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ABSTRACT

Extensions of the Cayley-Hamilton Theorem with Applications to Elliptic Operators

and Frames

by

Alberto Mokak Teguia

The Cayley-Hamilton Theorem is an important result in the study of linear trans-

formations over finite dimensional vector spaces. In this thesis, we show that the

Cayley-Hamilton theorem can be extended to self-adjoint trace-class operators and to

closed self-adjoint operators with trace-class resolvent over a separable Hilbert space.

Applications of these results include calculating operator resolvents and finding the

inverse of a frame operator.
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1 INTRODUCTION

The Cayley-Hamilton Theorem (CHT) can be stated as follows:

Theorem 1 If A is a linear transformation of a finite-dimensional vector space into

itself and if p(z) = det (A − zI) where I is the identity transformation, then

p(A) = 0.

This important result has many applications throughout linear algebra, including

algorithms to calculate inverse and exponential of linear transformations. Because

the characteristic polynomial of A is defined by

p (x) = det (A − xI)

where I is the identity on V, it also follows that if λ ∈ σp (A) , the point spectrum of A,

then p (λ) = 0. Thus, a generalization of CHT is that if A is a linear transformation

over a finite-dimensional vector space V, then there exists a polynomial p (x) which

vanishes on σp (A) for which p (A) = 0.

Several attempts have been made to generalize the CHT in recent literature. In

[23], CHT has been extended to the case of supermatrices over finite dimensional

spaces, which has many applications in physics. In [13], an extension of the CHT

for a special type of algebra is introduced. Also, Ponge [17] recently attempted to

extend a version of CHT both to compact operators and to operators with a compact

resolvent over a Hilbert space H. Although the paper has now been withdrawn due to

an error, he had many good insights into how to generalize CHT to an algebraic sum

of finite-dimensional subspaces that generalize the eigenspaces of a compact operator.
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There are no straightforward means of defining the determinant (and so, the

characteristic polynomial) for linear transformations over infinite-dimensional vector

spaces. Instead, there are many extensions of the determinant concept, each one

designed to work in a given situation. The majority of these definitions are derived

from the equality

ln(det(T )) = tr(ln(T )).

Here, we will make use of this relation and of zeta functions and analytic continuation

since it allows the determinant to be defined for a large class of elliptic operators (see

[20, 15, 11] for details). This suggests that an extension of CHT is possible in at least

some special classes of operators.

In this thesis, we derive such an extension for self-adjoint trace-class operators

and for closed self-adjoint operators with trace-class resolvent over a Hilbert space,

H having a trace-class resolvent. In particular, one of our results is, if L is an

elliptic operator with trace-class resolvent, then there is a function p (x, y) which is

meromorphic in both x and y for which

p(L, y) = p(0, y)Pker(L)

where Pker(L) is the projection onto ker (L) . In chapter 2, we present some of the

preliminary ideas needed for these results. In chapter 3, we present previous research

related to our work. In chapter 4, we present extensions of CHT and some corollaries.

In chapter 5, we present some applications of our results and in chapter 6 we present

our future objectives.
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2 PRELIMINARIES

2.1 Cayley-Hamilton Theorem

2.1.1 Statement and Proof of the Cayley-Hamilton Theorem

The materials of this section can be found in any undergraduate linear algebra book

([3, 5]) The Cayley-Hamilton Theorem (CHT) states that (in a finite dimensional

space), every operator (or square matrix) is annihilated by its characteristic poly-

nomial. Let’s define the concept of a characteristic polynomial and then prove the

CHT.

Definition 1 Let T be a linear operator on a finite dimensional vector space V and

let A be the matrix associated with T . The characteristic polynomial of T is defined

by

p(z) = det(A − zI).

The characteristic polynomial is a dim(V ) degree polynomial, whose zeros are the

eigenvalues of the operator T . The following lemma is closely related to the CHT

and plays an important role in its proof.

Lemma 2 Let P (z) and Q(z) be polynomials (of finite degrees) with coefficients that

are linear transforms over a finite vector space V (or n × n matrices). Let T be a

linear transform over V .

If P (z) = Q(z)(T − zI), then

P (T ) = 0.

9



Proof. Let Q(z) = B0 + B1z + ... + Bnz
n. Then

P (z) = (B0 + B1z + ... + Bnz
n)(T − zI)

= B0T + B1Tz + ... + BnTzn − (B0z + B1z
2 + ... + Bnz

n+1)

= B0T + (B1T − B0)z + ... + (BnT − Bn−1)z
n − Bnzn+1

Hence, the polynomial applied to the operator T yields

P (T ) = B0T + (B1T − B0)T + ... + (BnT − Bn−1)T
n − BnT n+1

= 0

For a square matrix S (which can be used to represent a linear transform over V ),

we have

(adjS)S = (det S)I.

Thus, for any square matrix A,

adj(zI − A).(zI − A) = det(zI − A).I.

But adj(zI −A) can be written as polynomial in z with square matrices coefficients,

thus, by lemma 2

p(A) = 0 with p(z) = det(zI − A).

This proves the Cayley-Hamilton Theorem:

Theorem 3 If T is a linear operator on a finite dimensional vector space V, then T

satisfies its own characteristic equation, that is,

p(T ) = 0.

10



This is a beautiful theorem mathematically. It gives a direct relation between an

operator, its spectrum (to be defined later), and its trace. But the importance of

this theorem goes far beyond its beauty. It has many applications, both in pure and

applied mathematics. We present some of these applications in the next section.

2.1.2 Inverse of a Square Matrix

Many problems arising in science require finding the inverse of a matrix. For square

matrices, there are algorithms for calculating inverses using the co-factor expansion.

But as the order of the matrix gets large, these algorithms become inefficient.

Theorem 4 Let A be an n×n matrix, with characteristic polynomial p(z) =
∑n

i=0 aiz
i.

If a0 6= 0, then A−1exists and can be written as

A−1 = −
1

a0

n∑

i=1

aiA
i−1.

Proof. Recall that, by definition, A is invertible if there exists a matrix B such

that

AB = BA = I,

in which case A−1 = B. This is true if and only if 0 is not an eigenvalue of A. By the

CHT, p(A) = 0. That is,

a0I = −
n∑

i=1

aiA
i

i.e. I = A

(
−

1

a0

n∑

i=1

aiA
i−1

)
and

I =

(
−

1

a0

n∑

i=1

aiA
i−1

)
A

11



The result then follows.

This theorem gives us an efficient method for computing the inverse of a square

matrix using only matrix addition and substraction. Similarly, Ak for k, an integer,

can be expressed as a linear combination of An−1, An−2, ...,A1, I.

2.1.3 CHT and the Functional Calculus

Let A be a square matrix of order n, a polynomial q(x) of degree r, such that r > n

and p(x) the characteristic polynomial of A. By Euclid’s algorithm, there exist unique

polynomials t(x) and R(x) such that

q(z) = t(z) · p(z) + r(z).

Thus, q(A) = t(A)p(A) + r(A). Applying the CHT, we get:

Lemma 5 Let A be a square matrix of order n, a polynomial q(x) of degree r, such

that r > n and p(x) the characteristic polynomial of A. Then

q(A) = r(A)

where r is the (unique) remainder polynomial when q(z) is divided by p.

This lemma gives a nice way to compute the image of a square matrix under a

polynomial of finite order. We have a similar result for analytic functions.

2.2 Infinite Products

Because we will be using infinite products in this thesis, let us begin by stating

some well-established properties of infinite products. These have been extracted from

[2, 16]. We begin with the definition of the convergence of an infinite product.
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Definition 2 [2, 16] Let {pn}
∞
n=1 be a sequence of complex numbers and let

PN =
N∏

n=1

pn

If {Pn}
∞
n=1 converges to a number L 6= 0, we say that the infinite product converges

and we write
∞∏

n=1

pn = L.

Proposition 6 Let {pn}
∞
n=1 be a sequence such that the sequence

{
PN =

N∏

n=1

pn

}

N∈N

converges. Then

pn → 1

as n → ∞.

Proof. Well,

pN =
PN

PN−1

thus lim
N→∞

pN = lim
N→∞

PN

PN−1

=
limN→∞ PN

limN→∞ PN−1

since both limits exist

= 1

Some properties of infinite products are derived using infinite series of logarithms.

For example, we have the following propositions.
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Proposition 7 [16] Let {an}
∞
n=1 be a sequence of complex numbers. Then

∞∏

n=1

(1 + an)

converges if and only if
∞∑

n=1

ln(1 + an)

converges, where we consider the principal branch of the logarithm.

Proof. Let’s suppose that
∑∞

n=1 ln(1 + an) converges. We have

N∏

n=1

(1 + an) = e
PN

n=1 ln(1+an).

Then, since the exponential function is entire and does not take on the value zero,

the infinite product is convergent.

Now suppose that
∏∞

n=1(1+an) converges, say to L. We need to show that log Pn

converges to the same branch of log L. Clearly, log
(

Pn

L

)
→ 0 as n → ∞.

For every n, there is an integer hn such that

log

(
Pn

L

)
= Sn − log(P ) + hn(2πi)

where Sn is the nth partial sum of the above series. We then have

(hn+1 − hn) (2πi) = log

(
Pn+1

L

)
− log

(
Pn

L

)
− log(1 + an)

and taking the argument we get

(hn+1 − hn) (2π) = arg

(
Pn+1

L

)
− arg

(
Pn

L

)
− arg(1 + an)

This implies that for n sufficiently large, we have hn+1 = hn. The result then

follows.
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Proposition 8 [16] Let {an} be a sequence of complex numbers. Then
∏∞

n=1 (1 + an)

converges absolutely if and only if
∑∞

n=1 an converges absolutely.

Proof. We know that

ln(1 + x) ≤ ex ∀ x ∈ R
+, then

N∑

n=1

ln |1 + an| ≤
N∑

n=1

ln(1 + |an|) ≤ e
PN

n=1 |an| ∀ N ∈ N.

Thus, if
∑∞

n=1 |an| converges, so does
∑∞

n=1 ln |1 + an|, and hence
∏∞

n=1 (1 + an) con-

verges absolutely by proposition 7. Let’s suppose that
∏∞

n=1 (1 + an) converges ab-

solutely. Clearly,

ln(x) ≤ x + 1 ∀ x ∈ R
+, then

N∑

n=1

|an| = eln(
PN

n=1 |an|)

= e
QN

n=1(ln |an|)

≤ e
QN

n=1(|1+an|) ∀ N ∈ N.

Thus
∑∞

n=1 |an| is also convergent.

Proposition 9 [16] An absolutely convergent infinite product of complex numbers is

convergent.

Proof. Let
∏∞

n=1 an be an absolute convergent infinite product. Then its sequence

of partial products (Pn) is also absolutely convergent. Then, both the real and the

imaginary parts of this sequence are absolutely convergent, and thus are convergent.

15



This implies that the the sequence is convergent, hence the infinite product is con-

vergent.

Combining the two previous propositions gives us:

Proposition 10 [2]

Let {an} be a sequence of complex numbers. Then
∏∞

n=1 (1 + an) converges if and

only if
∑∞

n=1 an converges .

