
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

5-2004

A Vulnerability Assessment of the East Tennessee State A Vulnerability Assessment of the East Tennessee State

University Administrative Computer Network. University Administrative Computer Network.

James Patrick Ashe
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ashe, James Patrick, "A Vulnerability Assessment of the East Tennessee State University Administrative
Computer Network." (2004). Electronic Theses and Dissertations. Paper 858. https://dc.etsu.edu/etd/858

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fetd%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

A Vulnerability Assessment of the East Tennessee State University Administrative
Computer Network

A thesis

presented to

the faculty of the Department of Computer and Information Sciences

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer Science

by

James P. Ashe

May 2004

Dr. Phillip E. Pfeiffer, IV, chair

Dr. Gene Bailey

Dr. Qing Yuan

Keywords: network security, system security, security audit, nmap, nessus

Abstract

A Vulnerability Assessment of the East Tennessee State University Administrative
Computer Network

by

James P. Ashe

A three phase audit of East Tennessee State University’s administrative computer

network was conducted during Fall 2001, Spring 2002, and January 2004. Nmap

and Nessus were used to collect the vulnerability data. Analysis discovered an

average of 3.065 critical vulnerabilities per host with a low of 2.377 in Spring 2001

to a high of 3.694 in Fall 2001. The number of unpatched Windows operating

system vulnerabilities, which accounted for over 75% of these critical

vulnerabilities, strongly argues for the need of an automated patch deployment

system for the approximately 3,000 Windows-based systems at ETSU.

2

Contents

 page

Abstract 2

List of Tables 5

List of Figures 6

Chapter

1. Introduction 7

2. Related Work 11

 2.1. Security Threats and Security Auditing Tools 11

 2.1.1. Security Threats 11

 2.1.2. Security Auditing Tools 12

 2.1.2.1. Nmap 13

 2.1.2.2. Nessus 15

3. Research Methodology 21

4. Data Analysis 26

 4.1. Most Vulnerable Ports 27

 4.1.1. Port 139 Vulnerabilities 31

 4.1.1.1. Privilege Elevation vulnerabilities 32

 4.1.1.2. Writeable Service vulnerabilities 34

 4.1.1.3. Readable Service vulnerabilities 35

 4.1.1.4. Denial of Service vulnerabilities 36

 4.1.1.5. Information Disclosure vulnerabilities 39

 4.1.1.6. Port 139 vulnerabilities summary 40

4.1.2. Port 80 Vulnerabilities 41

 4.1.2.1. Privilege Elevation vulnerabilities 41

 4.1.2.2. Writeable Service vulnerabilities 43

 4.1.2.3. Readable Service vulnerabilities 44

3

 4.1.2.4. Denial of Service vulnerabilities 44

 4.1.2.5. Information Disclosure vulnerabilities 46

 4.1.2.6. Port 80 anomalies 46

 4.1.2.7. Port 80 vulnerabilities summary 47

4.1.3. Port 21 Vulnerabilities 47

4.1.4. Port 25 Vulnerabilities 49

 4.2. Spring 2004 and Spring 2002 50

4.2.1. Spring 2004 Summary 52

 4.2.1.1. Port 8083 53

4.2.2. Spring 2004 and Spring 2002 comparison 54

5. Conclusion 59

 5.1. Conclusions 59

 5.2. Avenues for Research 61

 5.2.1. ETSU Domain Password Policy 61

 5.2.1.1. LC4 61

5.2.2. Software Update Services 64

5.2.3. Systems Management Server 66

 5.2.3.1. Inventory 67

 5.2.3.2. Deployment 69

 5.2.3.3. Diagnostics and Troubleshooting 70

References 72

Appendices

 Appendix A. Terms and Definitions 77

 Appendix B. nsrparser source code 81

Vita 105

4

List of Tables

Table page

1. Percent change in critical vulnerabilities, Fall 2001 and Spring 2002 31

2. Summary of port 139 vulnerabilities by classification 40

3. Summary of port 80 vulnerabilities by classification 47

4. Summary of port 21 vulnerabilites by classification 49

5. Summary of port 25 vulnerabilities by classification 50

6. Percent change in critical vulnerabilities, Spring 2002 and Spring 2004 55

7. Average vulnerabilities by type, Fall 2001, Spring 2002 and Spring 2004 58

5

List of Figures

Figure page

 1. Top twenty ports by critical vulnerabilities, Fall 2001 29

 2. Top twenty ports by critical vulnerabilities, Spring 2002 30

 3. Top twenty ports by critical vulnerabilities, Spring 2004 52

 4. Top attacked ports per day by number of distinct attack sources 57

 (source: Internet Storm Center –

 http://www.incidents.org, January 30, 2004)

 5. LC4 (not reporting cracked password) 64

 6. Microsoft System Information MMC snap-in 68

6

Chapter 1

Introduction

The security of a university’s computing network is important to that

university’s faculty, staff and students. A university’s educational processes are

hindered and its students, and faculty and staff are inconvenienced when

network services or system services become unavailable. In addition, when

networked records are not secured, sensitive information such as personal

student information can be retrieved and made public.

Network security refers to the application of systems security to a

connected network of systems. System security is the incorporation of standard

security measures into computing. Security is defined as measures adopted by

organizations to prevent espionage, sabotage, attack or other crime

[AmHeritage]. According to Farmer and Spafford,

To make a system secure means to protect the information from

disclosure; protecting it from alteration; preventing others from

denying access to the machine, its services and its data; preventing

degradation of services that are present; protecting against

unauthorized changes; and protecting against unauthorized

access [Farmer1].

Attacks upon network security include non-technological threats like

unwarranted physical proximity and sabotage, and technological threats like

Internet worms, hacking, computer viruses, wiretapping, and espionage.

Technological threats can be further categorized as direct network-based

attacks or automated attacks. Direct network-based attacks include attempts

to learn information about a network or gather information stored in a

networked system. Automated attacks include programs or scripts that, once

7

released into a networked environment, attack vulnerable systems in that

environment.

This thesis is concerned with the use of security audits to assess the

vulnerability of university computer systems and networks. A security audit

examines systems on a local area network to detect “holes” that may be

exploited by malicious people. Such holes include physical intrusion, abuse of

privilege by legitimate users, and software vulnerabilities.

This work took the form of an investigation of the security of the East

Tennessee State University administrative computer network. Motivated by a

major system compromise, a previous study of the ETSU administrative network

activity sought to determine the types, severity, and number of potential attacks

an academic network would experience over a period of time [Cui]. Over a six

month period between October 2000 and March 2001, a large percentage of

the total incoming network traffic was captured and further analyzed. This

research recorded a range of two-hundred thousand to two million attack

packets per day, involving port scans, denial of service attacks, and various

attempts to exploit known system vulnerabilities. Cui’s research raised the

question that this research attempted to address: ‘If the ETSU network

environment is not protected, and attacks happen daily, what is the state of

ETSU security?’

 This research sought to determine the susceptibility of the ETSU

administrative computer network to attack. East Tennessee State University, a

moderate size regional university with approximately 11,250 students and 3,000

staff and faculty, controls a single class B Internet address space

(151.141.0.0/16). Approximately 3,600 Internet addresses on this network are in

active use.

ETSU has two distinct computer networks. One network, which is excluded

from this study, connects student dormitories with one another and the Internet.

Computers on this network, which receive private internet addresses in the

8

192.168.x.y range, are only directly reachable by other ETSU student network

systems, and therefore not vulnerable to attacks originating from the ETSU

administrative network or the Internet. The other network, the administrative

network, connects all administrative buildings, computer labs and classrooms

with one another and the Internet. Systems on the ETSU administrative network

are assigned a 151.141.x.y Internet address and are directly accessible by any

computer on the Internet.

The audit was carried out in three phases during the Fall 2001, Spring 2002

and Spring 2004 semesters. A full network audit was conducted during the initial

two phases using the Nmap and Nessus security auditing tools. The third phase

was a partial network scan in Spring 2004 to gauge the degree to which earlier

observations had changed.

Each scan attempted to balance the need to gather data with the need

to accommodate normal network operation. Tests that would have involved

attempted denial of service attacks were avoided. Tests of systems that were

known to have personal firewalls were skipped, to avoid alarming users.

Scans were also done in a way that attempted to account for computer

downtime. Under ideal circumstances, all systems would have remained

connected to the network at all times. This was true of some computer systems,

such as laboratory systems, network equipment and servers. Most systems, such

as administrative workstations, are suspected to be shut down on a nightly basis.

Accordingly, rescans of unreachable hosts were used to increase the chance of

compiling data on all networked hosts.

The key findings of the study found an average host exhibited 3.065

critical vulnerabilities, with a low of 2.377 in Spring 2001 to high a of 3.694 in Fall

2001. Unpatched Windows operating system vulnerabilities were the top

security threat to the ETSU administrative network over this 2½ year span

accounting for over 80% of all critical vulnerabilities. However, an automated

patch management system has yet to be implemented because of concerns

9

expressed by the user community over operating system patches ‘breaking’

applications.

 The remainder of this thesis is separated into four sections. Section 2,

Related Work, describes the background research performed for this study. This

section also describes the tools used in this study. Section 3, Research

Methodology, describes the motivation for this study, as well as the strategy

used to perform the security audit. Section 4, Data Analysis, examines the data

gathered during the audit. Section 5, Conclusion, includes a summary of the

study’s findings and potential avenues for research.

10

Chapter 2

Related Work

The current section reviews tools for detecting security vulnerabilities that

are directly related to work in this study. Section 2.1 discusses the two tools used

in this study, Nmap (Section 2.1.2.1) and Nessus (Section 2.1.2.2).

 The remainder of this discussion assumes a fair understanding of Windows

and UNIX networking, the TCP and UDP protocols, network security and different

activities normally placed under the ‘hacking’ umbrella.

2.1. Security Threats and Security Auditing Tools

2.1.1. Security Threats

Security auditing tools were developed to help network and systems

administrators gather information about vulnerabilities in their networked

environment. These vulnerabilities include unauthorized services, system

configuration errors, well-known vulnerabilities and weak user passwords.

 Identifying unauthorized services. An unauthorized service is an

unauthorized host program that listens for and accepts connections from other

systems. Legitimate services typically use well-known ports to accept

connections. For example, web servers listen on TCP port 80 and telnet hosts

listen on TCP port 23. A port that is in the ‘listening’ state is referred to as an

open port. Examples of unauthorized services include services running on non-

standard ports, services that respond to user requests in non-standard ways, and

services that are unnecessary for the system being scanned. These can be

detected by scanning a host for all ports actively listening for connection

requests and examining how they process incoming messages.

11

 Identifying system configuration errors. A system configuration error is a

misconfiguration of a service that leaves the service or system susceptible to

attack. Unset passwords and shared key files are examples of configuration

errors. Operating system installation procedures assign default permissions and

passwords to certain files and accounts. In certain cases, the system default

creates system vulnerabilities. For example, a UNIX password file readable by

the ‘world’ group can be copied and deciphered, compromising the host

system.

 Identifying ‘well-known’ vulnerabilities. Well-known system vulnerabilities

are discovered software programming errors or common administrator

oversights that allow a system or network to be compromised. These include

publicly documented instances of buffer overflows and backdoors in

application and operating system software. Finding and patching holes

increases network security by minimizing the infiltration paths an attacker can

use.

 Identifying weak user passwords. User passwords that are easy to guess or

crack can allow outsiders to gain network access. Strategies for decreasing the

likelihood of compromised passwords include mandatory policies for password

selection.

2.1.2. Security Auditing Tools

Security auditing tools are utilities that detect vulnerabilities in systems that

could be exploited to compromise a system. The types of vulnerabilities

detected vary with each tool. LC4 (http:///www.atstake.com/lc4) is a tool

created for the sole purpose of testing password strength. Other tools like the IIS

Lockdown Tool (http://www.microsoft.com/windowsserver2003/iis/default.mspx)

test a service for configuration errors and make reparations where necessary.

Tools such as Nessus (http://www.nessus.org) and the Microsoft Baseline Security

12

Analyzer (http://www.microsoft.com/technet/security/tools/mbsahome.asp)

check for exploits against a database of well-known attacks. The port-scanning

tool Nmap (http://www.insecure.org) aids in detecting unauthorized services.

Using a combination of tools is the typical way to maximize the number of

detected vulnerabilities in a networked environment.

Nmap and Nessus were chosen for this study, in part, because these tools

can work in conjunction to minimize audit time and maximize the number of

discovered vulnerabilities. Nessus uses a user-configurable database of tests to

drive vulnerability analyses. The Nessus database is updated frequently,

sometimes daily, by the security community, in response to discoveries of new

exploits. Nessus can be configured to use Nmap to determine the open ports

on a system before conducting tests, which allows Nessus to focus solely on

potentially vulnerable ports. Finally, both tools are free to use, and native to

Linux, a free operating system.

2.1.2.1. Nmap

Nmap is a network auditing tool that scans network hosts for open ports.

Port scans can determine if a host is offering errant services or failing to offer

required services. Examples of errant services are an http daemon on a host not

listed as a web server and a backdoor opened by a Trojan horse. Nmap can

also determine the operating system running on a scanned host, and scan

firewalls to determine the ports a firewall effectively filters [Fyodor].

Nmap can scan network hosts using one of six methods: TCP connect()

scans, TCP SYN scans, stealth FIN scans, Xmas tree scans, Null scans, UDP scans,

and ping scans.

 The TCP connect() scan, the simplest port scanning method, attempts to

create a TCP connection between the scanning client and the host. The

auditor determines the TCP ports that Nmap will scan. Nmap allows any user to

13

execute a TCP connect() scan, regardless of privilege. The TCP connect() scan

is highly traceable by intrusion detection systems, and an unlikely choice of

attackers [Fyodor].

 The TCP SYN scan mimics the TCP connect() scan but does not complete

the TCP connection. Nmap sends a SYN (synchronize) packet to the host and

awaits a reply. A RST (reset) packet from the host indicates there are no services

available on the scanned TCP port. An ACK (acknowledgement) packet

indicates a service is available on the scanned TCP port. When the host

receives an ACK packet, Nmap sends a RST packet to destroy the pending

connection. Nmap limits the use of TCP SYN scans to root users, since standard

TCP stacks do not track reset connections [Fyodor].

FIN scans, Xmas tree scans, and null scans use irregular TCP packets to

discover open ports. The TCP header contains a 6-bit control block with six flags:

URG (urgent data), ACK (positive acknowledgement), PSH (push data to

receiver), RST (reset connection), SYN (synchronize), and FIN (finish transfer)

[RFC793]. The Stealth FIN scan sends a FIN packet to the host and awaits a

reply. A closed port that receives a FIN packet should reply with a RST packet as

detailed in RFC 793, reset generation, rule 1:

If the connection does not exist (CLOSED) then a reset is sent in

response to any incoming segment except another reset. In

particular, SYNs addressed to a non-existent connection are

rejected by this means [RFC793].

Ports that fail to reply with an RST packet are assumed to be open.

 Xmas Tree scans and Null scans are variations of the Stealth FIN scan. The

Xmas Tree scan sets the FIN, URG and PSH flags. The Null scan turns off all flags n

the 6-bit control block. Stealth FIN, Xmas Tree and Null scans do not work

against some operating systems because of TCP protocol modifications. In

14

particular, the Microsoft Windows TCP protocol will not send an RST packet in

response to these scans [Fyodor].

 Nmap detects open UDP ports by sending a zero-byte UDP packet to

every host UDP port. If the host replies the port is unreachable, the scanned port

is closed. No response from the host indicates the UDP port is open [Fyodor].

 Using a ping scan, Nmap can determine the existence of systems at

specified IP addresses. Nmap ping scans use standard ICMP echo packets and

TCP ACK packets sent to port 80. This feature of Nmap is most useful when

sweeping a network segment to determine the number of hosts on a network

segment. The TCP ACK packet discovers hosts behind a firewall that filters

standard ICMP echo packets. TCP ACK packets will only be sent when a root

user initiates a ping scan [Fyodor].

2.1.2.2. Nessus

Nessus is a UNIX-based security scanner that checks for well-known

vulnerabilities on various platforms. The specific vulnerabilities that Nessus

checks are determined as part of an initial configuration step that involves

choosing the plug-ins of the associated vulnerability that the user wishes to

discover. Tests for vulnerabilities can be created by anyone using the NASL

scripting language. The tool’s authors determine which plug-ins are distributed

with the scanner for use by the Nessus community. Active support from the

open source community has ensured a constantly increasing supply of new,

downloadable, vulnerability tests.

 Nessus emulates the first well-known security scanner, the Security

Administrator Tool for Analyzing Networks (SATAN) [Farmer3]. SATAN, like Nessus,

attempts to break into a host to determine the level of host security. Unlike

Nessus, SATAN cannot detect recently discovered vulnerabilities, and was

therefore rejected for this study.

15

 The Nessus program uses two different executables to scan hosts and

collect data. The ‘server,’ called the Nessus daemon (nessusd), is responsible for

‘attacking’ each host. The Nessus daemon must be executed on a UNIX-based

machine. The ‘client,’ called nessus, collects the data from the attack.

Currently, the client portion of the Nessus program is available for UNIX and

Windows [Deraison1].

 The server portion of Nessus supports various options for multiple situations.

Nessus offers multi-user support and the ability to grant different rights to each

user. Multi-user support allows security administrators to grant rights to scan

selected subsets of a network. Nessus can also use multithreading to conduct

concurrent audits. The number of hosts that can effectively be audited

simultaneously is determined by available network bandwidth and the

processing speed of the Nessus daemon computer [Deraison1]. The Nessus

client collects and arranges data received from the vulnerability assessment

[Deraison2].

 Nessus offers the following twenty-three families of rule sets for use in a

security audit [Deraison3].

