
L

2
t .

So at t = p

A =
L

2
p .
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Hence at time t = p we have the equality

πa2(1 − e2)
1

2 =
L

2
p

then

2

L
πa2(1 − e2)

1

2 = p .

Note that from an earlier result

L2 = ak|1 − e2|

and since 0 < e < 1 we have

L2 = ak(1 − e2)

which implies

1 − e2 =
L2

ak
.

By substitution we now have

2

Lπa2

(
L2

ak

) 1

2

= p .

So

2

L
πa2 L

a
1

2 k
1

2

= p .

Thus

2πa
3

2

k
1

2

= p .

Therefore we have
(

2π√
k

)

a
3

2 = p

the period of the particle. ¤
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1.3 Simulation with a Maple Program

A Maple program was created for the implementation of these results. The program

involves a regularizing transformation.

We first began by defining the rocket’s initial position r0 (e.g., 7,000,000 meters)

and velocity v0 (e.g., 10,000 meters per second). Given the mass of Earth,

M = 5.976 × 1024 kg

and the universal gravitational constant

G = 6.672 × 10−11 m3

kg s2

we have the effect due to gravity (k) to be constant where

k = MG .

The angular momentum (L) is defined as

L = ‖r0 × v0‖

and the Hamiltonian energy (h) is

h =
1

2
‖v0‖2 − k

‖r0‖
.

A long but elementary calculation shows us that the eccentricity of the orbit (e) is

e =

√

1 + 2 h
L2

k2
.

Suppose that 0 < e < 1. Then the circle centered at (−ae, 0) with radius a cir-

cumscribes the elliptical orbit and defines an angle E called the eccentric anomaly.

(See figure 1).
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Figure 1: Orbit of Particle Contained within Regularized Orbit.

To determine the position of the particle on the elliptical orbit, we define a new

independent variable u by

u = k

∫ t

0

dτ

r(τ)

called a regularizing variable. In terms of the regularizing variable u, the time,

polar distance, and polar angle are given by

t =
a3/2 (u − e sin (u))√

k

r = a (1 − e cos (u))

θ = 2 arctan

(√

1 + e

1 − e
tan

(u

2

)
)

.

To show the position of the particle on its orbit at time t, we incorporated the

regularizing variable into a FOR loop. This demonstrates that at any time (t) we can

show the rockets exact position in it’s elliptical orbit by tracing along the regularized

path.
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Figure 2: Particle’s Position in Orbit Compared with Regularized Orbit.

The Maple code for this project can be found in appendix 1.
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2 PREVIOUS RESEARCH

In this chapter we will view research that has been done on the subject of two–body

and rocket problems. In particular, we observe the effects of continuous thrust ( Bat-

tin [1] ). What we attempt in this thesis is the exact opposite. We wish to minimize

the thrust and essentially have no use of fuel. Allowing the rocket to be propelled by

its own momentum.

2.1 Rocket Powered Flight in an Inverse Square Field

By beginning with the mass of the rocket (MR), along with the velocity of the rocket

(ṙ), we have the linear momentum of the rocket MRr̈. In this result, we let µ equal

the velocity of the exhaust gas, then the differential of the exhaust momentum can

be written as dMRµ ( Smith [4] ).

By accounting for the acceleration due to gravity, we have

ac =
k

r3
r

where k is the universal gravitational constant and ac is the acceleration due to the

effect of gravity.

By Newton’s third law, we have conservation of linear momentum. This implies

that

(MRr̈) dt
︸ ︷︷ ︸

rocket

+ d(MR)µ
︸ ︷︷ ︸

exhaust

+

(

MR
k

r3
r

)

dt

︸ ︷︷ ︸

gravity

= 0

which aids us in developing a formulation for rocket powered flight.
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To use the above equation for conservation of momentum, we first define µ. We

assume that µ is parallel to v, which means that there is a scalar function α(t) for

which

µ = α(t)ṙ .

By substituting for µ into the conservation of momentum equation, the result is

r̈ + ǫαṙ +
k

r3
r = 0

where ǫ = d(MR)
MR

= ṁ
m

is the percentage of fuel loss. This is the version of the rocket

equation we will be using.

2.2 Continuous Thrust

Suppose there is a rocket in orbit. This rocket is initially in a circular orbit of radius r

and at time t = to there is a continuous thrust. This allows the tangential acceleration

at to be constant. This makes the velocity of the rocket v in a direction tangent to

the orbit, i.e.,v = vT, where T is the direction of the force applied tangent to the

orbit ( Battin [1] ).