Proposition 11 [16] Let {fn(z)}∞n=1 be a sequence of analytic functions on a region

G. The infinite product
∏∞

n=1 (1 + fn(z)) converges (uniformly) in G if
∑∞

n=1 (|fn(z)|)

converges (uniformly) in G.

Proof. Suppose that
∑∞

n=1 (|fn(z)|) converges . By proposition 10,
∏N

n=1 (1 + |fn(z)|)

is also convergent. But

N∏

n=1

|1 + fn(z)| ≤
N∏

n=1

(1 + |fn(z)|) ,

so
∏∞

n=1 (1 + fn(z)) converges absolutely, and by the proposition 9, it converges. The

case of uniform convergence follows similarly.

2.3 Elementary Operator Theory

Let’s review some basic operator theory. The following was extracted from [1] and

[18].

Definition 3 A vector space V is said to be metrizable if there exists a function

16



〈·, ·〉 : V × V → C satisfying:

〈g, f〉 = 〈f, g〉

〈a1f1 + a2f2, g〉 = a1〈f1, g〉 + a2〈f2, g〉

〈f, f〉 ≥ 0, with equality only for f = 0

where g, f, f1, f2 are arbitrary vectors in V and a1, a2 are arbitrary complex numbers.

〈f, g〉 is called the inner product of f and g.

Definition 4 A Hilbert space is an infinite dimensional inner product space which is

a complete metric space with respect to the metric generated by the inner product.

For the rest of this thesis, we use H to denote an arbitrary Hilbert space. An

important example of a Hilbert space is l2.

Definition 5 Define

l2 = {{xn}
∞
1 |

∞∑

n=1

|xn|
2 < ∞}.

The inner product defined on l2 is

<,>: {xn}
∞
1 , {yn}

∞
1 7−→

∞∑

n=1

xnyn.

On a subset of a Hilbert space H, we can define the same inner product as on H,

but not all subsets of H are complete. If a subset of H is closed, then it is complete

since H is complete. Thus, it is again a Hilbert space. These types of subsets of H

play an important role in operator theory.

Definition 6 A non-empty closed subset of a Hilbert space H is called a subspace.

17



Definition 7 A Hilbert space H is said to be separable if there exists a countable set

S ⊆ H such that

S = H,

that is, such that S is dense in H.

As we mentioned above, l2 is an important Hilbert space. This is because all sep-

arable Hilbert spaces are isomorphic to l2 ([1]). Another Hilbert space often studied

is L2(a, b).

Definition 8 Let (a, b) be an interval. L2(a, b) is the set of all complex valued

Lebesque measurable functions f defined on (a, b) such that |f |2 is Lebesque integrable

on (a, b). The inner product defined on this space is:

<,>: f, g 7−→

∫ b

a

f(u)g(u)du.

Let’s define a type of mapping acting on Hilbert spaces.

Definition 9 On a Hilbert space H , an operator T is a function that maps elements

f of a non-empty subspace D of H into an element of H. T is said to be linear if

T (af + bg) = aTf + bTg,

∀f, g in the domain of T (the collection of all f ∈ H for which Tf exists in H) and

for arbitrary a, b ∈ C.

Definition 10 An operator T defined on a Hilbert space H is continuous at a point

f0 ∈ DT if

lim
f→f0

Tf = Tf0.

18



A norm can be associated with every operator over a Hilbert space ([1]).

Definition 11 Let T be an operator defined over a Hilbert space H, with domain D.

The norm of T is defined as

‖T‖ = sup
f∈D

‖Tf‖

‖f‖
= sup

f∈D,‖f‖=1

‖Tf‖ .

An operator is said to be bounded if its norm is finite.

Proposition 12 [1] the following are true:

1)A bounded linear operator is continuous on its domain.

2)If a linear operator is continuous at one point, then it is bounded.

Definition 12 Let (fk)k∈N be a sequence of vectors in H. We say that this sequence

converges weakly to the vector f and we write fk w−→ f if

lim
k→∞

< fk, h >=< f, h >

∀h ∈ H.

We say that this sequence converges (strongly) to the vector f and we write fk → f

if

lim
k→∞

‖fk − f‖ = 0.

Proposition 13 [1] If the sequence of vectors (fk)k∈N converges weakly to the vector

f and if

lim
k→∞

‖fk‖ = ‖f‖ ,

then

lim
k→∞

‖fk − f‖ = 0,

that is (fk)k∈N converges strongly to f .

19



Definition 13 Let {An}
∞
n=1 be a sequence of bounded linear operators defined every-

where in H. Suppose this sequence converges to an operator A. We say that the

convergence is:

1 ) weak, and we write An w−→ A if

Anf w−→ Af

∀f ∈ H.

2 ) strong, and we write An → A if

Anf → Af

∀f ∈ H.

3 ) uniform, and we write An =⇒ A if

‖An − A‖ → 0

Definition 14 An operator T is closed if for every sequence {fk}k∈N in the domain

of T , the relations

lim
k→∞

fk = f and lim
k→∞

Tfk = g

imply that

f ∈ DT and Tf = g.

For the rest of this section, let T be a closed linear operator over H, with domain

denoted by DT .

Definition 15 A complex number λ is called an eigenvalue of a linear operator T if

there exists a non-zero vector f ∈ such that

Tf = λf. (1)

20



Such a vector is called an eigenvector (associated with λ).

For each eigenvalue λ of T , the set of all eigenvectors associated with λ is a subspace

of H, called the eigenspace associated with λ. The multiplicity of λ is the dimension

of its corresponding eigenspace.

Definition 16 A subspace H1 ⊆ H is called an invariant subspace of T if

∀f ∈ DT ∩ H1

we have

Tf ∈ H1.

We can define an operator T1 on DT ∩ H1 by

T1f = Tf ∀f ∈ DT ∩ H1.

T1 is the restriction of T to H1.

Definition 17 Let H1 ⊆ H. H1 reduces the operator T if H1 and H⊥
1 are invariants

subspaces of T and PH1DT ⊂ DT .

Theorem 14 [1] Let S be a subspace of H. If T is reduced by S, then

Tf = T1f1 + T2f2

where T1 = T |S, T2 = T |S⊥ , f1 = PS, f2 = PS⊥

Definition 18 Let T be an operator on H. If DT is dense in H, then there exists an

operator T ∗ defined on

DT ∗ = {g | ∃ g∗ ∈ H and f ∈ DT with 〈Tf, g〉 = 〈f, g∗〉}

21



such that

T ∗g = g∗,

with g∗ as defined in DT ∗. T ∗ is called the adjoint of T .

Definition 19 Let T be an operator on H. T is a self-adjoint operator if

T = T ∗,

that is ,if

〈Tf, g〉 = 〈f, Tg〉

∀f, g ∈ H.

Proposition 15 Let T be a self-adjoint operator on H. If λ is an eigenvalue of T ,

then λ is real.

Proof. Let f be a non-zero eigenvector associated with λ. Then

λ〈f, f〉 = 〈Tf, f〉

= 〈f, Tf〉

= λ〈f, f〉.

Thus, λ = λ

Definition 20 Let T be an operator on H. T is a symmetric operator if DT is dense

in H and ∀f, g ∈ DT ,

〈Tf, g〉 = 〈f, Tg〉

22



Clearly, if T is symmetric operator, 〈Tf, f〉 is real. If it has the additional property

that, ∀f ∈ DT ,

〈Tf, f〉 ≥ 0,

then T is said to be positive. A negative symmetric operator is defined similarly.

Theorem 16 [1] A symmetric operator whose range is H is self-adjoint.

Corollary 17 [1] If a bounded self-adjoint operator T on H has an inverse, then the

inverse is self-adjoint.

Definition 21 An operator T defined over a Banach space B is compact if it maps

the unit ball to a set of compact closure.

In a Hilbert space, compact operators are characterized as follows:

Theorem 18 An operator T defined over a Hilbert space H is compact if and only

if it is the strong limit of a sequence of finite rank operators.

For the remainder of this section, let T be a bounded linear operator defined on

H.

Definition 22 The spectrum of T , denoted by σ(T ) is the set

σ(T ) = {λ ∈ C | (T − λI)−1 does not exist or is unbounded}.

The point spectrum of T , denoted by σp(T ) is the set

σp(T ) = {λ ∈ C | λ is an eigenvalue of T}.
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Clearly,

σp(T ) ⊂ σ(T ).

Definition 23 Let λ ∈ C \ σ(T ). The resolvent of T (associated with λ) is the

operator

Rλ = (T − λI)−1.

Theorem 19 [1] Hilbert relation We have

Rλ − Rµ = (λ − µ)RµRλ.

where λ, µ ∈ C \ σ(T ).

Proof. Since λ, µ ∈ C \ σ(T ), Rλ, Rµ are well-defined and invertible,

Rλ = Rµ(T − µI)Rλ

Rµ = Rµ(T − λI)Rλ

Rλ − Rµ = Rµ(T − µI − T + λI)Rλ

= (µ − λ)RµRλ.

Proposition 20 [8] Let T be a self-adjoint operator on H. Then there exists a

sequence of units vectors {hn}n∈N such that

〈Thn, hn〉 → ‖T‖

as n → ∞.
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Lemma 21 Let T be a compact operator on H. If there exists a sequence {hn}n∈N

and a real number λ such that

‖(T − λI)hn‖ → 0,

then λ is an eigenvalue of T .

Proof. Since T is compact, there exists a subsequence {hni
}n∈N of {hn}n∈N such

that

‖Thni
− h‖ → 0,

for some h ∈ H. We have

λhni
= (λI − T )hni

+ Bhni

→ 0 + h = h.

‖T (λhni
− h)‖ =

∥∥∥∥T
(

λhni
− h

‖λhni
− h)‖

)∥∥∥∥ ‖λhni
− h)‖

≤ ‖B‖ ‖λhni
− h)‖

→ 0 as i → ∞,

and then
∥∥Thni

− λ−1Th)
∥∥ → 0,

so h = λ−1Th.

That is, λ is an eigenvalue of T

Theorem 22 [1] If T is non zero compact self-adjoint operator, then one of ‖T‖ ,−‖T‖

is an eigenvalue of T .
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Proof. We know (proposition 20) there is a sequence {hn}n∈N in H such that

〈Thn, hn〉 → a, where a = ‖T‖ or a = −‖T‖. We have

0 ≤ ‖T (hn − a)hn‖
2 = ‖Thn‖ − 2a < Thn, hn > +a2 ‖hn‖

2

≤ 2a2 − 2a < Thn, hn >

→ 0

as n → ∞. Thus ‖T (hn − a)hn‖ → 0 as n → ∞. This implies that a is an eigenvalue

of T .

Theorem 23 [18](Schur) Let T be a non-zero compact self-adjoint operator over

H. Then there exists a sequence {λi}i∈N of eigenvalues of T such that

1)|λi| ≥ |λi+1| and if the sequence is not finite, it converges to zero.

2) σ(T ) = σp(T )
⋃
{0}

3) ker(T − λiI) has finite dimension ∀i ∈ N and if Pi is the projection of H onto

ker(T − λiI) then

PnPm = δnm.