• Trojan backdoors. Trojan backdoor servers are often distributed through

e-mail as attachments. The unsuspecting recipient executes the infected

program expecting to view something interesting or amusing. Instead, the

attachment installs the Trojan backdoor program onto the system.

Scanning well-known Trojan ports detects the presence of a Trojan

backdoor.

• CGI script vulnerabilities. A CGI script is a server-side executable. CGI

scripts with programming errors are vulnerable to security flaws. Searching

the UNIX \cgi-bin directory detects possible flawed CGI scripts .

• Cisco network device vulnerabilities. Nessus, in most cases, uses SNMP to

check the version of the system IOS and compare it to version numbers of

16

the Cisco IOS with known vulnerabilities. Use of these plug-ins requires

knowledge of a Cisco device’s read-only SNMP community string. This

group of plug-ins was added to Nessus too late for inclusion in this study .

• Default UNIX accounts. This rule set tests certain well-known UNIX

accounts for having a default password, or no password at all. This group

of plug-ins was added to Nessus too late for inclusion in this study.

• Denial of Service (DoS) attacks. This rule set checks for DoS susceptibility in

applications, servers, switches and routers. A denial of service (DoS)

attack is launched by issuing commands that crash the target by means

of ‘confusion’ or buffer overflow. Nessus attempts to crash a host using a

DoS attack to detect software and hardware vulnerabilities.

• Finger daemon vulnerabilities. The UNIX ‘finger’ command shows user

information. Depending on the daemon’s configuration, the user being

‘fingered’ can belong to a local or remote network. Finger daemons

provide the names of active accounts, which is a security threat by itself.

Some finger daemons have security flaws that offer private information

about users, or allow attackers to gain system control.

• Firewall configuration errors. This rule set attempts to bypass the firewall

and alerts administrators of subsequent firewall configuration errors.

Malicious parties can ‘hop’ a poorly configured firewall to access network

resources.

• FTP vulnerabilities. FTP (File Transfer Protocol) servers distribute files to users

with proper credentials. Some FTP servers exhibit flaws that allow

attackers to retrieve arbitrary information or gain control of the system.

Detection of FTP server vulnerabilities involves attempting well-known

exploits.

• UNIX shell exploits. A UNIX shell accepts user commands for execution.

Shell access is normally reserved for authorized system users. Gaining shell

access allows a user to execute hazardous commands, change a host’s

17

configuration and access possibly sensitive data. Not all possible

commands and applications may be executed with just shell access, as

root privileges may be necessary.

• Remote UNIX root exploits. This rule set tests whether outside parties can

gain root access to a system, and with it, the ability to execute any

command or application, or examine any data file on the exploited host.

• General. This rule set tests for programs and daemons that provide their

name and version number. Attackers can use this information to

determine if a host might exhibit well-known vulnerabilities. Nessus

attempts to gather operating system and version information from all

queried hosts.

• Miscellaneous. This rule set checks for blank or default passwords within

daemons and hardware devices. These plug-ins can determine if an

initial password was not changed, or left blank after the daemon or

hardware device installation. When a password is blank or unchanged,

an attacker can gain administrative access to the daemon or hardware

device. The attacker can also change the password to block authorized

users. Nessus will test certain hardware devices and daemons for default

or blank passwords and alert the administrator if needed.

• Novell Netware vulnerabilities. This group of plug-ins was added to Nessus

too late for inclusion in this study.

• NIS (Network Information Service) vulnerabilities. The NIS server gathers

information about network services. Systems query the NIS to locate

appropriate network services. NIS servers should not be accessible from

outside of the network. An outsider can obtain a network layout by

querying an easily accessible NIS server. Network layout information will

help an outsider launch an attack with a higher probability of success.

• Peer-to-peer file sharing. Some well-known peer-to-peer file sharing

programs like Kazaa, Morpheus and Gnutella, if configured incorrectly,

18

allow anyone to access a computer’s file system. This group of plug-ins

was added to Nessus too late for inclusion in this study.

• Nmap port scanning. Nmap was discussed in Section 2.1.2.1.

• Sensitive file retrieval vulnerabilities. Password file retrieval allows an

attacker to decipher username/password combinations for use in a

consequent break-in. Nessus also uses this rule set’s plug-ins to download

any file with a known path name and file name.

• Remote Procedure Call (RPC) vulnerabilities. Although most remote

procedure calls do not pose an immediate security threat, unused remote

procedure calls should be disabled in case a vulnerability is discovered in

the future.

• SMTP server vulnerabilities. An SMTP (Simple Mail Transport Protocol) server

delivers e-mails to their destination. Some tests in this rule set attempt to

crash the SMTP server. Other tests determine if outsiders can use the SMTP

server to send or relay e-mail. Nessus detects and alerts administrators of

these security holes and other undesirable SMTP server settings.

• Simple Network Management Protocol (SNMP) information disclosure

vulnerabilities. The Simple Network Management Protocol allows

administrators to gather user, service and executing process information.

Nessus issues SNMP queries to obtain private system or network

information.

• Useless daemons and services. Some useless daemons and services can

be exploited to gain user and network information. Other useless

daemons and services can be exploited to commandeer network

bandwidth.

• Windows vulnerabilities, including absent hotfixes. As security holes are

detected in Windows operating systems and applications, Microsoft offers

patches, or hotfixes, to alleviate the security threat. Good network

security practices involve actively patching vulnerable software. Nessus

19

can detect vulnerabilities that can be patched by applying a hotfix issued

by Microsoft.

• Windows Access Control List (ACL) enumeration. Determining a

membership of a Windows system ACL can provide a starting point for

launching attacks against privileged account, such as accounts

belonging to Administrators or Domain Administrators. This group of plug-

ins was added to Nessus too late for inclusion in this study.

20

Chapter 3

Research Methodology

The study attempted to achieve two goals: first, to try to determine a

‘level’ of vulnerability of the networks systems of a representative regional

university, and to determine the attractiveness of a representative regional

university as a target for exploitation.

 East Tennessee State University has approximately 3,600 Internet addresses

in active use by a combination of workstations, servers, hubs, switches, routers,

printers, print servers and other miscellaneous devices, such as personal digital

assistants and wireless access points. Approximately 300 of these network-based

systems were networking devices; approximately 100 printers/print servers; and

the remainder, standard computer systems.

 The study described in this thesis was conducted in three scans. The first

two scans featured complete vulnerability checks of the administrative

networks. The first sweep began September 23, 2001 and ended December 3,

2001. The second sweep began January 7, 2002 and ended February 21, 2002.

The third, partial scan, which gathered data from about a quarter of the hosts

on the ETSU network, began January 5, 2004 and ended January 16, 2004.

 At the time when the first two scans were conducted, ETSU did not use a

firewall, intrusion detection system or patch management system to protect the

administrative network. At that time, the task of patching system software on

production servers and workstations was the responsibility of systems

administrators and workstation users, respectively. Between the second and

third scan, a firewall solution was implemented.

 Data on potential system vulnerabilities during the first two scans was

gathered using Nessus version 1.0.9 through 1.1.13. Nessus plug-ins were

updated every morning to ensure the detection of newly discovered

vulnerabilities. To detect open TCP ports, Nmap version 2.54 beta 30 was used in

21

conjunction with Nessus. These programs were hosted on a machine using

RedHat Linux versions 7.1, and 7.2. During the third scan, Nessus version 2.0.7,

Nmap version 3.0 and RedHat Linux version 9.0 were used.

 Nessus was used to find well-known exploits on ETSU administrative

network computer systems. Since the ETSU administrative network

predominantly consists of Windows machines, unapplied ‘hotfixes’ were

hypothesized to be the top security threat.

 Nmap was used to detect unauthorized services hosted on ETSU

computer systems. Certain open ports immediately show evidence of a

compromised system. For example, a system exhibiting open UDP port 31337 is

infected with the Back Orifice Trojan.

 The scans of the ETSU class network, a class B network with approximately

3,600 live addresses, were conducted as a series of scans of class C address

spaces. The ETSU network is logically partitioned into class C virtual LANs, with a

few virtual LANs using two class C address spaces. Each virtual LAN represents a

building on the ETSU campus, or a set of related machines: for example, the

university’s servers, or core routers, or all machines in a particular lab.

Accordingly, systems in any given virtual LAN were expected to exhibit common

traits, such as common software packages, or similar times of deployment.

 Each class C address space was scanned twice per semester with an

average of two weeks between scans. The first scan examined all hosts that

were ‘live,’ or available for scanning. The second scan examined hosts with IP

addresses not ‘live’ during the first scan. The class C address spaces were

scanned in the same order during each semester, allowing for a smaller

deviation of mean time between each complete scan of a class C address

space. The number of class C address spaces scanned per day was

determined by the number that could be scanned serially during a four hour

time frame, between 8am and 12pm, on weekdays. Subnets were not scanned

22

in parallel because of the limited processing power of the machine used to

gather data.

 During the third scan, seven subnets with a 255.255.254.0 subnet mask

were each scanned once. The only hosts that were scanned were those that

were ‘live.’ Each subnet was scanned during a seven hour time frame,

between 9am and 4:30pm on weekdays.

 Data was analyzed with a program, nsrparser, which was developed for

this work (see Appendix B). nsrparser returns any of the following information

from a Nessus output file in the Nessus NSR format:

• Names or IP addresses, and total count of all hosts.

• Best guess of host operating system by examining the information returned

in specific plug-ins.

• A listing of all plug-ins, with associated descriptions, that returned

information.

• All open ports, sorted by number of vulnerabilities exhibited.

• Names or IP addresses, and total count of hosts with a specific port open.

• Names or IP addresses, and total count of hosts with vulnerabilities on a

specific port

• Names or IP addresses, and total count of hosts with warnings on a

specific port

• Names or IP addresses, and total count of hosts with notes on a specific

port

• Names or IP addresses, and total count of hosts exhibiting a specific

vulnerability.

• Names or IP addresses, and total count of hosts exhibiting a specific

warning.

• Names or IP addresses, and total count of hosts exhibiting a specific note.

23

• Names or IP addresses, and total count of hosts with a specified search

string located in their plug-in description.

• Names or IP addresses, and total count of hosts with two specified search

strings located in plug-in descriptions for that host.

The versions of Nessus used for the first two scans had an important

limitation: older versions of Nessus catalogued scan data by host IP address and

not by MAC address. Accordingly, any host that changed IP addresses during

the scan might have been scanned twice, or bypassed altogether if the host

changed IP addresses betweens scans that occurred in a single semester. The

standard DHCP lease at the time of the first two scans was three days. The

recent versions of Nessus, since 1.1.14, support the option of cataloging hosts by

MAC address. The option to use MAC addresses for cataloging would have

been used if this cataloging method had been available for the first two scans.

This option was not used during the third scan, as the 512 host subnets were only

scanned once.

Hosts that were live during the first scan of a semester were not tested for

new vulnerabilities by plug-ins downloaded between the two scans. Nessus

does have an option to rescan a host for unchecked vulnerabilities. At the time

of the first two scans, this option was labeled ‘experimental’ and was avoided to

minimize incorrect data.

Hosts that did not reply to a ping were not scanned. Live hosts utilizing a

software firewall such as ZoneAlarm or BlackIce Defender that disallow ping

replies were not scanned. Allowing Nessus to scan a computer running a

software firewall could have disrupted the practices of the system’s user as

ZoneAlarm is normally ‘chatty’ and obtrusive when alerting the system’s user of

potentially malicious activity.

24

Nessus plug-ins that emulated denial of service attacks were disabled so

as not to disrupt a scanned systems operation. Therefore, vulnerabilities related

to some denial of service attacks are absent from the data.

25

Chapter 4

Data Analysis

The types of vulnerabilities discussed were separated into three main

categories, local, network, and client. A local vulnerability can only be

exploited through an interactive login of the machine. A remote vulnerability

may be exploited when the susceptible machine is connected to a network.

Client vulnerabilities may be exploited when the subject machine connects to a

malicious host.

 Each of these three categories was further separated into five

subcategories, listed in order of increasing severity, based on the end result of a

successful exploit.

• Information disclosure – A machine offers information about itself, its users

or the network it is connected to that helps malicious parties learn more

about the subject, or other possible subjects.

• Denial of Service – An exploit renders a service on any machine disabled

or unreachable by authorized clients.

• Readable Service – An exploit offers read access of a service to an

unauthorized client.

• Writeable Service – An exploit offers read and/or write access of a service

to an unauthorized client.

• Privilege Elevation – An exploit grants the malicious party ‘higher’

privileges than a standard guest or user account. In most cases, this refers

to an unauthorized party gaining “root” or “administrator” access.

Based on the availability of the vulnerable service, vulnerabilities were

classified as active and dormant. The term dormant was chosen over inactive

because of the uncertainty that a vulnerable service would be available in the

26

future. The term total will refer to the sum of all active and dormant

vulnerabilities.

 Nessus categorizes its findings into one of three categories: vulnerability,

warning and info. When referencing these categories, the terms critical

vulnerability, warning, and informational discovery are used to refer to what

Nessus categorizes as a ‘vulnerability’, a ‘warning,’ and an ‘info’, respectively.

4.1. Most Vulnerable Ports

Each of the two initial Nessus scans identified ports 139 (SMB over

NetBIOS), 161 (SNMP), 80 (HTTP), 21 (FTP), and 25 (SMTP) as the five most

vulnerable ports, ordered by number of critical vulnerabilities. The top five

vulnerable ports remained consistent across the two initial scans.

 Port 139, used by SMB over NetBIOS, was the most vulnerable port during

both scans. During Fall 2001, the 11,450 port 139 critical vulnerabilities

accounted for 83.3% of the total number of discovered critical vulnerabilities.

During Spring 2002, the 7,042 port 139 critical vulnerabilities accounted for 75.4%

of all discovered critical vulnerabilities. Port 139 vulnerabilities are detailed in

Section 4.1.1.

 Port 161, used by SNMP, was the second most vulnerable port during both

scans. All of these critical vulnerabilities were of the information disclosure

variety. The information found from these scans was limited to the ‘default’

SNMP community strings of ‘public’ and ‘private’. During Fall 2001, the 1,391

port 161 critical vulnerabilities accounted for 10.1% of the total number of

discovered critical vulnerabilities. During Spring 2002, the 1,218 port 161 critical

vulnerabilities accounted for 13.0% of the total number of discovered critical

vulnerabilities.

 Port 80, used by HTTP servers, was the third most vulnerable port during

both scans. During Fall 2001, eighty different critical vulnerabilities were

27

discovered that involved port 80 services. During Spring 2002, the number of

unique critical vulnerabilities fell to sixty-eight. Port 80 vulnerabilities are detailed

in Section 4.1.2.

 Port 21, used by FTP daemons, was the fourth most vulnerable port during

both scans. During Fall 2001, the 137 port 21 critical vulnerabilities accounted for

1.0% of the total number of detected critical vulnerabilities. During Spring 2002,

the 193 port 21 critical vulnerabilities accounted for 2.0% of the total number of

discovered critical vulnerabilities. Port 21 vulnerabilities are summarized in

Section 4.1.3.

 Port 25, used by SMTP servers, was the fifth most vulnerable port during

both scans. During Fall 2001, the 120 port 25 critical vulnerabilities accounted for

slightly less than 1% of the total number of detected critical vulnerabilities.

During Spring 2002, the 128 port 25 critical vulnerabilities accounted for 1.3% of

the total number of discovered critical vulnerabilities. Port 25 vulnerabilities are

summarized in Section 4.1.4.

28

Top 20 ports by critical vulnerabilities, Fall 2001

11450

1391

257 137 120 32 31 28 28 24 17 10 9 9 9 4 4 4 4 40

2000

4000

6000

8000

10000

12000

14000

13
9

16
1 80 21 25

12
34 63

1
28

0
70

70 23
80

81
14

33
80

00
12

14 46
5

58
00

32
26

0
23

01
32

77
7

32
78

6

port number

nu
m

be
r o

f v
ul

ne
ra

bi
lit

ie
s

Fall 2001
Figure 1. Top twenty ports by critical vulnerabilities, Fall 2001.

29

Top 20 ports by critical vulnerabilities, Spring 2002

7042

230 193 128 83 49 44 29 26 18 18 14 10 9 8 7 6 6 5

1218

0

1000

2000

3000

4000

5000

6000

7000

8000

13
9

16
1 80 21 25

19
00

12
34 44

3 23 63
1

28
0

70
70

58
00

14
33

12
14

61
12 22

80
00 46

5
11

0

port number

nu
m

be
r o

f v
ul

ne
ra

bi
lit

ie
s

Spring 2002
Figure 2. Top twenty ports by critical vulnerabilities, Spring 2002.

Port 1900, used by Universal Plug and Play, showed no critical

vulnerabilities during the Fall 2001 scan, but exhibited eighty-three critical

vulnerabilities, ranked sixth in total critical vulnerabilities during the Spring 2002

scan. This anomaly can be attributed to the discovery of a buffer overflow

vulnerability in the Universal Plug and Play service disclosed December 20, 2001

as outlined in Microsoft Security Bulletin MS01-059.

30

Table 1. Percent change in critical vulnerabilities, Fall 2001 and Spring 2002.

port Fall 2001 Spring 2002 % change
all 13735 9339 -32.0

139 11450 7042 -38.5
161 1391 1218 -12.4
80 257 230 -10.5
21 137 193 40.9
25 120 128 6.7

1234 32 49 53.1
631 31 26 -16.1
7070 28 18 -35.7
280 28 18 -35.7
23 24 29 20.8

8081 17 0 -100.0
1433 10 10 0.0
5800 4 14 250.0
443 3 44 1366.7
1900 0 83 N/A

4.1.1. Port 139 vulnerabilities

NetBIOS applications employ NetBIOS mechanisms to locate

resources, establish connections, send and receive data with an

application peer, and terminate connections [RFC1001].

