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ABSTRACT 
 
 

Requirement Elicitation of Large Web Projects 
 

by 

David E. Frazier 

 

One of the most important aspects of developing a large Web-based project is getting the 

correct requirements from the client.  Time and money can be lost if the requirements are 

incomplete or inaccurate.  Traditional Web design sources tend to gloss over this important 

activity. 

Software engineering is a mature field that can help in the quest for more complete and 

accurate requirement gathering.  This paper explores the ways that traditional software 

engineering techniques can be applied to Web projects.  A methodology is presented based on 

both existing and new techniques.  Several experiments were conducted to determine the 

usefulness of each method in the methodology. 

The conclusion points out that active participants in the Web development field do 

perceive there to be a problem in requirement gathering.  Most who tested the proposed 

methodology found that it would be useful in addressing this problem. 
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CHAPTER 1 

 THE PROBLEM WITH WEB DEVELOPMENT 

 
Web development has become a necessity for most businesses and organizations.  People 

expect to find information they need online.  Customers expect to be able to interact with 

businesses via a Web site.  These interactions could range from purchasing a product from an e-

commerce site, to obtaining customer support from an informational site, to getting pre-purchase 

product information from an advertising site.  A Web presence is no longer optional. The 

importance of having an accessible, functional Web site can mean the difference between 

business success and failure.  The problem then is, how to develop this kind of Web site. 

During the first era of business Web site deployment, the stakes were much lower, both 

from a technical and a business standpoint.  Technologically, the Web was a much simpler place.  

A site could provide text and graphics and little else.  The concept of e-commerce had yet to be 

developed.  All business Web sites were informational sites.  A user could only obtain product 

information or learn about store locations.  The Web was still little used by consumers, so a poor 

Web page would not have been a disaster to the business.  In the best case, a company Web site 

would serve as a good advertising medium for the company. 

Early Web developers were often pulled from non-technical or lightly technical 

professions.  At this stage, Web development was much closer to desktop publishing than to 

programming, so many desktop publishers were the first Web developers.  What separated good 

Web designers from bad was how proficient they were in developing graphics for their Web 

pages.  The Web pages themselves were relatively easy to create in HTML.  Larger companies 

would nearly always create these Web sites in-house, often using personnel from the public 

relations or marketing departments. 
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As the Web grew in popularity, is also grew in technical sophistication.  The Web had 

moved beyond plain HTML, and it was soon able to link programming languages such as C++, 

Java, or Perl to allow Web sites to perform more tasks.  It was now possible to sell products 

online with virtual shopping carts, as well as provide credit card processing and Web page access 

to the company database.  Companies such as Amazon.com showed the business world how 

lucrative online business could be.  Within a few short years, an e-commerce site became 

essential for all but the smallest businesses (Powell, 1998, p. 11). 

However, there was a problem.  Early Web developers were from mostly non-technical 

backgrounds.  To be able to create an e-commerce site, one needed to be able to program.  Many 

of these people had been able to elevate their positions in their companies significantly by 

becoming Web Masters.  Whom were they going to be able to hire to get the Web programming 

done?  One possibility, of course, was to hire traditional programmers to do the Web 

programming, but there were problems with this approach.   

The Web presents a unique technical environment in which to program.  Traditional 

programmers are often uncomfortable with the lack of control over user environments that is part 

of the Web.  Also, the highly graphical nature of the Web led to some issues for programmers.  

Even programmers well versed in software engineering had a hard time using their traditional 

techniques on the Web. Traditional software projects are developed for use by the clients’ 

employees.  If an accounting program, for example, allows the client’s employees to enter and 

process all accounting information accurately and efficiently, the product can be deemed a 

success.  Traditional software engineering tools have been developed to aid in the creation of 

such projects.  Web projects add a new dimension.  These are programs that will be run by a 

client’s customers.  This adds a whole new set of requirements.  The product has to be visually 

pleasing, as the customer is likely to judge the quality of a company by the quality of their web 
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site.  The product has to be easy and intuitive to use.  Customers cannot be trained as employees 

can.  Users of a traditional system have to utilize it whether they like it or not.  In most cases a 

customer, however, can just go to other Web sites if they are dissatisfied.   

So who is going to create these new Web sites that have become critical to the 

organizations success? The solution in many cases is a team approach.  Programmers will work 

with a graphic designer and HTML coders to effectively develop a useful Web site.  Many 

businesses do not have this specialized knowledge in house, so they must turn, at least in part, to 

an outside company. Even worse, there is often a mixed design team of in-house employees and 

consultants who have vastly different backgrounds and do not normally work together. 

To further complicate things, business managers have also been left behind by the fast 

moving technology of the Web.  Whereas almost anyone could comprehend the relative 

simplicity of an informational-only Web site, it is the rare business leader who can comprehend 

the technical details of the full-blown e-business site.  This lack of knowledge is not just a trivial 

matter.  The business leader needs to know what options are available in order to have a Web site 

that best suits the business.  Also, in instances when credit card information is being passed 

around, there are legal requirements as to how a businesses’ Web site handles this sensitive 

information.  How is a manager to know if his or her Web site is up to the task? 

The real problem in Web development is one of communication.  When the Web was 

simpler, a lone Web developer who worked in-house was able to keep track of the one Web site 

that he/she managed.  Since he/she was often an existing employee of the company, he/she likely 

possessed some domain knowledge.  In the current Web environment, the manager must be able 

to communicate to both the in-house and outside Web teams.  HTML coders need to be able to 

communicate with programmers.  Programmers need to be able to glean business needs from 

business managers.  HTML coders, who used to do the whole job, struggle with the lack of 
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control and the necessity of coordinating efforts with others.  Programmers often feel constrained 

by the Web environment, where the user cannot be precisely determined.  Programmers are also 

unfamiliar with the need to provide a more open user environment.  There is also a mindset 

among many companies that Web projects are in some ways less formal than other software 

design projects, and therefore are not given the same funding and employee attention.  How are 

Web developers handling this problem? 

Several Web developers were interviewed on these topics.  They ranged from small 

developers who do some consulting work on the side to developers for relatively large Web 

design firms that create e-commerce sites as their main business.  Several themes developed 

during these conversations.  All developers have faced problems in communicating effectively 

with clients.  Most have horror stories of what can happen when clients expect one thing and the 

developers deliver something else.  Most developers have tried to solve this problem with a 

variety of methods.  Some developers simply conclude that it is up to the client to determine all 

content for the Web site.  They ask the client for a list of needed features and content, and then 

have the client sign off that that is all the site will do.  Others try to guess what the client really 

needs.  Either approach can lead to hard feelings or even legal action. 

This thesis proposes a new design methodology that offers several tools to address the 

communications problems associated with modern Web design and the overriding need to obtain 

correct requirements.  Since there are a wide variety of Web projects of various sizes, this 

methodology is flexible.  Some of the techniques are useful for all Web projects, while others 

would be cost-effective only for larger projects. 

The first tool will address the problem of a lack of a common language between 

developers and clients.  It is a common technique to ask potential clients what Web sites they 

like.  Most developers interviewed used this tactic and would give the client a list of sites to look 
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at to get ideas.  Most developers also have a portfolio of Web pages that they have created which 

they let clients view.  The problem with this approach is that the client is not given any 

instruction as to what they should be looking for.  An annotated portfolio, customized for each 

client, is a method to teach the client about specific Web features and provide a common 

language for discussions.   

The second tool in the methodology assists the client in determining what content to put 

on the Web site and how it should be arranged.  Once the manager is relatively educated about 

the options available, the next step is a tool to help him/her determine which content to put on a 

Web site.  I am proposing an enhancement of the Web card method (Lazar, 2001) used in User-

Centered Web design to help meet this need.  The improved WebCard system will allow the 

Web team to obtain content from many sources and keep it organized.  The WebCard system 

will also allow the team to develop a navigational scheme. 

The output from the WebCard process is next moved to an online content tracking 

system.  One of the most frequent problems in working in a Web design team is determining 

where the content is going to come from, and who is authorized to make changes.  Gathering this 

information with the content and organizing it into a system makes it is easy to determine what 

information has been provided to the Web team and what is still missing.  Any team member or 

the manager can look at the content tracking system to see exactly who is responsible for 

providing any missing content. 