4) T =
∑

i∈N
λiPi.

Proof. We will just present a sketch of the proof. The complete proof can be found

in [18] . Let H0 = H. We know that ‖T‖ or −‖T‖ is an eigenvalue of T . Let λ0

be this eigenvalue and h0 an eigenvector associated to it. Let H1 = (span{h0})
⊥ and

T1 = T\H1 . If T1 is non-zero, we can prove that T1 is reduced by H1 is a compact

self-adjoint operator over H1. Then T1 has an eigenvalue λ1 = ‖T1‖ or λ1 = −‖T1‖.

Clearly, ‖T‖ ≥ ‖T1‖.

26



Now let h1 be a non-zero eigenvector associated to λ1 , H2 = (span{h0, h1})
⊥ and

T2 the restriction of T1 on H2. Similarly, if T2 is non-zero, it can be shown that T2 is

a compact operator over H2. It then has an eigenvalue λ2 = ‖T2‖ or λ2 = −‖T2‖.

We can repeat this procedure (infinitely many times or until we obtain a zero

operator). All the results of this theorem are derived from this construction.

Theorem 24 Let T be a compact normal operator on a separable Hilbert space. Then

T diagonalizes in an orthogonal basis, that is

H =
⊕

λ∈σp(T )

ker(T − λI).

Proof. By 3) in theorem 23, {ker(T −λiI)}σp(T ) is a orthogonal family of subspaces

of H. Clearly,
⊕

λ∈σp(T )\0
ker(T − λI) ⊆ H.

Let h be a non-zero element of H such that h does not belongs to
⊕

λ∈σp\0(T ) ker(T −

λI). Then, 4) in theorem 23 implies that

Th = 0,

that is, zero is an eigenvalue of T and

h ∈ ker(T ).

Hence, ∀h ∈ H,

h ∈
⊕

λ∈σp(T )

ker(T − λI).

We complete this section with the following definitions:
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Definition 24 Let {ej}
∞
j=1 be an orthonormal basis for H. If A is a linear operator

over H for which
∞∑

j=1

‖Aej‖
2 < ∞

then A is said to be a Hilbert-Schmidt operator.

Products of Hilbert-Schmidt operators are of special interest in operator theory.

Definition 25 An operator T is said to be a trace-class operator if it is the product

of Hilbert-Schmidt operators .We define its trace by

tr (A) =
∞∑

j=1

〈Aej, ej〉

The set of all trace-class operators is a 2-sided ideal in the space of bounded linear

operators L (H) over H.

2.4 Elementary Frame Theory

In this section, we present some elementary frame theory. The following was extracted

from [9, 10, 14].

Definition 26 [9] Let H be a separable Hilbert space , and < ·, · > be the inner

product defined on H. A family of elements {fi}
∞
i=1 ⊂ H is a frame if ∃A,B > 0 such

that

A ‖f‖2 ≤
∞∑

i=1

|〉f, fi〈|
2≤ B ‖f‖2 (2)

for any arbitrary f ∈ H.
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The constants A,B are called lower and upper frame bounds respectively, and are

not unique. The optimal frame bounds are the largest and the smallest possible value

of A and B respectively. If it is possible to have A = B, then the frame is said to be

tight. It is said to be exact if it is no longer a frame when an arbitrary element is

removed.

Proposition 25 [9] Every finite collection of H is a frame for its span.

Proof. Let {fi}
n
i=1 be a finite collection of H. Since the collection is finite there

exist A,B,C,D,E such that

C = max{‖f‖2 , f ∈ Span{fi}
n
i=1}.

D = min{
n∑

i=1

|〉f, fi〈|
2, f ∈ Span{fi}

n
i=1}.

F = max{
n∑

i=1

|〉f, fi〈|
2, f ∈ Span{fi}

n
i=1}.

E = min{‖f‖2 , f ∈ Span{fi}
n
i=1}.

A =
D

C
.

B =
F

E
.

Clearly, we have

A ‖f‖2 ≤
∞∑

i=1

|〉f, fi〈|
2≤ B ‖f‖2

∀ f ∈ Span{{fi}
n
i=1}.

Now we define the frame operator.
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Definition 27 [9] The frame operator S : H → H is defined as

Sf =
∞∑

i=1

〉f, fi〈fi.

The following theorem gives us some properties of the frame operator.

Theorem 26 [14] The frame operator S, as in definition 27, is a bounded, self-

adjoint, positive and invertible operator.

Proof. This theorem has been proved in [14]. We will just prove that S is self-

adjoint and positive. The remainer is proven using (2). First note that Dom(S) = H.

let f, g ∈ H.

〈Sf, g〉 =

〈 ∞∑

i=1

〈f, fi〉fi, g

〉

=
∞∑

i=1

〈f, fi〉〈fi, g〉.

〈f, Sg〉 =

〈
f,

∞∑

i=1

〈g, fi〉fi

〉

=
∞∑

i=1

〈g, fi〉〈f, fi〉

=
∞∑

i=1

〈fi, g〉〈f, fi〉

then, 〈Sf, g〉 = 〈f, Sg〉.

Thus, S is self-adjoint.

30



For the positivity of S we have

〈Sf, f〉 =

〈 ∞∑

i=1

〈f, fi〉fi, f

〉

=
∞∑

i=1

〈f, fi〉〈fi, f〉

=
∞∑

i=1

〈f, fi〉〈f, fi〉

=
∞∑

i=1

‖〈f, fi〉‖
2

≥ 0.

This complete the proof.

Note that the frame operator reduces to the identity operator if the frame forms

an orthonormal basis of H. Using the invertibility property of S, we have:

Theorem 27 [10] All f ∈ H can be represented as an infinite linear sum of the

elements in the frame family.

Proof. Since S is invertible, we have

f = SS−1f =
∞∑

i=1

< f, S−1fi > fi.

This is called the frame decomposition.

Let’s define the related notion of a Riesz basis of a Hilbert Space H.

Definition 28 [9] {ϕk} is a Riesz basis for H if it is complete and

∃A,B > 0 : A
∑

|ck|
2 ≤

∥∥∥
∑

ckϕk

∥∥∥
2

≤ B
∑

|ck|
2

for all finite sequences {ck} of complex scalars.
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A Riesz basis is a frame, and numbers A,B in the above definition coincide with the

frame bounds.

Another example of frames is nonharmonic Fourier Series. We know that the

family of elements { 1√
2π

eimx}m∈Z form an orthonormal basis for L2(−π, π). In general,

we have:

Definition 29 [9] Let {λn}n∈Z be a sequence of real numbers. A linearly independent

subset of L2(−π, π) of the form {eiλnx}n∈Z is called a nonharmonic basis, and the

expansion

f(x) =
∑

n∈Z

cne
iλnx

is called a nonharmonic Fourier series.

Among frames, nonharmonic Fourier Series have been intensively studied, and

some nice theorems about them have been proven. One of these results is Kadec’s

1/4 Theorem [9], stating that if {λn}n∈Z ⊆ R and

sup m∈Z
{|λn − n|} <

1

4
,

then {eiλnx}n∈Z is a Riesz basis for L2(−π, π). A generalization of this theorem is:

Theorem 28 [9] Let {λn}n∈Z, and {µn}n∈Z be sequences of real numbers. suppose

that {eiµnx}n∈Z is a frame for L2(−π, π) with bounds A,B. If there exists a constant

L < 1
4

such that

|µn − λn| ≤ L, and 1 − cos πL + sin πL <

√
A

B
,

then {λn}n∈Z is a frame for L2(−π, π) with bounds

A

(
1 −

√
B

A
(1 − cos πL + sin πL)

)2

, B (2 − cos πL + sin πL)2 .
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The main feature of a frame is the frame decomposition. The coefficients {〈f, S−1fi〉}

are called frame coefficients. Theorem 27 says that, if {fi}
∞
i=1 is a frame for H, then

every f ∈ H can be represented as a linear combination of the fi. Moreover, as it

has been proven in [9], this decomposition is not unique. Some operators are compli-

cated to study. But if we know how they act on some building blocks (frames) of the

Hilbert space, we can find how they act on the rest of the space by finding the frame

coefficients. This is why, in many applications, it is important to approximate the

frame coefficients. There are several approaches to this, one of which is the so called

projection method. Let Pn be the projection on Hn = span{fi}
n
1 . Clearly,

Pnf =
n∑

i=1

< f, S−1
n fi > fi,

where

Snf =
n∑

i=1

< f, fi > fi,

is defined from Hn to Hn. We do not have an expression for S−1 . But we can

compute S−1
n (using the CHT). The following question then arises naturally:

Is it true that < f, S−1
n fi >→< f, S−1fi >? (3)

The answer is “yes” for a Riesz basis, but “no” in general [9]. Several attempts have

been made to provide a sequence of coefficients converging to the frame coefficients.

The main idea is to find a sequence of finite collections of H for which a convergence

similar to (3) can be obtained.

In [7] the authors present this approach:

Theorem 29 Let {ϕk} be a frame. Given n ∈ N, let An denote a lower frame bound
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for {ϕk}k∈In
and choose a finite set Jn containing In such that

∑

k/∈Jn

|< ϕj, ϕk >|≤
An

n|In|
, ∀ j ∈ In.

Let Vn : Hn → Hn denote the frame operator for finite family {Pnϕk}k∈Jn
. Then

V −1Pnf → S−1f as n → ∞, ∀ f ∈ H.

This result is most important to use for the case of exponential frames. [10] gives

a more general result, where the following lemma plays an important role:

Lemma 30 [10] Given n ∈ N, there exists a number m(n) such that

A

2
‖f‖2 ≤

n+m(n)∑

i=1

|< f, fi >|2,∀f ∈ Hn.

The following theorem can then be proven.

Theorem 31 [10] Let {fi}
∞
i=1 be a frame with bounds A,B. For n ∈ N, choose m(n)

as in the above lemma. Then

(
PnSn+m(n)

)−1
Pnf → S−1f for n → ∞, ∀ f ∈ H.

The two preceding theorems provide an answer to the problem, but their imple-

mentation is only efficient in some specific cases.

3 A REVIEW OF CURRENT RESULTS

3.1 Extensions of the Cayley-Hamilton Theorem

Several attempts have been made to generalize the CHT in recent literature. Here,

we will discuss some of these attempts.
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3.1.1 Extension of the CHT to Super-Matrices

This is a summary of [23]. Let’s start by the definition of a super-matrix:

Definition 30 [23] A (p + q) × (p + q) super-matrix is a block matrix of the form

M =

[
A B
C D

]

where A,B,C and D are p × p, p × q, q × p, q × q matrices.

The super-trace and the super-determinant are defined respectively as follows:

Str(M) = tr(A) − tr(D)

Sdet = exp(Str(ln(M)))

We can obtain from these definitions the following identities:

Str(M1M2) = Str(M1M2)

Sdet =
det(A − BD−1C)

det(D)

=
det(A)

det(D − CA−1B)

Sdet(M1M2) = Sdet(M1M2)

with det(A), det(D) non-zero. In [23], using these properties, the authors define

polynomials having the property that they are annihilated by the super-matrix .