Windows machines use NetBIOS services for authentication and service

sharing. The Windows implementation of NetBIOS uses ports 135, 137, 138 and

139. Port 139, the SMB over NetBIOS session port, was the most widely used of

these four ports during the Fall 2001 and Spring 2002 scans.

 A NetBIOS null session allows a machine, or a user of that machine, to

gather information about another machine’s users, shares, and services.

Windows processes, for example, use null sessions to browse for network services

and relay the findings to the system’s user. In these service ‘browsing’ sessions, a

username and password is not used. Null sessions can be considered a security

31

risk because of the amount of information they can provide about a victim.

However, they are a necessary part of the Windows service architecture. Nessus

uses null sessions to gather information about the host, including local and

domain SIDs, local and domain usernames, file and printer shares and

characteristic information about the local user of the host, such as group

memberships.

 Some of the vulnerabilities discovered through scans of port 139 are not

exploitable through a network. Others require a local user account, or the

ability to interact with the machine.

4.1.1.1. Privilege Elevation vulnerabilities

Nine different privilege elevation vulnerabilities were discovered using

information collected from scans of port 139 during both semesters.

 A buffer overflow vulnerability in Index Server v2 for Windows NT allows

remote attackers to run code with system privileges. The Spring 2002 scan

showed 515 machines with this vulnerability, down from 1000 machines the

previous semester. The information gathered in the scan fails to show how many

of these systems utilized Index Server v2. Systems running Windows NT and IIS

would have had the greatest probability of running Index Server v2 since both IIS

and Index Server v2 are part of Windows NT Option Pack 1 [MS01-025]. Only a

single machine during this scan, ats.etsu.edu, used Windows NT and IIS and

exhibited this vulnerability. ats.etsu.edu has since been decommissioned.

 A vulnerability in the parsing algorithm for IIS versions 4 and 5 could allow

a remote attacker to run code with system privileges [MS00-086]. The Spring

2002 scan showed 158 machines with this vulnerability, down from 338 machines

the previous semester. None of the seventy machines that offered various IIS

services exhibited this vulnerability. In all cases, this vulnerability was classified as

dormant.

32

 The autologon option in Windows NT based operating systems allows the

administrator to be interactively logged onto the machine with a blank

password. This option would allow a local or remote attacker administrative

access to the machine. Two machines on campus exhibited this active

vulnerability, but have since been reconfigured as the result of one being

compromised on April 2, 2002, detailed in Section 5.1.

 All local privilege elevation vulnerabilities are classified as active because

any user that can interactively login to a machine can exploit these

vulnerabilities. Since these vulnerabilities can not be exploited remotely, they

are classified local information disclosure. A legitimate user of ETSU

administrative network system could use this information to determine

exploitable workstations. The following summarizes local privilege elevation

vulnerabilities discovered on the ETSU administrative network:

• Exploitable flaws exist in certain local procedure call (LPC)

implementations in the Windows NT and 2000 operating systems.

Machines not running Windows 2000 Service Pack 2 and Windows NT

machines not patched after the release of Windows NT Service Pack 6a

are vulnerable (236 machines as of Spring 2002) [MS00-070].

• Windows NT and Windows 2000 machines not patched against the

‘Relative Shell Path’ vulnerability allow a local user to insert any

executable to be run in place of the Windows ‘explorer’ shell. The

privileges gained by the malicious code would reflect those of the person

interacting with the machine. (236 machines as of Spring 2002) [MS00-

052].

• Vulnerabilities in the ‘domain account lockout’ policy of Windows 2000

allow users to brute force passwords, including those of the administrator.

Only machines running Windows 2000 Service Pack 1 are affected [MS00-

089].

33

• The ‘Still Image’ service, normally used with scanners and digital cameras,

can elevate the privilege of any local user. This service is automatically

installed by Windows 2000 and runs as a service after a digital imaging

device has been attached to the machine. Machines not patched with

Windows 2000 Service Pack 2 are exploitable by this vulnerability (191

machines as of Spring 2002) [MS00-065].

• A defect in the Service Control Manager within Windows 2000 allows

malicious users to impersonate elevated privilege services. Machines not

patched with Windows 2000 Service Pack 2 are vulnerable (190 machines

as of Spring 2002) [MS00-053].

• The Windows NT LAN Manager Security Support Provider allows code to

be executed with operating system level rights. Windows NT machines not

patched since Service Pack 6a are susceptible to this exploit (40

machines as of Spring 2002) [MS01-008].

4.1.1.2. Writeable Service vulnerabilities

Five active writeable service vulnerabilities were discovered on TCP port

139 during the scans of the ETSU administrative network. The four vulnerabilities

most often exposed by the scan have many commonalities. The fifth,

uncovered on only two machines, is inherent to Linux, an operating system that

does not natively support the SMB over NetBIOS interface, but can with

packages such as Samba.

The main writeable service vulnerabilities involve Windows registry entries

that can be edited by system users that lack administrative privileges. In all

cases, the registry entries were associated with programs or dynamic link libraries

that execute automatically upon startup/logon. A malicious party that could

edit these entries could cause a program to execute without a legitimate user’s

34

knowledge. Spyware and backdoors are examples of programs that could

exploit this vulnerability.

 From the data analysis, these vulnerabilities seem to be limited to Windows

NT 4. An attacker with permission to log onto a Windows NT 4 system could edit

these values remotely. Most Windows NT 4 machines on the ETSU administrative

network use a domain login procedure and support no local accounts, except

for those installed by default. The above analysis would suggest that this

vulnerability be classified as local. However, an unsuspecting user could

execute a virus that edits these registry keys to execute the virus’ payload upon

startup. In this scenario, this vulnerability would be classified as client. In this

study, this vulnerability was considered local.

 Samba is an open source program developed for various UNIX and Linux

implementations that allows UNIX and Linux machines to interface with Windows

file and printer sharing services. An implementation flaw allows for random

creation of files on the machine using Samba. Fortunately, the files created may

only have the extension ‘.log’, which prevents the overwriting of configuration or

other important files. Two machines on the ETSU administrative network

exhibited this remote writeable service vulnerability.

4.1.1.3. Readable Service vulnerabilities

Five readable service vulnerabilities were identified by the Fall 2001 and

Spring 2002 scans of the ETSU administrative network. The most dangerous of

these vulnerabilities allows for retrieval of information that could be used to gain

complete control over the vulnerable machine.

• During the Spring 2002 scan, 1832 machines allowed Nessus to login

remotely, either through the use of a valid username/password

combination or through the use of a null session.

35

• 1088 machines did not have the registry properly “locked down” and

were accessible to non-administrators

• 110 machines had file or print shares that were accessible to anyone on

the ETSU administrative network.

• Sixty-seven machines exhibited a vulnerability that allows a password

protected file or print share to be accessed using a special request

containing only the first character of the password [MS00-072].

The most dangerous readable service vulnerability allows a remote user to

access the Windows registry entry containing the password for the VNC service.

Virtual Network Computing (VNC) is a service that allows remote desktop

control similar to Symantec’s pcANYWHERE, Laplink Gold or the Remote Desktop

feature found in Windows XP Professional Edition. An attacker who could read

this registry entry could leverage the information to take complete control of the

victim machine. This vulnerability was found on ten machines during the Fall

2001 scan and seven machines during the Spring 2002 scan.

4.1.1.4. Denial of Service vulnerabilities

A buffer overflow error in the Windows 2000 infrared protocol could cause

the locally exploitable machine to reboot [MS01-046]. A very high percentage

of machines in this study (>99%) probably lack infrared capabilities, leading to a

dormant classification. During the Spring 2002 scan, 478 machines were not

patched to protect against this vulnerability, down from 922 machines the

previous semester.

 An implementation error in IP fragment reassembly could cause a

computer to utilize 100% CPU in attempting to recreate a malformed IP packet,

thus denying service to other applications using the CPU [MS00-029]. The Fall

36

2001 scan showed 920 machines that could be exploited using this vulnerability.

The Spring 2002 scan showed 237 machines that were vulnerable to this attack.

 A vulnerability in the computer browsing protocol of Windows NT and

Windows 2000 machines allows for a malicious machine to become a master

browser and deny service to those services normally indexed by a master

browser [MS00-036]. The Spring 2002 scan discovered 237 machines vulnerable

to this attack. During Fall 2001, 920 systems were vulnerable to this attack.

 A deficiency in the “industry-standard” NetBIOS interface allows any

Windows NT or Windows 2000 machine to act as a malicious WINS server,

denying service to services on a victim machine. The malicious machine could

request a victim machine to release its NETBIOS name, rendering the services on

the victim machine unreachable [MS00-047]. 917 machines were vulnerable to

this attack during Fall 2001. 236 were vulnerable to this attack during the Spring

2002 scan.

 A remote procedure call (RPC) vulnerability in Windows 2000 machines

allows a malformed RPC request to crash the service, thereby denying access to

the RPC service. Although all Windows 2000 machines are susceptible to this

vulnerability, machines running Windows 2000 Server are at the greatest risk

[MS00-066]. Only four machines of the 190 marked ‘vulnerable’ were

fingerprinted as running Windows 2000 Server, and categorized as machines for

which this vulnerability was active.

 A second well-known RPC vulnerability allows an attacker to remove a

victim machine from a domain, leaving it unable to attach to domain resources.

The Microsoft Security Bulletin MS00-062 also states an exploited domain

controller would not allow domain logins, disallowing all domain users from

domain resources. All versions of Windows 2000 Gold are vulnerable except

Windows 2000 Datacenter Server. Machines patched with Windows 2000

Service Pack 1 are immune to this exploit [MS00-062]. As of the Spring 2002 scan,

111 machines were not patched against this vulnerability. Two of these 111

37

machines used Windows 2000 Server: neither, however, was a Windows 2000

Datacenter Server system.

 A third RPC vulnerability denial of service vulnerability affects only

Windows NT Server based machines. Sending a malformed request to the

service causes the service to halt. Machines not patched since the release of

Windows NT Service Pack 6a are vulnerable to this exploit [MS01-048]. Of the 48

systems that showed evidence of this vulnerability during the Spring 2002 scan,

eleven use Windows NT Server.

 Incomplete TCP/IP packets sent to port 139 of vulnerable Windows 9x or

Windows NT machine could cause the victim machine to stop responding to all

network traffic. The Windows 9x machines are only vulnerable if file and printer

sharing is enabled. Windows NT machines are vulnerable if the ‘server’ service is

running, which is active by default [MS00-091]. All forty systems found with this

potential vulnerability during the Spring 2002 scan used a variant of Windows NT.

 A programming error in the Windows NT Point-To-Point Tunneling Protocol

(PPTP) causes a memory leak that could be used to exhaust available memory

on the victim machine, rendering all services useless [MS01-009]. Of the forty

machines with this potential vulnerability, none are believed to offer any PPTP

services. Since this vulnerability is not exploitable on any machines attached to

the ETSU administrative network, this vulnerability was classified as dormant.

 Windows NT Server and Windows NT Terminal Server are vulnerable to a

local exploit that could cause access to all services to be denied. The

vulnerability allows the malicious user to dominate the usage of the TCP/IP stack,

making it unusable by other services [MS01-003]. Two of the forty machines that

were not patched against this vulnerability use Windows NT Server.

 The scan detected exactly one vulnerability in the Fall 2001 scan missing

during the Spring 2002 scan. This vulnerability, when exploited, causes a domain

controller to devote a large percentage of its CPU time to processing

misinformation. During the Fall 2001 scan, 757 machines were potentially

38

vulnerable, but none of these 757 machines were domain controllers. This

vulnerability was not discovered during the Spring 2002 scan because the

Microsoft Security Bulletin that originally disclosed information about this

vulnerability was superseded by another Microsoft Security Bulletin, which

caused this plug-in to become obsolete [MS01-011].

4.1.1.5. Information Disclosure vulnerabilities

The following information disclosure vulnerabilities were detected during

the Spring 2002 scan.

• 1,681 machines disclosed information about their native LAN Manager,

operating system and workgroup/domain.

• 1,671 machines disclosed their domain SID.

• 1,579 machines disclosed users of the domain when presented with their

acquired domain SID.

• 1,150 machines allowed remote registry access.

• 348 machines disclosed their browse list of other hosts on the network.

• 299 machines disclosed their host SID.

• 297 machines disclosed users of the host when presented with their

acquired host SID.

• 198 machines disclosed all of their available file and printer shares.

• 191 machines allowed for retrieval of a hashed password through a client

vulnerability for an offline brute-force attack [MS00-067].

• 191 machines were Windows 2000 machines not patched with Service

Pack 2.

• 168 machines disclosed all services currently running on the machine.

• Eight machines disclosed they were a primary domain controller or a

backup domain controller.

39

• Six machines were Windows NT machines not patched with Service Pack

6a.

4.1.1.6. Port 139 Vulnerabilities summary

Table 2. Summary of port 139 vulnerabilities by classification.

 Active &
Remote

Active &
Local

Dormant &
Remote

Dormant &
Local

Privilege
elevation 2 849 673 0

Writeable
service 511 0 0 0

Readable
service 3104 0 0 0

Denial of
Service 861 0 278 518

Information
Disclosure 7787 0 0 0

The most dangerous vulnerabilities are classified as active, remote and

privilege elevation. Two of these vulnerabilities existed in over 3,900 machines

scanned during the Spring 2002 semester. One of these vulnerabilities was

leveraged on April 2, 2002 as described in Section 5.1. Both machines with these

potentially destructive vulnerabilities were administered by the same person,

and their vulnerabilities have since been remedied.

40

4.1.2. Port 80 vulnerabilities

Port 80 is used by the HTTP protocol, mainly in conjunction with web

access. Many different web server software packages are in use on the

Internet, but in an environment where a very large percentage of the systems

use the Windows operating system, it can be assumed that Internet Information

Services (IIS) is the most widely used web server.

 Correlations between the operating system in use and the version of IIS

used were used -- Windows NT uses IIS version 4 and Windows 2000 uses IIS

version 5 -- to determine false positives in the collected data. In certain cases, a

vulnerability may have been detected by reading the host registry and

determining that a patch had not been applied. This vulnerability may only be

exploitable through certain versions of IIS.

4.1.2.1. Privilege Elevation vulnerabilities

Forty-six different privilege elevation vulnerabilities were discovered using

information collected from scans of port 80 during both semesters. Only the top

six vulnerabilities are reviewed, since a possible anomaly in Nessus’ analysis of a

host (see Section 4.1.2.6) may have increased the number of reported

vulnerabilities. All data in this section and the following section include the data

recovered and categorized as a possible anomaly.

A buffer overflow vulnerability within the Windows Indexing Service used

by IIS allows remote attackers to run code with system privileges [MS01-033]. The

Spring 2002 scan showed fifty-four machines with this vulnerability, up from forty

machines the previous semester. This vulnerability was the one exploited by the

Code Red worm, launched July 12, 2001. In the Fall 2001 scan, seven machines

exhibited remnants of a Code Red infection, proving this can be classified as an

active and remote vulnerability.

41

Forty-six machines exhibited a buffer overflow vulnerability in the Internet

Printing Protocol, installed and activated by default in IIS 5. This vulnerability is

technically similar to the previously discussed Windows Indexing Service

vulnerability, except the exploit uses a different protocol. With the transition to

Windows 2000 from Windows NT, the number of machines that exhibited this

vulnerability nearly doubled from twenty-seven in the Fall 2001 semester. All

machines that exhibited this vulnerability reported as a Windows 2000 Machine

with port 80 available. This vulnerability was classified as active and remote.

A component of the Microsoft Data Access Components contains a

vulnerability that allows code execution, and the ability to read secured files

[MS99-025]. Only IIS 3 and 4 are vulnerable to this exploit, and of the thirty-one

machines labeled by Nessus to be vulnerable, eleven were using Windows NT

and IIS 4.

Social engineering is needed to fully exploit a cross-site scripting

vulnerability that plagued nineteen machines during the Fall 2001 scan. In cross-

site scripting, a user of malicious site B is tricked into thinking they are browsing

desired site A. Data entered on site B is passed to site A, along with malicious

code that is unchecked by site A and executed on the users client machine

[Securiteam]. Since this vulnerability takes such elaborate engineering and is

not a readily available exploit, it was classified as dormant and client.

Microsoft offers a tool that hardens an IIS installation that “[turns] off

unnecessary features, thus reducing attack surface available to attackers.”

[Microsoft1] Fifteen machines still exhibited services normally disabled by the IIS

lockdown tool. This number is up from seven machines with this vulnerability

during Fall 2001. Since vulnerabilities were found with these services, this

vulnerability was classified active and remote.

A CGI script associated with SQL administration allows an attacker to send

arbitrary commands to the script’s host system because a variable the script

accepts is not checked for correct syntax. To execute this exploit, the attacker

42

must have administrative access to the SQL server. However, there is a well-

known exploit in which the default administrator account for the SQL server, the

‘sa’ account, is created with a blank password. A combination of a blank ‘sa’

password and this CGI makes the system vulnerable to a remote exploit. Since

none of the systems checked had a blank ‘sa’ password this vulnerability was

classified as dormant. Nine systems during the Spring 2002 scan showed the

availability of this CGI, down from fourteen the previous semester.

Findings concerning other privilege elevation vulnerabilities and those

listed above are summarized in Section 4.1.2.7.

4.1.2.2. Writeable Service vulnerabilities

Eight different writeable service vulnerabilities were discovered during the

Spring 2002 scan. Only the top two of these vulnerabilities are reviewed

because of the Nessus anomaly.

A web-accessible executable for IIS version 3 named ‘newdsn’ allows an

attacker to create arbitrary files on the vulnerable host. The ‘newdsn’ script, like

any web-accessible sample executable or script, should be removed in a

production environment. Removing vulnerable sample applications is one

purpose of the IIS Lockdown Tool discussed in the previous section. Five systems

during the Spring 2002 scan were potentially vulnerable to this exploit. Since

three of these systems used the Windows NT 4 operating system, this may be

classified as an active and remote vulnerability [xforce3].