Hence the acceleration is

a =
dv

dt
T + v

dT

dt
(6)

where
∥
∥
∥
∥

dT

ds

∥
∥
∥
∥

= κ

where s is the arc length of the orbit and κ is the curvature of the orbit defined as

22



κ = 1
ρ
, where ρ is the radius of curvature. So we have,

∥
∥
∥
∥

dT

dt

∥
∥
∥
∥

=

∥
∥
∥
∥

dT

ds

ds

dt

∥
∥
∥
∥

= κv .

This makes equation (6) become

a =
dv

dt
T + κv2N

where N is the direction of the force applied normal to the rocket’s position in orbit.

And so, we express the total acceleration of the rocket a as

a = atT − µ

r2
U

︸ ︷︷ ︸

energy loss

(7)

where µ is a constant related to the thrust of the rocket’s engine dependent on the

rate of fuel loss and U is the direction of the force applied toward the center along

the radius of the rocket’s position in orbit, i.e.,U = r

r
.

In terms of components in the tangential and normal directions, we have,

− µ

r2
U = − µ

r2
cos(γ)T +

µ

r2
sin(γ)N

And so by substitution equation (7) becomes,

a =
[

at −
µ

r2
cos(γ)

]

T +
µ

r2
sin(γ)N .

Hence,

dv

dt
= at −

µ

r2
cos(γ) (8)

and

κv2 =
µ

r2
sin(γ) . (9)
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Note that in polar coordinates the arc length can be stated as

(ds)2 = (dr)2 + (rdθ)2

where

r
dθ

ds
= sin(γ)

and

dr

ds
= cos(γ) .

So equation (8) becomes,

v
dv

dt
= at −

µ

r2

dr

ds
(10)

and equation (9) becomes,

κv2 =
µ

r

dθ

ds
.

Then

v
dv

ds
=

1

2

dv2

ds
.

So the tangential acceleration at in equation (10) becomes

1

2

dv2

ds
+

µ

r2

dr

ds
= at .

Also by using polar coordinates to solve for κ we obtain the following,

κ =
1

v

(

1 −
(

dr

ds

)2

− r
d2r

ds2

) (

1 −
(

dr

ds

)2
)− 1

2

which implies

v2

r

(

1 −
(

dr

ds

)2

− r
d2r

ds2

) (

1 −
(

dr

ds

)2
)− 1

2

=
µ

r

dθ

ds
. (11)
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Note that

1 =

(
dr

ds

)2

+ r2

(
dθ

ds

)2

then

1 −
(

dr

ds

)2

= r2

(
dθ

ds

)2

.

Solving for dθ
ds

we get,

dθ

ds
=

1

r

√

1 −
(

dr

ds

)2

.

Then the right-hand-side of equation (11) becomes

µ

r

dθ

ds
=

µ

r2

√

1 −
(

dr

ds

)2

.

Which can be written as,

µ

r

dθ

ds
=

µ

r2

(

1 −
(

dr

ds

)2
) (

1 −
(

dr

ds

)2
)− 1

2

.

Hence equation (11) becomes

v2

r

(

1 −
(

dr

ds

)2

− r
d2r

ds2

) (

1 −
(

dr

ds

)2
)− 1

2

=
µ

r2

(

1 −
(

dr

ds

)2
) (

1 −
(

dr

ds

)2
)− 1

2

.

And so by multiplying both sides by r and canceling out
(

1 −
(

dr
ds

)2
)− 1

2

we now have,

v2

(

1 −
(

dr

ds

)2
)

− rv2d2r

ds2
=

µ

r

(

1 −
(

dr

ds

)2
)

.

Thus,

rv2d2r

ds2
+

(

v2 − µ

r

)
((

dr

ds

)2

− 1

)

= 0 .

If we assume d2r
ds2 = 0, this implies v2 = µ

r
. So,

v2 = 2sat + µ

(
2

r
− 2

ro

)

. (12)

Equation (12) is an integral for continuous thrust. In [1], an assumption allowed this

to be used to approximate a solution for a continuous thrust orbit.
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3 RESULTS

These are the results of research on the two body problem with a rocket.

3.1 Generalized Angular Momentum

To expand upon the results in section 1.2, we define the generalized angular momen-

tum by

L = r × λv

where λ is a function

λ̇ = ǫαλ

L is constant, and so r must lie in a plane with normal L. This is illustrated by

the following theorem.

Theorem 3.1 The generalized angular momentum (L) is constant if and only if λ̇ =

ǫαλ.

Proof: (⇒) Suppose the generalized angular momentum L is constant. That is,

suppose dL
dt

= 0.