Theorem 32 (Extended Cayley-Hamilton Theorem) Let M and (xI − M) be (p +

q) × (p + q) super-matrices, x ∈
∧

0, with Sdet(xI − M) = F̃ /G̃ = F/G. Then, for
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any common factor R such that F̃ = Rf, G̃ = Rg and S such that F = Sf,G = Sg,

where f̃/g̃ = f/g, the polynomial P (x) = f(x)g(x) = f(x)g(x) annihilates M . That

is

P (M) = 0.

Note: Terms used in this theorem are defined in the paper.

3.1.2 Cayley-Hamilton Decomposition

Here we discuss the approach of the paper by Ponge [17]. Although the paper has

been withdrawn, there are many useful ideas and results in the manuscript.

Definition 31 Let H be a separable Hilbert space and T be a compact operator defined

on H. Given an eigenvalue λ ∈ σp(T )\{0}, the characteristic space Eλ(T ) and the

characteristic projector
∏

λ(T ) are given by the formulas

Eλ(T ) =
⋃

k≥1

ker(T − λI)k

∏

λ

(T ) =
−1

2iπ

∫

Γ(λ)

(T − uI)−1 du

where Γ(λ) is a small circle about λ which isolates λ from the rest of the spectrum.

This is a generalization of the eigenspace and the projection associated to an

eigenvalue. With only the compactness condition, it is not true that

H = +λ∈σp(T )Eλ(T ),

where + represents the algebraic sum. However, there are some well-known properties

of the characteristic spaces and the characteristic projectors.
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Theorem 33 [19] The family (
∏

λ(T ))λ∈σp(T )\{0} is an orthogonal family of projec-

tors, that is
∏

λ

(T )
∏

µ

(T ) = δλµ for any λ, µ ∈σp(T )\0.

Moreover for any λ ∈ σp(T )\0, the projector
∏

λ(T ) has finite rank.

Theorem 34 [12] Let λ ∈ σp(T )\0. Then:

1) Eλ(T ) has finite dimension and there is an integer N ≥ 1 such that Eλ(T ) =

ker(T − λI)N .

2) The subspace Eλ(T∗)⊥ is globally invariant by T and we have H = Eλ(T ) +

Eλ(T∗)⊥.

3) The projector
∏

λ(T ) projects onto Eλ(T ) and along Eλ(T∗)⊥.

In [17], the author proposes an extension of this concept to 0 ∈ σP (T ) as follows:

∏

0

(T ) = lim
r→0+

−1

2iπ

∫

|u|=r

(T − uI)−1 du and E0(T ) = im
∏

0

(T ).

In the manuscript, the author claims the following conjecture is true, although

the proof is flawed.

Conjecture 35 Let (
∏

n)n≥1 be an orthogonal sequence of projectors. Then:

1) The series
∑

n≥1

∏
n converges in Ω(H), the space of bounded linear operators

defined on H, to the projector onto +n≥1im
∏

n and along the subspace
⋂

n≥1 ker
∏

n.

2) Let
∏

0 = I −
∑

n≥1

∏
n. Then (

∏
n)n≥0 is an orthogonal sequence of projector

and we have

H = +n≥0im
∏

n

and
∑

n≥0

∏

n

= I.

37



3.2 Determinant of an Operator in Infinite Dimensional Space

There are various ways to calculate the determinant of a linear transformation over

a finite dimensional vector space. This can be done using the co-factor expansion or

the CHT. However, in the infinite dimensional case, calculating the determinant of

an operator is often quite difficult.

The first difficulty is deciding how to define the determinant of an operator. We

cannot use the same definition as in the finite case. This question does not have a

unique answer, and none of the answers proposed so far have been generally accepted.

Also, it is known that the different available definitions generally produce different

results. However, we note that most of these definitions are derived from the identity

log det(T ) = tr log(T ),

where T is a linear operator defined on a Hilbert space.

Among all the definitions of the determinant of a linear transformation over an

infinite dimensional space, the one having the most mathematical acceptance is the

one using the derivative of the zeta function associated with the operator and was

first introduced by Ray and Singer.

Definition 32 Let T be an operator with a trace-class inverse defined on a separable

Hilbert space H. The zeta-function associated with T is

ζ(s) = tr
(
(T )−s

)
.

The determinant of T , when it exists, is defined to be

det(T ) = e−ζ
′
(0).
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The importance of this definition comes from the fact the it can be applied to

elliptic operators, often encountered in physics, chemistry, biology.

Definition 33 [21] A partial differential D operator of order K that acts on C
m-

valued C∞ functions defined on R
n can be written as

D =



∑

|α|≤k

aij
α Dα




i,j=1,··· ,m

where Dα = ∂|α|

∂x
α1
1 ···∂xαn

n
It is said to be of elliptic type if for every ǫ = {ǫ1, · · · , ǫn} 6= 0 ∈ R

n,

σ(D)(ǫ) =



∑

|α|=k

aij
α (x)ǫα




is non-singular.

Unfortunately, as illustrated in [11], there are some anomalies arising from this

definition. A major problem arising from this definition is that tr ((T )−s) exists only

for ℜ(s) > a for some a > 0. Thus, the determinant requires that the zeta function

be analytically continued to a region including the origin ([15, 22]). However, it is

easy to verify that this definition reduces to the normal definition of determinant in

finite dimension.

3.3 Analytic and Meromorphic Continuations

Definition 34 A function is said to be analytic on an open region R of the complex

plane if it is complex differentiable at every point in R.

Note: The term holomorphic is a synonym for analytic.
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Often, we need to know the behavior of a function outside of its domain of an-

alyticity. To obtain this information, we “extend” the function to a bigger domain,

preserving analyticity. This technique is called analytic continuation.

Definition 35 Suppose D1 and D2 are connected, open subsets of C, and that D1 ⊂

D2. Suppose

f : D1 → C and g : D2 → C

are analytic on their respective domains. If

g(z) = f(z) ∀ z ∈ D1,

then g is the analytic continuation of f on D2.

Example: Let

f(z) =
∞∑

k=0

zk.

The ratio test shows that f(z) is analytic only on the region R = |z| < 1. Consider

g(z) =
1

1 − z

z ∈ C \ {1}. Clearly, g is analytic on its domain Dg = C \ {1}. The Maclaurin

expansion of g is
∑∞

k=0 zk and is equal to g(z) on R. thus,

g = f on R.

Then g is the analytic continuation of f on Dg.

A natural question is whether or not the analytic continuation is unique. Suppose

g1, g2 are two analytic continuations of a function f : D1 → C analytic on D1 (a

connected open subset of the complex plane) to a region D2 of the complex plane.
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Then D1 is a subset of D = {z ∈ C/g1(z) = g2(z)}. Thus D contains a limit point.

Thus, g1, g2 are equal everywhere on D2. We just proved the following theorem:

Theorem 36 The analytic continuation of a function f in an open connected subset

of the complex plane containing Domf is unique.

A concept similar to the one of analytic functions is the one of meromorphic

functions.

Definition 36 A meromorphic function is a function that is holomorphic everywhere

on the complex plane except on a set of isolated poles, which are not essential singu-

larities.

Every meromorphic function can be expressed as the ratio between two holomor-

phic functions (with the denominator not identically 0). The poles then occur at the

zeroes of the denominator.

The meromorphic continuation of a function is defined similarly as the definition

of the analytic continuation.

Finding analytic and meromorphic continuations of different classes of operators

is an active research focus. In [15], meromorphic continuation of the zeta functions

associated with elliptic operators is derived. This will be of great important in our

work.

4 EXTENSIONS OF THE CAYLEY-HAMILTON THEOREM

A single generalized extension of the CHT to linear operators over an infinite-

dimensional separable Hilbert space is unlikely to exist. Restrictions are needed,
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which will provide us with operators having some properties useful in obtaining ex-

tensions. We start by presenting some of these properties for the classes of operators

we will use.

Let’s state the Spectral theorem for self-adjoint operators [4].

Theorem 37 If A is a (possibly unbounded) self-adjoint operator over a separable

Hilbert space H and if A is either compact or has a compact resolvent, then the

spectrum of A is

σ(A) = {λn}
∞
n=1 ⊂ R

and there exists a sequence of commuting, finite-rank, self-adjoint projections P1, P2, . . .

such that

I =
∞∑

n=1

Pn and A =
∞∑

n=1

λnPn.

Proposition 38 Let P be a projection operator defined on H. If P (H) is finite, then

P is trace-class and

tr(P ) = dim(P (H)).

Proof. Let {ej}
∞
1 be an orthonormal basis of H.

tr (P ) =
∞∑

j=1

〈Pej, ej〉

=
∑

ej∈im(P )

〈Pej, ej〉

=
∑

ej∈im(P )

1

= dim(im(P )).

This completes the proof.
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Proposition 39 A trace-class operator defined on H is compact.

Proof. Let ej
∞
n=1 be an orthonormal basis of H and A a trace-class operator on H.

Let

An =





A on span{e1, · · · , en},

0, on H \ span{e1, · · · , en}

.

Let ǫ > 0 be given. Since T is trace-class,
∑∞

n=N+1 ‖Aej‖
2 < ǫ for some N ∈ N . Let

f =
∑∞

j=1 cjej be arbitrary in H. Now

‖(A − AN) f‖2 = 〈(A − AN) f, (A − AN) f〉

=

〈 ∞∑

j=N+1

cjAej,
∞∑

i=N+1

ciAei

〉

=
∞∑

j=N+1

∞∑

i=N+1

cjci 〈Aej, Aei〉

≤
∞∑

j=N+1

∞∑

i=N+1

|cj||ci| ‖Aej‖ ‖Aei‖

≤

( ∞∑

j=N+1

|cj| ‖Aej‖

)( ∞∑

i=N+1

|ci| ‖Aei‖

)

≤

[( ∞∑

j=N+1

|cj|
2

)( ∞∑

j=N+1

‖Aej‖
2

)]2

≤ ǫ2 ‖f‖2 .

Thus ‖(A − AN)‖ → 0 as N → ∞. But the AN ’s have finite rank. Thus the result

follows by theorem 18.

4.1 CHT for Invertible Self-Adjoint Trace-Class Operators

Here, we let T be an invertible self-adjoint trace-class operator.
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Proposition 40 Let T be a compact normal operator on a separable Hilbert space.

Then, for every n ∈ N,

λ ∈ σp(T ) iff λn ∈ σp(T
n)

and

ker(T n − λnI) = ker(T − λI) ∀ λ ∈ σp(T )

Proof. Clearly, one direction of both statements is trivial. Now since T is a compact

normal operator, then so is T n. Let A = {λn | λ ∈ σp(T )} and B = σp(T
n)\A.

Theorem 24 implies that

H =
⊕

λ∈σp(T )

ker(T − λI)

H =
⊕

λ∈σp(T n)

ker(T n − λnI)

=
⊕

λ∈A

ker(T n − λnI)
⊕

λ∈B

ker(T n − λnI).

But ker(T − λI) ⊆ ker(T n − λnI). Thus

H =
⊕

λ∈σp(T )

ker(T − λI) ⊆
⊕

A

ker(T n − λI).

This implies that B = ∅ , and completes the proof of the corollary.