 A Sambar web server allows an attacker to use a Perl script for sending e-

mail without proper credentials. This was classified as a writeable service

vulnerability because it allows the attacker to use the service in an undesired

manner, but does not allow for an elevation of privileges. Because none of the

servers involved truly used the Sambar web server, this has been classified as a

dormant remote vulnerability.

43

4.1.2.3. Readable Service vulnerabilities

Sixteen different readable service vulnerabilities were discovered during

the Spring 2002 scan, of which only the top three vulnerabilities are reviewed.

IIS versions 4 and 5 include an administration page that allows any user to

change their domain password by entering the account name and current

password. This page and its password change option may be accessed

repeatedly without the attacker being locked out. Therefore, the attacker

could be able to discern a password by brute force. Twenty systems, all using

the Windows NT4 or Windows 2000 server operating systems, had this

administration page available to the anonymous browser. Twelve systems had

this administration page available during the Fall 2001 scan. This vulnerability

was classified as active and remote.

 Twelve systems running IIS had a sample application installed with a

vulnerability that allows an attacker to list the contents of any directory on a

server; nine more than the previous semester. This sample application would

normally be removed when the IIS lockdown tool was used to harden the web

service. This vulnerability was also classified as active and remote.

 Four systems running IIS were configured to support unrestricted

administrative access from remote websites. This allows attackers that know or

can decipher the username and password of an IIS administrator to use the

administration applications. Since these administration pages can be reached

from remote machines, and the URLs of these pages are well known, this was

classified as an active vulnerability.

4.1.2.4. Denial of Service vulnerabilities

Six vulnerabilities, when exploited, would deny access to a system service.

Two of these are examined in this section. The remaining vulnerabilities are not

44

reviewed because of the possible anomaly that may have skewed the count of

total vulnerabilities.

The first vulnerability was labeled by Nessus as a denial of service

vulnerability, but the description given by Nessus was too vague for further

analysis:

It may be possible to make the web server execute arbitrary code

or crash by sending it a too authorization. Risk factor: High

Of the seventeen devices listed with this vulnerability, fifteen of them were

a variety of print device. The remaining two were MacOS platforms. One of

these two systems was a known web server. The other system, whose IP address

did not resolve to a hostname, was probably not an advertised web server.

Since this vulnerability could not be studied, but was reported by Nessus, it was

categorized as a remote, dormant vulnerability.

A vulnerability discovered on four systems causes a denial of service to the

web server when exploited.

A denial of service vulnerability (exists) that could enable an

attacker to temporarily disrupt service on an IIS 5.0 web server.

WebDAV doesn’t correctly handle particular type of very long,

invalid request. Such a request would cause the IIS 5.0 service to fail

[MS01-044].

This vulnerability can be categorized as an active, remote vulnerability.

45

4.1.2.5. Information Disclosure vulnerabilities

The following information about machines on the ETSU administrative

network was determined during the Spring 2002 scan.

• 174 machines advertised their web server software and version number.

• Fifty-three machines used Microsoft FrontPage Extensions.

• Twenty-one machines had FrontPage related, world-readable files that

contain server configuration information.

• Eighteen machines had a robots.txt file that contains information about

the web site directory structure.

• Fourteen machines used a version of Perl that returns the directory of the

virtual web server when confronted with a request to a non-existent Perl

script.

• Ten machines using Apache would have disclose legitimate usernames of

system users.

• Four machines offered an IIS administration file which would have allowed

anyone to view the directory structure of the machine.

• Three machines used a CGI script that returns environment variables

4.1.2.6. Port 80 anomalies

Data from security audits should be verified when possible since tools like

Nessus may generate false positives or fail to detect existing vulnerabilities. The

author of this study lacked the authority to verify the data reported from Nessus

and relied largely on the tool’s ability to validate the data, and the plausibility of

the data. One implausible situation involved a system named forbesm.etsu.edu

that allegedly exhibited forty-five different port 80 vulnerabilities. In many cases,

this system was the only system to display any of these vulnerabilities. The

46

validity of the scan was investigated by attempting to exploit some of the

readable service vulnerabilities using information returned by Nessus plug-ins.

None of the attempted exploits resulted in a positive result. Although it could

not be determined if all detected vulnerabilities were false positives for reasons

of web server integrity, it seemed ‘likely’ that most (>90%) of the Nessus reported

data on this system was false.

 Since no other anomalies were discovered during the analysis phase of

this study, the author regards all other data from Nessus as reliable.

4.1.2.7. Port 80 Vulnerabilities Summary

Table 3. Summary of port 80 total vulnerabilities by classification.

 Active &
Remote

Active &
Local

Dormant &
Remote

Dormant &
Local

Privilege
elevation 202 0 49 0

Writeable
service 28 0 5 0

Readable
service 55 0 0 0

Denial of
Service 8 0 17 0

Information
Disclosure 314 0 0 0

During the Fall 2001 scan Nessus discovered 164 critical vulnerabilities, 171

warnings and 174 informational discoveries that have been categorized above.

4.1.3. Port 21 Vulnerabilities

Port 21, is the TCP port most widely used by File Transfer Protocol (FTP).

During the Spring 2002 scan, 189 devices had services available on port 21.

Eleven different vulnerabilities were discovered, all of the remote and active

47

variety. Sixty-nine of the vulnerabilities allowed for some type of privilege

elevation. No vulnerabilities were discovered that allowed an attacker to

upload files to arbitrary locations on the FTP site. Eighty-four vulnerabilities were

discovered that allowed anonymous users to browse the FTP site. No

vulnerabilities that would disclose information about the system were

discovered.

 The most notable of these vulnerabilities were the eighty-four

vulnerabilities related to anonymous FTP access. Nmap operating system

fingerprint data showed all of the devices to be IP printers or print server devices.

No file data is stored on any of these devices. It is unknown what the FTP

services on these machines are used for. These systems probably receive print

data on port 21, or use this port for downloading firmware or software systems

upgrades.

 In fifteen cases, a vulnerability in the Washington University FTP daemon

that is found on many Linux distributions allows an attacker with a valid account

or anonymous access to exploit the vulnerability to run arbitrary code as root.

This vulnerability was found on seven Linux systems, five AIX systems and one

Solaris system. Two print devices were also listed as having this vulnerability.

None of the systems with the vulnerability allowed anonymous access. If it was

assumed that the FTP servers had at least one standard user on them, then the

server could be considered active against this remote exploit [xforce1].

48

Table 4. Summary of Port 21 vulnerabilities by classification.

Active &
Remote

Active &
Local

Dormant &
Remote

Dormant &
Local

Privilege
elevation 69 0 0 0

Writeable
service 0 0 0 0

Readable
service 84 0 0 0

Denial of
Service 42 0 0 0

Information
Disclosure 0 0 0 0

4.1.4. Port 25 vulnerabilities

Port 25 is most widely used by the Simple Mail Transport Protocol (SMTP) for

sending electronic mail. During the Spring 2002 scan, seventy-two devices had

services available on port 25. Twelve of the vulnerabilities allowed for an

elevation in privileges. Eleven of these vulnerabilities, however, required an

interactive session with the system. Thirty-one vulnerabilities allowed for an

attacker to use the service for writing. Fifty-two vulnerabilities allowed for

information disclosure.

 The single remote, active privilege elevation vulnerability was discovered

on an AIX system. The Nessus plug-in information states that a HELO command

with an argument over 12,000 characters causes a buffer overflow that can

allow arbitrary code execution. The remainder of the privilege elevation

vulnerabilities can only be exploited from the local host since the buffer overflow

that causes the vulnerability involves the processing of the sendmail ‘–bt’ switch

argument.

 The writable service vulnerability discovered allows the attacker to write

arbitrary files to the SMTP server system by forging the receipt field with an

absolute file path and file name. The SMTP server does not validate the

49

information in this fieldreceipts. The Nessus plug-in warns that this information

could be a false positive because of the ways in which different mail servers

react to such a request. Some servers respond positively, while others may

ignore the message without notifying the sender. To verify the validity of each

reported vulnerability would require file system access.

 The information disclosure vulnerabilities were “banner” responses that

allow the attacker to retrieve the name and sometimes the version of the mail

server being used. The attacker could use this information to see if well-known

vulnerabilities exist for the server being examined.

Table 5. Summary of port 25 vulnerabilities by classification.

 Active &
Remote

Active &
Local

Dormant &
Remote

Dormant &
Local

Privilege
elevation 1 11 0 0

Writeable
service 31 0 0 0

Readable
service 0 0 0 0

Denial of
Service 0 0 0 0

Information
Disclosure 52 0 0 0

4.2. Spring 2004 and Spring 2002

Since the initial scan during the Fall 2001 and Spring 2002 semesters, and

the follow-up scan during the Spring 2004 semester, there was one major

change to the ETSU administrative network. A firewall protecting the entire

campus administrative network from the Internet was implemented. Almost all

(>99%) of the 65,535 TCP ports are blocked globally, and requests for open ports

in the firewall to a single host must be registered. This change has helped

reduce the vulnerabilitiy of the campus network to outside attacks. However, if

50

an attacker has availability to the ETSU administrative network, their attacks will

not be stopped by a firewall or intrusion detection system.

 The administrative network’s vulnerability to internal attack was exposed

in 2003 when an ETSU employee inadvertently plugged a laptop infected with

the MSBlast worm into the ETSU administrative network. Since ETSU does not

automate their management of patching systems, the worm penetrated a

significant portion of the network, disrupting services, and, at its peak, passing

more than 50,000 infected messages a day through the ETSU mail server.

 A final partial sweep of the ETSU administrative network conducted during

the Spring semester of 2004 scanned 909 of the estimated 3,600 hosts. This scan

was expected to show similar numbers in the number of critical vulnerabilities

per host, and the number of critical vulnerabilities per port. Once the analysis of

the data was completed, it was discovered that the number of critical

vulnerabilities per host increased, whereas the top three vulnerable ports

registered zero critical vulnerabilities during the Spring 2002 audit.

51

4.2.1. Spring 2004 Summary

Top 20 ports by critical vulnerabilities, Spring 2004

687

506

325

178

118
96

35 29 26 24 21 17 17 14 13 12 12 11 11 110

100

200

300

400

500

600

700

800

44
5

80
83 13

5 80 16
1 21 13

9
63

1
44

3 25 28
0 22

33
39

52
25

61
12 58

7
15

21 89
8

44
43

77
78

port number

nu
m

be
r o

f v
ul

ne
ra

bi
lit

ie
s

Spring 2004
Figure 3. Top twenty ports by critical vulnerabilities, Spring 2004.

Port 445, the port most widely used by SMB over TCP/IP, exhibited the most

vulnerabilities during the Spring 2004 semester. Port 8083 vulnerabilities which

numbered 506 during the Spring 2004 semester are discussed in the following

section. The NetBIOS RPC end point mapper, port 135, rose to the third most

vulnerable port. The next four most vulnerable ports were all in the top five most

vulnerable during the 2002 scan: 80 (HTTP), 161 (SNMP), 21 (FTP), and SMB over

NetBIOS (139).

52

4.2.1.1. Port 8083

Port 8083 is a non-standard port chosen for use by the McAfee Framework

Service. ETSU uses this service to deploy and manage the McAfee VirusScan

Enterprise product on ETSU workstations using ePolicy Orchestrator as its

centralized console. Five different vulnerabilities were discovered during the

Spring 2004 scan.

 One of these port 8083 vulnerabilities was related to a buffer overflow in a

.dll used by FrontPage Extensions. This vulnerability was only discovered on three

machines using a Windows operating system. It is hypothesized that the systems

in question used another software package that also used port 8083.

 A second port 8083 vulnerability can be exploited utilizing an unchecked

buffer in one of the core operating system components in Windows 2000 and

Windows XP. To exploit this vulnerability, the vulnerable system must be using IIS

version 5 or 6. This vulnerability allows the attacker to run arbitrary code. Only

one Windows XP machine was located with this vulnerability [MS03-007].

 The remaining three vulnerabilities involve a directory traversal

vulnerability. To exploit this vulnerability, a client sends a correctly formulated

request to a server that contains character sequences normally reserved for

changing directories, such as ‘../’. Hosts that are vulnerable to this exploit allow

these requests to access directories outside the scope of the available web

root. The exploit allows an attacker to access directories normally denied

access to anonymous web browsers.

 Through testing, it was determined that the ePolicy Orchestrator Agent

(ePOAgent) client is susceptible to a simple directory traversal exploit using ‘…/’

as the character sequence to access a parent directory. The ETSU configuration

for this service places the home directory for these services six folders below the

root folder of the system partition. The attacker can retrieve a file by forming a

request that begins with ‘http//hostname:8083/…/…/…/…/…/…/’ and

53

appending the directories and name of a known any file. The files available to

the attacker are any files that are not hidden and readable by the NTFS

‘everyone’ group. This exploit can only read the system partition, and can not

access other partitions. Also, the exact name and location of the file must be

known since this attack method does not offer directory listings. A quick Internet

search uncovered no information regarding this vulnerability. One listing on the

ISS X-Force database had an entry that was similar to the exploit described

above:

McAfee AsaP VirusScan is a Web-based AntiVirus service for remote

clients that uses the myCIO HTTP server to transfer virus definitions.

McAfee AsaP VirusScan could allow a remote attacker to traverse

directories on the Web server. A remote attacker can send a

specially-crafted URL request containing modified "dot dot"

sequences that use three dots instead of two (/.../) to traverse

directories and view or download any file outside of the Web root

directory. [xforce2]

Although developed by the same company, these two products are

marketed separately.

At the time of this writing it was unclear if Network Associates Incorporated

was notified about this vulnerability in their enterprise level virus protection

product.

4.2.2. Spring 2004 and Spring 2002 comparison

To compensate for the Spring 2004 semester partial scan, the number of

vulnerabilities per port was adjusted by a common multiplier (hosts scanned

54

during Spring 2002 / hosts scanned during Spring 2004) to estimate the total

number of detectable vulnerabilities.

Table 6. Percent change in critical vulnerabilities, Spring 2002 and Spring 2004.

port Spring 2002
 Spring
2004

Spring 2004
adjusted
(x4.309)

difference
(adjusted)

% change
(adjusted)

all 9311 3159 13613 4302 46.2
445 0 687 2960 2960 N/A
8083 0 506 2180 2180 N/A
135 0 325 1400 1400 N/A
80 202 178 767 565 279.7

161 1218 118 508 -710 -58.3
21 193 96 414 221 114.3

139 7042 35 151 -6891 -97.9
631 26 29 125 99 380.6
443 44 26 112 68 154.6
25 128 24 103 -25 -19.2

280 18 21 90 72 402.7
22 7 17 73 66 946.5

3339 0 17 73 73 N/A
5225 0 14 60 60 N/A
6112 8 13 56 48 600.2

The number of vulnerabilities increased 46.2% between the time period of

Spring 2002 and Spring 2004. The number of vulnerabilities during the Spring 2004

scan was at a level similar to Fall 2001.

 The order of the most vulnerable ports between the two scans changed

significantly. Port 139 was the most vulnerable port in the 2002 scan showing

7,042 discovered abilities. In the Spring 2004 scan, it ranked seventh, showing

only 151 vulnerabilities. The most vulnerable port during the most recent scan

was port 445, which had a total of 2,960 vulnerabilities. During the second scan,

this port registered zero vulnerabilities. This change can be attributed to a

change in the SMB communications architecture starting in Windows 2000. SMB

is an acronym for ‘server message block’ and is described as “a message

55

format used by DOS and Windows to share files, directories and devices”

[Webopedia]. In versions of Windows previous to Windows 2000, SMB was

partnered with the NetBIOS protocol for communication purposes. This

communication used TCP port 139. Since Windows 2000, NetBIOS was no longer

used to transmit SMB information; the server message blocks were transmitted

using the TCP/IP protocol. Nessus data indicated that only systems running the

Windows 9x operating systems and some Linux systems, assumed to be running

Samba, have vulnerabilities on port 135. All machines that reported

vulnerabilities on port 445 were either Windows 2000 professional or Windows XP.

 Port 135, used by the Windows RPC end point mapper, was the third most

vulnerable port during the Spring 2004 scan. Remote Procedure Call is a

protocol that supports the remote execution of code on a host system. Port 135

is consistently at the top of the most attacked ports, as reported by the Internet

Storm Center, a service run by the SANS Institute that receives and analyzes logs

from millions of intrusion detection systems. The MS03-026 Microsoft security

advisory warned of a buffer overflow in the RPC interface that could allow

arbitrary code execution [MS03-026]. This vulnerability was exploited by the

MSBlast worm. It is theorized that the steadily decreasing level of port 135

attacks from unique sources is related to the discovery and cleansing of this

worm.

56

Figure 4. Top attacked ports per day by number of distinct attack sources.

(source: Internet Storm Center – http://www.incidents.org, January 30, 2004)

Port 80 vulnerabilities increased by 279.7% from Spring 2002 to Spring 2004.

The vulnerabilities were detected in systems running various Windows operating

systems, Linux operating systems and print devices. Sixty-two different

vulnerabilities were discovered on the 89 machines that reported a port 80

vulnerability. The class C subnet that contains the main campus web servers

was not scanned during this third scan, and therefore the 178 vulnerabilities

Nessus discovered during the Spring 2004 scan were on systems running possible

unauthorized services.

SNMP information disclosure vulnerabilities dropped by 58.3% between the

Spring 2002 and Spring 2004 scans. FTP vulnerabilities increased 114.3% during

the two year span.

 The number of average critical vulnerabilities, warnings and informational

discoveries per host found by Nessus increased between the Spring 2002 and

Spring 2004 semesters. The average number of critical vulnerabilities per host

rose 46.1% from 2.377 average critical vulnerabilities to 3.475 average critical

vulnerabilities. The average number of warnings per host rose 46.1% from 6.682

57

average warnings to 9.764 average warnings. The average number of

information discoveries per host rose 16.3% from 8.832 average informational

discoveries to 10.273 average informational discoveries.

