
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

12-2003

Towards a Taxonomy of Aspect-Oriented Programming. Towards a Taxonomy of Aspect-Oriented Programming.

Mario Bernard Hankerson
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hankerson, Mario Bernard, "Towards a Taxonomy of Aspect-Oriented Programming." (2003). Electronic
Theses and Dissertations. Paper 851. https://dc.etsu.edu/etd/851

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F851&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fetd%2F851&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Towards a Taxonomy of Aspect-Oriented Programming

A thesis

presented to

the faculty of the Department of Computer and Information Sciences

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer Science

by

Mario B. Hankerson

December 2003

Dr. Martin L. Barrett, Chair

Steven L. Jenkins
Jeffrey W. A. Roach

Keywords: Aspect-Oriented Programming, AOP, Aspects, Components, Concerns, Crosscutting
Concerns, Join Points, Object-Oriented Programming, OOP, Post-Object Programming, POP,

Separation of Concerns, Taxonomy, Weaving

 2

ABSTRACT

TOWARDS A TAXONOMY OF Aspect-Oriented Programming

by

Mario B. Hankerson

As programs continue to increase in size, it has become increasingly difficult to separate
concerns into well localized modules, which leads to code tangling- crosscutting code spread
throughout several modules. Thus, aspect-oriented programming (AOP) offers a solution to
creating modules with little or no crosscutting concerns. AOP presents the notion of aspects, and
demonstrates how crosscutting concerns can be taken out of modules and placed in a centralized
location.

In this paper, a taxonomy of aspect-oriented programming, as well as a basic overview and
introduction of AOP, will be presented in order to assist future researchers in getting started on
additional research on the topic. To form the taxonomy, over four-hundred research articles
were organized into fifteen different primary categories coupled with sub-categories, which show
where some of the past research has been focused. In addition, trends of the research were
evaluated and paths for future exploration are suggested.

 3

ACKNOWLEDGEMENTS

Most importantly, I would like to thank God for assisting me during this challenging and

sometimes daunting process, which has been emotionally and physically draining. Nevertheless,

finishing the AOP thesis has proven to be an exhilarating liberation.

I would like to give thanks to my committee members, Dr. Barrett, Steven Jenkins, and

Jeffery Roach, for their continued support in helping me to achieve my goals. In addition, I

would like to honor a few high caliber friends and intellectual scholars of exceptional acumen,

i.e., Dr. Gordon Bailes Jr., Robert Nielsen, and Dr. Phillip Pfeiffer IV, for helping me to realize

my competencies and improve on my inadequacies as a computer scientist and person.

To Dr. Barrett: I am grateful for everything you have done for me and I truly appreciate

your patience and honesty.

To Steven: I am forever indebted to you for directing me towards my thesis topic, and the

days of personal counsel, which enabled me to determine the appropriate way to handle certain

life situations.

To Jeffery: Thank you for your continuous support and encouragement during this

process.

To Dr. Bailes: I can not adequately express how much your data structures course

changed my attitude about academia and the importance of due diligence. Thank you so very

much for helping me understand Sir Isaac Newton’s three laws of motion, specifically his third

law in the context of computer science and its correlation to intolerable indolent behaviors as a

student.

 4

To Robert: A man of unquestionable ethics, morals, and values, whom I admire and

strive to emulate. I am grateful to you Mr. Nielsen for offering countless tidbits of ageless

wisdom, and dialogue about life and philosophical issues, which kept me grounded in reality

during this tedious process. In addition, you are a great friend, particularly for allowing me to

mount my “soap box” and discuss all the frustration and successes encountered throughout the

many phases of this research. Lastly, the time spent working with you as an assistant system

administrator has taught me invaluable information about professionalism.

To Dr. Pfeiffer: The dedication you possess and demonstrate toward your work has

profoundly influenced me. You remain the single most pedagogical scholar I attempt to simulate

throughout my academic experiences and personal life. Furthermore, you have helped me to

realize and maximize my full potential as a computer scientist. Finally, I would like to say

thanks for challenging me to become a better person, programmer, and student.

To My Family: Thanks for believing in me and continually encouraging me to aspire to

new heights academically, personally, and professionally.

 To Chasity: This research process was truly made bearable and easier to handle due to

your constant encouragement and abilities for lifting my spirits. Additionally, the times we have

spent together will always be cherished, for you have helped me to accept, discover, and realize

who I am in this dynamic world. Lastly, thanks for helping me to broaden my horizons, and

become a more complete individual. The circle is almost complete and hopefully it will not be

undone- lest time and efforts would be for naught.

There are not enough words to express my heartfelt thanks and appreciation for all that

everyone has done on my behalf, so I will simply say- I love and respect you all from the depths

of my inner being. Moreover, all of the persons acknowledged have assisted me in becoming a

 5

better researcher and person in some capacity by helping me understand that tough times are not

that tough, and that problems are really hidden opportunities.