Lemma 41 Let T be a non-zero trace-class (hence compact) self adjoint operator and

z, y ∈ H such that

|z| > ‖T‖ .

Then

tr[ln (zI − T )] =
∑

λ∈Sp(T )

nλ ln(z − λ),
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where we define

ln (zI − T ) = ln(z)I −
∞∑

n=1

1

n

1

zn
T n.

and nλ is the order of the generalized (or characteristic) eigenspace associated with

λ.

In the lemma, we defined ln (zI − T ) = ln(z)I −
∑∞

n=1
1
n

1
zn T n. We now present

the motivation behind this definition.

Theorem 42 C. Neumann expansion:[18] If T is a bounded linear operator,

and ‖T‖ < 1 then I − T is invertible and

(I − T )−1 =
∞∑

n=0

T n.

Moreover,

∥∥(I − T )−1
∥∥ ≤

1

1 − ‖T‖

Proof. Let Ω be the collection of bounded linear operators defined on H. We know

that Ω is complete. T ∈ Ω and ‖T‖ < 1. Then
∑∞

n=0 ‖T‖n is a convergent geometric

series. Let TN =
∑N

n=0 T n, N,P ∈ N, P arbitrary. Then

lim
N→∞

‖TN − TN+P‖ = lim
N→∞

∥∥∥∥∥

N+P∑

n=N+1

T n

∥∥∥∥∥

≤ lim
N→∞

N+P∑

n=N+1

‖T n‖

≤ lim
N→∞

∞∑

n=N+1

‖T n‖

= 0.
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Since
∑∞

n=0 ‖T‖n converges,
{∑N

n=0 T n
}

N∈N

is a Cauchy sequence. It then converges,

say to

T0 =
∞∑

n=0

T n,

since Ω is complete.

Now

(I − T )T0 = T0 − TT0

=
N∑

n=0

T n −
N∑

n=0

T n+1

= I.

Similarly, T0(I − T ) = I.

Hence(I − T )−1 =
N∑

n=0

T n.

The rest of the proof can be found in [18].

Corollary 43 [18] If T is a bounded linear operator and if z ∈ C with |z| > ‖T‖,

then zI − T is invertible and

(zI − T )−1 =
∞∑

n=0

T n

zn+1
.

Proof. |z| > ‖T‖ implies that 1 >
∥∥T

z

∥∥. We have

zI − T = z(I − z−1T ),

but
∥∥z−1T

∥∥ =
‖T‖

|z|

< 1, thus (I − z−1T ) is invertible and

(I − z−1T )−1 =
∞∑

n=0

T n

zn
,
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hence (zI − T )−1 = z−1(I − z−1T )−1

=
∞∑

n=0

T n

zn+1
.

This complete the proof.

Using the above corollary, we obtain the following definition:

Definition 37 Let T be a bounded linear operator on H, and z ∈ C such that |z| >

‖T‖. Then,

ln (zI − T ) = ln(z)I −
∞∑

n=1

1

n

T n

zn
.

Proposition 44 Let T be a self-adjoint compact operator. Then

T n =
∑

λ∈σp(T )

λnPλ.

Proof. Since T is a self-adjoint compact operator, so is T n. We can then apply the

spectral theorem stated earlier to T n, together with proposition 24 and obtain the

result.

Now consider the R.H.S. of the equality in the lemma. We have

tr [ln (zI − T )] = tr

[
ln(z)I −

∞∑

n=1

1

n

T n

zn

]
.

Also, since |z| > ‖T‖, then |z| > λ,∀ λ ∈ σp(T ). Then,

(z − λ)−1 =
∞∑

n=0

λn

zn+1

thus ln(z − λ) = ln z −
∞∑

n=1

1

n

λn

zn
.
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The L.H.S. becomes

∑

λ∈Sp(T )

nλ ln(z − λ) =
∑

λ∈Sp(T )

(
nλ ln z −

∞∑

n=1

nλ
1

n

λn

zn

)

=
∑

λ∈Sp(T )

(
tr(Pλ) ln z −

∞∑

n=1

tr(Pλ)
1

n

λn

zn

)

= tr



∑

λ∈Sp(T )

(
Pλ ln z −

∞∑

n=1

Pλ
1

n

λn

zn

)


= tr


ln(z)I −

∑

λ∈Sp(T )

∞∑

n=1

Pλ
1

n

λn

zn




= tr

[
ln(z)I −

∞∑

n=1

1

n

T n

zn

]
.

This completes the proof of the lemma. Moreover, the lemma and its proof moti-

vated us to make the following definition

Definition 38 The characteristic function of T is defined to be the meromorphic

continuation in z of

g(z, y) = e
P

λ∈Sp(T ) nλ[ln(1−λ
z
)−ln(1−λ

y
)]

from the domain D = {|z| > ‖T‖} to the punctured plane C − {0}.

The main result for g (z, y) is given below.

Theorem 45

g (z, y) =
∏

λ∈Sp(T )

(
1 − λ

z−1 − y−1

1 − λy−1

)nλ

where g is defined on C × ρ(T ).
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Proof. We have

e
P

λ∈Sp(T ) nλ[ln(1−λ
z
)−ln(1−λ

y
)] = e

P
λ∈Sp(T ) nλ[ln(1−λ

z
)(1−λ

y
)−1]

= e
ln

�Q
λ∈Sp(T )

�
1−λ z−1−y−1

1−λy−1

�nλ
�

=
∏

λ∈Sp(T )

(
1 − λ

z−1 − y−1

1 − λy−1

)nλ

.

This complete the proof.

Corollary 46 g (λn, y) = 0 for all λn ∈ σp (T ) .

Notice that in a finite dimensional space, g (z, y) reduces to the characteristic

polynomial. Consider the function

p(z, y) =
∏

λ∈Sp(T )

(
1 − λ

z−1 − y−1

1 − λy−1

)
=

∞∏

n=1

(
1 − λn

z−1 − y−1

1 − λny−1

)
,

where λ1, λ2, · · · , λn, · · · are the eigenvalues of T . Note that this is related to the

concept of minimal polynomial in the finite case.

Proposition 47 There exists an orthonormal basis of H whose vectors are eigenvec-

tors of T .

Proof. This is a direct consequence of theorem 24

Let {ej}
∞
j=1 be an orthonormal basis of H formed by eigenvectors of T. Then we

have the following lemma for y ∈ ρ(T ):

Lemma 48 ∀f ∈ dom(T ), the sequence
{

N∏

n=1

(
I − λn

T−1 − y−1I

1 − λny−1

)}

converges strongly to 0.
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Proof. For each N ∈ Z+, let

pN (T, y) =
N∏

n=1

(
I − λn

T−1 − y−1I

1 − λny−1

)
.

Given any f ∈ Dom (T ) with f =
∑∞

j=1 cjej, we let hN = pN (T, y) f . Since the

product pN is finite, we have

hN =
∞∑

j=1

cj

N∏

n=1

(
I − λn

T−1 − y−1I

1 − λny−1

)
ej

=
∞∑

j=1

cj

N∏

n=1

(
1 − λn

λ−1
j − y−1

1 − λny−1

)
ej

=
∞∑

j=N+1

cj

N∏

n=1

(
1 − λn

λ−1
j − y−1

1 − λny−1

)
ej.

If g ∈ H is given by g =
∑∞

j=1 djej, then

〈hN , g〉 =
∞∑

j=N+1

dj cj

N∏

n=1

(
1 − λn

λ−1
j − y−1

1 − λny−1

)
,

so that 〈hN , g〉 → 0 for all g ∈ H, which implies that pN (T, y) converges weakly to 0

on Dom (T ) . The same argument can be used to show that

〈hN , hN〉 → 0.

Hence the convergence is strong by theorem 13.

We define the functions Bj(y) by

p(z, y) = 1 −
∞∑

j=1

Bj(y)(z−1 − y−1)j.

We now use the above results to develop an extension of CHT.

Theorem 49 Extended Cayley-Hamilton Theorem:

Let T be an invertible self-adjoint trace-class operator. p(z, y) annihilates T , that is,

p(T, y)f = 0,∀f ∈ H.
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Proof. This is a direct consequence of lemma 48.

Corollary 50 I =
∑∞

j=1 Bj(y)(T−1 − y−1I)j.

4.2 CHT for Closed Symmetric Operators with Trace-Class Resolvent

In this section, let T be a closed self-adjoint invertible operator with a trace-class

resolvent having a finite number of negative eigenvalues and domain Dom(T ) ⊂ H,

dense in H (we will refer to this as (*)), and let

λ1 ≤ λ2 ≤ λ3 ≤ . . .

denote the eigenvalues of T with each repeated up to multiplicity (they have finite

multiplicity since T−1 is compact).

Note:
∑∞

n=1
1

λn
converges since 0 ∈ ρ(T ).

For any z ∈ C, there exists N ∈ N , ǫ ∈ R such that Re(z) < λN + ǫ (since T is

unbounded) with, λN + ǫ ∈ ρ(T ) , thus

∞∑

n=1

1

|λn − z|

converges uniformly over ρ(T ) . By proposition 11, this implies that
∏∞

n=1

(
1 − z−y

λn−y

)

and
∏∞

n=1

(
1 − 1

λn−z

)
converge uniformly in C × ρ(T ) and ρ(T ) respectively. Then

∑∞
n=1 ln

(
1 − z−y

λn−y

)
converges uniformly for all z and y in the half-plane Re(z) < λ1

(in this region, −π < arg
(
1 − z−y

λn−y

)
< π).
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Let h(s, z) = tr(T − zI)−s. On the region where this function is analytic, we have

h(s, z) = tr(T − zI)−s

= h(s, y) +

∫ z

y

hu(s, u)du

= h(s, y) + s

∫ z

y

tr(T − uI)−s−1du

hs(s, z) = hs(s, y) +

∫ z

y

tr(T − uI)−s−1 + s

∫ z

y

d

ds

(
tr(T − uI)−s−1

)
.

Clearly tr(T − zI)−s−1 is analytic on a region containing 0. We can extend T

to an elliptic operator E defined on H
′
= H

⊕
kerE. The zeta function associated

with E has a meromorphic continuation on a region containing 0 ([15]). Thus, so

does E − zI. Then, h(s, z) has a meromorphic continuation, say k(s, z), on a region

containing zero. Let R be the intersection of these two regions. We then have

ks(s, z) = ks(s, y) +

∫ z

y

tr(T − uI)−s−1du + s

∫ z

y

d

ds
tr(T − uI)−s−1du

ks(0, z) = ks(0, y) +

∫ z

y

tr(T − uI)−1du.

This allows us to define the following characteristic function.

Definition 39 The characteristic function of T is defined to be the analytic contin-

uation of

g(z, y) = e−ks(0,y)−
R z

y
tr(T−uI)−1du

to C × ρ (T ).

The main result for g (z, y) is given below.

Theorem 51 If p (z, y) = eks(0,y)g (z, y) , then

p (z, y) =
∞∏

n=1

(
1 −

z − y

λn − y

)
,
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where p is defined on C × ρ(T ).