The final tool in the methodology is the modification of the standard SRS, or software 

requirements specification, to allow for a formal agreement on requirements.  The SRS is 

commonly used in traditional software development projects.  I have modified this tool to make 

it compatible with the special challenges a Web site development project includes. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Overview 

A starting point for the development of a new Web Design Methodology is to look at 

existing methodologies.  There are several developing schools of Web design.  User-centered 

Web Design attempts to create Web sites that are dictated by the needs of the actual or potential 

users of the site.  Web Engineering attempts to use some aspects of software engineering in Web 

Design.  Information Architecture deals with the structure and presentation of Information and is 

only tangentially related to Web Design.  In addition, more general-purpose Web development 

books often have a section that presents some design methodology in at least an embryonic or 

simplified form. 

 

General Web Design Sources 

There are numerous general-purpose Web design books on the market.  Even though 

“Web Design” is part of the title of many of these books, most would be more accurately 

described as “HTML how-to” books.  The backgrounds of the authors of these books tend to be 

in areas such as graphic design or technical writing.  The requirement gathering process is rarely 

given more than a few paragraphs.   

Friedlein’s book is a good example of the genre.  The author is a former television 

producer turned Web developer with no discernible experience in software engineering 

(Friedlein, 2001, p. xiii).  The book is similar to other books on Web development that present 

strategies for producing a successful Web site.  An interesting difference is that many of the titles 

of the sections of this book appear to cover software engineering topics.  Upon closer inspection, 
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however, these sections offer no techniques, formal or otherwise, to accomplish the stated 

section goals.  Instead, the reader is just told that he/she should have, for example, a functional 

specification that describes the site.  There are no guidelines on how to create such a document, 

or more importantly, how to get the information from the client to create one.  The advice of Web 

Project Management on requirements gathering amounts merely to the implication that the 

author is in favor of it.   

 

User-Centered Design 

Lazar (2001) provides a good example of the User-Centered Design school of Web 

development.  In this book, Lazar argues that most clients know the content that needs to be on 

their Web site.  All they need is help in organizing the content so that users of the site will be 

able to find the information they need.  Sample users are gathered, and they are asked how they 

would organize the information.  The sample user's opinions form the basis for this 

methodology. 

Lazar’s book does not add anything to traditional Web requirement gathering.  No 

attempt at educating the client about the Web or the developer about the client's business is 

suggested.  Clients and potential users of the site are asked to enter content elements for the site 

onto index cards.  No critical review of the appropriateness of the content is suggested, nor are 

the cards condensed to incorporate similar ideas from more than one source. The cards are then 

sorted by different users to determine a navigation scheme.   

A more complete development of the card sorting process can be found in Fucella’s 

article (1997).  This article introduces the concept of card sorting for Web design and suffers 

from the same problem as does Lazar’s.  Card sorting is a valuable tool in Web design, but it is 

not the only tool.  The users of a Web site are not the only ones to have valid input into the 
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content and structure of the site.  The other problem with user-centered design is that the cards 

are used for navigation only.  They are not tied into content management or converted into a 

requirements specification of any kind. The card methodology is related to the CRC card method 

(Cockburn, n.d.) often used in software engineering, but hold less data. 

An alternate approach using paper prototypes is found in the article by Grady (2000).  

This article describes a system for using colored pieces of paper to create a prototype.  The 

requirement gathering aspect of this process is mostly left to the reader.  Grady recommends that 

Web content be gathered by looking at similar Web projects.  All content should be divided into 

categories based on a pre-existing purpose statement for the Web site.  Users are not asked for 

their input in the planning stage.  The content is then organized into different colored pieces of 

paper.  The user interaction comes in as a usability test, in which potential users are asked to 

navigate the paper prototype.  The feedback gathered from this process is used to create 

iterations of the paper prototype until the desired level of usability is gained.  Grady assumes that 

the goals of the Web site are established in advance, and thus that the content to include is clear.  

This technique is really just about navigation design, and does not address the entire Web site 

development problem. 

 

Web Engineering 

Web Engineering is a term applied to the school of Web design that attempts to modify 

the tools of traditional software engineering to make them more usable in the Web environment.  

This thesis falls into this category.  Web Engineering materials currently available fall into two 

broad categories: those whose authors come from a software engineering background, whose 

grasp on Web specifics can be deficient, and those whose authors are from a Web background 
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and who often lack sufficient background in software engineering.  The necessary combination 

of these two distinct disciplines is stated by Roger S. Pressman: 

 
But what if the current ad hoc approach to Web development persists? In the absence of a 
disciplined process for developing Web-based systems, there is increasing concern that 
we may face serious problems in the successful development, deployment, and 
“maintenance” of these systems. (Pressman, 2001, p. 770) 
 
Web Engineering (Powell, 1998) is one of the more complete works on the topic.  The 

first few chapters of his book discuss the various development models from software 

engineering, such as the waterfall model, and make adjustments for each model to enable a 

closer fit with Web development.  This excellent work is beyond the scope of this thesis, as it 

does not focus on requirement gathering.  Chapter 5 on requirements analysis and specification is 

of most immediate concern.  According to Powell (1998), “The main goal of the requirements 

specification phase is to set boundaries and limits for the project” (p. 115).  The problem with 

this idea is that the focus is at too high a level to be useful.  The developer needs to know what 

information actually to include on a site, not what kind of information could be appropriate.  

Content is to come from two sources, existing content and new content (Powell, 1998, p. 126).  

No further instruction is given as to how to gather or process either type of content.  While useful 

for its coverage of development models, and other important information, Web Site Engineering 

falls short of providing the tools for successful content gathering. 

 

Information Architecture 

Information Architecture (IA) is one of the newest trends in Web development.  It 

attempts to offer a comprehensive plan for developing large scale Web sites.  Rosenfeld and 

Morville (2002) map out the techniques that form IA: 
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Information is defined as facts and figures.  The main task of IA is to structure, organize 

and label this information.  Further, IA is concerned with how users find information on a site 

and how the producers of the information can manage it (Rosenfeld & Morville, 2002, p. 5).  

Using IA, one can develop searching systems, navigation systems and semantic networks to 

assist users in finding the information they need (Rosenfeld & Morville, 2002, p.14).  The 

deliverables of IA can be wireframes or blueprints of a Web design, or a controlled vocabulary 

list or a metadata schema  (Rosenfeld & Morville, 2002, p.15). 

IA advocates a balance between the needs of the user, which is the sole focus of user-

centered Web design, and the needs of the organization producing the information, which IA 

terms as “context”.  IA lists three parts of the complex system of a Web site as context, content, 

and users.  The context is the business situation that the Web site will be placed in.  It 

encompasses the requirements that lead a business to create a Web site.  The content is all of the 

information that needs to be placed somewhere on the Web site (Rosenfeld & Morville, 2002, p. 

25).  The users are the people who will actually use the site.  There are most likely going to be 

different groups of users who have different information needs (Rosenfeld & Morville, 2002, p. 

26). 

IA is most concerned with identifying the structure of the information to be presented in a 

Web site.  It defines techniques for labeling, or giving a name to a group of related information 

objects.  IA offers ideas for the types of structures that Web content can take and discusses 

theoretical search strategies. The discussions are informative but do not offer techniques for 

actually gathering information and developing Web sites.  

Most Web development books and articles refer to the requirements gathering process, 

but none offer any concrete solutions as to how to make the process go more smoothly.  General 

Web design books do no more than mention that getting the requirements correct is important.  
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User-centered Web Design is focused on usability after content is known and on Web site 

refactoring, and thus is of limited use in new Web design.  Web Engineering thus far has been 

more concerned with the development models of Web design than with requirements gathering.  

Information Architecture deals primarily with the underlying structure of information, and has 

little to say about how to gather relevant content.  Each school of thought has some important 

things to add to Web design, but none of them deal adequately with requirements gathering. 
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CHAPTER 3 

TECHNIQUES 

 

The methodology I am proposing is designed to be modular.  It begins with general tools 

such as the annotated portfolio, which helps overcome the communication problems inherent in 

Web development projects.  This tool has wide applicability for most, if not all, Web projects.  

The methodology then moves on to more specific tools such as the expanded WebCard system to 

help in content gathering and site navigation design.  The system can also be used to aid the 

programmers if a more robust system is being developed.  The WebCard system can also tie in to 

a content management system used to track from where content is supposed to come, when it 

should be delivered, and in what form it should be delivered, so that all parties can monitor the 

progress of the project. A final tool in the methodology is an extension of the widely used SRS.  

This detailed specification can be used as a legally binding contract between the client and the 

developer. 