Table 7. Average vulnerabilities by type, Fall 2001, Spring 2002 and Spring 2004.

 Fall 2001 Spring 2002 Spring 2004 Total

critical
vulnerabilities 13642 9311 3159 26112

avg. critical /
host 3.694 2.377 3.475 3.065

warnings
 18588 26176 8876 53640

avg. warn. /
host 5.033 6.682 9.764 6.043

informational
disclosure 30828 34597 9339 74764

avg. info /
host 8.347 8.832 10.273 8.776

58

Chapter 5

Conclusion

5.1. Conclusions

Unpatched Windows operating system vulnerabilities are the top threat to

security on the ETSU administrative network. Port 139 critical vulnerabilities

accounted for 80.1% of all critical vulnerabilities discovered during the initial two

scans. The major problem facing campus security is the absence of a patch

management and deployment system for the over 3,000 Windows based

computer systems. Under the current security model, users are responsible for

applying operating system and application patches to their workstation.

Attempts for the Office of Information Technology to automate patch

distribution to workstations have been squelched by members of the faculty

community. Concerns exist that automated patch installation may disable

specialized programs that are installed and used on faculty workstations.

 Allowing ‘academic freedom’ grants liberties to workstation users at ETSU

that do not follow preferred security guidelines. Users are made a local

administrator on their primary workstation and may install any program, or run

any executable. Users commonly make unwise choices such as installing

programs laced with spyware or running unknown executables received

through e-mail. The network is also open to anyone with access to a network

jack, and systems that are not members of the ETSU domain can receive an IP

address and access ETSU resources and the Internet. The ETSU firewall protects

against exploits by outside sources, but when an infected source enters the ETSU

network, the probability that the network could suffer a large number of

compromises increases.

 In some cases, server class operating systems are installed on workstations

and server class hardware not administered by the Office of Information

59

Technology. On April 2, 2002, a Windows NT server was compromised and

turned into a web server of pornographic material. The intruders were able to

compromise this Windows NT Server because the administrator password was

left blank. On April 4, 2002, a Windows 2000 machine was compromised and

turned into a ‘warez’ server holding applications, games and pornographic

movies. The administrator password on this machine was also left blank. On

April 14, 2002, a machine was used as a mail server to send out e-mails

advertising pornography. The network readable SMTP service allowed

anonymous relaying of e-mail and was used by the intruders to send over 23,000

solicitations. The machine was configured to offload the duty of sending the

mail to the former ETSU mail server, access.etsu.edu. Under the unusual load of

outgoing e-mail, and the 13,000 solicitations that were ‘bounced back,’ access

folded and denied service to ETSU faculty, staff and students.

Systems such as ats.etsu.edu, mentioned in Section 4.1.1.1, and the three

systems mentioned here illustrate how allowing university employees to

administer their workstations or servers has decreased the security on the ETSU

administrative network. Changing this policy of open administration would be

difficult and may not be desired in an educational environment. Security

policies set by an information technology department, foremost, should not

interfere with this educational mission. However, until security policies are

developed and enforced, it is theorized that the number of vulnerabilities will

remain consistent with the data discovered in this study.

Continued security audits at ETSU would not be practical until a system for

patch deployment was implemented. The analysis found most of the critical

vulnerabilities (>75%) were related to Windows operating systems being

unpatched or misconfigured. Without a patch deployment system to create a

security baseline, an audit would only discover the obvious; that operating

system patches were missing on many systems.

60

5.2. Avenues for Research

5.2.1. ETSU Domain Password Policy

East Tennessee State University does not enforce a strict password policy

on the ETSU Windows 2000 Active Directory Domain. The current policy allows

for any password that is at least six characters in length and may consist of any

combinations of letters, numbers or symbols. A user’s password must be

changed once every ninety days, and the same password can not be used

twice in succession. A possible extension of this thesis would involve using the

LC4 program described in the following section to analyze the passwords used

on the ETSU domain to determine the exploitability or ‘crackability’ or these

passwords. From this information, it could be determined if a stricter password

policy for the domain should be suggested.

5.2.1.1 LC4

LC4 is a Windows-based utility that evaluates the strength of Windows user

account passwords. Password strength is determined by the time it takes a third

party to guess or decipher a user password. A password easy for an attacker to

guess or decipher increases network vulnerability. Weak passwords are

generally common words, names of people or pets, birthdays, and passwords six

characters or less in length. Strong passwords are generally eight characters or

longer in length, and contain a combination of letters, numbers and symbols.

LC4 can only decipher passwords used in Windows NT/2000 network

environments [LC4].

 LC4 first must gather the encrypted passwords before the (sometimes

long) deciphering process. LC4 can retrieve encrypted passwords in from a

local registry; from a remote registry; from a SAM file; and through sniffing.

61

Administrative rights are required for many encrypted password retrieval tasks,

for obvious security reasons.

 LC4 can ‘dump’ passwords from the local machine registry. LC4 will not

retrieve locally stored password hashes if a non-privileged user makes the

‘dump’ request.

 Encrypted passwords may also be retrieved from a remote computer

registry. The user requesting the retrieval must have administrative rights on the

host machine. To retrieve remote password hashes, the host machine must

allow remote registry access also. If the remote machine protects the

encrypted passwords with Microsoft SYSKEY (Windows NT 4.0 SP3 and later), a

utility exists that can be used to bypass SYSKEY encryption and retrieve the

encrypted passwords for use by LC4 [LC4].

 Passwords can be retrieved from a ‘SAM file.’ The SAM file is a database

of encrypted passwords held by the Security Account Manager of Windows NT

based systems [Microsoft3]. A SAM file can only be retrieved in specific ways

since the Security Account Manager holds a lock on the SAM file. The first way

to retrieve a SAM file involves booting the system from a floppy disk that

contains DOS or a DOS-based version of Windows. On this boot disk, a utility to

view NTFS partitions under DOS must exist. The SAM file may be copied since the

SAM file is not locked in DOS. Second, Windows NT 4 systems store the SAM file

on repair disks and the WINNT\repair directory. The SAM file, lastly, can be

recovered from a backup tape [LC4].

 The final method of password retrieval is ‘sniffing’ and collecting network

packets that contain encrypted passwords. Sniffing network packets with LC4

requires a packet capture driver to be installed. A computer on an unswitched

network will receive packets destined for all systems attached to a common

hub, section of network or broadcast domain. The network interface device

normally discards packets destined for other machines. A packet capture driver

accepts all packets received by the network interface device [LC4].

62

LC4 attempts to decipher a password using a four phase algorithm [LC4]:

• Test the password for equality with the username.

• Test the password against common words or alphanumeric combinations.

The newest release of LC4 contains a smaller dictionary of approximately

twenty-five thousand words and a larger dictionary of approximately two-

hundred fifty thousand words.

• Test the password against combinations of dictionary words with different

combinations of numeric and symbolic characters. The default setting

appends two non-alphabetic characters to the end of each dictionary

word. The ‘hybrid’ phase deciphers such passwords as ‘apple50’ and

‘secret!!’.

• Attempt a brute force attempt of all character combinations. The brute

force phase of decryption will take the longest, in some cases in excess of

twenty-four or forty-eight hours.

Password strength can be measured by the time needed to decipher a

password. LC4 lists the audit time for each deciphered password. If desired, the

deciphered password may remain hidden [LC4].

Windows NT passwords can be brute-forced by LC4 in two pieces.

Windows NT has a password character-length limit of fourteen characters. The

encryption methods employed by Windows NT allow the password to be

decrypted in two seven-character segments. Decrypting two seven-character

password fragments is far faster than decrypting one fourteen-character

password. Windows 2000 sets no limit on password length. Passwords fifteen

characters or longer must be deciphered in full [LC4].

63

Figure 5. LC4 (not reporting cracked password).

LC4 could be used to determine the average strength of ETSU user

passwords. With the absence of a password policy, a large percentage of user

passwords (30%) are expected to be deciphered in the first three deciphering

phases.

5.2.2. Software Update Services

East Tennessee State University does not use a software package for the

automated delivery of system patches to Windows workstations and servers on

the ETSU administrative network. One such software package for delivering

system patches is Microsoft Software Update Services. Software Update Services

(SUS) is a tool that allows domain administrators to control the ‘Automatic

64

Updates’ control panel object of Windows 2000, Windows XP and Windows

Server 2003 systems on their domain.

 A Software Update Services server is deployed on a site to be used as the

repository for all workstations and servers use to receive critical updates. The

critical updates are cached locally on the SUS server through a synchronization

process with windowsupdate.microsoft.com. Once the update is downloaded

and accepted for distribution by the administrator, the ‘Automatic Updates’

object within the client operating system is directed to process the update

through the SUS server.

 An active directory group policy controls how the Automatic Updates

client processes updates. SUS supports for three options for managing updates.

The first option notifies the user of a patch’s availability and requires user

intervention to both download the update from the SUS server and to install the

patch. The second option downloads the patch automatically to the client

system, but will not attempt to install it without user intervention. The third choice

forces the Automatic Updates client to automatically download and install the

update. If the final choice is chosen, the administrator chooses the time at

which the patch installation occurs. Supplementary options exist that allow for

an administrator to handle situations where a system was powered down during

a scheduled installation time, and situations where a user is interactively logged

into a machine during a scheduled installation time.

 Currently, a Software Update Services server is being tested at ETSU for use

on the administrative network. However, global use of the server has been

denied by committees that are concerned about the automatic patching of

systems causing changes that could disable certain software packages. An

extension of this thesis could involve studying the risks and rewards of

automatically patching system software on an enterprise level.

65

5.2.3. Systems Management Server

Microsoft Systems Management Server allows administration of an entire

network from a centralized point. Deploying updates, new software, and on-site

troubleshooting can be costly, in terms of money and labor, especially with a

large number of systems. Rolling out a new software program normally involves

a privileged user visiting each system and manually installing the software

package, or allowing the user of the system to have administrative access over

their system. Deploying a system-wide software update, such as a service pack,

involves similar labor. Systems Management Server allows administrators to

deploy software and updates without visiting each system [Microsoft2].

 Systems Management Server maintains an inventory of hardware devices

in a SQL database. Knowledge of hardware devices helps to develop plans to

upgrade software and hardware for older machines. Hardware inventory aids

troubleshooting cases where certain devices with known ‘problem’ software

can be updated to a newer and less problematic software package. Systems

Management Server can eliminate human error in inventory upkeep. Using SQL,

administrators can query the hardware device database for desired hardware

characteristics [Microsoft2].

 Systems Management Server maintains an inventory of software

programs. It is possible to query a listing of software packages installed on a

system, or a listing of all systems with a specific software package installed.

When the number of software licenses for an application is limited, Systems

Management Server can detect the number of loaned licenses and block users

from exceeding the license limit [Microsoft2].

 Administrators can control clients remotely using SMS remote desktop

abilities to determine, and remedy problems encountered by a user. Systems

Management Server allows for full or partial control of a remote client

[Microsoft2].

66

5.2.3.1. Inventory

Systems Management Server gathers data about network resources

during ‘discovery’ events. First, Systems Management Server gathers information

about a computer system when the system is added to an SMS ‘site.’ A ‘site’ in

SMS can refer to any logical partitioning of resources, including an entire

enterprise or a single subnet. Second, SMS can gather information from a DHCP

server to discover systems that are not present on the network at a given time.

Third, different logon methods into Novell NetWare systems can trigger Systems

Management Server to gather information. Finally, SMS periodically checks

known resources for updates. SMS polls computer systems that do not regularly

activate conventional discovery triggers, such as systems that are infrequently

rebooted, to keep its information about these resources current [Microsoft2].

 After a resource is discovered, the Systems Management Server client is

automatically installed on the newly discovered resource. The SMS client

software then collects resource data collection and transfers it to the Systems

Management Server upon request. The software tracks data on more than 200

different attributes of each resource system. Client attributes tracked are

reminiscent of data listed by the Windows Device Manager and Windows

System Information. The Windows Device Manager lists hardware devices, such

as drives, video and network adapters, disk controllers, ports and other

peripherals. Microsoft System Information lists hardware device attributes like

processor speed, amount of memory, operating system, and computer

manufacturer, as well as hardware resources, such as memory address and

interrupt requests.

67

Figure 6. Microsoft System Information MMC snap-in

If a system’s hardware configuration is changed, only changes and not

the complete hardware inventory are transmitted to the Systems Management

Server. Transmitting only changes saves bandwidth on slower connections and

reduces overhead on the Systems Management Server. The SMS client installed

on each resource system collects the amendment data [Microsoft2].

 The SMS client performs a software inventory in a similar manner to a

hardware inventory. The client searches the system for installed software and

transmits the compiled list to the Systems Management Server [Microsoft2].

 In addition to cataloguing software applications installed on each

resource system, Systems Management Server can restrict access to certain

applications based on user, time and usage. For example, an administrator can

block access to Solitaire on all systems during normal business hours. Also,

administrators can also deny access to certain applications with limited licenses.

A user wishing to use an application with all available licenses loaned enters a

line for a ‘callback’ when a license becomes free for use. Mobile users can also

68

check out a license for the use of a program on a laptop computer so the

mobile user can execute the problem disconnected from the network without

exceeding available software licenses [Microsoft2].

5.2.3.2. Deployment

Deployment of a single application or application update over a network

of hundreds or thousands of systems is time consuming and very costly. Systems

Management Server can ease a ‘rollout’ of an application or an update over a

network by eliminating the ‘footwork’ involved in a classic rollout. The Systems

Management Server first alerts each SMS client of an applicable update. After

acceptance by the user, the SMS client then installs the update. Systems

Management Server can install single files, applications or operating systems

[Microsoft2].

 Through the SMS Software Inventory, an administrator can assess systems

in need of certain updates. Updates can be advertised to single or multiple

users, to a network segment, or to a specific machine. Once a user receives an

advertisement from the SMS client, that user can choose to install the software

immediately or schedule an unattended install. Conventionally, an

administrator would need to visit each computer, log in as a privileged user and

install the software manually. The SMS client acts as a system administrator, so

any user can install advertised software, regardless of privilege.

 To prepare a software update for SMS distribution, an administrator

creates a script to automate the installation process on the client system. The

administrator must create a ‘package’ that details the software information and

location for distribution on the network. Multiple distribution points can be

created to alleviate a bottleneck at one server hosting an update for an entire

network. Once the application is hosted on the appropriate distribution points,

and the script and package are created, the administrator may advertise the

69

new application to a single user/machine or multiple users/machines. The SMS

client on each appropriate machine then alerts the user that new software is

available for installation [Microsoft2].

 Programs may be automatically uninstalled from client machines by SMS.

When a program is no longer needed or when an unattended installation fails,

programs can be uninstalled by the SMS client. Administrators can reduce

installation-scripting errors by using the SMS ‘dry-run’ function. An application

package can be test-installed to determine the integrity of the installation script

and application files [Microsoft2].

5.2.3.3. Diagnostics and Troubleshooting

Application and hardware problems can be diagnosed remotely using

Systems Management Server. An administrator can take full control over the

client computer, send files when needed or chat with the user to gather more

information about a problem with the client computer.

 Remote control allows an administrator to view a client system remotely

and issue commands to the client via mouse or keyboard. The remote control

functionality is only accessible to individuals with administrative rights

[Microsoft2].

 Administrators can also reboot a remote machine to finish a software

update, or to revive a system that has failed. Administrators can also execute

programs remotely. Using all these features of SMS, an administrator can send

an update in executable form to a client computer, execute the update and

then reboot the machine to finish the installation process [Microsoft2].

 In addition to monitoring the health of a single system, SMS permits

administrators to monitor their network’s health. Potential network trouble

includes broken links and bottlenecks. A network can be mapped and

graphically displayed for the administrator. The mapping can show systems

70

within a subnet and how subnets connect to form a compete network.

Mapping information can be used to find bottlenecks in traffic patterns or

software distribution paths.

71

References

[AmHeritage] The American Heritage Dictionary of the English Language, Fourth
Edition.

[Axelsson1] Axelsson, Stefan. Intrusion Detection Systems: A Survey and

Taxonomy. 14 March 2000.

[Axelsson2] Axelsson, Stefan. The Base-Rate Fallacy and the Difficulty of Intrusion

Detection. ACM Transactions on Information and System Security, Vol. 3,
No. 3, August 2000, pages 186-205.

[Cui] Cui, Zhiqiang. Security Incidents in an Academic Setting: A Case Study.

East Tennessee State University: Electronic Theses and Dissertations.
<http://etd-submit.etsu.edu/etd/theses/available/etd-0330102-212624/>
accessed January 20, 2004

[Deraison1] Deraison, Renaud. Manpage of NESSUSD.

<http://www.nessus.org/doc/nessusd.html> September 17, 2000

[Deraison2] Deraison, Renaud. Manpage of NESSUS.

<http://www.nessus.org/doc/nessus.html> September 17, 2000

[Deraison3] Deraison, Renaud. Plugins.

<http://cgi.nessus.org/plugins/dump.php3> accessed July 15, 2001.

[Farmer1] Farmer, Dan and Eugene H. Spafford. The COPS Security Checker

System. July 10, 1992.

[Farmer2] Farmer, Dan. COPS Overview.

<http://www.fish.com/cops/overview.html> May 18, 1993.

[Farmer3] Farmer, Dan. What SATAN Is.

<http://www.fish.com/satan/summary.html> accessed July 23, 2001.

[Fyodor] Fyodor. Nmap Network Security Scanner MAN Page.

<http://www.insecure.org/nmap/nmap_manpage.html> accessed July
12, 2001.

[LC4] LC4 Documentation.

<http://www.atstake.com/research/LC4/documentation/help.htm>
accessed July 13, 2001.