Proof. Because tr(T − zI)−1 =
∑∞

n=1
1

λn−z
is uniformly convergent on ρ(T ), we

have

∫ z

y

tr(T − uI)−1du =

∫ z

y

∞∑

n=1

1

λn − u
du

=
∞∑

n=1

∫ z

y

1

λn − u
du

= −
∞∑

n=1

ln

(
1 −

z − y

λn − y

)
.

Thus, g(z, y) = e−ks(0,y)
∏∞

n=1

(
1 − z−y

λn−y

)
.

Corollary 52 p (λn, y) = 0 for all λn ∈ σp (T ) .

Notice that if T is finite dimensional, then g (z, y) reduces to the normal definition

of the characteristic polynomial and

det (T ) = e−ks(0,0).

Proposition 53 [1] If S is an invertible self-adjoint linear operator defined on a

separable Hilbert space, then S−1 is also self-adjoint.

Proof. S is invertible and self-adjoint implies that S∗ and (S−1)∗ both exist and

satisfy

(S∗)−1 = (S−1)∗.

But S∗ = S since S is self-adjoint. The result then follows.

This proposition allows us to derive:
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Lemma 54 H =
⊕

λ∈σp(T ) ker(T − λI)

Proof. T−1 is a compact normal operator. Thus, by theorem 24, it diagonalizes in

an orthonormal basis. Then H =
⊕

λ∈σp(T−1) ker(T−1 − λI). Also,

ker(T−1 − λI) = ker(T −
1

λ
I),∀λ ∈ σp(T

−1)

The result then follows for T .

Let {ej}
∞
j=1 be an orthonormal basis of H formed by eigenvectors of T. Then we

have the following lemma for y ∈ ρ(T ):

Lemma 55 ∀f ∈ Dom(T ), the sequence

{
N∏

n=1

(
I −

T − yI

λn − y

)
f

}∞

N=1

converges strongly to 0.

Proof. For each N ∈ Z+, let

pN (T, y) =
N∏

n=1

(
I −

T − yI

λn − y

)
.

Given any f ∈ Dom (T ) with f =
∑∞

j=1 cjej, we let hN = pN (T, y) f . Since the

product pN is finite, we have

hN =
∞∑

j=1

cj

N∏

n=1

(
I −

T − yI

λn − y

)
ej

=
∞∑

j=1

cj

N∏

n=1

(
1 −

λj − y

λn − y

)
ej

=
∞∑

j=N+1

cj

N∏

n=1

(
1 −

λj − y

λn − y

)
ej.
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If g ∈ H is given by g =
∑∞

j=1 djej, then

〈hN , g〉 =
∞∑

j=N+1

dj cj

N∏

n=1

(
1 −

λj − y

λn − y

)

so that 〈hN , g〉 → 0 for all g ∈ H, which implies that pN (T, y) converges weakly to 0

on Dom (T ) . The strong convergence follows similarly.

We define the functions Bj(y) by

p(z, y) = 1 −
∞∑

j=1

Bj(y)(z − y)j.

Then we immediately obtain directly the following :

Theorem 56 (Extended Cayley-Hamilton Theorem)

Let T be a closed self-adjoint invertible operator with a trace-class resolvent having a

finite number of negative eigenvalues and domain Dom(T ) ⊂ H, dense in H. Then

p(T, y)f = 0,

∀ f ∈ Dom(T ).

Corollary 57 I =
∑∞

j=1 Bj(y)(T − yI)j.

Corollary 58 (T − yI)−1 =
∑∞

j=1 Bj(y)(T − yI)j−1.

From this corollary we obtain directly an expression of T−1. We now use the above

results to develop another extension of CHT. Let A be an operator with a trace-class

resolvent and let

HA = H ⊖ ker (A)

such that A/HA satisfies the conditions (*) where H = HA

⊕
ker(A). Then the

results of the last section imply the following:
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Theorem 59 Let Pker(A) denote the orthogonal projection on ker (A) . Then

p(A, y) = p(0, y)Pker(A),

where p(z, y) is as defined in theorem 51 for the operator A/HA on HA

Proof. First note that since ker(A) reduces A, it also reduces p(A, y). Let f ∈ H.

We can write f = f0 + f1 with f0 ∈ ker(A), f1 ∈ HA.

p(A, y)f = p(A, y)f0 + p(A, y)f1

= f0 −
∞∑

j=1

Byj(A − yI)jf0 + f1 −
∞∑

j=1

Byj(A − yI)jf1

=

(
I −

∞∑

j=1

Byj(A − yI)j

)
f0

=

(
1 −

∞∑

j=1

Byj(−y)j

)
f0.

Then,

p(A, y)f = p(0, y)Pker(A)f.

We can deduce directly from this theorem that p(A, 0) = Pker(A). We also have

the following corollaries.

Corollary 60
∑∞

j=1 Bj(0)Aj + Pker(A) = I.

This implies that A
(∑∞

j=1 Bj(0)Aj−1
)

= PHA
.

Corollary 61 (A − yI)−1 =
∑∞

j=1 Bj(y)Aj−1 + p(0, y) (A − yI)−1 Pker(A).
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Now we consider the case of a positive elliptic operator L of order greater than

one on H.

Theorem 62 Let L be a positive elliptic operator of order greater than one defined

on H. We have

p(L, y) = p(0, y)Pker(L),

where p(z, y) is as defined in theorem 51 for the operator L/HL on HL

Proof. If λ ∈ σp(L) then λ = 0(n2) for some n ∈ N since L has order greater than

two. Moreover, positive elliptic operators are closed and self-adjoint. Thus L meets

the conditions of theorem 15.

To illustrate this theorem, consider the following example.

EXAMPLE1: Let f ∈ D = C∞(R) ∩ L2
p[−π, π], where L2

p[−π, π] is the set of 2π

periodic functions that are square integrable on [−π, π]. Consider the operator L =

− d2

dx2 defined on H. It is easy to verify that this operator is a positive elliptic operator

of order 2. Clearly, HL = {f ∈ H |
∫ π

−π
f(x)dx = 0}. Thus, if

∫ π

−π
f(x)dx = 0, we

have (with p(z, y) and Byj as defined in theorem 59)

f(x) =
∞∑

j=1

B0j

(
Ljf

)
(x).

In general we have

p(L, y)f =
1

2π
p(0, y)

∫ π

−π

f(x)dx.

We illustrate this example on Maple (see code “Example 1”).

Note: Other values of B0j can be chosen with the results remaining valid. Indeed,

for this example, the theorem remains true for Bj = (−1)j+1·π2j

(2j+1)!
. This hopefully will

facilitate eventual numerical applications of these results.
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Remark: Since L annihilates its kernel, it follows that

Lp(L, y) = 0

on the domain of L.

Theorem 59 gives an expression of the projection on the kernel of L. A similar

expression can also be derived for projections on eigenspaces of L.

Theorem 63 If Ek is the eigenspace corresponding to λk and pk(z, y) is the polyno-

mial corresponding to the operator L − λkI in theorem 15, then

pk (L, y + λk) = pk(0, y)PEk
.

Proof. By theorem 59, pk (L − λkI, y) = pk(0, y)Pker(L−λk) = pk(0, y)PEk
. But

pk (L − λkI, y) = pk (L, y + λk) .

We define the functions Bj,n(y) by

pn(z, y) = 1 −
∞∑

j=1

Bj,n(y)(z − y)j.

We can then combine theorem 63 with the spectral theorem and obtain the following

corollary:

Corollary 64 We have

I =
∞∑

n=1

∞∑

j=1

−1

pn(0, y)
Bj,n(y) (L − yI)j ,

L =
∞∑

n=1

∞∑

j=1

−λn

pn(0, y)
Bj,n(y) (L − yI)j ,

with B0n(y)n = −1 ∀ y.
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5 APPLICATIONS

Here, we consider applications of the extension of CHT to closed self-adjoint operator

with trace-class resolvent (having simple eigenvalues) L on H. To apply these results,

it is important to be able to estimate the Bj(y)’s (or Bj,n(y)’s). If all the eigenvalues

of the operator are known, this is an easy task since

p(z, y) =
∞∏

j=1

(
1 −

z − y

λj − y

)
= 1 −

∞∑

n=1

Bj(y) (z − λj)
j .

Unfortunately, in general we do not know the eigenvalues of the operator and esti-

mating them is often a hard problem.

By corollary 58, on HL = H ⊖ ker(L), we have

L−1
|HL

= q(L, 0),

where

q(z, y) =
1 − p(z, y)

z
and

and p(z, y) is defined as the extension of

g(z, y) = e−
R z

y
tr(T−uI)−1du.

defined on ρ(L) × ρ(L) to C × ρ(L) (since L has simple eigenvalues). This extension

is given by

p(z, y) = 1 −
∞∑

j=1

Bj(y)(z − y)j.
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q(z, y) =
1 − p(z, y)

z
and

It is easy to show that

Bi(y) = −
1

i!
lim
z→0

p(i)
z (z, y).

But we have

g
(1)
z (z, y)

g(z, y)
= −tr(T − zI)−1

g
(2)
z (z, y)

g(z, y)
= −tr(T − zI)−2 +

(
tr(T − zI)−1

)2

g
(3)
z (z, y)

g(z, y)
= −2tr(T − zI)−3 + 3tr(T − zI)−2tr(T − zI)−1

− (tr(T − zI))3

... .

The R.H.S. of the above equalities are analytic on C. We then have:

p
(1)
z (z, y)

p(z, y)
= −tr(T − zI)−1

p
(2)
z (z, y)

p(z, y)
= −tr(T − zI)−2 +

(
tr(T − zI)−1

)2

p
(3)
z (z, y)

p(z, y)
= −2tr(T − zI)−3 + 3tr(T − zI)−2tr(T − zI)−1

− (tr(T − zI))3

... .

Also, p(0, 0) = 1. Thus all the coefficients Bi(0) can be expressed as functions of

tr(L−1), tr(L−2), · · · , tr(L−i), ∀i ∈ N. Thus finding the Bi(0)’s is equivalent to
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finding tr(L−N). There are several ways to calculate this trace. We can either do it

by direct computation or by using a trace formula. Here, a useful trace formula is

the Krein’s trace formula:

Theorem 65 [6] Let A and B be two self-adjoint operators with B −A ∈ S1. There

exists a function ξ ∈ L1 (R) such that

(a) for every f ∈ K = {f | fx =
∫

R

etsx−1
s

dµ(s), where µ is a finite

measure on R},

tr[f(B) − f(A)] =

∫

R

f
′

(x)ξ(x)dx.

In particular,

tr[B − A] =

∫

R

(x)ξ(x)dx.

(b) ‖ξ‖1 ≤ ‖B − A‖1

(c) If A ≤ B, then 0 ≤ ξ a.e.

(d) ξ(x) = 0 outside of any interval containing σ(A) ∪ σ(B)

Since L is self-adjoint operator with trace class resolvent, (L − λI)−N (with λ ∈

σ(L)) is a self-ajoint trace class operator (∀ N ∈ N
+). Thus, we can find its trace

by letting A = 0 and B = (L − λI)−N in the above theorem.