 

Closing the Communication Gap: The Annotated Portfolio 

As mentioned previously, the biggest problem facing the design team is lack of a 

common language.  Most businesses have developed a specialized language that relates to their 

specific environments.  Most Web developers are not initially familiar with their clients’ 

business.  Web developers themselves use their own language, which is highly technical in 

nature and far beyond the ken of the normal Web user.  Consequentially, the client knows what 

his business needs are but not what is possible or useful on the Web.  The designer knows how to 

create all kinds of Web pages, but does not know what features might add value to the business.  

Obviously, means are needed to bridge this gap. 
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It is also wise at this point to determine the conditions under which the finished site will 

be hosted.  What is the budget for the project?  Will the client host the site?  If so, what are the 

technical limitations of the client’s server?  What server-side programming languages can be 

used if needed?  Are there any storage restrictions?  If the client prefers that the designer do the 

hosting, can the designer handle this?  What about domain names?  Is there an existing domain 

name that needs to be moved?  What about the minimum screen resolution for the site?  Should 

the site be 600 pixels wide or wider?  What kind of performance is expected from the site?  What 

level of security is acceptable?  All of these factors play a part in how the site is designed and 

should be written up and signed by both parties before continuing. 

 

Developer Education 

The developer should spend some time with the client to see exactly what it is that the 

client's business does on a daily basis.  The developer should pay special attention to the flow of 

information throughout the business.  Where does the information come from?  Where does it 

go?  How does a customer go about making an order?  Who needs to be informed of the order?  

The developer should obtain copies of all forms the business uses.  How could a Web site 

enhance the value of the business?  The often non-billable time spent on this phase of the project 

will almost always pay dividends later in the form of the developer’s having a thorough 

understanding of the client’s business.  

 

Client Education 

The client might or might not have a general understanding of the Web.  Many people 

now routinely use the Web for entertainment or information.  Few clients, however, have a 

thorough understanding of what the different Web features do, how they could be implemented 
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to help their business, what the features are called, and how complicated it might be to make it 

happen.  Traditionally, Web developers have shown their clients a portfolio of their work.  

Typically, this is either online, or a printed brochure whose main purpose is to let the potential 

client know what visually pleasing Web sites the developer had created.  The individual features 

of the site are not often explained, nor are the rationales for using them included. 

A more effective approach would be for the developer to create an annotated portfolio 

specifically for each client.  This portfolio is a Web page that contains descriptive links to 

different Web sites’ features that show examples from different categories of sites.  The client 

should be shown both features from static brochure-ware sites that display only information 

about a company and from complex e-commerce applications.  Ideally, the designer will have a 

portfolio of his or her own work that covers the desired range.  If not, the designer should keep 

an updated list of good examples of other sites sorted by feature.  The designer should also seek 

out sites of organizations that are similar in scope to the client’s, or visit some Web pages of 

similar types of businesses.  The useful features found on these pages should be represented in 

the client’s portfolio. 

The first step in developing the annotated portfolio is to determine which features the 

client might be interested in.  This feature list should range outside any preconceived ideas that 

the developer has about what the client ought to want.  The only features to be excluded are 

those that, in the opinion of the developer, would be inappropriate for the client’s site.  Once the 

list of features is set, the designer needs to find good examples of each.  The portfolio should 

explain what the client is going to see.  The portfolio should open the linked page in a new, 

smaller window, so that the client will not become distracted, and forget what they are supposed 

to be doing.  Each link should describe only the page it is linking to.  If the designer wants to 

point to more than one feature of a given Web site, it should be done through separate links.  
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Items to show the client could include an informational page about the client organization, a 

product catalog, some detailed product or service information, and a shopping cart.  If 

appropriate, the portfolio might also demonstrate chat or other interactive features. The designer 

should never show a client a poorly designed site, especially one with too much flashy 

animation, as s/he might conceivably want one just like it!  An example of an annotated portfolio 

can be found on the Web at http://cscilinux.northeaststate.edu/~defrazier/research/portfolio.html, 

and in Appendix B. 

The annotated portfolio should be presented and explained to the client by the developer.  

The annotated portfolio should be online, and the client should be encouraged to view the 

document over several days to fully understand the features.  All interested or involved parties in 

the client's business should view the annotated portfolio and take notes on what they do and do 

not like.  The developer should ask the client to point out any other Web sites that s/he finds 

interesting.  The developer and client should then sit down and discuss the results of this review.  

It is often the case that the client's vision of what the Web site can and should be has been 

changed and expanded.  The operating assumptions gathered and written up in the first stage of 

the process might need to be revisited and revised. 

After the annotated portfolio has been reviewed, the client should have a better idea of 

what can be done on a Web site.  All involved in the project should have a good sense of where 

development of the site is headed.  There should be a revised sense of purpose for the Web site 

and a good idea of which features are to be implemented on the site. 

 

Making the Data Object Cards 

It is during this education process that the first data object cards will be produced.  Each  

card represents one Web page in the completed site.  As the client and designer view other pages, 
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they use index cards to keep of track of the page ideas that they like.  For example, if the project 

is for a coffee shop that has a stage and regular performances, the client might find a page called 

Happenings on the Web site of a similar establishment in another town.  If the client likes this 

idea, s/he can make an index card with the title Happenings.  A short description would also go 

on the card. At this stage, that is all the card needs to contain.  As the designer and client view 

more pages, they will just add new cards every time they find Web pages that they like.  An 

example of a Data Object card can be found in Appendix B.  

It is important to explain to all involved what constitutes a data object.  This can vary by 

project, but in general it is the amount of information that can appear on one relatively short Web 

page.    If the data objects are too broad, necessary levels of navigation may be missed.  If the 

data objects are too narrow, increased work will be needed to create and organize them.  When in 

doubt, it is usually advisable to split the data object into smaller parts.  It is easier to combine 

cards later than it is to break them apart. 

Data object cards are created in several ways.  A few cards are developed during viewing 

of the annotated portfolio.  More cards are developed by the client’s personnel as they think 

through what information should be displayed or collected in order to accomplish the features 

identified for the business.  Different units of the business will usually have their own areas for 

which to create cards.  It is also a good idea to have some brainstorming sessions that bring 

together people from a cross section of the business areas to make sure that cross-departmental 

information is not being missed.  The developer should sit in on some of these sessions to ensure 

that this process goes smoothly.   

At the end of the card development process, the client should have a better idea about 

what s/he would like to see on the Web site.  There also should be a large stack of data object 

cards, each developed by individuals.  The last step in determining content is to bring the 
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designer(s) and the client(s) together for a final brainstorming session.  This meeting provides 

everyone a chance to display their cards.  Cards with little support from the client should be 

discarded. New cards may be added as necessary.  All duplicate cards should be removed.  Cards 

removed from consideration should be separated from the rest, so they will not pop up in the 

stack later.  All business processes and customer transactions should be gone through to ensure 

there are cards for all the requisite parts.   

The designer now should have a large stack of index cards with data objects on them.  

The next step is for the designer to determine which of the data objects are most likely outside 

the scope and budget of the project.  These cards should be moved to an envelope titled “Future 

Development.”  The designer next should schedule a meeting with whomever will make the final 

decisions for the project in order to finalize the data objects to be included on the site.  The client 

should see which data objects are being marked for future development, to make sure that s/he 

does not consider the features to be essential.  After this meeting, the designer should have a 

stack of index cards that represent all of the Web pages that will be created for the site.  The 

client should sign off that this represents the content that will be included on the site. 

 

Content Matrix 

The next step is to determine where the information contained in the data object cards is 

located—that is, who has the information and who will provide it to the designer.  Problems 

could arise if the designer assumes that the client is going to provide the information for a data 

object card, while the client makes exactly the opposite assumption.  It might be that a data 

object will have to be moved to the “Future Development” envelope if no resources are available 

to create it.  A content matrix should be developed as a spreadsheet that lists each data objects on 

a separate row.  For each data object, columns should be included in which to note who is 
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providing the information (the actual person responsible), the format of the data (electronic, on 

paper, in Word, in HTML), who has the authority to change the data, how often the data will 

change, and the date on which the content will be provided to the designer. The latter column 

will most likely be filled in later in the project. 

 Once the content matrix is complete, the source and type fields must be completed on the 

data object cards.  The designer also should determine whether the data object can be a static 

page, or whether it should be made dynamic.  This decision will rest on how frequently the 

information needs to be changed, and by whom. If the page is to be dynamic, it must be 

determined how changes will take place, and who can make them. 