 6

CONTENTS

 Page

ABSTRACT .. 2

ACKNOWLEDGEMENTS... 3

LIST OF TABLES .. 9

LIST OF FIGURES .. 10

Chapter

 1. INTRODUCTION .. 11

 From OOP to AOP... 12

 Building Towards an AOP Taxonomy .. 14

 Background ... 14

 Overview.. 15

 2. WHAT IS ASPECT-ORIENTED PROGRAMMING ... 16

 Primary Concepts of Aspect-Oriented Programming .. 17

 Concerns .. 17

 Crosscutting Concerns ... 18

 Separation of Concerns .. 18

 Aspects and Components... 19

 Join Points and Weaving.. 20

 Summary .. 21

 3. TAXONOMY ... 23

 The Taxonomy Process ... 23

 Method ... 24

 7

 The AOP Categorization Model .. 27

 Category Descriptions ... 28

 Concerns .. 28

 Adaptive... 29

 Limitations ... 29

 Experiential and Case Study .. 29

 Performance and Reliability .. 29

 Distributed Systems ... 29

 Theory .. 29

 UML Modeling .. 29

 Architecture.. 29

 Software Engineering... 29

 Trends and Direction.. 30

 Aspects... 30

 Weaving ... 30

 Miscellaneous .. 30

 Comparisons and Contrasts.. 30

 Multidimensional View of the Taxonomy... 34

 Primary Dimension .. 35

 Secondary Dimension .. 40

 Tertiary Dimension .. 45

 Quaternary Dimension ... 48

 AOP Yearly Literature Trends... 50

 Conclusion ... 54

 4. Conclusions and Future Work .. 55

REFERENCES .. 57

 8

APPENDICES ... 61

 Appendix A: Literature used in Taxonomy .. 62

 Appendix B: Primary Dimension Articles and Categories 100

 Appendix C: Secondary Dimension Articles and Categories 104

 Appendix D: Tertiary Dimension Articles and Categories.. 107

 Appendix E: Quaternary Dimension Articles and Categories 109

 Appendix F: Some Recommended AOP Literature .. 110

VITA .. 115

 9

LIST OF TABLES

Table Page

 1. Aop Database Tables Descriptions .. 26

 2. Categories Table Schema... 27

 3. Taxonomy Table Schema ... 27

 4. Literature Taxonomical Breakdowns... 31

 10

LIST OF FIGURES

FIGURE Page

 1. Aop Database Schema ... 26

 2. Primary Dimension Totals .. 35

 3. Primary Dimension Breakdown (1A - 5D).. 36

 4. Primary Dimension Breakdown Continued (6A – 9C) ... 37

 5. Primary Dimension Breakdown Continued (10A – 13D) ... 38

 6. Primary Dimension Breakdown Continued (14A – 15G).. 39

 7. Secondary Dimension Totals ... 40

 8. Secondary Dimension Breakdown (1A – 5D) .. 41

 9. Secondary Dimension Breakdown Continued (6A – 9C).. 42

 10. Secondary Dimension Breakdown Continued (10A – 13D) ... 43

 11. Secondary Dimension Breakdown Continued (14A - 15G) ... 44

 12. Tertiary Dimension Totals ... 45

 13. Tertiary Dimension Breakdown (1B – 11C).. 46

 14. Tertiary Dimension Breakdown Continued (12A – 15D) ... 47

 15. Quaternary Dimension Totals .. 48

 16. Quaternary Dimension Breakdown (1D – 15D) ... 49

 17. Aop Year Breakdown .. 50

 18. Aop Leading Category per Year Breakdown .. 51

 18. Aop Leading Sub-category per Year Breakdown ... 53

 11

CHAPTER 1

INTRODUCTION

 Software artifacts are inherently complex; hence, there is no silver bullet for designing

and implementing software systems [Brooks 95]. However, the intertwined nature of software

design and programming paradigms has led to an evolutionary tenet in the computer science

domain, Aspect-Oriented programming1 (AOP), which potentially contradicts Brooks’ assertion

that there is no silver bullet for building software. That is, AOP has become an extension of

Object-Oriented programming (OOP) by capitalizing on OOP’s advantages while improving the

disadvantages. AOP captures the structure of crosscutting concerns explicitly in a modular way

and with linguistic tool support. AOP creates a better understanding of software through a high

level of abstraction; prevents tangling of code, which allows for easier development and

maintenance; and increases potential for reuse for both components and aspects.

Thus, the AOP paradigm constitutes the focus area for this research that includes a

categorization of AOP literature, which was undertaken to identify and discuss the research areas

of AOP. Consequently, a taxonomy was created to demonstrate what issues are being discussed,

the direction previous research has taken, and where AOP research may go in the future.

The creation and development of programming paradigms, and subsequent programming

languages, in conjunction with software development has become an area of considerable

interest in computer science. Programmers have strived to formalize methods for constructing

correct, efficient and easily modified programs; thus, languages evolved in order to support these

new requirements [Highley 99]. Consequently, computer scientists realized that program

organization and software component reusability were necessary given the growing complexity

1 Read [Kiczales 97] for a perspective of Aspect-Oriented Programming

 12

of software. Hence, object-orientation was created from a desire to have language constructs for

modeling real world objects and inspiring software code organization and reuse [Capretz 03].

Continually evolving languages have enabled developers to create more complex programs for

more advanced, faster machines. In addition, program design and maintenance have become key

issues with the inception of software engineering and its principles [Parnas 01].

From OOP to AOP

Object oriented programming was expected to ignite the industrial revolution in software

development [Cox 86], in that OOP addresses many concerns and issues. Furthermore, OOP

facilitated the writing of complex applications, such as graphical user interfaces, operating

systems, and distributed applications, while simultaneously maintaining understandable source

code [Elrad 01b], and its use of modularity, encapsulation, and inheritance. Nonetheless, OOP

still has several limitations. For example, OO technology has difficulty in appropriately

separating concerns and applying domain-specific knowledge, crosscutting concerns [Elrad 01b].