5.1 Differential Equation

Let H be a Hilbert space and L a differential operator defined on H. Let g ∈ H and

consider the equation

Lf − λf = g f ∈ H,
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with λ ∈ ρ(L). In general, we cannot find an exact solution to this type of differential

equation. It becomes important to find some numerical methods to approximate the

solutions of this type of equation.

If the operator L is a closed, self-adjoint operator with with trace-class resolvent,

g ∈ ker(L)⊥ and if λ ∈ ρ(L), then, by corollary 61, we have

f = (L − λI)−1g =
∞∑

j=1

Bj(λ)(L − λI)j−1g.

Since we can approximate the Bj(λ) , this provides us with a method to approximate

f numerically.

We illustrate this on Maple, and the codes of an implementation of this are given

in appendix “Differential equation”.

5.2 Inverse Frame Operator

Let the family of elements {fi}
∞
i=1 be a frame of the Hilbert space H, with S the

frame operator associated with this family, defined by

S : H → H, Sf =
∞∑

i=1

〈f, fi〉fi.

We know that S is a bounded positive self-adjoint operator. Suppose there exists an

operator T defined on H such

L = TST

is a closed, unbounded, self-adjoint operator with trace-class resolvent and ker(T ) =

ker(L) (with preferably finite dimension). Let H = ker(L)
⊕

HL. By theorem 59, on

HL, we have

L−1 = q(L, 0),
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where

q(z, y) =
1 − p(z, y)

z
.

Theorem 66 ∀ f ∈ HL = H ⊖ ker(L),

S−1 = TL−1T.

This theorem provides us with a method to numerically approximate the inverse

frame operator. Now, let’s show how this theorem can be applied to a special class

of frames, the non-harmonic Fourier Series.

Example 3: Let C = {λn}n∈Z be a sequence of real numbers such that

|λn − n| < 1
4

∀λn ∈ C. By theorem 28 , {λn}n∈Z is a frame for H = L2(−π, π).

Let S be the frame operator associated with this family and T be the second

differential operator defined on H. We know that T is a closed unbounded operator,

and ker(T ) = {f ∈ H | f is constant} has dimension one.

Theorem 67

L = TST : f →
∞∑

n=1

λ4
n < f, eiλn > eiλnz

is a closed, unbounded, self-adjoint operator with trace-class resolvent with, ker(L) =

ker(T ).
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Proof. Since |λn − n| < 1
4

, it follows that L is unbounded, with a trace-class

resolvent. Let f, g ∈ H. We have

< Lf, g > =
∞∑

n=1

λ4
n < f, eiλn >< eiλnz, g >

=
∞∑

n=1

λ4
n< eiλnz, g > < f, eiλn >

=

〈
f,

∞∑

n=1

λ4
n < g, eiλn > eiλnz

〉

= < f,Lg >

thus L is self-adjoint. Since S is bounded, then so is ST (implying that ST is

continuous). Suppose there exists a sequence {fi}
∞
i=1 such that

lim
n→∞

fi = f and lim
n→∞

Lfi = g

then lim
n→∞

STfi = g0 we know the limit exists by continuity of ST

and lim
n→∞

T (STfi) = g.

Thus, since T is closed, we have Lf = T (STf) = g.

We can then apply theorem 66, and get

S−1f =
∞∑

j=1

BjT (L)j−1Tf,

∀f ∈ H ⊖ ker(L) where Bj can be approximated using the jth derivative of p(z, y).

The codes of an implementation (illustration) of this example in Maple are in

appendix “Inverse Frame Operator”.
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6 FUTURE RESEARCH

6.1 Extension without the Self-Adjoint Restriction.

To extend the CHT, we restricted ourselves to trace-class self-adjoint operators and

closed self-adjoint operators with trace-class resolvent. The approach used in [17],

although not right, suggests that it is possible to drop the self-adjoint restriction.

Note that we have

dim(Eλ) = nλ

∀λ ∈ σp(T ), with Eλ and nλ as defined earlier. Without the self-adjoint restriction,

our results will be of the form:

Theorem 68 Let T be a trace-class operator (respectively, a closed operator with

trace-class resolvent). Then there exists a polynomial p(z, y) such that

p(λ, y) = 0 ∀λ ∈ σp(T ) and

p(T, y) = p(0, y)PE, with

E = H ⊖
(
⊕λ∈σp(T )Eλ

)
,

where the Eλ’s are the characteristic spaces as defined earlier.

This is a nice result but a limited result. It is limited because we do not know the

dimension of E, and it can be infinite. In such a case, this theorem is useless.

The questions are then:

1) How can we associate a pseudo-zero eigenvalue to T?
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2) How can we express E as the sum of pseudo-characteristic spaces with finite

dimension?

An insight to answer the first question can be found in the definition:

∏

0

(T ) = lim
r→0+

−1

2iπ

∫

|u|=r

(T − uI)−1 du and E0(T ) = im

(
∏

0

(T )

)

given in [17].

If we can successfully answer any of these questions, we will be able to obtain a

new CHT for a larger class of operators with many possible applications.

6.2 Commutators.

Definition 40 The commutator operator, denoted by [., .] is an operator defined over

the cross-product of collection of linear operators over H Λ by:

[., .] : Λ × Λ → T, L 7−→ [T, L] = TL − LT.

The commutator operator is considered a generalization of differentials operators.

But our second extension of the CHT is applicable to some differential operators.

A natural question is then under which conditions (say(**)) on T and L do we have:

Conjecture 69 Let T and L be operators over H such that (**) is true. Then there

exists a polynomial p(z, y) such that

p([T, L], y) = p(0, y)PE.

where E is defined as depending only on T and L.
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(**) can be conditions implying that [T, L] meets the requirements of our previous

results. In that regard, suppose we know the properties of T , and we know that [T, L]

meets the requirements of our previous results. Can we recover information or derive

results about L from theorem 69?

6.3 Other Possible Applications

In addition, we have some preliminary work in the following areas.

• Coherent States

• Number Operator and its Properties

• Green’s Functions in Neuroscience
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APPENDICES

.1 Example 1

> restart:with(plots):
> evl:=1-sin(Pi*sqrt(x))/sqrt(x)/Pi;

> nterms:=10;
> An:=[seq(coeftayl(evl, x=0,

> i),i=1..nterms)];

> f:=-cos(x);

Must check to see that C0 = 0. This sets it to be 0 automatically.
> int(f,x=-Pi..Pi)/2/Pi;

> f:=f-%;

> fa:=sum(An[i]*(-1)^(i)*diff(f,x$(2*i)),i=1..nterms):
> #Approximation in red to curve in blue.

> #If you only blue, approximation is visually same as actual
> p1:=plot(f,x=-2*Pi..2*Pi,color=blue,thickness=2):

> p2:=plot(fa,x=-2*Pi..2*Pi,color=red):

> display(p1,p2,view=[-2*Pi..2*Pi,-3..3]);

> fapp[1]:=-An[1]*f:

> for j from 2 to nterms

> do

> fapp[j]:=-An[1]*f+sum(An[i]*(-1)^(i)*diff(f,x$(2*i-2)),i=2..j):

> end do:

> ani:=display(seq(plot(fa,fapp[j],x=-2*Pi..2*Pi,color=[blue,red]) ,

j=1..nterms),insequence=true):

> display(ani,view=[-2*Pi..2*Pi,-3..3],insequence=true);
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> # Select image and play animation to see how approximations converge

to actual
> with(Maplets):

> with(Elements):

> with(Tools):
> s1m:=Maplet([

> "This is for n=17 and for f(x) = -cos(x)",

> [Plotter[Q](plots[display](p1,p2,view=[-2*Pi..2*Pi,-3..3])),

> Plotter[P](plots[display](ani,view=[-2*Pi..2*Pi,-3..3],insequence=true),

continuous=false)],

> [ Button("play",SetOption(P(’play’)=true)),

> Button("stop",SetOption(P(’‘stop‘’)=true)),

> Button("pause",SetOption(P(’pause’)=true)) ],

> [ "delay",

> Slider[DELAY](100..500, 200,

> onchange=SetOption(target=P, ‘option‘=’delay’, Argument(DELAY))) ],

> Button("ok",Shutdown()) ]):

> Maplets[Display](s1m);

72



.2 Differential Equation

> restart:with(plots):
> evl:=1-sin(Pi*sqrt(x))/sqrt(x)/Pi;

> nterms:=10;
> An:=[seq(coeftayl(evl, x=0,

> i),i=1..nterms)];

> f:=-cos(x);

Must check to see that C0 = 0. This sets it to be 0 automatically.
> int(f,x=-Pi..Pi)/2/Pi;

> f:=f-%;

> fa:=-An[1]*f +sum(An[i]*(-1)^(i)*diff(f,x$(2*i-2)),i=2..nterms):
> #Approximation in red to curve in blue.

> #If you only blue, approximation is visually same as actual
> p1:=plot(f,x=-2*Pi..2*Pi,color=blue,thickness=2):

> p2:=plot(fa,x=-2*Pi..2*Pi,color=red):

> display(p1,p2,view=[-2*Pi..2*Pi,-3..3]);

> fapp[1]:=-An[1]*f:
> for j from 2 to nterms do

> fapp[j]:=-An[1]*f+sum(An[i]*(-1)^(i)*diff(f,x$(2*i-2)),i=2..j):

> end do:

> ani:=display(seq(plot(fa,fapp[j],x=-2*Pi..2*Pi,color=[blue,red]),

j=1..nterms), insequence=true):

> display(ani,view=[-2*Pi..2*Pi,-3..3],insequence=true);

> # Select image and play animation to see how approximations converge

to actual
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> with(Maplets):

> with(Elements):

> with(Tools):
> s1m:=Maplet([

> "This is for n=17 and for f(x) = -cos(x)",

> [Plotter[Q](plots[display](p1,p2,view=[-2*Pi..2*Pi,-3..3])),

> Plotter[P](plots[display](ani,view=[-2*Pi..2*Pi,-3..3],insequence=true),

continuous=false)],

> [ Button("play",SetOption(P(’play’)=true)),

> Button("stop",SetOption(P(’‘stop‘’)=true)),

> Button("pause",SetOption(P(’pause’)=true)) ],

> [ "delay",

> Slider[DELAY](100..500, 200,

> onchange=SetOption(target=P, ‘option‘=’delay’, Argument(DELAY))) ],

> Button("ok",Shutdown()) ]):

> Maplets[Display](s1m);
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.3 Inverse Frame Operator

> restart:with(LinearAlgebra):with(plots):interface(displayprecision=-1):

> dlen:=25; omega1:=5: omega2:=-2:

> omega3:=Pi:

> coeff1:=2:

> coeff2:=3:

> coeff3:=5:

> forig:=coeff1*cos(omega1*x)+coeff2*cos(omega2*x)+coeff3*cos(omega3*x);

> h:=evalf(2*Pi/(dlen-1),15); #Sampling period

> data1:=[seq(evalf(coeff1*cos(omega1*(-Pi+(i-1)*h))

> +coeff2*cos(omega2*(-Pi+(i-1)*h))

> +coeff3*cos(omega3*(-Pi+(i-1)*h)),15),i=-10..dlen+10)]:
> datalen1:=dlen+20;