 

Navigation Design 

Now that it has been determined what information will be presented on the site, the data 

object cards will be used to design the navigational structure.  The stack should be given to each 

team member of the client organization involved in the project.  According to Powell, each Web 

page should have no more than seven links plus or minus two (Powell, 2002, p. 33). The task is, 

therefore, to divide all of the cards into five to nine piles by placing like cards together.  Once the 

piles are created, the team member must construct a navigation card for each stack.  This 

navigation card should be a different color, so it will stand out.  The title of the navigation card 

should be a descriptive word or phrase that describes the stack.  In addition, as these are the first 

piles created, the cards are numbered by placing a 1.x in the top right hand corner of the card, 

where x starts with a one for the first pile and moves up to however many cards there are.  Once 

the team member is satisfied with the stacks and the navigation cards, a home page navigation 

card must be created.  The home page navigation has “Home Page” as a title, and the content will 

be the titles of the other navigational cards.  The Home Page card is numbered 1. 
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This process must be repeated whenever there are more than five to nine cards in a pile.  

As new piles are created, the team member should create new navigational cards for each pile.  

The numbering scheme will add a digit at each level.  For example, if navigation card 1.3 is 

divided into 3 smaller piles, these piles will be labeled 1.3.1, 1.3.2, and 1.3.3.  When completed, 

there should be a series of related piles, each having no more than nine cards. Every data object 

card will be listed on only one navigation card.  Once the team member is happy with the piles, 

the navigation cards can be removed and the cards shuffled.  The data object cards are then 

handed off to the next team member, if there is one, and the process starts over again.  

 It is useful to have some potential users of the site go through the sorting process as well.  

The designer should ensure that the audience groups identified earlier are still valid, and make 

any necessary corrections.  The designer should pick representatives from each audience group 

for this project. 

Once everyone has been through the sorting process, the designer needs to look at all of 

the sets of navigation cards to see whether there is some consensus.  It will most often be the 

case that different audience groups will have different navigational needs.  The designer will 

need to take the raw hierarchy of the Web Cards and mold them into a more complex, cohesive 

navigational structure, producing a final set of navigation cards.  This final set should be 

presented at another meeting to everyone working on the project.  Any differences of opinion 

should be worked out at this time.  The final navigational structure should be presented for 

signoff to whomever is making the final decisions about the project for their sign-off. 

The navigation numbering scheme should now be transferred to the top right of the data 

object cards.  A card’s number will refer to the navigational page from which will be linked.  For 

example, if a page is linked from navigational page 1.3.4, that would be its number.  These are 
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not unique identifiers; rather they show the location of the page in question.  The cards 

themselves will become part of the documentation of the project. 

 

Testing the Navigational Scheme 

Before any further development is done, the designer should test the navigational scheme 

to make sure it is workable for all likely visitors to the site.  For each audience group, the 

designer must determine what actions that they are likely to want to take on the site.  Each of 

these user actions should be turned into a standard UML Use Case Scenario.  The Use Cases will 

use the navigation scheme to determine what actions the user will need to take, and what 

response the system will have.  These Use Cases should be reviewed by the designer to make 

sure that there are no tasks that are made too complex by the existing navigational scheme.  

Navigational changes might need to be in order to made to make some of the Use Cases less 

complex.  If a change is made, all use cases that utilize the affected pages will need to be redone. 

The results of this analysis should be presented to the client along with any changes made to the 

navigation.  The Use Cases will enter into the requirements documentation for the project. 

 

WebCard Example 

Assume that Ye Olde Bookstore wants to create a Web site.  Some sample cards that they 

might create are listed in Figure 1.  The first card describes the mystery book section of the Web 

page.  The second card describes the science fiction book section of the Web site.  The numbers 

for these cards are 1.1.1 and 1.1.2, respectively.  Card 1 always refers to the main index page of 

the site.  In this example, after doing a card sort, it was determined that card 1.1 would be the 

books section of the Web site, as that is Ye Olde Bookstore’s main line of business.  Cards 1.2, 

1.3 and so on would reflect other lines of business for the shop, such as videos or CDs.  The 
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1.1.1 card below for the mystery book section would be the first listing on page 1.1, the books 

page.  Similarly, card 1.1.2 for the science fiction section would be the second listing on page 

1.1.  For both cards, the person responsible for getting the information together for the developer 

is Bob Jones.  In addition, Bob Jones is the owner of the information, meaning that only Jones 

can update or make additions to either of these pages.  (In some cases, the source and the owner 

may not be the same.) 

_____________________________________________________________ 

 
Card Title: Mystery Books Number: 1.1.1 
Description: A listing of mystery books for sale 
Source: Bob Jones Owner: Bob Jones 

Date Expected:  Date 
Received:  

 

Card Title: Science Fiction Books Number: 1.1.2 
Description:  
Source: Bob Jones Owner: Bob Jones 

Date Expected:  Date 
Received:  

_____________________________________________________________ 

Figure 1. Sample of the visual layout of two WebCards. 

 

Requirements Specification Document – The WebSRS 

The designer now should have a very good idea of what to include in the project.  It is 

time to create a formal requirement specification document.  The standard document for software 

development outside of Web applications has been the Software Requirements Specification, or 

SRS (http://kybele.escet.urjc.es/Documentos/ISI/IEEE-STD-830-1998.pdf). This document is 

often used as a legal contract between software developer and customer.  An SRS is a formal 

description of the software project and includes expected system behavior, performance, design 
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constraints, validation criteria, and any other special features of the product.  Web development 

projects should use a version of the SRS to assist in communication between the development 

team and the customer.  

IEEE Standard 830 (http://kybele.escet.urjc.es/Documentos/ISI/IEEE-STD-830-

1998.pdf) defines the SRS for traditional software development.  Starting from the IEEE 

standard, I propose to develop a Web-specific SRS format, or WebSRS, to address the unique 

needs of a Web development project.  In my interviews with Web developers, the problem of 

getting the requirements right was the number one concern for all of them.  None of the 

developers had heard of an SRS itself, but thought that a WebSRS would be a good idea.  

Several developers had created a standard requirements document, although none had the level 

of detail found in the SRS. 

Section 1 of the standard IEEE SRS is the Introduction.  This section provides a project 

overview, and includes subsections on the purpose and scope of the project.  There is also a 

subsection that presents domain knowledge by defining key terms and spelling out any 

abbreviations or acronyms used.  This section is immediately usable for Web Development.  It is 

generic enough to cover Web projects adequately.  The type of information contained in this 

section is extremely important for the success of a Web project but is often not written down.  

The more experienced developers interviewed always had the client produce a written purpose 

statement.  The less experienced developers reported that many of their projects had been based 

mostly on verbal requirements.  It was assumed that the developer and customer agreed on all 

aspects of domain knowledge.  As a project progresses, however, this often proves to be a false 

assumption. While this section of the SRS does not need modification, its importance does need 

to be stressed to the Web development community.  
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Section 2 of the standard IEEE SRS describes the environment in which the project will 

be developed and function.  This section includes subsections on such topics as user interfaces, 

product functions, and user characteristics.  These subsections will require changes in order to 

make them more useful for Web projects.  For example, it is often far more difficult to know 

who your users might be on a Web project than on a traditional software project.   

Use cases have been used on traditional project management projects, but should be 

modified for Web use.  Techniques from User-Centered Design (Lazar, 2001) can be helpful 

here.  Use cases on a Web project need to address the different audiences that could be using a 

site.  The overly graphical nature of the Web also needs to be reflected in the Use Case.  These 

modifications are minor and could be implemented easily. 

Look and feel is of paramount importance in a Web project, and product functions will 

have to address this importance.  The customer cannot just decide what the product needs to do.  

The customer must also, to some degree, decide how it is to do it.  Functions also have to be 

presented in relation to existing services.   

Developers need prototyping tools that show the user interface to the customer.  With the 

complexity of many Web pages, it is not always feasible to develop actual pages for the 

customer to look at.  Another problem with developing actual sample pages is that the client 

might believe that too much work has already been done to justify requests for changes.  In such 

cases, the client might sign off on the prototype but never be fully satisfied with the end result.    