That is, concerns cannot be easily contained into individual modules. Similarly, while object-

orientation does promote software reuse, practical experience has demonstrated that it does not

do this as efficiently as OO pioneers originally thought. This is because of code tangling and

code spread over several units, making it more difficult for adequate software maintainability

[Soares 02]. Code tangling destroys modularity and reduces software quality [Constantinides

00].

 OOP was originally envisioned as a method for enhancing maintainability and

extensibility by confining modification to affect as few classes/modules as possible, keeping

systems highly structured and non-ambiguous. However, as programs continue to increase in

 13

size and complexity, it becomes rather difficult to cleanly separate concerns into well localized

modules, leading to cross-cutting concerns and code tangling. Nonetheless, one must understand

object-oriented concepts in order to recognize the supplementary role of AOP in reference to

OOP as a software engineering methodology.

Post-object programming (POP) mechanisms that seek to enhance current OOP

paradigms are currently an area of peak research interest in the computer science domain [Elrad

01b]. Aspect-oriented programming (AOP) is a POP technology receiving researcher’s attention

due to its capabilities of augmenting OOP and its expressiveness. Furthermore, AOP is a

technique for achieving clear separation of various concerns at the design and source code levels,

which is accomplished by separately specifying various system concerns or areas of interest, then

weaving functionality at explicit points in source code to create an executable artifact. Thus, the

goal for AOP is to build on OOP by supporting separation of those concerns that OOP handles

poorly [Elrad 01a].

For these reasons, aspect-oriented programming evolved as an extension of the object-

oriented paradigm to try and solve some of its shortcomings [Soares 02]. AOP maintains object

orientation’s major goals, such as abstraction, modularity, and code reuse, as well as attempts to

avoid the problem of code tangling [Constantinides 00]. In addition, AOP offers a solution to

creating modules with little or no crosscutting concerns by introducing aspects, a way of

localizing concerns in a centralized area, therefore taking crosscutting concerns out of modules

[Kiczales 97].

 14

Building Towards an AOP Taxonomy

Background

The project’s first phase began with an exhaustive search to find articles that used a

taxonomy approach in research, regardless of domain, in hopes a model would be found that

could serve as a guide for organizing the vast amount of material for the current project. Several

articles using a taxonomy model were discovered; specifically, the LISA proceedings paper

[Anderson 99], which was used as a general outline for this paper. LISA contained 342 papers

categorized into 64 separate categories, including 9 major categories with several sub-headings

each. However, none of the taxonomical papers, including LISA, reflected a categorical

organization of aspect-oriented literature. Instead, LISA’s primary focus was on tasks performed

by system administrators, thus, included categorical headings reflecting that issue. Hence, the

contribution and importance of the current taxonomy to AOP research is vital.

The second phase of the project began with Robert Filman’s bibliography of aspect-

oriented software development, which he created as an evolving document dedicated to aspect-

oriented software development and programming [Filman 02]. The document created by Filman

directed the initial gathering of AOP related literature. Subsequently, Internet searches were

conducted to find articles that pertained to AOP, which included technical reports as well as

literature submitted to conferences and journals. Additionally, categories were created to

partition the collected research literature into concentrated areas for easier analysis. Finally, a

database was created as a method for organizing and conveniently locating material collected for

the taxonomy, which could become a viable research tool (see figure 1, and tables 1 - 3).

 15

 Overview

 This paper can be broken down into four major parts. First, a brief introduction

concerning object-oriented programming is made in order to explain and describe the

relationship and transition between OOP and Aspect-oriented programming. Second, an

overview of AOP is conducted to give a basic framework for the development of the technique

and its meaning and importance. Third, the paper details the methodology for creating the

taxonomy and addresses the categorizations created to organize the 494 articles in order to

interpret the research trends throughout the chosen articles. Lastly, concluding remarks and

suggestions for future research are presented.

 16

CHAPTER 2

WHAT IS ASPECT ORIENTED PROGRAMMING?

 Aspect-oriented programming (AOP) emerged as an experimental framework called D

that resulted from Cristina Lopes’ thesis work [Lopes 97] and earlier groundwork by Xerox

PARC researchers into AOP, which she was involved in, while finishing her Ph.D. In her thesis,

Lopes was working specifically with a problem domain that had synchronization and

communication as crosscutting concerns that were modeled as aspects through two aspect

languages, COOL and RIDL [Lopes]. Thus, AOP appeared as a response to the problem known

from the generalized procedural languages. In these languages, program code pieces that

execute a clearly separable aspect of a system, such as error handling and synchronization, are

scattered and repeated throughout the overall program code and become tangled. AOP was

designed to factor out such aspects into separate program units called by the same name, aspects

[Dolog 01]. As programmers came up with more defined functions in programs developed with

structured languages, it made sense to retain the modules, which combine functions and methods

for later use so that the code would not have to be rewritten. This is what led to the birth of

object-oriented languages and programming systems, and ultimately aspect-oriented

programming [Ludy 02].

 AOP is based on the idea that computer systems are better programmed by separately

specifying the various concerns and properties or areas of interest of a system and some

description of their relationships, and then relying on instruments in the AOP environment to

weave or compose them together into a coherent program [Elrad 01b]. Simply stated, the

primary goal of Aspect-oriented programming is to support the programmer in cleanly separating

 17

components and aspects from each other by providing instruments that make it possible to

extract and compose them to render the overall system [Kiczales 97].

 AOP does what object-oriented programming cannot do effectively, which is clearly and

cleanly modularize functional system code, i.e. source code, by separating concerns into well

localized units, called aspects, to eliminate code tangling. Objects do not seem to help as much

in dealing with systemic concerns such as synchronization, resource sharing, distribution,

memory management, and replication. These concerns decrease modularity because they

typically cross-cut a system’s class and module structure at the source code level. Thus, the

complexity in existing systems seems to stem from the way in which the implementation of these

concerns ends up being tangled and intertwined throughout the code [Lopes 99].