> datalen:=dlen;

> plots[listplot]([seq([-Pi+(i-1)*h,data1[i+10]],i=1..dlen)]);

> y[0]:=data1: #Actual data is y0

> MM:=10: #Max Degree of CH polynomial

> Numdata:= datalen1: #Upper bound on the length of the array

> Numdata1:= datalen1:
> LL:=1: #Lower bound on length of array

> for j from 1 to MM do

> Numdata:=Numdata-1:

> LL:=LL+1:

> Numdata1:=Numdata1-2:
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> y[j]:= array(LL..Numdata): # create an empty 1 by Numdata-2 array

for y[j]#

> for i from LL to Numdata do #generate the approximation for y[j]#

> y[j][i]:= (y[j-1][i+1]-2*y[j-1][i]+y[j-1][i-1])/(h^2):

> end do:

> end do:
> if type( Numdata-1 , even ) = true then

> N:= Numdata-1:

> else

> N:= Numdata-2:

> end if:

> EstError:=1:
> NN:=1:kkk:=2:

> while(abs(evalf(EstError,20)) > 0.1 and NN<10) do

> NN:=NN+1:

> AAA[kkk]:= Matrix(1..NN,1..1):

> BBB[kkk]:=Matrix(1..NN,1..NN):

> for i from 0 to NN-1 do

> for j from LL+1 to N-1 do

> if type( j , even ) = true then

> f[j]:=2*y[NN][j]*y[i][j]:

> else

> f[j]:=4*y[NN][j]*y[i][j]:

> end if:

> end do:
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> f[LL]:=y[NN][LL]*y[i][LL]:

> f[N]:=y[NN][N]*y[i][N]:

> c:=0:

> for k from LL to N do

> c:=c+f[k]:

> end do:

> AAA[kkk][i+1,1]:=(h*c)/3:

> end do:

> for p from 0 to NN-1 do

> for q from 0 to NN-1 do

> for j from LL+1 to N-1 do

> if type( j , even ) = true then

> f[j]:=2*y[p][j]*y[q][j]:

> else

> f[j]:=4*y[p][j]*y[q][j]:

> end if:

> end do:

> f[LL]:=y[p][LL]*y[q][LL]:

> f[N]:=y[p][N]*y[q][N]:

> c:=0:

> for k from LL to N do

> c:=c+f[k]:

> end do:
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> BBB[kkk][p+1,q+1]:=(h*c)/3:

> end do:

> end do:

> if (Rank( BBB[kkk] )= NN ) then

> CCC[kkk]:=evalf(MatrixMatrixMultiply(MatrixInverse(BBB[kkk]),AAA[kkk])

,20):

> ee[NN]:=0:

> for r from LL to Numdata do

> Esterror1:= y[NN][r]:

> for m from 1 to NN do

> Esterror1:=Esterror1 - CCC[kkk][m,1]*y[m-1][r]:

> end do:

> ee[NN]:=ee[NN]+ abs(evalf(Esterror1,20)):

> end do:

> EstError:=(ee[NN])/(Numdata-LL+1):

> eee[NN]:=EstError:

> for j from LL+1 to N-1 do

> if type( j , even ) = true then

> f[j]:=2*y[NN][j]*y[NN][j]:

> else

> f[j]:=4*y[NN][j]*y[NN][j]:

> end if:

> end do:
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> f[LL]:=y[NN][LL]*y[NN][LL]:

> f[N]:=y[NN][N]*y[NN][N]:

> c:=0:

> for k from LL to N do

> c:=c+f[k]:

> end do:

> cc:=(h*c)/3:

> for q from 0 to NN-1 do

> for j from LL+1 to N-1 do

> if type( j , even ) = true then

> f[j]:=2*y[NN][j]*y[q][j]:

> else

> f[j]:=4*y[NN][j]*y[q][j]:

> end if:

> end do:

> f[LL]:=y[NN][LL]*y[q][LL]:

> f[N]:=y[NN][N]*y[q][N]:

> c:=0:

> for k from LL to N do

> c:=c+f[k]:

> end do:

> ccc[q]:=(h*c)/3:

> end do:
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> eeee[NN]:=cc:

> for i from 0 to NN-1 do

> eeee[NN]:=eeee[NN]-CCC[kkk][i+1,1]*ccc[i]:

> end do:

> kkk:=kkk+1:

> end if:

> end do:

> evalf(EstError,20);

> NN;

> dlen:=250;

> h:=evalf(2*Pi/(dlen-1),15); #Sampling period

> data1:=[seq(evalf(coeff1*cos(omega1*(-Pi+(i-1)*h))

> +coeff2*cos(omega2*(-Pi+(i-1)*h))

> +coeff3*cos(omega3*(-Pi+(i-1)*h)),15),i=-10..dlen+10)]:
> datalen1:=dlen+20;

> datalen:=dlen;

> plots[listplot]([seq([-Pi+(i-1)*h,data1[i+10]],i=1..dlen)]);

> y[0]:=data1: #Actual data is y0

> MM:=10: #Max Degree of CH polynomial
> Numdata:=datalen1:#upper bound on the

> length of the array

> Numdata1:=datalen1:

> LL:=1: #Lower bound on length of array
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> for j from 1 to MM do

> Numdata:=Numdata-1:

> LL:=LL+1:

> Numdata1:=Numdata1-2:

> y[j]:= array(LL..Numdata): # create an empty 1 by Numdata-2 array

for y[j]#

> for i from LL to Numdata do #generate the approximation for y[j]#

> y[j][i]:= (y[j-1][i+1]-2*y[j-1][i]+y[j-1][i-1])/(h^2):

> end do:

> end do:
> if type( Numdata-1 , even ) = true then

> N:= Numdata-1:

> else

> N:= Numdata-2:

> end if:

> AAA[NN]:= Matrix(1..NN,1..1):

> BBB[NN]:=Matrix(1..NN,1..NN):

> for i from 0 to NN-1 do

> for j from LL+1 to N-1 do

> if type( j , even ) = true then

> f[j]:=2*y[NN][j]*y[i][j]:

> else

> f[j]:=4*y[NN][j]*y[i][j]:

> end if:

> end do:
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> f[LL]:=y[NN][LL]*y[i][LL]:

> f[N]:=y[NN][N]*y[i][N]:

> c:=0:

> for k from LL to N do

> c:=c+f[k]:

> end do:

> AAA[NN][i+1,1]:=(h*c)/3:

> end do:

> for p from 0 to NN-1 do

> for q from 0 to NN-1 do

> for j from LL+1 to N-1 do

> if type( j , even ) = true then

> f[j]:=2*y[p][j]*y[q][j]:

> else

> f[j]:=4*y[p][j]*y[q][j]:

> end if:

> end do:

> f[LL]:=y[p][LL]*y[q][LL]:

> f[N]:=y[p][N]*y[q][N]:

> c:=0:

> for k from LL to N do

> c:=c+f[k]:

> end do:

> BBB[NN][p+1,q+1]:=(h*c)/3:

> end do:
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> if (Rank( BBB[NN] )= NN ) then

> CCC[NN]:= evalf(MatrixMatrixMultiply(MatrixInverse(BBB[NN]),AAA[NN]),20):

> end if :

> for i from 1 to NN do

> aa[i]:=CCC[NN][i,1]:

> end do:

> Est:=[solve(sum(aa[jj]*x^(jj-1),jj=1..NN)=x^NN,x)]:
> for i from 1 to NN do

> alpha[i]:=evalf(sqrt(abs(Est[i])),15);

> end do;

> #alpha[2]:=-alpha[2];

> A1:=Matrix(1..NN,1..1):

> B1:=Matrix(1..NN,1..NN):

> C1:=Matrix(1..NN,1..1):
> for j from 1 to NN do

> x[j]:=array(LL..Numdata):

> for i from LL to Numdata do

> x[j][i]:=evalf(cos(alpha[j]*(-Pi+h*(i-LL))),10):

> end do:

> end do:
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> for i from 0 to NN-1 do

> for j from LL+1 to N-1 do

> if type( j , even ) = true then

> f[j]:=2*y[0][j]*x[i+1][j]:

> else

> f[j]:=4*y[0][j]*x[i+1][j]:

> end if:

> end do:

> f[LL]:=y[0][LL]*x[i+1][LL]:

> f[N]:=y[0][N]*x[i+1][N]:

> c:=0:

> for k from LL to N do

> c:=c+f[k]:

> end do:

> A1[i+1,1]:=(h*c)/3:

> end do:

> for p from 0 to NN-1 do

> for q from 0 to NN-1 do

> for j from LL+1 to N-1 do

> if type( j , even ) = true then

> f[j]:=2*x[p+1][j]*x[q+1][j]:

> else

> f[j]:=4*x[p+1][j]*x[q+1][j]:

> end if:

> end do:

84



> f[LL]:=x[p+1][LL]*x[q+1][LL]:

> f[N]:=x[p+1][N]*x[q+1][N]:

> c:=0:

> for k from LL to N do

> c:=c+f[k]:

> end do:

> B1[p+1,q+1]:=(h*c)/3:

> end do:

> end do:
> C1:=

> evalf(MatrixMatrixMultiply(MatrixInverse(B1),A1),10);
> for i from 1 to NN do

> aaa[i]:=C1[i,1]:

> end do:
> f:=sum(aaa[jjj]*cos(alpha[jjj]*t),jjj=1..NN);

> fr:=sum(aaa[jjj]*cos(alpha[jjj]*t) ,jjj=1..NN);
> plots[listplot]([seq([-Pi+(i-1)*h,data1[i+11]],i=1..dlen)]):

> plots[listplot]([seq([-Pi+(i-1)*h,

> subs(t=-Pi+(i-1)*h,f)],i=1..dlen)],color=red,thickness=2):

> rr:=display(%,%%):display(rr);

> sqrt(sum((subs(t=-Pi+(ii-1)*h,f)-data1[ii+10])^2,ii=1..dlen)/dlen);
> err:=sqrt(sum((subs(t=-Pi+(ii-1)*h,f)-data1[ii+10])^2,ii=1..dlen)/dlen);

> for j from LL+1 to N-1 do

> if type( j , even ) = true then

> f[j]:=2*y[0][j]*y[0][j]:

85



> else

> f[j]:=4*y[0][j]*y[0][j]:

> end if:

> end do:

> f[LL]:=y[0][LL]*y[0][LL]:

> f[N]:=y[0][N]*y[0][N]:

> normf:=sqrt(add(f[jj],jj=LL..N)*h/3);:

> err/normf;
> with(Maplets):

> with(Elements):

> with(Tools):
> s1m:=Maplet([

> [[[Label("The original function is",’font’= Font("helvetica", 16))],

> [MathMLViewer(’value’ = MathML[Export](forig))],

> [Label("The approximation of the original is",’font’= Font("helvetica",

16))],

> [MathMLViewer(’value’ = MathML[Export](fr))],

> [Label("The Approximation(in red) Versus the Original(in black)",’font’=

Font("helvetica", 16))]],

> Plotter[Q](plots[display](rr))],

> Button("ok",Shutdown()) ]):

> Maplets[Display](s1m);
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