  A related topic not dealt with in the IEEE SRS is Navigation.  The navigation scheme 

that results from the WebCard process should be added to the WebSRS.  The IEEE SRS also 

includes a subsection on constraints on the software project.  This is an important section for any 

project, but special considerations are needed for Web projects.  Is there an existing Web server 

that must be used?  Who will host the site’s pages and run the server?  What can or can’t the 
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developer do on the server?  These questions have a great potential to sink a Web project if not 

dealt with early.  A beautiful Java-based E-commerce site, for example, will be of no use to a 

company that must run .Net applications only. 

Section 3 of the standard SRS details the project’s requirements.  This section must be 

specific enough to allow the developers to design a working system.  It includes functional and 

non-functional requirements and external interfaces.  The techniques in this section will need to 

be modified to make them relevant to Web projects.  UML diagrams are often used in a standard 

SRS to show the application’s object-oriented structure.  I have found some attempts to modify 

UML for Web applications (see, for example, Conallen, n.d.); this approach, however, is too 

program-specific and thus too far removed from the navigational structure of the overall site.  A 

better approach is the enhancement of the WebCard system to include the objects that will create 

the content. Special consideration must be given to finding or developing tools that will allow the 

client to express requirements in a way that the developer will understand.  As in section 2, care 

should be taken to show both the technical requirements and the look and feel that the site must 

exhibit. 

Section 3 also contains information about security and performance requirements for the 

project.  Performance measures on the Web are mostly dependent upon network speed; thus care 

should be taken by the developer not to promise performance levels that are out of his/her hands 

to deliver.  Security, on the other hand, is a much more important area.  The security of the 

WebSRS will in general be more specific and more involved than a standard SRS, due to the 

inherent risk associated with the project being accessible via the Web.  A detailed list of what 

information is sensitive should be provided in this section, along with a security scheme to 

protect the data. Table 1 illustrates how the security section of Ye Olde Bookstore would differ 

in a standard SRS and a WebSRS. 
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Table 1 

Comparison Between SRS and WebSRS 

SRS Customers can view most Web pages without 
having to log in.  If customers want to place an 
order, they will have to create a username and 
login. 

WebSRS The server hosting the site should be in a 
secured location.  The server should be 
maintained regularly to ensure that all security 
updates are installed.  All communications 
with the server should be done through the 
secure https protocol.  All unnecessary ports 
should be closed.  Transaction processing 
should be used to ensure that only complete 
credit card transactions are processed. 

 

Section 4 of the standard SRS is for supporting information, and is less structured than 

other sections.  Anything that makes the SRS easier to understand can be included in this section.  

There is no particular Web enhancement needed for this section. 

Once the WebSRS has been completed, the client should review it.  This is a formal 

representation of what the developer plans to do for the client.  Anything that is unclear to the 

client should be explained or rewritten.  In many cases, the SRS becomes a legally binding 

contract between developer and client which fully specifies what services will be provided. If the 

WebSRS is to be used in this way, both the client and developer should consult legal advice 

before proceeding. 
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CHAPTER 4 

EXPERIMENTAL DESIGN 

 
The starting point for my experimental design was pre-project interviews with several 

Web designers.  I discussed with them the techniques they used to get requirement information 

from their clients.  As part of this process, I discussed the problems that I myself had 

encountered as a Web developer in order to see whether they have had similar difficulties.  

Everyone I talked to had experienced problems in the same areas, such as getting the client to tell 

them what s/he wanted the Web site to do, lack of a commitment to provide needed materials in 

a timely fashion, lack of a commitment of necessary resources to get the job done, and a general 

lack of a shared vocabulary between client and developer in order to discuss what needed to be 

done.  This, along with a search of the computer science literature, convinced me that I was 

identifying a widespread problem in need of a solution. 

Difficulty of Testing 

The testing of a methodology can be difficult to accomplish.  To obtain a true test of the 

methods contained in my proposed Web methodology, two Web development teams with equal 

skills would need to be deployed to the same, or at least very similar, clients.  One team would 

use a more traditional approach to Web development.  The other team would use the proposed 

new methodology.  Interviews could then be conducted to determine which group produced the 

better end results.  I attempted such an approach with students of a Web Programming class that 

I taught at Northeast State Technical Community College in Fall 2003.  I asked a faculty member 

who was planning to implement a Web site for the faculty senate to act as client.  I divided the 

class of eight students into two teams.  The first team was instructed to use traditional 

techniques, such as finding similar Web sites to show the client, and asking him or her what s/he 

would like to see in a Web page.  The second team was instructed to use the extended WebCard 



 31 

system to elicit requirements.  The teams were instructed not to communicate with each other.  

The faculty member was instructed to disregard what he had heard from Team Number One 

when Team Number Two arrived.  Unfortunately, the faculty member already had a very good 

idea of what he wanted, which was confirmed by team one showing him some Web sites.  By the 

time Team Number Two arrived, his mind was already made up, and thus he had no interest in 

completing any cards. 

This aborted attempt shows the difficulty in testing this kind of methodology.  It is nearly 

impossible to create teams of equal skill.  Further, it is difficult to use the same client more than 

once.  If the client hears a good idea from one group, s/he likely cannot just forget it.  Another 

problem in testing this approach is that it is best suited to large projects.  I could find no one 

willing to allow me to test my methodology on his or her real-life Web projects.  Obviously, 

alternate means of testing needed to be developed.  The annotated portfolio method, however, 

did lend itself to objective testing. 

Annotated Portfolio Experiment 

The annotated portfolio is designed to inform a relatively naive Web user of some of the 

features that can be incorporated into a Web page.  It also creates the basis for a shared 

vocabulary to allow clients and developers to communicate more effectively with each other.  

Thus, it was not mandatory to find actual clients willing to take the time to look at an example of 

an annotated portfolio.  Any supply of relatively naive Web users would show the efficacy of the 

method.  In the spring of 2004, I was teaching three sections of an Introduction to Computers 

course, intended for the general first-year community college student.  Over 70 students were 

enrolled in these three classes.  I created a sample annotated portfolio, which can be viewed in 

Appendix B.  I also created a test to determine whether the students were familiar with various 

Web terms and features.  Each class first was given the examination as a pre-test in order to see 
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what knowledge they possessed before viewing the annotated portfolio.  Then they were shown 

an online version of the portfolio which allowed them actually to follow the links in order to see 

what the features looked like.  They were allowed to view the portfolio with no other 

instructions.  They were then given the examination again as a post-test in order to determine 

what knowledge they gained by the viewing the portfolio. 

Other Techniques 

In an effort to obtain some feedback on the methodology as a whole, I created a Web site 

(http://cscilinux.northeaststate.edu/research/) that explained all of the methods described in this 

methodology.  There were sections on creating an annotated portfolio, creating and using 

WebCards, tracking the creation and delivery of content items, determining navigational design, 

and creating a WebSRS.  There was also a feedback form that asked the viewer for input on each 

of the sections individually, and on the methodology as a whole. 

Announcements of the availability of this Web page and feedback form were posted on 

several mailing lists that cater to Web developers.  In addition, I contacted several Web 

developers to whom I had spoken to prior to initiating this project, to get their feedback. 
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CHAPTER 5 

RESULTS 

Annotated Portfolio Experiment 

To test the effectiveness of the Annotated Portfolio method, I created an examination to 

test the students’ prior knowledge of various Web design features. A copy of this examination 

can be found in Appendix D.  I also created a sample annotated portfolio that discussed the 

material found on the quiz, and pointed to some examples of Web pages that show the given 

feature in use.  This annotated portfolio is available online at 

http://northeaststate.edu/research/portfolio.html.  On April 7 and 8, 2004, 42 students in an 

introductory Computer Concept class at Northeast State Technical Community College were 

given the examination.  The students were informed that the examination was optional, and 

would in no way affect their grade in the course.  The students then were instructed to go through 

the annotated portfolio and follow the provided links.  After viewing the portfolio, students were 

then instructed to take the examination again.  The before and after quizzes for each student were 

marked with either a B for the pre-test or an A for the post-test and then stapled together. 

The average score for the quizzes taken before viewing the portfolio was 14%, with a 

high score of 67% and a low score of 0%.  Many students were able correctly to identify the 

difference between an Intranet and a Public site.  The average score after viewing the portfolio 

increased to 86%, with a high score of 100% and a low score of 33%.  Every student who took 

the examination had an increased score after viewing the portfolio.  The average increase was 

71%. 
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Methodology Review 

To test the rest of the methodology as a whole, I created a Web site 

(http://cscilinux.northeaststate.edu/research) that explains all of the various parts of the 

methodology.  The site includes a feedback form on which viewers of the site can give their 

opinions of the different tools in the methodology.  The results from the feedback form are stored 

in a database for review.  I then advertised the Web site on several mailing lists that deal with 

Web development issues. 