72

[Microsoft1] IIS Lockdown Tool

<http://www.microsoft.com/windows2000/downloads/recommended/iisl
ockdown/default.asp> accessed April 13, 2003.

[Microsoft2] Systems Management Server Version 2.0: Scalable Management for

Windows Based Systems. 1998.

[Microsoft3] Windows NT System Key Permits Strong Encryption of the SAM.

<http://support.microsoft.com/support/kb/articles/Q143/4/75.asp>
February 22, 2001.

[MS99-025] Microsoft Security Bulletin (MS99-025).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms99-025.asp> accessed April 13, 2003.

[MS00-029] Microsoft Security Bulletin (MS00-029).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-029.asp> accessed April 26, 2002.

[MS00-036] Microsoft Security Bulletin (MS00-029).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-029.asp> accessed April 26, 2002.

[MS00-047] Microsoft Security Bulletin (MS00-047).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-029.asp> accessed April 29, 2002.

[MS00-052] Microsoft Security Bulletin (MS00-052).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-052.asp> accessed April 29, 2002.

[MS00-053] Microsoft Security Bulletin (MS00-053).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-053.asp> accessed April 24, 2002.

[MS00-062] Microsoft Security Bulletin (MS00-062).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-062.asp> accessed April 29, 2002.

[MS00-065] Microsoft Security Bulletin (MS00-065).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-065.asp> accessed April 24, 2002.

73

[MS00-066] Microsoft Security Bulletin (MS00-066).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-066.asp> accessed April 29, 2002.

[MS00-067] Microsoft Security Bulletin (MS00-067).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-067.asp> accessed April 25, 2002.

[MS00-070] Microsoft Security Bulletin (MS00-070).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-070.asp> accessed April 23, 2002.

[MS00-072] Microsoft Security Bulletin (MS00-072).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-072.asp> accessed April 30, 2002.

[MS00-086] Microsoft Security Bulletin (MS00-086).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-086.asp> accessed April 23, 2002.

[MS00-089] Microsoft Security Bulletin (MS00-089).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-089.asp> accessed April 23, 2002.

[MS00-091] Microsoft Security Bulletin (MS00-091).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms00-091.asp> accessed April 29, 2002.

[MS01-003] Microsoft Security Bulletin (MS01-003).

<http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s
ecurity/bulletin/ms01-003.asp > accessed April 29, 2002.

[MS01-008] Microsoft Security Bulletin (MS01-008).

<http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s
ecurity/bulletin/ms01-008.asp > accessed April 24, 2002.

[MS01-009] Microsoft Security Bulletin (MS01-009).

<http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s
ecurity/bulletin/ms01-009.asp > accessed April 29, 2002.

[MS01-011] Microsoft Security Bulletin (MS01-011).

<http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s
ecurity/bulletin/ms01-009.asp > accessed April 30, 2002.

74

[MS01-025] Microsoft Security Bulletin (MS01-025).
<http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s
ecurity/bulletin/ms01-025.asp > accessed April 23, 2002.

[MS01-033] Microsoft Security Bulletin (MS01-033).

<http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s
ecurity/bulletin/ms01-033.asp > accessed April 13, 2003.

[MS01-044] Microsoft Security Bulletin (MS01-044).

<http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s
ecurity/bulletin/ms01-044.asp > accessed April 25, 2002.

[MS01-046] Microsoft Security Bulletin (MS01-046).

<http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s
ecurity/bulletin/ms01-046.asp > accessed April 25, 2002.

[MS01-048] Microsoft Security Bulletin (MS01-048).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms01-048.asp> accessed April 29, 2002.

[MS03-007] Microsoft Security Bulletin (MS03-007).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms03-007.asp> accessed January 29, 2004.

[MS03-026] Microsoft Security Bulletin (MS03-026).
 <http://www.microsoft.com/technet/treeview/default.asp?url=/technet/s

ecurity/bulletin/ms03-026.asp> accessed January 30, 2004.

[RFC793] RFC 793 - Transmission Control Protocol: DARPA Internet Program

Protocol Specification. <http://www.faqs.org/rfcs/rfc793.html>
September 1981.

[RFC1001] RFC 1001 – Protocol Standard for a NETBIOS Service on a TCP/UDP

Transport: Concepts and Methods.
<http://www.faqs.org/rfcs/rfc1001.html> March 1987.

[Roesch] Roesch, Martin. Snort - Lightweight Intrusion Detection for Networks.

Proceedings of USENIX LISA 99 conference. November, 1999.

[Securiteam] IIS Cross-Site Scripting Vulnerability.

<http://www.securiteam.com/windowsntfocus/IIS_Cross-
Site_scripting_vulnerability__Patch_available_.html> accessed April 13,
2003

75

[Webopedia] SMB. <http://www.webopedia.com/TERM/S/SMB.html> accessed
January 30, 2004.

[xforce1] WU-FTPD glob() function error handling heap corruption. <

http://xforce.iss.net/xforce/xfdb/7611> accessed January 28, 2004.

[xforce2] McAfee myCIO HTTP server directory traversal.

<http://xforce.iss.net/xforce/xfdb/6834> accessed January 30, 2004.

[xforce3] IIS 3.0 newdsn.exe sample application allows remote creation of

arbitrary files. <http://xforce.iss.net/xforce/xfdb/1530> accessed January
27, 2004.

76

Appendix A

Terms and Definitions

some definitions adapted from http://www.webopedia.com

Term or
abbreviation Definition

ACK
ACKnowledge – A type of TCP/IP packet sent to

acknowledge the host and client are attempting to create a
connection.

bootpc A utility that allows a client to receive network information
from a bootp server.

bootps A service that allows clients to network boot using a bootp
server.

chargen A UNIX utility that sends random characters over a network.

CGI
Common Gateway Interface – A specification that allows a

server-side executable to accept and manipulate data given
from a web page.

COPS
Computer Oracle and Password System - A freeware UNIX
tool that discovers computer system misconfigurations that

pose a risk to system and network security.

CRC Cyclic Redundancy Check – a technique for determining
transmission errors.

DDoS

Distributed Denial of Service (attack) – an attack launched by
multiple computers against a host that blocks a large

percentage of legitimate network traffic from entering the
host network or system.

DHCP
Dynamic Host Configuration Protocol – a protocol used for
automatically assigning dynamic IP addresses to network

clients.

DoS
Denial of Service – an attack launched by a single computer

against a host that causes a failure in the host that denies
services.

DOS
Disk Operating System – a computer operating system

developed by Microsoft prevalent in many computers for
over a decade.

echo A utility used to display a line of text on a screen.

ETSU East Tennessee State University - a regional university located
in Johnson City, Tennessee.

exec A UNIX command that executes applications.

FIN FINish – a type of TCP/IP packet sent to terminate the
connection between a host and a client.

77

finger A utility used to retrieve information about a remote user.

FTP File Transfer Protocol – a protocol used for transferring files
across the Internet.

gopher A system of organizing information for remote browsing that
predates the World Wide Web.

HTTP
HyperText Transfer Protocol – The protocol used by the World

Wide Web for transferring data between web servers and
web browsers.

ICMP Internet Control Message Protocol – A protocol used for
transmitting error, control and informational messages.

IDS
Intrusion Detection System – a system, normally placed at the
entrance of a network, that examines network traffic and logs

packets sent with possible malicious intent.

IP

Internet Protocol – a connectionless protocol used to deliver
packets of information between two, or more, systems on a

network. Paired with the Transport Control Protocol to create
TCP/IP, the main protocol used on the Internet and local area

networks.
klogin A utility used to remotely login to a UNIX machine
kshell A utility used to remotely open a Kerberos remote shell

LC4 A Windows tool that audits password strength of Windows user
accounts.

login A UNIX command used to sign onto a system.
mask-request A remote request for a network mask.

Nessus A freeware UNIX tool that scans systems on a network to
discover “well-known” security vulnerabilities.

NIS
Network Information Service/Server – A server that

continuously browses a network to discover services and lists
network services for lookup.

Nmap A freeware UNIX tool that determines open ports within a
network protocol stack.

NTFS
New Technology File System – A file system used by Windows

NT machines that increases reliability and security when
compared to FAT.

OSPF
Open Shortest Path First – a routing protocol that offers a more

efficient method of router intercommunication than the
Routing Information Protocol.

PUSH A type of TCP/IP packet that prioritizes the packet.

RFC Request For Comments – Documents submitted to be
considered for Internet standards.

RIP Routing Information Protocol – a protocol used by routers to
exchange internet topography information between routers

78

RPC Remote Procedure Call – a protocol that allows a client to
execute a program on a host

RST ReSeT – a type of TCP/IP packet that resets the connection
between a client and host.

SATAN Security Administrator Tool for Analyzing Networks – the first
well-known, network security scanner.

SMB Server Message Block – a message format used by DOS and
Windows to share files, directories and devices.

SMS Systems Management Server – An application developed by
Microsoft for administering a network from a centralized point.

SMTP Simple Mail Transfer Protocol – a protocol used for sending e-
mail messages between e-mail servers

SNMP Simple Network Management Protocol – a protocol used for
managing networks. Mainly for remote system diagnostics.

Snort A freeware cross-platform “lightweight intrustion detection
system”

SQL Structured Query Language – A language for database data
manipulation.

SYN SYNchronize – A type of TCP/IP packet that synchronizes a
data stream between a client and host.

talk A UNIX program used to communicate between two

TCP

Transport Control Protocol – a connection-based protocol
that enables two system to communicate with streams of
information. Paired with the Internet Protocol to create

TCP/IP, the main protocol used on the Internet and local area
networks.

telnet
A program/protocol used to connect and interact with a

remote host to perform operations as if the remote host were
local.

TFTP
Trivial File Transfer Protocol – A FTP service without security

features that uses the UDP protocol to transfer files between
systems.

timestamp-
request A remote request for a timestamp.

traceroute A utility that tracks a packet between the client and receiving
host, noting all intermediate systems traversed.

UDP User Datagram Protocol – a connectionless protocol used
mainly in broadcast delivery of packets.

UNIX A computer operating system with many variants built for
multi-user, multi-process operation.

URG URGent – a type of TCP/IP packet that flags the packet as
containing urgent data.

79

who A UNIX program used to list users currently signed into a
system.

whois A utility used to find information about a domain name or an
IP address.

xdmcp X Display Manager Control Protocol – used by X terminals to
set up an X session with a remote system.

80

Appendix B

nsrparser source code

// --- main.cpp ---
//
// purpose : this program parses a Nessus .nsr file (or a cat of multiple
// .nsr files) to return desired statistics. hex edit and remove
// all 1A entries from files before using.
//
// ----------------

// declarations
#pragma warning(disable:4786)
#include <algorithm> // vector sorting
#include <fstream> // file streaming
#include <iostream> // user input and screen output streams
#include <string> // string container
#include <vector> // vector container
using namespace std;

// struct declarations
struct SELECTION // a single line of a .nsr file separated into its pieces
{

 string strHost; // host name/ip
 string strPort; // port number
 string strPlugin; // plugin number
 string strSeverity; // warning type
 string strDescription; // vulnerability description

};

struct PLUGDESC // plugin number and associated description
{

 string strPlugin; // plugin number
 string strDescription; // vulnerability description

};

struct OPERSYS // operating system information gathered from scan
{

 string strHost; // host name/ip
 string strnmap; // nmap findings
 string strQueso; // queso findings
 string strOS; // host OS (inferred)

};

struct HOST // host names
{

 string strHost; // host name/ip

};

struct PORTSEV // an open port and its associated occurrences of notes, info and report flags
{

 string strPort; // port number

81

 int nNOTE; // number of information entries
 int nINFO; // number of warning entries
 int nREPORT; // number of vulnerability entries

};

//variable declarations
 fstream fstrIn; // default incoming stream
 fstream fstrOut; // default outgoing stream
 SELECTION* SELCurrent; // pointer for NEW SELECTION creation
 vector<HOST>* pvecHosts; // pointer for NEW vector<HOST> creation
 vector<OPERSYS> vecOS; // operating system information vector
 vector<PORTSEV>* pvecSEV; // pointer for NEW vector<PORTSEV> creation
 vector<PLUGDESC> vecPLUGDESC; // plugins and associated descriptions vector
 vector<PLUGDESC>* pvecPLG; // pointer for NEW vector<PLUGDESC>

creation
 vector<SELECTION> vecMainData; // main data vector of SELECTIONS

//function declarations
 void findDescription(string); // finds a part of a description
 void findDescription2(string, string);
 // finds a part of a description
 void findHoles(string);
 // finds holes on a specified port
 void findPlugin(string, string); // finds hosts with specific information
 void makeSelection(string&); // make selection struct from NSR line
 string parseString(string&); // retrieves information from NSR line
 void retrieveData(); // opens and parses file, filling vecMainData
 void openPorts(string); // counts number of host with a port open
 void operatingSystems(); // find operating systems for hosts
 void outputPlugin(); // outputs list of plugins found to file
 void portInfo(); // returns port information
 void portVulnerabilities(string, string); // finds all vulnerabilities listed for a port
 string removeSemicolons(string); // removes semicolons from plugin description
 string returnOS(string);
 void mainMenu(); // offers user parsing options
 void uniqueHosts(); // counts unique hosts
 bool vecsort(PORTSEV, PORTSEV);

// --- main() ---
//
// --------------
void main()
{

 cout << ".nsr parser v0.50" << endl;

// load information
 retrieveData();

// manipulate information
 mainMenu();

 cout << "[quit]" << endl;

} // end main

// --- retrieveData() ---
//
// called by : main
// calls to : makeSelection, operatingSystems
// purpose : opens a file in .nsr format and parses the file, filling vecMainData,
// a vector of SELECTION objects.
//
// -------------------
void retrieveData()

82

{

 bool bBadFile = true; // bad filename flag
 bool bFoundValue = false; // item found in vector flag
 char cDelimiter = 10; // delimiter for .nsr SELECTION information
 PLUGDESC* PTemp; // pointer for NEW PLUGDESC creation
 string strFileName = "", // name of file to parse
 strLine = "", // a single line of the data file
 strTemp = ""; // string container for temporary information
 vector<PLUGDESC>::reverse_iterator iPLG; // vecPLUGDESC iterator
 vector<SELECTION>::iterator iSEL; // vecMainData iterator

 do
 {
// get filename to be used in processing
 cout << "[enter name of data file]: ";
 cin >> strFileName;
 cin.ignore(80, '\n');

// attempt to open the file, ask again on error, continue until acceptable
 fstrIn.open(strFileName.c_str());
 bBadFile = fstrIn.fail();
 if (bBadFile)
 {
 cout << "!! error - can not find file " << strFileName << endl;
 fstrIn.clear();
 }
 } while (bBadFile);

// get a line of text, and process each line using the hex 0A delimiter
 cout << "[processing main data vector] ";

 do
 {
 getline(fstrIn, strLine, cDelimiter);
 makeSelection(strLine);
 } while (!fstrIn.eof());

 cout << " [done @ " << vecMainData.size() << " Nessus entries]" << endl;

// close the file
 fstrIn.close();

// create vector of plugin numbers and associated descriptions
 cout << "[processing plugin/description vector] ";

 for (iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)
 {
 strTemp = (*iSEL).strPlugin;

 for (iPLG = vecPLUGDESC.rbegin();
 iPLG != vecPLUGDESC.rend() && bFoundValue == false;
 iPLG++)
 {
 if (strTemp == (*iPLG).strPlugin)
 {
 bFoundValue = true;
 }
 }

// if value is not found in host vector, add hostname to host vector
 if (bFoundValue == false)
 {
 PTemp = new PLUGDESC;
 (*PTemp).strPlugin = (*iSEL).strPlugin;
 (*PTemp).strDescription = (*iSEL).strDescription;

83

 vecPLUGDESC.push_back(*PTemp);
 delete PTemp;
 }

// reset bFoundValue
 bFoundValue = false;
 }

 cout << " [done @ " << vecPLUGDESC.size() << " Nessus plugins]" << endl;

// fill operating systems vector
 cout << "[processing operating system information] ";

 operatingSystems();

 cout << " [done @ " << vecOS.size() << " OS inferences]" << endl;

} // retrieveData()

// --- makeSelection() ---
//
// called by: retrieveData
// calls to: parseString
// inputs: strLine - a single line from the data file
// purpose: fill a SELECTION object from a line of the data file
//
// -----------------------
void makeSelection(string& strLine)
{

// create a NEW SELECTION
 SELCurrent = new SELECTION;

// get host name from first section of data file line
 (*SELCurrent).strHost = parseString(strLine);

// check for bogus host name/ip entries, else fill vector
 if ((*SELCurrent).strHost == "<empty>")
 {
 delete SELCurrent;
 }
 else
 {
 (*SELCurrent).strPort = parseString(strLine);
 (*SELCurrent).strPlugin = parseString(strLine);
 (*SELCurrent).strSeverity = parseString(strLine);
 (*SELCurrent).strDescription = removeSemicolons(parseString(strLine));

// add the nSelection to vecMainData and destroy SELCurrent
 vecMainData.push_back(*SELCurrent);
 delete SELCurrent;
 }

} //makeStruct()

// --- parseString() ---
//
// called by: makeSelection
// inputs: strLine - a single line from the data file
// purpose: parses a single line of a .nsr file using the | delimiter
// returns: portion of strLine or <empty> is line is empty
//
// ---------------------
string parseString(string& strLine)
{

84

 int nCol = 0; // column of desired character
 string strReturn = ""; // string to return

// return <empty> if the length of strLine = 0
 if (strLine.length() == 0)
 return ("<empty>");

// find first | in the line, and return the portion of the string before the delimiter
// if no delimiter, return the entire string. trim strLine to remove used portion
 nCol = strLine.find_first_of("|");

 if (nCol != string::npos)
 {
 strReturn = strLine.substr(0,nCol);
 strLine = strLine.substr(nCol+1, strLine.length() - nCol);
 }
 else
 {
 strReturn = strLine;
 strLine = "";
 }

 return strReturn;