Primary Concepts of Aspect-Oriented Programming

 In brief, aspect-oriented programming is a technique to design and address crosscutting

concerns. The technique is intended to enable a more modular expression of design decisions,

referred to as aspects, in the actual code. To better support the expression of crosscutting design

decisions, AOP uses a component language to detail the basic functionality of the system, and

aspect languages to describe the different crosscutting properties. An aspect weaver is then used

to combine the components and the aspects into a system.

Concerns

 A concern signifies a particular interest in some topic relating to a particular system of

interest [Hilliard 99]. Concerns can range from high-level notions like security and quality of

service to low-level notions such as caching and buffering. They can be functional, like features

 18

or business rules, or nonfunctional (systemic), such as synchronization and transaction

management [Elrad 01b]. [Hilliard 99] has decided to express concerns in the form of questions:

“How reliable is this system?”; “What function does the system perform?”; and “How is the

system deployed?” [Aksit 01] distinguishes between two types of concerns: problem domain

and solution domain concerns. Problem domain concerns represent concerns as they are defined

from the client perspective. They specifically focus on the functionality of the system as the

client expects it. Solution domain concerns represent the concerns as defined by the solution

techniques.

Crosscutting Concerns. One problem to writing effective software, according to Kiczales

and other researchers, lies at the heart of crosscutting concerns. That is, they are concerns which

cannot be represented easily in modular form. These concerns disrupt the modularity that is

desired in object-oriented programming. Moreover, the concerns introduce related or even

duplicated code into one or more modules [Kiczales 97] that programmers are forced into writing

whenever a crosscutting concern has to be executed [Elrad 01a]. In addition, according to

Kiczales, this crosscutting phenomenon is directly responsible for code tangling [Kiczales].

 Some examples of crosscutting concerns are performance, synchronization,

communication, graphics manipulation, and debugging [Highley 99]. These concerns may be

naturally non-separable, which are termed as crosscutting concerns, thus, referring to inevitable

scattering of concerns to multiple abstractions [Aksit 01]. Any structural realization of a system

will find that some concerns are neatly localized within a specific structural piece, while others

cross multiple elements.

Separation of Concerns. The need for dealing with one important issue at a time was

long ago named by Dijkstra as the principle of separation of concerns [Dijkstra 76]. Aspect-

 19

oriented programming is an approach founded on this concept of separation of concerns [Laddad

02]. Typically, the principle of separation of concerns has been used by software engineers to

manage the complexity of software system development [Walker 99]. There are numerous

benefits in expressing concerns of a software system in a well localized, single code section. For

example, the code can be more easily understood, analyzed, modified, extended, debugged, and

reused [Constantinides ‘00].

Aspects and Components

 Aspects are the properties of a system that do not necessarily align with the system’s

functional components but tend to cut across functional components in the system, being spread

throughout the code [Constantinides 00]. A property is an aspect if it can not be cleanly

encapsulated in a generalized procedure. Aspects tend not to be units of the system’s functional

decomposition, but rather to be properties that affect the performance or semantics of the

components in systemic ways. Aspects are further defined as system properties that crosscut

components in system’s implementation [Chavez 01]. That is, an aspect is a new abstraction

taken from the existing source code in order to wrap concerns that are scattered all over the

program, which allows for separating out concerns into a new well-localized module. Examples

of aspects include memory access patterns and synchronization of concurrent objects [Kiczales

97].

 A component is a modular unit of functional decomposition, which addresses a specific

concern or function of the system. Components are properties of a system, for which the

implementation can be cleanly encapsulated in a generalized procedure. Aspects are properties

for which the implementation cannot be cleanly encapsulated in a generalized procedure.

 20

Components tend to be units of the system’s functional decomposition, such as image filters,

bank accounts, and GUI widgets. Similarly, aspects and components crosscut each other in a

system’s implementation [Kiczales 97].

Join Points and Weaving

 An aspect language allows for constructs, the aspects, to separate crosscutting features

from existing programming modules, e.g. classes in object-oriented languages. It also facilitates

specification of reference points, join points, which identify links between the code encapsulated

by the aspects and the classes cross cut by this code [Rashid 02]. Because of the crosscutting, it

is believed the intersection between components and aspects to be more important as

components and aspects themselves [Bardou 98]. Join points are those elements of the

component language semantics that the aspect programs coordinate with and are essential to the

function of the aspect weaver [Kiczales 97].

 A join point is a location that is affected by a crosscutting concern [Ossher 98], the site

where two concerns crosscut one another [Stein 02], and the place where the weaver inserts

aspect code. Join points can be present at either the statement level, which implies that the set of

possible join points include every statement in the system, or the operation level, which implies

that the possible set of join points includes every operation that the system performs [Ossher]. It

is a major task for aspect-oriented programmers to specify a set of join points at which two

concern models are inter-connected to each other. Thus, it is important for an aspect-oriented

modeling language to provide suitable representations for join points [Stein].

 Common to all aspect languages is that they cannot be processed by modern compilers

for object-oriented languages. Until that status changes, aspects have to be integrated with

 21

classes before a compiler can take over to produce the executable program. The process of

merging is called weaving, which is the process of combining different pieces of code (aspect

code with core functionality code) into one executable module [Aldawud 02]; the tool required is

called Aspect Weaver [Bollert 99]. Simply, an aspect weaver is a tool which merges the aspects

and classes with respect to the join points; furthermore, the weaver must process the component

and aspect languages, co-composing them properly to produce the desired total system operation

[Kiczales 97]. The AOP weaver does not modify the source code of classes while weaving

aspects; instead, inheritance is used to add aspect-specific code to classes [Bollert 99].