The derivative of L is

dL

dt
=

d

dt
(r × λv)

using the product rule, this gives us

dL

dt
=

dr

dt
× λv + r × d

dt
[λv]
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and

dL

dt
= v × λv

︸ ︷︷ ︸

= 0

+r ×
[

λ̇v + λv̇
]

︸ ︷︷ ︸

Product Rule

.

So we have,

dL

dt
= r ×

[

λ̇v + λv̇
]

which implies

dL

dt
= r × λ̇v + r × λv̇ .

Recall that

r̈ + ǫαṙ +
k

r3
r = 0 .

So

r̈ = −ǫαṙ − k

r3
r = v̇ .

After substitution for v̇

dL

dt
= r × λ̇v + r × λ

[

−ǫαṙ − k

r3
r

]

.

Then

dL

dt
= λ̇ [r × v] − r × ǫαλv − r × λ

k

r3
r

︸ ︷︷ ︸

= 0

.

Then

dL

dt
= λ̇ [r × v] − ǫαλ [r × v] .

So we have

dL

dt
=

[

λ̇ − ǫαλ
]

(r × v) = 0 .

If r × v = 0 we are done, else this implies that

λ̇ − ǫαλ = 0 .
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Hence,

λ̇ = ǫαλ .

Thus, if the generalized angular momentum (L) is constant then λ̇ = ǫαλ.

(⇐) Suppose λ̇ = ǫαλ. We begin with,

L = r × λv

and so the derivative of L is

dL

dt
=

d

dt
(r × λv)

using the product rule, this gives us

dL

dt
=

dr

dt
× λv + r × d

dt
[λv]

and

dL

dt
= v × λv

︸ ︷︷ ︸

= 0

+r ×
[

λ̇v + λv̇
]

︸ ︷︷ ︸

Product Rule

.

So we have,

dL

dt
= r ×

[

λ̇v + λv̇
]

which implies

dL

dt
= r × λ̇v + r × λv̇ .

Recall that

r̈ + ǫαṙ +
k

r3
r = 0 .

So

r̈ = −ǫαṙ − k

r3
r = v̇ .
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After substitution for v̇ and λ̇

dL

dt
= r × ǫαλv + r × λ

[

−ǫαṙ − k

r3
r

]

.

Then

dL

dt
= ǫαλ [r × v] − r × ǫαλv − r × λ

k

r3
r

︸ ︷︷ ︸

= 0

.

Then

dL

dt
= ǫαλ [r × v] − ǫαλ [r × v] .

So we have

dL

dt
= (ǫαλ − ǫαλ)

︸ ︷︷ ︸

= 0

(r × v) .

Hence,

dL

dt
= 0 .

Thus, if λ̇ = ǫαλ then the generalized angular momentum (L) is constant. There-

fore, upon consideration of the last result, the generalized angular momentum (L) is

constant if and only if λ̇ = ǫαλ. ¤

For example, if α is constant, then

˙λ(t) = λ(t)
ṁ

m
α

which can be written as the separable ODE

dλ

dt
= λ

ṁ

m
α .

Then

dλ

λ
=

ṁ

m
α dt .
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By solving this first order differential equation, we obtain a result of

ln |λ| = α ln |m| + c .

Which is

ln |λ| = ln |m|α + c .

Application of the exponential yields

eln |λ| = eln |m|αec .

Hence

λ = cmα .

3.2 Perturbation Techniques

We define the generalized Lenz vector

F = −k

r
r +

1

λ
(v × L)

which implies

dF

dt
= −2ǫα

1

λ
(v × L) .

Hence,

dF

dt
= −2ǫα

[

F +
k

r
r

]

.

By distribution, we have

dF

dt
= −2ǫαF

︸ ︷︷ ︸

homogeneous

−2ǫα
k

r
r .
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The homogeneous element is given by

dF

dt
= −2ǫαF

which implies a solution of

F = ce−2
∫
(ǫα)dt

where c is the constant of integration. Recall that ṁ
m

= ǫ where we may assume ǫ ≈ 0,

which implies little or no fuel loss.

3.3 The Main Result

The second Maple worksheet is based on the following theorem, which is a perturba-

tion result since epsilon is close to 0.

Theorem 3.2 Let γ = −2αǫ
λ

be constant. Then, for some constant e, the solution to

the rocket equation is

r =
L2/ (kλ)

1 + e cos(θ)

where

λ2 = 1 −
∫ θ

0

L3γ/k2

1 + e cos(u)
du .