} // parseString()

// --- removeSemicolons() ---
//
// called by: makeSelection
// inputs: strLine - description returned from plugin
// purpose: replaces ; from plugin descriptions with newline characters for easier output
// returns: strTemp - the plugin description with replaced ;
//
// --------------------------
string removeSemicolons(string strLine)
{

 int nCol = 0; // column of desired character
 string strTemp = ""; // string container for temporary information

// if no ; exist, return
 if (strLine.find_first_of(";") == string::npos)
 {
 return (strLine);
 }

// loop until no ; remain
 do
 {
 nCol = strLine.find_first_of(";");

//change the next line to choose the ; replacement
 strTemp = strTemp + strLine.substr(0, nCol) + "\n";
 strLine = strLine.substr(nCol+1, strLine.length() - nCol);
 } while (strLine.find_first_of(";") != string::npos);

 strTemp = strTemp + strLine;

 return (strTemp);

} // removeSemicolons()

// --- operatingSystems() ---
//
// called by: retrieveData
// purpose: infer operating system of host from information gathered during the scan

85

//
// --------------------------
void operatingSystems()
{

 bool bFoundValue = false; // host found in vector flag

// operating system clues found in nmap and queso plugins
 const char* aix = "AIX";
 const char* cisco = "Cisco";
 const char* early = "NT4 / Win95 / Win98";
 const char* early2 = "95/98/NT";
 const char* hpux = "HP-UX";
 const char* irix = "Irix";
 const char* irix2 = "IRIX";
 const char* linux = "Linux";
 const char* ljet1 = "LaserJet";
 const char* ljet2 = "JETdirect";
 const char* ljet3 = "JetDirect";
 const char* ltx = "Lantronix";
 const char* mac = "Mac";
 const char* me = "Me";
 const char* me2 = "Millenium";
 const char* nov = "Novell";
 const char* nts = "NT 4.0 Server";
 const char* sol = "Solaris";
 const char* three1 = "3Com";
 const char* three2 = "3COM";
 const char* un = "UNIX";
 const char* vms = "VMS";
 const char* wnt = "WindowsNT";
 const char* w2k = "Windows 2000";
 const char* w2ks = "Advance Server";
 const char* w31 = "3.11";
 const char* xp = "XP";

 OPERSYS* OTemp; // pointer for NEW OPERSYS objects
 string strnmap = "",
 strQueso = "", // OS information findings
 strTemp = ""; // string container for temporary information
 string NMAP_PLUGIN_NUMBER = "10336";
 // plugin number for nmap OS information
 string QUESO_PLUGIN_NUMBER = "10337";
 // plugin number for queso OS information
 vector<OPERSYS>::reverse_iterator iOS; // vecOS iterator
 vector<SELECTION>::iterator iSEL; // vecMainData iterator

// crawl main data vector for hostnames
 for(iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)
 {

// get plugin number
 strTemp = (*iSEL).strPlugin;

// compare plugin numbers
 if ((strTemp == NMAP_PLUGIN_NUMBER) || (strTemp == QUESO_PLUGIN_NUMBER))
 {
// check host vector for hostname found in vecMainData
// reverse iterator chosen for "rule of proximity"
 for(iOS = vecOS.rbegin();
 iOS != vecOS.rend() && bFoundValue == false;
 iOS++)
 {
// if hostname is already listed in vecOS, add new data to vecOS
 if ((*iSEL).strHost == (*iOS).strHost)
 {

86

 bFoundValue = true;

 if ((*iSEL).strPlugin == NMAP_PLUGIN_NUMBER)
 (*iOS).strnmap = (*iSEL).strDescription;
 else
 (*iOS).strQueso = (*iSEL).strDescription;
 }
 }

// if value is not found in host vector, add hostname to host vector
 if (bFoundValue == false)
 {
 OTemp = new OPERSYS;
 (*OTemp).strHost = (*iSEL).strHost;
 (*OTemp).strnmap = "<empty>";
 (*OTemp).strQueso = "<empty>";
 (*OTemp).strOS = "<no information>";

 if ((*iSEL).strPlugin == NMAP_PLUGIN_NUMBER)
 (*OTemp).strnmap = (*iSEL).strDescription;
 else
 (*OTemp).strQueso = (*iSEL).strDescription;

 (vecOS).push_back(*OTemp);
 delete OTemp;
 }

// reset bFoundValue
 bFoundValue = false;
 }
 }

// attempt to determine OS from nmap and queso findings and update vecOS
 for (iOS = vecOS.rbegin(); iOS != vecOS.rend(); iOS++)
 {

 strnmap = (*iOS).strnmap;
 strQueso = (*iOS).strQueso;

 if ((strnmap.find(sol) != string::npos) && (strQueso.find(sol) != string::npos))
 (*iOS).strOS = "Solaris";
 else if ((strnmap.find(w2ks) != string::npos) && (strQueso.find(wnt) != string::npos))
 (*iOS).strOS = "Windows 2000 Server";
 else if ((strnmap.find(w2k) != string::npos) && (strQueso.find(wnt) != string::npos))
 (*iOS).strOS = "Windows 2000 Professional";
 else if ((strnmap.find(nts) != string::npos) && (strQueso.find(wnt) != string::npos))
 (*iOS).strOS = "Windows NT4 Server";
 else if ((strnmap.find(early) != string::npos) && (strQueso.find(wnt) != string::npos))
 (*iOS).strOS = "Windows NT4 Workstation";
 else if ((strnmap.find(early) != string::npos) && (strQueso.find(early2) != string::npos))
 (*iOS).strOS = "Windows 95 or 98";
 else if ((strnmap.find(cisco) != string::npos) && (strQueso.find(cisco) != string::npos))
 (*iOS).strOS = "Cisco IOS";
 else if (strnmap.find(me2) != string::npos)
 (*iOS).strOS = "Windows Millennium Edition";
 else if (strnmap.find(w31) != string::npos)
 (*iOS).strOS = "Windows for Workgroups v3.11";
 else if ((strnmap.find(ljet1) != string::npos) || (strQueso.find(ljet2) != string::npos) || (strnmap.find(ljet3)
!= string::npos))
 (*iOS).strOS = "HP JetDirect Printer";
 else if ((strnmap.find(xp) != string::npos) || (strQueso.find(xp) != string::npos))
 (*iOS).strOS = "Windows XP";
 else if ((strnmap.find(nov) != string::npos) || (strQueso.find(nov) != string::npos))
 (*iOS).strOS = "Novell Netware";
 else if ((strnmap.find(three1) != string::npos) || (strQueso.find(three2) != string::npos))
 (*iOS).strOS = "3Com Device";

87

 else if ((strnmap.find(hpux) != string::npos) || (strQueso.find(hpux) != string::npos))
 (*iOS).strOS = "HP-UX";
 else if ((strnmap.find(linux) != string::npos) || (strQueso.find(linux) != string::npos))
 (*iOS).strOS = "Linux";
 else if ((strnmap.find(irix) != string::npos) || (strQueso.find(irix2) != string::npos))
 (*iOS).strOS = "Irix";
 else if ((strnmap.find(aix) != string::npos) || (strQueso.find(aix) != string::npos))
 (*iOS).strOS = "AIX";
 else if ((strnmap.find(vms) != string::npos) || (strQueso.find(vms) != string::npos))
 (*iOS).strOS = "VMS";
 else if ((strnmap.find(mac) != string::npos) || (strQueso.find(mac) != string::npos))
 (*iOS).strOS = "MacOS";
 else if ((strnmap.find(un) != string::npos) || (strQueso.find(un) != string::npos))
 (*iOS).strOS = "[?]UNIX";
 else if ((strnmap.find(w2k) != string::npos) && (strnmap.find(me) != string::npos))
 (*iOS).strOS = "[?]Windows 2000 Professional";
 else if (strnmap.find(w2ks) != string::npos)
 (*iOS).strOS = "[?]Windows 2000 Server";
 else if (strnmap.find(nts) != string::npos)
 (*iOS).strOS = "[?]Windows NT4 Server";
 else if (strQueso.find(wnt) != string::npos)
 (*iOS).strOS = "[?]Windows NT4 Workstation / Server / Cisco IOS";
 else if ((strnmap.find(early) != string::npos) || (strQueso.find(early2) != string::npos) ||
(strnmap.find(early2) != string::npos))
 (*iOS).strOS = "[?]Windows 95 / 98 / NT4";
 else
 {
 (*iOS).strOS = "<unknown>";
 }
 }
} // operatingSystems()

// --- mainMenu() ---
//
// called by: main
// purpose: main menu for program. switch on users choice.
//
// ------------------
void mainMenu()
{

 bool bGoodValue = false; // acceptable menu selection flag
 char YN = 'n'; // yes/no answer
 int nSelection; // menu choice of user
 string strInfo; // user given information
 string strInfo2; // user given information
 vector<PLUGDESC>::iterator iPLG; // vecPLUGDESC iterator

// loop until quit
 do
 {
//loop until acceptable choice
 do
 {
// reset yes/no flag
 YN = 'n';

 cout << endl << "[main menu]" << endl << endl;
 cout << " [1] hosts by name" << endl;
 cout << " [2] hosts by single port" << endl;
 cout << " [3] hosts by single vulnerability" << endl;
 cout << " [4] hosts by single port vulnerabilities" << endl;
 cout << " [5] ports by # vulnerabilities" << endl;
 cout << " [6] vulnerabilities by single port" << endl;
 cout << " [7] hosts by description" << endl;
 cout << " [8] hosts by two descriptions" << endl;

88

 cout << " [9] warnings by single port" << endl;
 cout << " [10] notes by single port" << endl;
 cout << " [11] hosts by single warning" << endl;
 cout << " [12] hosts by single note" << endl;
 cout << " [97] output plugin information to file" << endl;
 cout << " [98] change information file" << endl;
 cout << " [99] quit" << endl;
 cout << endl << " [1-10, 98, 99]: ";
 cin >> nSelection;
 cin.ignore(80, '\n');

 if (((nSelection >= 1) && (nSelection <= 12)) || ((nSelection >= 97) && (nSelection <= 99)))
 bGoodValue = true;

 if (bGoodValue == false)
 cout << endl << "!! error - invalid menu choice" << endl << endl;

 } while (bGoodValue == false);

 switch(nSelection)
 {

 case 1:
 uniqueHosts();
 break;

 case 2:
 cout << endl << "[enter port number to search for] : ";
 cin >> strInfo;
 cin.ignore(80, '\n');
 cout << endl;

 openPorts(strInfo);
 break;

 case 3:
 cout << endl << "[enter plugin number to search for] : ";
 cin >> strInfo;
 cin.ignore(80, '\n');
 cout << endl;

 for (iPLG = vecPLUGDESC.begin(); iPLG != vecPLUGDESC.end(); iPLG++)
 {

 if ((*iPLG).strPlugin == strInfo)
 {
 cout << endl << (*iPLG).strDescription << endl;
 cout << endl << "[find this information/vulnerability (y/n)] : ";
 cin >> YN;
 cout << endl;
 cin.ignore(80, '\n');

 if (YN == 'y')
 {
 findPlugin(strInfo, "REPORT");
 break;
 }
 else
 {
 cout << endl <<"!! error - user intervention" << endl;
 break;
 }

 }

 if (YN == 'y')

89

 break;

 }

 if (YN == 'y')
 break;

 cout << "!! error - plugin not found" << endl << endl;
 break;

 case 4:
 cout << endl << "[enter port number to search for] : ";
 cin >> strInfo;
 cin.ignore(80, '\n');
 cout << endl;

 findHoles(strInfo);
 break;

 case 5:
 portInfo();
 break;

 case 6:
 cout << endl << "[enter port number to search for] : ";
 cin >> strInfo;
 cin.ignore(80, '\n');
 cout << endl;

 portVulnerabilities(strInfo, "REPORT");
 break;

 case 7:
 cout << endl << "[enter description string] : ";
 cin >> strInfo;
 cout << endl;

 findDescription(strInfo);
 cin.ignore(80, '\n');
 break;

 case 8:
 cout << endl << "[enter description string 1] : ";
 cin >> strInfo;
 cout << endl;

 cout << endl << "[enter description string 2] : ";
 cin >> strInfo2;
 cout << endl;

 findDescription2(strInfo, strInfo2);
 cin.ignore(80, '\n');
 break;

 case 9:
 cout << endl << "[enter port number to search for] : ";
 cin >> strInfo;
 cin.ignore(80, '\n');
 cout << endl;

 portVulnerabilities(strInfo, "INFO");
 break;

 case 10:

90

 cout << endl << "[enter port number to search for] : ";
 cin >> strInfo;
 cin.ignore(80, '\n');
 cout << endl;

 portVulnerabilities(strInfo, "NOTE");
 break;

 case 11:
 cout << endl << "[enter plugin number to search for] : ";
 cin >> strInfo;
 cin.ignore(80, '\n');
 cout << endl;

 for (iPLG = vecPLUGDESC.begin(); iPLG != vecPLUGDESC.end(); iPLG++)
 {

 if ((*iPLG).strPlugin == strInfo)
 {
 cout << endl << (*iPLG).strDescription << endl;
 cout << endl << "[find this information/vulnerability (y/n)] : ";
 cin >> YN;
 cout << endl;
 cin.ignore(80, '\n');

 if (YN == 'y')
 {
 findPlugin(strInfo, "INFO");
 break;
 }
 else
 {
 cout << endl <<"!! error - user intervention" << endl;
 break;
 }

 }

 if (YN == 'y')
 break;

 }

 if (YN == 'y')
 break;

 cout << "!! error - plugin not found" << endl << endl;
 break;

 case 12:
 cout << endl << "[enter plugin number to search for] : ";
 cin >> strInfo;
 cin.ignore(80, '\n');
 cout << endl;

 for (iPLG = vecPLUGDESC.begin(); iPLG != vecPLUGDESC.end(); iPLG++)
 {

 if ((*iPLG).strPlugin == strInfo)
 {
 cout << endl << (*iPLG).strDescription << endl;
 cout << endl << "[find this information/vulnerability (y/n)] : ";
 cin >> YN;
 cout << endl;
 cin.ignore(80, '\n');

91

 if (YN == 'y')
 {
 findPlugin(strInfo, "NOTE");
 break;
 }
 else
 {
 cout << endl <<"!! error - user intervention" << endl;
 break;
 }

 }

 if (YN == 'y')
 break;

 }

 if (YN == 'y')
 break;

 cout << "!! error - plugin not found" << endl << endl;
 break;

 case 97:
 outputPlugin();
 break;

 case 98:
 cout << endl;
 fstrIn.clear();
 vecMainData.clear();
 retrieveData();
 break;

 case 99:
 break;

 default:
 break;

 } // switch

 bGoodValue = false;

 } while (nSelection != 99);

} // mainMenu()

// -- uniqueHosts() --
//
// -------------------

void uniqueHosts()
{

 bool bFoundValue = false; // value found flag
 HOST* HTemp; // temporary host
 string strTemp; // temporary string container

 pvecHosts = new vector<HOST>;

 vector<SELECTION>::iterator iSEL;
 vector<HOST>::reverse_iterator iHOST;

92

// crawl main data vector for hostnames
 for(iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)
 {
 strTemp = (*iSEL).strHost;

// check host vector for hostname found in vecMainData
// reverse iterator chosen for "rule of proximity"
 for(iHOST = (*pvecHosts).rbegin();
 iHOST != (*pvecHosts).rend() && bFoundValue == false;
 iHOST++)
 {

 if (strTemp == (*iHOST).strHost)
 {
 bFoundValue = true;
 }

 }

// if value is not found in host vector, add hostname to host vector
 if (bFoundValue == false)
 {

 HTemp = new HOST;
 (*HTemp).strHost = (*iSEL).strHost;
 (*pvecHosts).push_back(*HTemp);
 delete HTemp;

 }

// reset bFoundValue
 bFoundValue = false;

 }

// output
 cout << endl << "<list>" << endl;

 for(iHOST = (*pvecHosts).rbegin(); iHOST != (*pvecHosts).rend(); iHOST++)
 {
 cout << (*iHOST).strHost;
 cout << ": (";
 cout << returnOS((*iHOST).strHost);
 cout << ")" << endl;

 }

 cout << "</list>" << endl;

 cout << endl << "[done @ " << (*pvecHosts).size() << " hosts]" << endl << endl;

 delete pvecHosts;

} // uniqueHosts

// --- openPorts() ---
//
// -------------------

void openPorts(string strPortNumber)
{

 bool bFoundValue = false; // value found flag
 HOST* HTemp; // temporary host
 int nCol1, nCol2; // delimiter columns

93

 string strTemp; // temporary string container

 pvecHosts = new vector<HOST>;

 vector<SELECTION>::iterator iSEL;
 vector<HOST>::reverse_iterator iHOST;

// crawl main data vector for hostnames
 for(iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)
 {

// get port number
 strTemp = (*iSEL).strPort;
 nCol1 = strTemp.find_first_of("(");
 nCol2 = strTemp.find_first_of("/");
 strTemp = strTemp.substr(nCol1 + 1, nCol2 - nCol1 - 1);

// compare port numbers
 if (strTemp == strPortNumber)
 {

// check host vector for hostname found in vecMainData
// reverse iterator chosen for "rule of proximity"
 for(iHOST = (*pvecHosts).rbegin();
 iHOST != (*pvecHosts).rend() && bFoundValue == false;
 iHOST++)
 {

 if ((*iSEL).strHost == (*iHOST).strHost)
 {
 bFoundValue = true;
 }

 }

// if value is not found in host vector, add hostname to host vector
 if (bFoundValue == false)
 {

 HTemp = new HOST;
 (*HTemp).strHost = (*iSEL).strHost;
 (*pvecHosts).push_back(*HTemp);
 delete HTemp;