This merging or weaving can occur at two points in time: compile-time (static weaving)

and run-time (dynamic weaving). During compile-time, the aspect weaver acts as a pre-

processor, weaving the aspect definitions into the class definitions before compilation. In

addition, the aspect weaver can act as a post-processor, weaving the aspect definitions into the

compiled class code; thus, at run-time, the aspect weaver acts as a run-time interpreter or run-

time generator [Rashid 02].

Summary

In conclusion, AOP, introduced in the academic/research community in 1997, has many

advantages over the traditional Object-oriented programming technique. Specifically, it was

introduced to solve crosscutting problems of OOP. It provides a better understanding of

software due to a higher level of abstraction, which provides for functional decomposition of

problems into smaller sub-problems until a point of granularity is achieved. AOP allows for

simpler development and maintenance of source code since tangling of the code is primarily

 22

omitted. More importantly, AOP increases the potential for reuse of both components as well as

aspects, including minimal coupling.

 23

CHAPTER 3

TAXONOMY

The premise for organizing current aspect-oriented programming literature into a

taxonomy was to catalog and categorize as many available papers associated with AOP as

possible, and to assist future research on this emerging programming technique. The taxonomy

will hopefully serve as a central database for researchers to begin future studies on areas

concerning AOP where research is limited or necessary.

The Taxonomy Process

The process of collecting literature began with Robert Filman’s bibliography and

branched out into searching multiple avenues for data collection. The search for data related to

AOP occurred in several online areas, such as the Association for Computing Machinery (ACM)

website, the Institute of Electrical and Electronics Engineers (IEEE), its Computer Society

branch website, in addition to internet indexing and search engines, e.g., citeseer, google, and

vivisimo2. The task of finding AOP related literature in these different locations was

accomplished using various search terms and phrases with the keywords “aspect-oriented

programming” or “AOP” used as the querying string. All articles that were returned via the

search mechanisms were downloaded and viewed to organize into the predefined categories.

 The number of articles downloaded for the present research was 564, and approximately

half can be directly attributed to Filman’s bibliography of 592 citations. The number 564 was

determined to be a representative sample of AOP, whereby, generalizations could be made about

2 The location of the websites used are as follows: http://www.acm.org, http://citeseer.org,
http://www.computer.org, http://www.google.com, and http://vivisimo.com

http://www.acm.org/
http://citeseer.org/
http://www.computer.org/
http://www.google.com/
http://vivisimo.com/

 24

the present state of AOP research. However, after extensive cross-referencing among the

literature, 70 papers were deemed ineligible to be used in the current study, due to the fact that

they resulted in duplicate copies. Consequently, the final number of original documents yielded

494 (see Appendix A), which are used in the current research.

The Method

The groundwork for creating the predefined taxonomy for AOP based work relied

heavily upon the ACM Computing Classification System, which has been adopted by IEEE, and

the Curricula Computing model that was a joint venture between ACM and IEEE. Furthermore,

the process of categorizing literature began with an assessment of current AOP related

conferences and workshops to determine if conference themes, e.g. the workshop on Aspect-

Oriented Modeling with UML in Aspect-Oriented Software Development (AOSD), could be

used in classifications for the collected literature. The methodical approach of naming and

defining the categories allowed for a database to be created serving as a data repository and as

audit control.

Initially, the categories were entirely based on the ACM Computing Classification

System, and the joint task force of ACM and IEEE’s model entitled Curricula for Computing

(CC); however, some of the literature could not be confined to the strict boundaries of the

ACM’s classification mechanism or the joint task force method of ACM and IEEE. The ACM

Computing Classification System was designed to categorize concepts of computer science and

to create a standard for classifying information in the technological realm. It includes many

categories, which are also broken down several levels into various sub-categories; thus, the

general model of the current paper was taken from the structure of this categorization

 25

framework, even though most of the categories themselves were virtually non-useful. IEEE’s

model for Curricula for Computing attempts to break down various concepts of computer science

in the manner in which the concept should be taught in a classroom atmosphere. Some of the

specific categories used in the model were also applied to the current paper, e.g., distributed

systems, software design and implementation, and software requirements and specifications.

The primary presumption was that all the literature would immediately fall into one of the

established categories; however, this was not always the case. That is, the ACM and IEEE

predefined categories did not take into account areas specific to the AOP framework, e.g.,

weaving, nor the need to add or take away sub-categories to better express AOP. For purposes

of the current paper, modern computing concepts and terminology were used to compose

additional categories that express the uniqueness of the literature used in the taxonomy.

 A relational database was created to store the article categorizations for audit and

tracking purposes, and to serve as a central repository for the data. The database consists of two

tables with several expressive columns. The categories table includes the categories name, sub-

category, and sub-category id. In addition, the taxonomy table stores an articles id, citation,

year, primary category, and/or linked category information as a means of cross-referencing

articles to eliminate confusion and duplicity, and to illustrate multi-dimensional perspectives for

the taxonomy (see figure 1, and tables 1 – 3).