Twenty people took the survey from June 1, 2004 to September 1, 2004.  Experienced 

designers were targeted.  The average amount of experience in Web design reported by the 

participants was 4.1 years, with a low response of one year and the most common response of 5 

years.  The next section of the survey asked for information about the users’ background. Sixty-

five percent of the respondents reported they had a programming background, 35% a graphics 

background, 25% a technical writing background, and 20% an education background.  Twenty 

percent of the respondents selected only the Other category for background. 

The next section of the feedback form asked if the respondents were currently using a 

formal requirements gathering system.  Only 35% responded that they were using a formal 

system.  Some comments indicated that many respondents have developed their own informal 

systems to gather requirements. 

The respondents were then asked if they had any intentions of trying the methodology.  

Eighty percent of the respondents reported that they were planning to implement some of the 

methods described. 

The final section of the feedback form allowed the users to give impressions of the 

usefulness of the overall methodology, as well as of each individual method.  The choices for 
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each were Poor, which was coded as a 1; Fair, coded as a 2; Useful, coded as a 3; Very Helpful, 

coded as a 4, and Excellent, coded as a 5. 

Response on the usefulness of the overall methodology ranged from one 2 (Fair) to three 

5's (Excellent).  The average score for this question was 3.6, a little more than half way between 

Useful and Very Helpful.  Of the individual methods, the content management system and the 

WebSRS were the most popular, each averaging a 3.8.  The WebCard method followed closely 

at a 3.65 average.  The annotated portfolio was least popular with the respondents, but still 

averaged a respectable 3.55. 

There was also a section on the feedback form for comments.  Six of the twenty 

respondents added comments.  Four of the comments were in general agreement with the 

methodology.  One comment suggested that the methodology was most useful for small static 

sites, quite the opposite of the proposed use of the methods.  For larger projects, the responder 

suggested simply using UML.  The last comment questioned the business logic of my 

methodology.  In this long comment, the responder explained that the business model that s/he is 

working from involved a prepackaged content management and e-commerce system.  In the 

responder’s opinion, the client should know what they want, and be responsible for providing 

that information to the developer.  
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CHAPTER 6 

CONCLUSION  

Overall, my Web design methodology was successful with most of the developers who 

looked at it.  I was surprised by the interest expressed by some smaller Web developers, as my 

intent was to develop a methodology for large Web site.  I was also surprised that there are some 

large Web design firms that sell content management solutions.  These are prepackaged software 

applications that allow clients to modify their own sites.  Much less requirement gathering is 

needed with this types of site, although it is less flexible in terms of what can be done with the 

sites. 

The results from the annotated portfolio experiments were conclusive, with the average 

user experiencing a 71% increase in their scores after viewing a sample annotated portfolio.  It 

was somewhat surprising, then, that the annotated portfolio was least popular among the Web 

developers completing the feedback form.  It could be that the perceived difficulty of preparing 

such a document for each client was a limiting factor. 

The methods introduced in this paper need to be tested more thoroughly.  Plans are in 

process to use this methodology on some actual Web projects to see how they perform in the 

field.  There are also plans to contact some of the developers who took the survey to see if they 

have actually implemented any of the methods. 

Further development is also needed to produce an automatic prototype of the Web site to 

be generated by the content management system.  Time and resources were insufficient to add 

this to the current project. 
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APPENDICES 

Appendix A 

Seven Categories of Web Applications 

Category Examples 

Informational Online newspapers, product catalogs 

Interactive Registration forms, online games 

Transactional Electronic shopping, online banking 

Workflow Online planning, inventory systems 

Collaborative Work Environments Distributed authoring systems 

Online Communities, Marketplaces Chat groups, online auctions 

Web Portals 
  

 

(Ginige and Murugesan, 2002)
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Appendix B 

Research Web Pages Posted for Comment 

Web Requirements Research Page 

This page contains a requirement elicitation methodology for Web Development. Please select a 
link below to find out more information about the various tools in the methodology. 
Please be sure to fill out the feedback form. Your experiences with the techniques will allow me 
to make needed improvements.  
User Education 

• Annotated Portfolio  
Developer Education 

• Gaining Domain Knowledge  
Content Gathering 

• Creating Webcards  
Navigation Design 

• Sorting the Cards  
• Creating a Prototype  

Content Management 
• Tracking content acquisition  

Requirements Specification 
• Creating a WebSRS  

Feedback 
(cscilinux.northeaststate.edu/research/index.html)
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Annotated Portfolio 
Educating the Client 
One way to educate a client about the Web is to give them an annotated portfolio. This portfolio 
is a Web page that contains descriptive links to different Web site features that show examples 
from different categories of sites.  
The client should be shown features from static brochure-ware sites and from complex e-
commerce applications. Typically, the portfolio will contain links to both sites created by the 
developer and by others. The designer should keep an updated list of good sites, sorted by 
feature. The designer should also search for organizations that are similar in scope to the client's. 
The first step in developing the annotated portfolio is to determine which features the client may 
need on their Web site. This features list should range outlide any preconceived ideas that the 
developer has about what the client may need. 
The only features to be excluded are those that, in the opinion of the developer, would be 
inappropriate for the client's site. Once the list of features is set, the designer needs to find good 
examples of each. The portfolio is more than a list of links. It should first explain what the 
feature is and how it can be used. Further instruction should be given on what the client should 
look for while viewing the example page. 
The portfolio should then open the linked page in a new, smaller window, so that the client does 
not lose track of what they are supposed to be doing. Each link should describe only the page it is 
linking to. If the designer wants to point to more than one feature of a given Web site, it should 
be done through separately explained links. 
Some features to show the client could include an informational page about the client 
organization, a product catalog, some detailed product or service information, and a shopping 
cart. If appropriate for the site, the portfolio may also include chat or other interactive features 
such as a blog. 
The designer should never show a client a poorly designed feature or site, as the client may not 
see it as bad and actually want to implement the feature. Flashy, overly animated sites often 
appeal to clients, but not to designers. 
The finished portfolio should be shown to anyone at the client organization who has an interest 
in the project. 
 
(cscilinux.northeaststate.edu/research/annotated.html)
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Sample Annotated Portfolio 

The purpose of this document is to acquaint you with the different Web features available when 
designing a Web site. Each section contains a brief description of the feature, and many have a 
Example to a Web page that implements the feature. The Web pages will open in a new window. 
Types of Web Pages 

• Public - Available to anyone.  
• Intranet - Run on a private network. Available to members of certain companies or 

groups only. Used for communications between business partners, or between companies 
and their suppliers.  

• Extranet - Users must have a username and password to access the page.  
Navigational Structure 
There are several navigation structures that a Web site can have.  

• Narrow Tree - Only a few choices on each page. Easier for the user to navigate, but 
requires more keystrokes to get to the content. 
Example  

• Wide Tree - Many options per page. Can be confusing to the user, but gets them to the 
content in the fewest number of clicks. 
Example  

• Full Mesh - Every page is linked to every other page. This only works on relatively small 
sites.  

Access Options 
On some Web pages, a user can directly access any page on the site. This is known as a porous 
site. This makes it easy for the user to bookmark a favorite page. 
Another option that allows for more control is to limit the pages that a user can enter on. Then 
the owners of the site can be assured that the user has some needed information before 
proceeding. If only one entry page is possible, the site is said to be solid. If more than one entry 
point is possible, the page is said to be semi-porous. 
Form 
A Form can be used to obtain feedback from the user. The information entered on this form can 
either be mailed to you, or it can be used to update a database. 
Example 
Product Catalog 
If your business has products, you can put them in an online catalog. An online catalog lists your 
products by category. Under each category, there is a list of products. Each product name can be 
clicked on to provide more information to the user. 
Example An Introduction to Web Features 
The purpose of this document is to acquaint you with the different Web features available when 
designing a Web site. Each section contains a brief description of the feature, and many have a 
Example to a Web page that implements the feature. The Web pages will open in a new window. 
Types of Web Pages 

• Public - Available to anyone.  
• Intranet - Run on a private network. Available to members of certain companies or 

groups only. Used for communications between business partners, or between companies 
and their suppliers.  