 }

// reset bFoundValue
 bFoundValue = false;

 }

 }

// output
 cout << endl << "<list>" << endl;

 for(iHOST = (*pvecHosts).rbegin(); iHOST != (*pvecHosts).rend(); iHOST++)
 {
 cout << (*iHOST).strHost;
 cout << ": (";
 cout << returnOS((*iHOST).strHost);
 cout << ")" << endl;
 }

 cout << "</list>" << endl;

94

 cout << endl << "[done @ " << (*pvecHosts).size() << " systems with port "
 << strPortNumber << " open]" << endl << endl;

 delete pvecHosts;

} // openPorts()

// --- findPlugin() ---
//
// --------------------

void findPlugin(string strPluginNumber, string strType)
{

 bool bFoundValue = false; // value found flag
 HOST* HTemp; // temporary host
 string strTemp; // temporary string container

 pvecHosts = new vector<HOST>;

 vector<SELECTION>::iterator iSEL;
 vector<HOST>::reverse_iterator iHOST;

// crawl main data vector for hostnames
 for(iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)
 {

// get port number
 strTemp = (*iSEL).strPlugin;

// compare port numbers
 if ((strTemp == strPluginNumber) && ((*iSEL).strSeverity == strType))
 {

// check host vector for hostname found in vecMainData
// reverse iterator chosen for "rule of proximity"
 for(iHOST = (*pvecHosts).rbegin();
 iHOST != (*pvecHosts).rend() && bFoundValue == false;
 iHOST++)
 {

 if ((*iSEL).strHost == (*iHOST).strHost)
 {
 bFoundValue = true;
 }

 }

// if value is not found in host vector, add hostname to host vector
 if (bFoundValue == false)
 {

 HTemp = new HOST;
 (*HTemp).strHost = (*iSEL).strHost;
 (*pvecHosts).push_back(*HTemp);
 delete HTemp;

 }

// reset bFoundValue
 bFoundValue = false;

 }

 }

95

// output
 cout << endl << "<list>" << endl;

 for(iHOST = (*pvecHosts).rbegin(); iHOST != (*pvecHosts).rend(); iHOST++)
 {
 cout << (*iHOST).strHost;
 cout << ": (";
 cout << returnOS((*iHOST).strHost);
 cout << ")" << endl;

 }

 cout << "</list>" << endl;

 cout << endl << "[done @ " << (*pvecHosts).size() << " systems with specified "
 << "information plugin " << strPluginNumber << "]" << endl << endl;

 delete pvecHosts;

} // findPlugin

// --- findHoles() ---
//
// -------------------

void findHoles(string strPortNumber)
{
 bool bFoundValue = false; // value found flag
 HOST* HTemp; // temporary host
 int nCol1, nCol2; // delimiter columns
 string strTemp; // temporary string container

 pvecHosts = new vector<HOST>;

 vector<SELECTION>::iterator iSEL;
 vector<HOST>::reverse_iterator iHOST;

// crawl main data vector for hostnames
 for(iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)
 {

// get port number
 strTemp = (*iSEL).strPort;
 nCol1 = strTemp.find_first_of("(");
 nCol2 = strTemp.find_first_of("/");
 strTemp = strTemp.substr(nCol1 + 1, nCol2 - nCol1 - 1);

// compare port numbers
 if (strTemp == strPortNumber)
 {

 if ((*iSEL).strSeverity == "REPORT")
 {

// check host vector for hostname found in vecMainData
// reverse iterator chosen for "rule of proximity"
 for(iHOST = (*pvecHosts).rbegin();
 iHOST != (*pvecHosts).rend() && bFoundValue == false;
 iHOST++)
 {

 if ((*iSEL).strHost == (*iHOST).strHost)
 {
 bFoundValue = true;
 }

96

 }

// if value is not found in host vector, add hostname to host vector
 if (bFoundValue == false)
 {

 HTemp = new HOST;
 (*HTemp).strHost = (*iSEL).strHost;
 (*pvecHosts).push_back(*HTemp);
 delete HTemp;

 }

// reset bFoundValue
 bFoundValue = false;

 }

 }

 }

// output
 cout << endl << "<list>" << endl;

 for(iHOST = (*pvecHosts).rbegin(); iHOST != (*pvecHosts).rend(); iHOST++)
 {
 cout << (*iHOST).strHost;
 cout << ": (";
 cout << returnOS((*iHOST).strHost);
 cout << ")" << endl;
 }

 cout << "</list>" << endl;

 cout << endl << "[done @ " << (*pvecHosts).size() << " systems with vulnerabilities "
 << "on port " << strPortNumber << "]" << endl << endl;

 delete pvecHosts;

} // findHoles

// --- portInfo() ---
//
// ------------------

void portInfo()
{

 bool bFoundValue = false; // value found flag
 PORTSEV* PTemp; // temporary host
 int nCol1, nCol2; // delimiter columns
 int INF = 0,
 NOT = 0,
 REP = 0; // counters
 string strTemp; // temporary string container

 pvecSEV = new vector<PORTSEV>;

 vector<SELECTION>::iterator iSEL;
 vector<PORTSEV>::reverse_iterator iSEV;

// crawl main data vector for hostnames
 for(iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)

97

 {

// get port number
 strTemp = (*iSEL).strPort;
 nCol1 = strTemp.find_first_of("(");
 nCol2 = strTemp.find_first_of("/");
 strTemp = strTemp.substr(nCol1 + 1, nCol2 - nCol1 - 1);

// check severity vector for port found in vecMainData
// reverse iterator chosen for "rule of proximity"
 for(iSEV = (*pvecSEV).rbegin();
 iSEV != (*pvecSEV).rend() && bFoundValue == false;
 iSEV++)
 {

 if ((*iSEL).strPort == (*iSEV).strPort)
 {

 if ((*iSEL).strSeverity == "NOTE")
 (*iSEV).nNOTE++;
 if ((*iSEL).strSeverity == "INFO")
 (*iSEV).nINFO++;
 if ((*iSEL).strSeverity == "REPORT")
 (*iSEV).nREPORT++;

 bFoundValue = true;

 }

 }

// if value is not found in severity vector, add port number to severity vector
 if (bFoundValue == false)
 {

 PTemp = new PORTSEV;
 (*PTemp).strPort = (*iSEL).strPort;
 (*PTemp).nINFO = 0;
 (*PTemp).nNOTE = 0;
 (*PTemp).nREPORT = 0;

 if ((*iSEL).strSeverity == "NOTE")
 (*PTemp).nNOTE++;
 if ((*iSEL).strSeverity == "INFO")
 (*PTemp).nINFO++;
 if ((*iSEL).strSeverity == "REPORT")
 (*PTemp).nREPORT++;

 (*pvecSEV).push_back(*PTemp);
 delete PTemp;

 }
// reset bFoundValue
 bFoundValue = false;

 }

// output
 char c;
 char lclFileName[100]; // file name to output to

 do
 {
 cout << endl << "[print to *S*creen or *F*ile] : ";
 cin >> c;
 cin.ignore(80, '\n');

98

 cout << endl;
 } while (c != 'S' && c != 's' && c != 'F' && c != 'f');

 sort ((*pvecSEV).rbegin(), (*pvecSEV).rend(), vecsort);

 if (c == 'S' || c == 's')
 {

 cout << endl << "<list>" << endl;

 for(iSEV = (*pvecSEV).rbegin(); iSEV != (*pvecSEV).rend(); iSEV++)
 {
 cout << (*iSEV).strPort << " Vulnerabilities: " << (*iSEV).nREPORT
 << " | Warnings: " << (*iSEV).nINFO << " | Notes: "
 << (*iSEV).nNOTE << endl;
 NOT = NOT + (*iSEV).nNOTE;
 INF = INF + (*iSEV).nINFO;
 REP = REP + (*iSEV).nREPORT;

 };

 cout << "</list>" << endl;

 cout << endl << "[done @ " << (*pvecSEV).size() << " unique ports open]" << endl
 << "[" << REP << " vulnerabilities, " << INF << " warnings, "
 << NOT << " notes]" << endl;

 }
 else
 {

 cout << "[enter filename for report] : ";
 cin >> lclFileName;
 cin.ignore(80, '\n');
 cout << endl;

 fstrOut.open(lclFileName, ios::out);

 fstrOut << "<list>\n";

 for(iSEV = (*pvecSEV).rbegin(); iSEV != (*pvecSEV).rend(); iSEV++)
 {
 fstrOut << (*iSEV).strPort << " Vulnerabilities: " << (*iSEV).nREPORT
 << " | Warnings: " << (*iSEV).nINFO << " | Notes: "
 << (*iSEV).nNOTE << "\n";
 NOT = NOT + (*iSEV).nNOTE;
 INF = INF + (*iSEV).nINFO;
 REP = REP + (*iSEV).nREPORT;

 };

 fstrOut << "</list>\n\n";

 fstrOut << "[done @ " << (*pvecSEV).size() << " unique ports open]\n"
 << "[" << REP << " vulnerabilities, " << INF << " warnings, "
 << NOT << " notes]\n";

 fstrOut.close();

 }

 delete pvecSEV;

} // portInfo

bool vecsort(PORTSEV p1, PORTSEV p2)

99

{

 if (p1.nREPORT != p2.nREPORT)
 return p1.nREPORT > p2.nREPORT;
 else if (p1.nINFO != p2.nREPORT)
 return p1.nINFO > p2.nINFO;
 else
 return p1.nNOTE > p2.nNOTE;

}

// --- outputPlugin() ---
//
// ----------------------

void outputPlugin()
{

 char lclFileName[100]; // file name to output to
 vector<PLUGDESC>::iterator iPLG; // iterator for PLUGDESC vector

 cout << endl << "[enter filename for report] : ";
 cin >> lclFileName;
 cin.ignore(80, '\n');
 cout << endl;

 fstrOut.open(lclFileName, ios::out);

 for (iPLG = vecPLUGDESC.begin(); iPLG != vecPLUGDESC.end(); iPLG++)
 {

 fstrOut << "\n>>>>>[" << (*iPLG).strPlugin << "]" << endl;
 fstrOut << (*iPLG).strDescription << "]" << endl;

 }

 fstrOut.close();

} // outputPlugin()

// --- portVulnerabilities ---
//
// ---------------------------

void portVulnerabilities(string strPortNumber, string strType)
{

 bool bFoundValue = false; // value found flag
 PLUGDESC* PTemp; // temporary host
 int nCol1, nCol2; // delimiter columns
 string strTemp, strTemp2; // temporary string container

 pvecPLG = new vector<PLUGDESC>;

 vector<SELECTION>::iterator iSEL;
 vector<PLUGDESC>::reverse_iterator iPLG;

// crawl main data vector for hostnames
 for(iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)
 {

// get port number
 strTemp = (*iSEL).strPort;
 nCol1 = strTemp.find_first_of("(");
 nCol2 = strTemp.find_first_of("/");
 strTemp = strTemp.substr(nCol1 + 1, nCol2 - nCol1 - 1);

100

 strTemp2 = (*iSEL).strSeverity;

// compare port numbers
 if (strTemp == strPortNumber && strTemp2 == strType)
 {

// find plugin in plugin vector
 for(iPLG = (*pvecPLG).rbegin();
 iPLG != (*pvecPLG).rend() && bFoundValue == false;
 iPLG++)
 {

 if ((*iSEL).strPlugin == (*iPLG).strPlugin)
 {
 bFoundValue = true;
 }

 }

// if value is not found in host vector, add hostname to host vector
 if (bFoundValue == false)
 {

 PTemp = new PLUGDESC;
 (*PTemp).strPlugin = (*iSEL).strPlugin;
 (*PTemp).strDescription = (*iSEL).strDescription;
 (*pvecPLG).push_back(*PTemp);
 delete PTemp;

 }
// reset bFoundValue
 bFoundValue = false;

 }

 }

// output
 cout << endl << "<list>" << endl;

 for(iPLG = (*pvecPLG).rbegin(); iPLG != (*pvecPLG).rend(); iPLG++)
 {
 cout << (*iPLG).strPlugin << endl;
 }

 cout << "</list>" << endl;

 cout << endl << "[done @ " << (*pvecPLG).size() << " vulnerabilities on port "
 << strPortNumber << "]" << endl << endl;

 delete pvecPLG;

} // portVulnerabilities

// --- returnOS ---
//
// ----------------

string returnOS(string strHost)
{

 bool bFoundValue = false;
 vector<OPERSYS>::iterator iOS;

 for (iOS = vecOS.begin(); iOS != vecOS.end() && bFoundValue == false; iOS++)

101

 {
 if ((*iOS).strHost == strHost)
 return (*iOS).strOS;
 }

 return ("<no information>");

}

//

void findDescription(string strDescription)
{

 bool bFoundValue = false; // value found flag
 HOST* HTemp; // temporary host
 string strTemp; // temporary string container

 pvecHosts = new vector<HOST>;

 vector<SELECTION>::iterator iSEL;
 vector<HOST>::reverse_iterator iHOST;

// crawl main data vector for hostnames
 for(iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)
 {

// get port number
 strTemp = (*iSEL).strDescription;

// compare port numbers
 if (strTemp.find(strDescription) != string::npos)
 {

// check host vector for hostname found in vecMainData
// reverse iterator chosen for "rule of proximity"
 for(iHOST = (*pvecHosts).rbegin();
 iHOST != (*pvecHosts).rend() && bFoundValue == false;
 iHOST++)
 {

 if ((*iSEL).strHost == (*iHOST).strHost)
 {
 bFoundValue = true;
 }

 }

// if value is not found in host vector, add hostname to host vector
 if (bFoundValue == false)
 {

 HTemp = new HOST;
 (*HTemp).strHost = (*iSEL).strHost;
 (*pvecHosts).push_back(*HTemp);
 delete HTemp;

 }

// reset bFoundValue
 bFoundValue = false;

 }

 }

102

// output
 cout << endl << "<list>" << endl;

 for(iHOST = (*pvecHosts).rbegin(); iHOST != (*pvecHosts).rend(); iHOST++)
 {
 cout << (*iHOST).strHost;
 cout << ": (";
 cout << returnOS((*iHOST).strHost);
 cout << ")" << endl;

 }

 cout << "</list>" << endl;

 cout << endl << "[done @ " << (*pvecHosts).size() << " systems with specified "
 << "description: " << strDescription << "]" << endl << endl;

 delete pvecHosts;
}

//

void findDescription2(string strInfo, string strInfo2)
{

 bool bFoundValue = false; // value found flag
 HOST* HTemp; // temporary host
 string strTemp; // temporary string container

 pvecHosts = new vector<HOST>;
 vector<HOST> vecBoth;

 vector<SELECTION>::iterator iSEL;
 vector<HOST>::reverse_iterator iHOST;

// crawl main data vector for hostnames
 for(iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)
 {

// get port number
 strTemp = (*iSEL).strDescription;

// compare port numbers
 if (strTemp.find(strInfo) != string::npos)
 {

// check host vector for hostname found in vecMainData
// reverse iterator chosen for "rule of proximity"
 for(iHOST = (*pvecHosts).rbegin();
 iHOST != (*pvecHosts).rend() && bFoundValue == false;
 iHOST++)
 {

 if ((*iSEL).strHost == (*iHOST).strHost)
 {
 bFoundValue = true;
 }

 }

// if value is not found in host vector, add hostname to host vector
 if (bFoundValue == false)
 {

 HTemp = new HOST;
 (*HTemp).strHost = (*iSEL).strHost;

103

 (*pvecHosts).push_back(*HTemp);
 delete HTemp;

 }

// reset bFoundValue
 bFoundValue = false;

 }

 }

 for(iSEL = vecMainData.begin(); iSEL != vecMainData.end(); iSEL++)
 {

// get port number
 strTemp = (*iSEL).strDescription;

// compare port numbers
 if (strTemp.find(strInfo2) != string::npos)
 {

// check host vector for hostname found in vecMainData
// reverse iterator chosen for "rule of proximity"
 for(iHOST = (*pvecHosts).rbegin();
 iHOST != (*pvecHosts).rend() && bFoundValue == false;
 iHOST++)
 {

 if ((*iSEL).strHost == (*iHOST).strHost)
 {
 bFoundValue = true;
 HTemp = new HOST;
 (*HTemp).strHost = (*iSEL).strHost;
 (vecBoth).push_back(*HTemp);
 delete HTemp;

 }

 }
// reset bFoundValue
 bFoundValue = false;

 }

 }

// output
 cout << endl << "<list>" << endl;

 for(iHOST = (vecBoth).rbegin(); iHOST != (vecBoth).rend(); iHOST++)
 {
 cout << (*iHOST).strHost;
 cout << ": (";
 cout << returnOS((*iHOST).strHost);
 cout << ")" << endl;

 }

 cout << "</list>" << endl;

 cout << endl << "[done @ " << (vecBoth).size() << " systems with specified "
 << "description: " << strInfo << " & " << strInfo2 << "]" << endl << endl;

 delete pvecHosts;
}

104

Vita

James P. Ashe

personal data: date of birth – October 18, 1975

 place of birth – Gloversville, New York

education: Gloversville High School, Gloversville, New York, 1994

 State University of New York at Plattsburgh; Plattsburgh, NY

 Secondary Education / Mathematics, B.A., 1998

 East Tennessee State University; Johnson City, TN

 Computer Science, M.S., 2004

professional: Systems Analyst, East Tennessee State University, 2002-2004

Graduate Assistant, Office of Information Technology, East

Tennessee State University, 2000-2002

PC Analyst Assistant, Citizens Communications; Johnstown,

New York, 1998

honors: Upsilon Pi Epsilon, Computer Science honor society, 2002

105

	A Vulnerability Assessment of the East Tennessee State University Administrative Computer Network.
	Recommended Citation

	A Vulnerability Assessment of the East Tennessee State University Administrative Computer Network