Figure 1: AOP Database Schema

Categories

PK Sub Category ID

Sub Categories
Category Name

Taxonomy

PK ID

Citation
Year
Primary
Secondary
Tertiary
Quaternary

Figure 1, the database schema is a visual aid consisting of two tables, categories and

taxonomy. The primary key for the categories table is “Sub Category ID”, and the taxonomy

tables’ primary key is “ID”. In addition, the taxonomy table has a foreign key, “Primary”

connected to the categories table primary key that defines the foreign keys’ relationship between

the two tables. The tables both have required columns that can not have null values. For

example, “Sub Category ID” and “Sub Categories must have information, while “Category

Name” does not necessarily need a value. Similarly, the “ID”, “Citation”, “Year”, and

“Primary” columns in the taxonomy table can not contain null values, but columns “Secondary”,

“Tertiary”, and “Quaternary” may have null data.

Table 1: AOP Database Tables Descriptions

Table Name The type of data described in the table
Categories General description of category information
Taxonomy Bibliography data and categorical references

 Table 1 gives a general description of the tables in the database along with their names.

The categories table stores information about the organization of the research literature, and the

taxonomy table has the bibliographic and multi-dimensional views data.

 26

 27

Table 2: Categories Table Schema

 Table Name: Categories
Column name Column description Required value
Sub Category ID The sub-categories ID, range 1a – 15g Yes
Sub Categories The sub-categories name Yes
Category Name Name of the main categories No

 Table 2 shows the column names and gives a brief description of their functions. In

addition, it illustrates if a value is required or not for each column.

Table 3: Taxonomy Table Schema

Table Name: Taxonomy
Column name Column description Required Field
ID The article auto-number Yes
Citation The article cite Yes
Year The year article available Yes
Primary The one dimensional perspective, main category Yes
Secondary The second dimensional perspective No
Tertiary The third dimensional perspective No
Quaternary The fourth dimensional perspective No

 Table 3 represents the schema for the taxonomy table. It describes the column names,

and gives an idea about their purpose. The table also shows if a column must have a value or

not, for example, “Year” can not be null, thus requiring some data.

The AOP Categorization Model

A rudimentary approach for constructing taxonomies is to group related entities by the

task each targets. This was done in the current project for all the papers. In order to achieve a

list of categories that would encapsulate the various AOP topics, the literature was gathered and

the focus of the articles examined, which provided a running list of categories to be included in

the taxonomy. Fifteen categories for Aspect-oriented programming were created and defined as

 28

a result of examining the current literature trends. The categories are representative of some

current research interests in respect to the AOP paradigm but are by no means inclusive of all

research conducted on AOP. Some of the literature fell into multiple categories; however, all of

the articles were stored into one main category that expressed the primary literatures focus of

that specific article. In addition, for the purpose of organizing those articles which contained

information relating to categories other than the primary, a second (secondary), third (tertiary),

and fourth (quaternary) category were devised to denote the additional dimension of the

categorization model.

Category Descriptions

The categories and their descriptions were derived primarily from the current research

trends of Aspect-oriented programming as well as from the websites of the Association for

Computing Machinery and the Institute of Electrical and Electronics Engineers Computer

Society branch. However, the categories were not confined by strict definitions per se; but

instead, they were compiled to capture variance among the literature within the context of a

designated category. Additionally, the definitions serve as a template, which can be refined to be

more inclusive or exclusive depending on desired category expressiveness. Each category and

its respective explanation are briefly discussed below.

 Concerns. A concern is a domain that defines the manner in which the original problem

should be decomposed. Specifically, a concern is a particular goal, concept, or area of interest.

Concerns range from business and performance issues to debugging, authentication, and security.

This category also includes information about crosscutting concerns, identifying concerns,

modeling concerns, separation of concerns, and use of actors. See [Orleans ‘01]

 29

 Adaptive. Adaptive is the automatic adjusting to changing hardware and software

environments. See [Constantinides ‘01]

 Limitations. The limitations category includes the body of literature that focuses on

constraints and weaknesses of the AOP paradigm. See [Fabry ‘01]

 Experiential and Case Study. Some of the AOP research deals with various techniques of

learning better ways to implement AOP. This also includes literature which discusses various

situations where AOP has been tested and evaluated in order to examine the final outcome. See

[Avdicausevic ‘01]

 Performance and Reliability. The literature in this category aims to curtail possible

system degradation and maintenance by optimizing software and hardware elements to be more

robust. This category encompasses information about synchronization, error detection and error

handling, reusability, memory management, and security. See [Holmes ‘97]

 Distributed Systems. This category includes the mechanisms and methods network

computers use to communicate by passing messages among system components. See [Putrycz

‘02]

 Theory. The literature in this category includes formal methods, theoretical foundations,

and pragmatic approaches to espouse the AOP paradigm. See [Achermann ‘00]

 UML Modeling. This category is comprised of literature that uses UML concepts and

design notation to illustrate system design. See [Pawlak ‘02]

 Architecture. The architecture category discusses the use of AOP in designing and

possible implementation of hardware and software elements. See [Navasa ‘01]

 Software Engineering. This category consists of literature that relates to the process of

engineering software, including all phases of the development lifecycle. Additionally, tools and

 30

languages created using AOP methodologies help to comprise this category. The category

includes information regarding requirements engineering, process modeling, and software

design, tools and testing. See [Nordberg ‘01]

 Trends and Direction. Literature in this category includes research that describes the

framework and future of the AOP paradigm from its origination through its present course. See

[Brichau ‘02]

 Aspects. The aspects category incorporates literature that focuses on identifying aspects

and understanding their relationship to join points and ultimately the weaving process. See

[Coady ‘03]

Weaving. This category is composed of research that focuses on the integration of

aspects and concerns and why this is a necessary process when implementing the AOP

technique. See [Akkawi ‘01]

 Miscellaneous. This category was created to place literature that does not adequately fall

into any one of the pre-defined categories. See [Van Roy ‘97]

 Comparisons and Contrasts. AOP comparisons category incorporates literature that

compares and contrasts other programming techniques and paradigms to AOP. See [Ortin ‘02]

The following table includes the breakdown of the main categories and sub-categories

used to organize the 494 papers (see Appendix A) included in the taxonomy. In addition, those

categories with two asterisks indicate the largest sub-category of each particular section.