• Extranet - Users must have a username and password to access the page.  
Navigational Structure 
There are several navigation structures that a Web site can have.  
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• Narrow Tree - Only a few choices on each page. Easier for the user to navigate, but 
requires more keystrokes to get to the content. 
Example  

• Wide Tree - Many options per page. Can be confusing to the user, but gets them to the 
content in the fewest number of clicks. 
Example  

• Full Mesh - Every page is linked to every other page. This only works on relatively small 
sites.  

Access Options 
On some Web pages, a user can directly access any page on the site. This is known as a porous 
site. This makes it easy for the user to bookmark a favorite page. 
Another option that allows for more control is to limit the pages that a user can enter on. Then 
the owners of the site can be assured that the user has some needed information before 
proceeding. If only one entry page is possible, the site is said to be solid. If more than one entry 
point is possible, the page is said to be semi-porous. 
Form 
A Form can be used to obtain feedback from the user. The information entered on this form can 
either be mailed to you, or it can be used to update a database. 
Example 
Product Catalog 
If your business has products, you can put them in an online catalog. An online catalog lists your 
products by category. Under each category, there is a list of products. Each product name can be 
clicked on to provide more information to the user. 
Example  
Shopping Cart 
A shopping cart is an essential feature if you want users to be able to buy products online. A 
shopping cart should allow users to add items to their cart as they move through your product 
listing. Basic features are the ability to add and remove items, change the quantity, and proceed 
to the checkout phase when finshed shopping. 
Shopping carts come in several styles. Look at the examples below to see which style might suite 
your type of business.  

• Example 1  
• Example 2  

Blogs 
Blogs are a way to allow people to create an online journal. In a commercial setting, a blog could 
be used to highlight the uses of products. For example, if you have a outdoor equipment online 
shop, you may want to have a blog where employees tell of their outdoor adventures using the 
products. 
Example 
User Supplied Comments 
User supplied comments can come in two flavors. The first is to allow user reviews of your 
products. Scroll to the bottom of the page after following this Example to see some customer 
reviews. 
Example 
The other variety lets the user make comments at the end of each page. Scroll to the bottom of 
the page after following this Example to see the comments. 
Example 
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Shopping Cart 
A shopping cart is an essential feature if you want users to be able to buy products online. A 
shopping cart should allow users to add items to their cart as they move through your product 
listing. Basic features are the ability to add and remove items, change the quantity, and proceed 
to the checkout phase when finshed shopping. 
Shopping carts come in several styles. Look at the examples below to see which style might suite 
your type of business.  

• Example 1  
• Example 2  

Blogs 
Blogs are a way to allow people to create an online journal. In a commercial setting, a blog could 
be used to highlight the uses of products. For example, if you have a outdoor equipment online 
shop, you may want to have a blog where employees tell of their outdoor adventures using the 
products. 
Example 
User Supplied Comments 
User supplied comments can come in two flavors. The first is to allow user reviews of your 
products. Scroll to the bottom of the page after following this Example to see some customer 
reviews. 
Example 
The other variety lets the user make comments at the end of each page. Scroll to the bottom of 
the page after following this Example to see the comments. 
Example 
 
(cscilinux.northeaststate.edu/research/portfolio.html)
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Gaining Domain Knowledge 

In designing the annotated portfolio, the developer has taken the first step in gaining some 
domain knowledge about the client organization. When looking at sites of similar organizations, 
he or she will gain some understanding of how other businesses in the client's field do their 
work. 
While a good start, this is not sufficient. In order to create an effective Web site, the developer 
must know the business context in which the site will operate.In the traditional methods of Web 
development, the designer is often advised to gather from the client all brochures and ads they 
have produced, along with any forms used in the day to day business. 
To more fully understand the client organization, the developer needs to spend some time at the 
organization. See how the employees interact with customers. Note the work flow. The time 
spent is this phase will help eliminate communication problems between client and developer.  
 
(cscilinux.northeaststate.edu/research/domain.html)
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WebCards 

Purpose: The purpose of the WebCards Method is to determine what content to include on a Web 
page. The method also helps determine an effective navigational structure. 
 
Gathering the Content 
 
All content is to be placed on 3x5 cards. Each card should have separate sections for the title, 
content, source of the content, who maintains the conent, whether the page will change based on 
user input, and connections to other pages. 

• Title - What the page is to be called  
• Content - What information the page will hold  
• Source - Who provides the information  
• Maintained by - Who owns the info and has the responsibility to update  

Every type of information to be found on the page should be on a separate card. For example, if 
you wanted to include a profile of each employee on the Web site, you would create one 
Employee profile card. The card would contain all of the information that you want on the page. 
Be careful here. These cards should contain indivisible units of info. Don't clump too much 
together. The information on one card should be the content of one Web page. 
Some methods to use to generate content 

• Brainstorming  
• Viewing existing Web site  
• Talking to potential users of the site  

Several people can generate cards. When all of the cards are completed, the development team 
needs to go though each card to find duplicates, and generally pare down the number of cards. 
Some cards may be moved to a future features pile. The end result of this meeting is a set of 
cards that shows all of the types of pages that are going to be on the site. These cards are known 
as the Site Content Deck (SCD). 
 
(cscilinux.northeaststate.edu/research/webcard.html)
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Sorting the Site Content Deck 

Shuffling the Deck 
The next step in the process is to divide the SCD into separate piles. Each team member should 
have a turn at this. The goal is to divide the SCD into 5 to 9 piles by placing related cards 
together. Once the user is happy with the piles, a new card should be added to the top of the stack 
that describes the whole pile. This is a navigation card. The navigation level of the card is 1. If 
possible, navigation cards should be a different color than content cards. 
If there are more than 9 cards in a pile, repeat the above process, incrementing the navigation 
level for each new navigation card. 
When you are happy with your piles, write the titles of all sub-piles on each navigation card. 
Pull out the navigation cards. Shuffle the deck and pass it on to someone else for them to do the 
same. 
Finalizing the Navigation 
When everyone has had a chance to create a navigation scheme, have another meeting. Everyone 
should bring their navigation cards to see how they compare. Go through the navigation to which 
scheme or combination of schemes works best. Create one set of navigation cards. 
The navigation cards function as a paper prototype, and can be used to complete use cases on the 
site. 
Expanding the WebCards method 
If you are working on a more complex site, it may be useful to add programming information on 
the cards, such as what program, object or bean provides information for the page, or what 
database it is coming from. 
 
(cscilinux.northeaststate.edu/research/sorting.html)Content Tracking 

One of the biggest hurdles in creating a Web site is keeping track of the content. Exactly what 
content will be needed? Who will provide the content, the developer or the client? When will the 
content be delivered? What format will the content be in? Who will provide updates to the 
content? 
To handle content, you need to create a content matrix. This can be as simple as a spreadsheet 
where you can keep track of all content on a project. Here is an example: 
 

Name Description Provided By Owned 
By Format 

Date 
Expecte
d 

Date 
Receive
d 

Company 
Logo 

Main Company 
Logo Julie Smith Julie 

Smith GIF 10/5/03 11/5/03 

 
From this brief listing, you can easily see that the Logo was delivered a month later than 
expected. By using a content matrix, you can see easily what content you have, and what content 
is still to be delivered. 
Using a content matrix has the additional benefit of making clear who is responsible for 
developing content. I have been on more than one job where I was expecting the client to provide 
some important content, while they were expecting me to produce it. The content matrix should 
be given to the client along with a proposal just to make sure that everyone understands the 
project. 
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If possible, the content matrix should be posted online somewhere, so that all concerned parties 
can see it as it is updated. It is possible to create a database application to track content for you. 
Example of a Content Matrix Program 
There are several advantages to an online database content management system. If designed 
well, the system will be easy to update. Also, everyone involved will be able to see the current 
content status. Features can be added to the system relatively easily. 
 