Proof: We begin with the generalized Lenz vector

F = −k

r
r +

1

λ
(v × L)

by differentiation we obtain
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dF

dt
=

k

2r3

d

dt
(r · r) r − k

r
ṙ − λ̇

λ2 (ṙ × L) +
1

λ
(r̈ × L)

=
k

2r3
[2 (ṙ · r)] r − k

r3
(r · r) ṙ − λ̇

λ2 (ṙ × L)

−1

λ
(αǫṙ × L) − k

λr3
(r × L)

=
k

r3
r × (r × ṙ) −

(

λ̇

λ2 +
αǫ

λ

)

(ṙ × L) − k

r3
[r × (r × ṙ)]

= −
(

λ̇

λ2 +
αǫ

λ

)

(ṙ × L) .

Note that

αǫ

λ
=

λ̇

λ2

then

dF

dt
= −2αǫ

λ
(ṙ × L) .

Hence

dF

dt
= γ (ṙ × L) .

Integration yields

F = γ (r × L) + c0

where c0 is a constant of integration. Now we have

−k

r
r +

1

λ
(ṙ × L) = γ (r × L) + c0 .

By applying the dot product with r we obtain

−k

r
r · r +

1

λ
(ṙ × L) · r = γ [r · (r × L)] + c0 · r
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which implies

−kr +
1

λ2 (r × ṙ) · L = cr cos(θ)

−kr +
L2

λ2 = cr cos(θ)

L2

λ2 = [k + c cos(θ)] r .

Hence, the solution to the rocket equation is

r =
L2/λ2

k + c cos(θ)
=

L2/
(
kλ2

)

1 + e cos(θ)

where e is a constant such that e = c
k
. From this result it can be shown that

λr2dθ

dt
= L

which implies

dθ

dt
=

L

λr2
.

Since γ = −2λ̇
λ2 we have

λ2γ = −2
dλ

dt
= −2

dλ

dθ

dθ

dt

so

λ2γ = −2
dλ

dθ

L

λr2

then

dλ

dθ
= −λ3γr2

2L

= −λ3γ

2L

(

L2/
(
kλ2

)

1 + e cos(θ)

)2

= − λ3γL4/k2

2λ4L (1 + e cos(θ)2 .
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This implies

2λ dλ = − L3γ/k2

(1 + e cos(θ)2 dθ

and so integration of both sides from 0 to θ yields

(λ(θ))2 = (λ(0))2 −
∫ θ

0

L3γ/k2

1 + e cos(θ)
dθ .

Since λ(0) = 1, and for computational purposes, the solution is

λ2 = 1 −
∫ θ

0

L3γ/k2

1 + e cos(u)
du . ¤

3.4 Results of the Maple Program

The Maple program that was created is an estimation for the trajectory of an elliptical

orbit. However, the estimation is rather crude and we were only able to obtain a rough

estimate. It follows the elliptical path close at first, unfortunately as time increased

the solution we obtained deviated from the numeric solution. (See figure 3).

Using the same variables from the previous program, we implemented these into

our calculations for the trajectory. We made a comparison to Maple’s differential

equation solver which finds a numerical solution using a Fehlberg fourth-fifth order

Runge-Kutta method.

The Maple code for the estimation can be found in appendix 2.
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Figure 3: Our Estimation and Numeric Estimation of Rocket Trajectory.
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4 CONCLUSION

The Lenz vector method for calculating trajectories is a good approximation tech-

nique. However, with every subsequent calculation there arose many hidden variables.

One unexpected result was that the eccentricity e in

r =
L2/

(
kλ2

)

1 + e cos(θ)

does not appear to be constant. In the program, e was treated as a constant (e = c
k
)

and it is very likely to be a scalar function that may vary according to θ. From this

point, there are many options for future research.

4.1 Future Research

A possible direction to take the research is to find a better approximation for the

generalized Lenz vector F. Let

F = α(t)
−k

r
r + β(t) (ṙ × L)

and find out what differential equations exist for α(t) and β(t) that satisfy Ḟ = 0.

The first differentiation alone gave us the result

dF

dt
= ˙α(t)

−k

r
r + α(t)

[
d

dt

(−k

r

)

r +
−k

r
ṙ

]

+ ˙β(t) (ṙ × L) + β(t)
d

dt
(ṙ × L) .

The Maple differential equation solver was unable to compute a numeric solution to

this equation. As we gain further knowledge about techniques in numerically solving

differential equations, we may then apply those techniques to finding a solution to

the above system.
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APPENDICES

Appendix A: Maple Code for Two Body Problem

This is the Maple code for the independent study midterm assignment.

> restart;

> with(linalg):

> with(LinearAlgebra):

> with(plots):

> with(plottools):

Initiating variables and constants.