 31

Table 4: Literature Taxonomical Breakdowns

1. Concerns [25]
1.a. General [1]
1.b. Modeling Concerns [3]

 1.c. Identifying Concerns [3]
 1.d. Separating Concerns [13] **
 1.e. Cross-cutting Concerns [5]

2. Adaptive [13]

2.a. General [0]
2.b. Models & Techniques [11] **
2.c. Tools & Applications [2]

3. Limitations [7]
 3.a. General [0]
 3.b. Theoretical [1]
 3.c. Tools [1]
 3.d. Design & Environment [5] **

4. Experiential & Case Study [41]
 4.a. General [8]
 4.b. Tools & Languages [14] **
 4.c. Design Aids & Analysis [9]
 4.d. Testing, Fault Tolerance & Reliability [1]
 4.e. Simulation & Modeling [9]

5. Performance & Reliability [16]
 5.a. General [2]

5.b. Synchronization [6] **
 5.c. Reusability [3]
 5.d. Security [5]

6. Distributed Systems [28]
 6.a. General [4]
 6.b. Networks & Environments [10] **
 6.c. Client-Server (Web) [4]
 6.d. Applications [6]
 6.e. Programming [2]
 6.f. Real-Time [2]

 32

7. Theory [66]
 7.a. General [1]

7.b. Formal Methods [15]
 7.c. Applied [34] **
 7.d. Theoretical [16]

8. UML Modeling [33]
 8.a. General [6]
 8.b. Tools [2]
 8.c. Extensions [11] **
 8.d. Diagrams, Design Aids & Simulation [11] **
 8.e. Verification & Analysis [3]

9. Architecture [23]
 9.a. General [6]
 9.b. Distributed & Network [1]
 9.c. Styles & Models [16] **

10. Software Engineering [62]
 10.a. General [0]
 10.b. Requirements & Specification [8]
 10.c. Processes & Metrics [10]
 10.d. Design & Implementation [22] **
 10.e. Testing & Debugging [4]
 10.f. Design Tools & Languages [18]

11. Trends & Direction [26]
 11.a. General [5]
 11.b. Analysis [7]
 11.c. Future Domains [9] **
 11.d. Designs & Frameworks [4]
 11.e. Language Constructs [1]

12. Aspects [18]
 12.a. General [4] **
 12.b. Methods & Tools [4] **
 12.c. Analysis [3]
 12.d. Fundamentals [1]

12.e. Models [4] **
12.f. Implementations [2]

 33

13. Weaving [15]
 13.a. General [5] **
 13.b. Join Points [2]
 13.c. Tools [3]
 13.d. Implementation, Techniques & Models [5] **

14. Miscellaneous [91]
 14.a. General [0]
 14.b. Tools [0]
 14.c. Concerns [18]
 14.d. Programming Techniques [10]
 14.e. Distributed Systems [9]
 14.f. Adaptive [1]
 14.g. Software Engineering [22] **
 14.h. Case Study & Experiential [5]
 14.i. Architecture [1]
 14.j. Performance & Reliability [1]
 14.k. Theory [15]
 14.l. Aspects [0]
 14.m. UML [7]
 14.n. Weaving [2]

15. Comparisons & Contrasts [30]
 15.a. General [0]
 15.b. Programming Techniques [16] **
 15.c. Modeling Concerns [4]
 15.d. Separating Concerns [7]
 15.e. Identifying Concerns [1]
 15.f. Distributed Applications [1]
 15.g. Cross-cutting Concerns [1]

The largest single category of literature collected for this taxonomy is the Miscellaneous

category (see Figure 2), which comprised fourteen sub-categories, and included a total of 91

articles. Theory, with four sub-categories, came in second with a total of 66 papers collected.

Software Engineering, including six sub-categories, came in third with a total of 62 research

articles. The applied sub-category under theory occupies the top position with a total of 34

articles. The design and implementation sub-category under software engineering, and the

software engineering sub-category under miscellaneous both occupy the 2 position with a total of

 34

22 research articles. Next, the design tools and languages sub-category under software

engineering, and the concerns sub-category under miscellaneous were the third most popular

sub-categories with 18 research articles.

Multidimensional View of the Taxonomy

The taxonomy includes a four dimensional view: primary, secondary, tertiary, and

quaternary. The multi-dimensional view offers researchers another piece of information by

classifying articles into all relevant categories, hence, demonstrating the literatures applicability

to multiple research domains. The construction of a multi-dimensional view was accomplished

by ranking (1-4) the articles to correspond with the appropriate dimension. This was done

because the articles are not narrowly written; instead, they tend to bring in multiple ideas and

discuss them at great lengths. Essentially, many articles belong in more than one category, i.e.,

[Giese ‘00]. In other words, the multidimensional view simply depicts the articles’ ability to fall

into more than one category with the primary view being the dominant concept of the article.

The following figures illustrate the four-dimensional view of the taxonomy by breaking down

the categories according to the number of papers in each category for the primary, secondary,

tertiary, and quaternary dimension.