(cscilinux.northeaststate.edu/research/tracking.html) 
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Creating the WebSRS 
 
Why have a requirements document? 
Web projects are often complex. To insure the success of the project the Designer should take 
pains to ensure that they are creating the Web site that the client expects. One way to ensure that 
everyone is on the same page is for the designer to create a formal requirements document that 
details exactly the site to be produced. The client should then review the requirements document, 
and sign off on it before work proceeds. 
Requirements document could be very simple, if the Web site to be produced is not overly 
complex. It could be nothing more that an agreed upon list of what features the site will contain. 
The requirement document could also be much more complex. If the site is large, or if it includes 
advanced features such as a shopping cart, the requirement document has to be through enough 
to cover the complexity of the site. 
Traditional computer programming jobs have long relied on the Software Requirements 
Specification (SRS) format. The IEEE maintain the standard template for the SRS (830-1993). 
Web site design differs from traditional software engineering, so I am suggesting the 
developement of a WebSRS, that modifies the traditional SRS to make it more useful for Web 
Design.  
Sections of the WebSRS 

1. Introduction  
2. Overall Description  
3. Specific Requirements  

 
(cscilinux.northeaststate.edu/research/websrs.html)
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WebSRS Section 1 - Introduction  

The first section of the WebSRS provides a general overview of the project. What is the purpose 
of the Web site? Is the Web site being designer to sell products, provide information, create 
goodwill? 
This short, usually informal section is very important for the success of the project. If the client 
and developer have disagreements on the purpose of the site, a successful development project is 
impossible. 
This section can be divided into 4 subparts: 
1.1 Purpose 
What is the goal of the Web site 
1.2 Definitions 
How are certain terms defined in the document. Terms could include "client" and "developer" 
along with any technical terms. 
1.3 Overview 
A broad view of the Web site and what if offers 
1.4 Copyright 
A statement as to who owns the resulting code. 
(cscilinux.northeaststate.edu/research/srsIntro.html)
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WebSRS Section 2 - Overall Description  

This section provides an overall description of the Web site. It is divided into 4 sections. 
2.1 Server Specifications 

• Who will provide the Web hosting  
• What Web server will be run  
• What operating system will the server use  
• What type of access will the developer have and for how long.  

2.2 Major Web Site Functions 
This section will have sub-points (2.2.1, 2.2.2, etc.) that give an overview of the major functions 
of the Web site. 
2.3 User Characteristics 
This section will describe the different groups of users that will visit the site, along with the type 
of knowledge of the client and the Internet that the members of each group can be expected to 
have. 
2.4 System Constraints 
This section will describe what markup, scripting and programming languages can be used on 
the site. 
2.5 Security 
What security measures will need to be taken on this Web site? What areas of the site should 
require authentication? 
(cscilinux.northeaststate.edu/research/srsDesc.html)
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WebSRS Section 3 - Specific Requirements  

This section provides more details about the Web Site. It is broken up into 4 Subsections 
3.1 Function Detail 
Each function is described in detail 
3.2 Database Requirements 
Any database needs are described. 
3.3 Maintenance 

• Who maintains the site?  
• How much maintenance will the developer provide once the job is done?  
• Is a cost for maintenance part of this agreement?  

 
(cscilinux.northeaststate.edu/research/srsReq.html)
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Appendix C  

Sample WebSRS 

WebSRS for Ye Olde Bookstore 
 
Section 1 – Introduction 

 
1.1 Purpose 
  
Ye Olde Bookstore specializes in antique and hard to find books. The purpose of the Web site for 
Ye Olde Bookstore is to provide customers an easy way to see what the store has to offer.  
Currently, you have to travel to the bookstore or call.  The Web site should allow those not 
within driving distance of the store to be able to order books online. 
 
1.2 Definitions 
 
Store – refers to Ye Olde Bookstore 
Developer – refers to Fly-By-Night Web Developers 
 
 
1.3 Overview 
 
The Ye Olde Bookstore Web site will be a place for book lovers to look for out-of-print and hard 
to find books.  The Web site will allow the customer to search for books or display books by 
category.  If a visitor finds a book they like, they will be able to order it online.  If the book is not 
in stock, the client can asked to be informed if the book becomes available later. The customer 
should also be able to sign-up for a weekly newsletter of new books received. 
 
1.4 Copyright 
 
The developer assumes that Ye Olde Bookstore has a clear copyright to all information provided 
to them.  The resulting Web site and all associated Web pages, programming and graphics will 
become the property of  Ye Olde Bookstore upon payment to the developer of all fees owed. 
 
Section 2 – Overall Description 

 
2.1 Server Specifications 
 
The site will be hosted by RackSpace.  The developer is not responsible for the setup or 
maintenance of the server.  The server will be running an Apache Web server under the Red Hat 
Linux operating system.  The developer will have ftp access to the server during the development 
phase of the project. 
 
2.2  Major Web Site Functions 
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2.2.1  Browse for books 
The Web site should allow the customer to search for book title, author or keyword.  The 
customer should also be able to search by category. 
 
2.2.2  Shopping Cart  
The Web site should have a shopping cart feature to allow the customer to place an order. 
 

1. Newsletter signup 
 The customer should have the option to sign up for a weekly newsletter about new arrivals. 
 

2. Notification Service 
The customer should be able to request Ye Olde Bookstore to contact them if a desired book 
becomes available. 
 

2. User Characteristics 
 
Customers – Members of the general public.  No prior knowledge of the bookstore industry or of 
the Ye Olde Bookstore can be assumed.  Customers are only expected to have a cursory 
knowledge of the Internet. 
 
Employees – Employees are assumed to be familiar with the store and its policies.  Employees 
are further expected to be familiar with the Web site.  Some training for new employees will be 
necessary, but will not be provided by the developer.  Documentation and training materials will 
be provided by the developer. 
 
Management – Management of the store can be assumed to be knowledgeable about the store 
and the Web site.  Managers are assumed to have an intermediate knowledge of the Internet.  
Initial training for managers, along with documentation, is to be provided by the developer. 
 
2.4 System Constraints 
 
The Web site has to operate on the Web server rented from RackSpace.  The Web site can use 
HTML, XML, PHP, and the MySQL database program. 
 
3.0 Specific Requirements 

 
3.1 Function Details 
3.2 Database Requirements 
 
3.2.1 Book Catalog – A database of books with keywords 
3.2.2 Customers – A database of customer information 
3.2.3 Employees – A database of employee information 
3.3 Maintenance 
The developer is responsible for producing, testing and uploading a Web site that meets the 
requirements specified in this document.  Any further changes to the system are outside of the 
scope of this document. 
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3.4 Security 
The database needs to be secure against unauthorized changes.  The shopping cart needs to 
protect the private information of the customer, including Credit Card information. 
 
Attachment  A – Content Matrix 

 
Name  Description Provide By Owned 

By 
Format Date 

Expected 
Logo Ye Olde 

Bookstore Logo 
Fred Murtz Bill Smith GIF 08/23/04 

Photos 3 or 4 shots of the 
store 

Bonnie 
Jones 

Bill Smith JPEG 07/05/04 

Books List of all books 
in catalog 

Mindy 
Michaels 

Roger 
Exum 

Comma 
Delimited 

08/06/04 

Users List of employees Kay Shay Bill Smith Text 08/17/04 
 
If information is not received by the developer by the date expected, the project completion date 
could be delayed. 
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Attachment B – Screen Shot of Search Box 
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Appendix D 

Annotated Portfolio Test 

An Introduction to Web Features 
 

• Explain the difference between a public Web site and an Intranet.  When might you use 
one over the other? 

 
 

• What is a full mesh, and when can it be used? 
 
 

• What is a solid Web site?  Why would you make a Web site solid? 
 
 

• What Web feature allows you to get feedback from the user? 
 
 

• What is a blog? 
 

What features would you need if you want to allow users to purchase items from your 

site?
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GLOSSARY 

E-commerce -- The conducting of business communication and transactions over networks and 

through computers. As most restrictively defined, electronic commerce is the buying and 

selling of goods and services, and the transfer of funds, through digital communications.  

IEEE-- Institute of Electrical and Electronics Engineers. The world's largest technical 

professional society, based in the USA.  The IEEE sponsors technical conferences, 

symposia and local meetings worldwide, publishes nearly 25% of the world's technical 

papers in electrical, electronics and computer engineering and computer science, provides 

educational programs for its members and promotes standardization.  

Prototyping -- The creation of a model and the simulation of all aspects of a product.  Some 

prototypes offer the end-user the ability to review all aspects of the user interface and the 

structure of documentation and reports before code is generated. 

Software Engineering -- A systematic approach to the analysis, design, implementation and 

maintenance of software. 

UML -- Unified Modeling Language. A non-proprietary, third generation modeling language.  

The Unified Modeling Language is an open method used to specify, visualize, construct 

and document the artifacts of an object-oriented software-intensive system under 

development. 

Web application -- An application program that is designed to be accessed from a Web page. 

Web Engineering -- Applying the techniques of software engineering to Web development 

projects. 

Web project -- A software design project that will be accessed through the World Wide Web. 

Web site -- All of the Web pages and associated files that make up the Web presence of one 

organization or entity. 
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