> r0:=<7000000,0,0>: # initial position

> v0:=<0,10000,0>: # initial velocity

> M:=5.976*10^(24): # mass of earth

> G:=6.672*10^(-11): # gravity constant

> alpha:=0.05: # fuel loss proportion

> k:=M*G: # gravitation

> L:=norm(CrossProduct(r0, v0)): # angular momentum

> h:=1/2*norm(v0)^2-k/norm(r0): # hamiltonian energy

> e:=sqrt(1+2*h*((L^2)/(k^2))): # eccentricity

> a:=L^2/(k*abs(e^2-1)): # semi-major axis

> rho:=L^2/k: # easier for Maple
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> c:=k/2: # easier for Maple

Plot the original ellipse and circle.

> r := theta -> (L^2/k)/(1+e*cos(theta)):

> pa1 := plot(r(theta),theta=0..2*Pi,coords=polar,color=black):

> x:=-1*a*e:

> pa2:= circle([x,0], a, color=red):

> display({pa1,pa2},scaling=constrained);

Incorporate these into a for loop.

> m:=0:

> for u from 0.0 by 0.1 to 6.28 do

>

> if (h>0) then break end if:

>

> t:=k^(-1/2)*a^(3/2)*(u-e*sin(u)):

> r:=a*(1-e*cos(u)):

> theta:=2*arctan(((((1+e))/(1-e))^(1/2))*tan(u/2)):

>

> p1:=pointplot([r*cos(theta),r*sin(theta)],color=blue):

> p2:=pointplot([a*cos(u)-a*e,a*sin(u)],color=blue):

> p3:=line([-a*e,0],[a*cos(u)-a*e,a*sin(u)],color=red):

> p4:=line([a*cos(u)-a*e,a*sin(u)],[a*cos(u)-a*e,r*sin(theta)],color=green):
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>

> ttle:=cat("time= ",convert(t,’string’)):

>

> m:=m+1:

>

> plotpos[m]:=display({p1,p2,p3,p4},title=ttle):

> tt[m]:=t:

> end do:

> tsync:=evalf( (tt[m]-tt[1])/50, 5 ):

> msync:=1:

> mcnt:=0:

> for ti from tt[1] to tt[m] by tsync do

> while(tt[msync] < ti and msync < m) do

> msync := msync+1:

> end do:

> mcnt:=mcnt+1:

> ppp[mcnt]:=plotpos[msync]:

> end do:

> ani:=display(seq(ppp[i],i=1..mcnt),insequence=true):

> display(ani,pa1,pa2);
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Appendix B: Maple Program Implementing Perturbation

> restart:with(DEtools):with(linalg):with(LinearAlgebra):with(plots):

Define variables and constants.

> r0:=<7000000,0,0>:

> v0:=<0,5000,0>:

> epsilon:=0.001: # vary with gaamma

> alpha:=-0.1:

> L:=Norm(CrossProduct(r0, v0),2):

> M:=5.976*10^(24):

> G:=6.672*10^(-11):

> k:=M*G:

> h:=1/2*norm(v0)^2-k/norm(r0):

> e:=sqrt(1+2*h*((L^2)/(k^2))): #should be a function

>

Runge Kutta

> appsol:=dsolve({Diff(x(t),t)=u(t),Diff(y(t),t)=v(t),

> Diff(u(t),t)=-epsilon*alpha*u(t)-k*x(t)/( (x(t)^2+y(t)^2)^(3/2) ),

> Diff(v(t),t)=-epsilon*alpha*v(t)-k*y(t)/( (x(t)^2+y(t)^2)^(3/2) ),

> u(0)=v0[1], v(0)=v0[2], x(0)=r0[1], y(0)=r0[2]},

> {u(t),v(t),x(t),y(t)},method=rkf45,type=numeric):

> tt:=0:

> for i from 1 to 5000 do

> xx[i]:=rhs(op(4,appsol(tt))):
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> yy[i]:=rhs(op(5,appsol(tt))):

> tt:=tt+0.5;

> end do:

>

Estimate the trajectory using the generalized Lenz result.

> gaamma:=-0.2*alpha*epsilon: # vary with epsilon

> lkg:=evalf((-L^3/k^2*gaamma),15):

> i:=1:

> for theta from 0 to 6.28 by 0.1 do

> lambda_thet:=1+lkg*evalf(Int((1-e*cos(u))^(-2),u=0..theta),15):

> thet[i]:=theta;

> r[i]:=(L^2/k)/(lambda_thet)/(1-e*cos(theta));

> i:=i+1:

> end do:

> p1:=listplot([seq([r[j],thet[j]],j=1..(i-1))],coords=polar,color=blue):

> p2:=listplot([seq([xx[j],yy[j]],j=1..5000)],scaling=constrained,color=green):

> display(p1,p2,title="Blue is Ours; Green is RK5");
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