Primary Dimension

Figure 2: Primary Dimension Totals

Primary Dimension Totals

0

20

40

60

80

100

Categories & Article Totals

N
um

be
r

Articles

Articles 25 13 7 41 16 28 66 33 23 62 26 18 15 91 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2 describes the layout of total articles for each of the main fifteen categories in the

primary (main) dimension. The primary dimension includes the largest number of articles

because each article was categorized into at least one category. The other three dimensions do

not necessarily include all of the articles, only the ones which fell into more than one category.

The primary categories are numbered 1-15 and include Concerns; Adaptive; Limitations;

Experiential/Case Study; Performance/Reliability; Distributed Systems; Theory; UML

Modeling; Architecture; Software Engineering; Trends/Direction; Aspects; Weaving;

Miscellaneous; and Comparisons/Contrasts. Of the 494 articles indexed in the taxonomy,

Category 3, (Limitations), has the least number of articles totaling 7. The primary dimension

categorical breakdown into sub-categories and the number of articles per sub-category follows

(see figures 3-6).

 35

Figure 3: Primary Dimension Breakdown (1A – 5D)

Primary Dimension Breakdown

0

2

4

6

8

10

12

14

16

Categories & Article Totals

N
um

be
r

Articles

Articles 1 3 3 13 5 0 11 2 0 1 1 5 8 14 9 1 9 2 6 3 5

1a 1b 1c 1d 1e 2a 2b 2c 3a 3b 3c 3d 4a 4b 4c 4d 4e 5a 5b 5c 5d

Figure 3 represents the breakdown of the primary dimension of sub-categories 1a – 5d.

The sub-categories are labeled following their respective main category heading: 1. Concerns:

1a. General Concerns, 1b. Modeling Concerns, 1c. Identifying Concerns, 1d. Separating

Concerns, 1e. Cross-cutting Concerns; 2. Adaptive: 2a. General, 2b. Models & Techniques, 2c.

Tools & Applications; 3. Limitations: 3a. General, 3b. Theoretical, 3c. Tools, 3d. Design &

Environment; 4. Experiential & Case Study: 4a. General, 4b. Tools & Languages, 4c. Design

Aids & Analysis, 4d. Testing, Fault Tolerance & Reliability, 4e. Simulation & Modeling; and 5.

Performance & Reliability: 5a. General, 5b. Synchronization, 5c. Reusability, 5d. Security.

The sub-category with the most articles in figure 3 is 4b with 14 and in a close second is

1d with 13. The two sub-categories with the least amount of articles are 2a and 3a with a total of

0 articles.

 36

Figure 4: Primary Dimension Breakdown Continued (6A – 9C)

Primary Dimension Breakdown Cont'd

0

5

10

15

20

25

30

35

40

Categories & Article Totals

N
um

be
r

Articles

Articles 4 10 4 6 2 2 1 15 34 16 6 2 11 11 3 6 1 16

6a 6b 6c 6d 6e 6f 7a 7b 7c 7d 8a 8b 8c 8d 8e 9a 9b 9c

Figure 4 represents the breakdown of the primary dimension of sub-categories 6a - 9c.

The sub-categories are labeled following their respective main category heading: 6. Distributed

Systems: 6a. General, 6b. Networks & Environments, 6c. Client-Server (Web), 6d. Applications,

6e. Programming, 6f. Real-Time; 7. Theory: 7a. General, 7b. Formal Methods, 7c. Applied, 7d.

Theoretical; 8. UML Modeling: 8a. General, 8b. Tools, 8c. Extensions, 8d. Diagrams, Design

Aids & Simulation, 8e. Verification & Analysis; and 9. Architecture: 9a. General, 9b. Distributed

& Network, 9c. Styles & Models.

The sub-category with the most articles in figure 4 is 7c with 34 and tying for second are

categories 7d and 9c with a total of 16 articles. The sub-categories with the least amount of

articles are 7a and 9b with 1 article each.

 37

Figure 5: Primary Dimension Breakdown Continued (10A – 13D)

Primary Dimension Breakdown Cont'd

0

5

10

15

20

25

Categories & Article Totals

N
um

be
r

Articles

Articles 0 8 10 22 4 18 5 7 9 4 1 4 4 3 1 4 2 5 2 3 5

10a 10b 10c 10d 10e 10f 11a 11b 11c 11d 11e 12a 12b 12c 12d 12e 12f 13a 13b 13c 13d

Figure 5 represents the breakdown of the primary dimension of sub-categories 10a – 13d.

The sub-categories are labeled following their respective main category heading: 10. Software

Engineering: 10a. General, 10b. Requirements & Specification, 10c. Processes & Metrics, 10d.

Design & Implementation, 10e. Testing & Debugging, 10f. Design Tools & Languages; 11.

Trends & Direction: 11a. General, 11b. Analysis, 11c. Future Domains, 11d. Designs &

Frameworks, 11e. Language Constructs; 12. Aspects: 12a. General, 12b. Methods & Tools, 12c.

Analysis, 12d. Fundamentals, 12e. Models, 12f. Implementations; and 13. Weaving: 13a.

General, 13b. Join Points, 13c. Tools, 13d. Implementation, Techniques & Models.

The sub-category with the most articles in figure 5 is 10d with 22. Sub-category 10f falls

in second place with a total 18 articles. The sub-category with the least amount of articles is 10a

with 0.

 38

Figure 6: Primary Dimension Breakdown Continued (14A- 15G)

Primary Dimension Breakdown Cont'd

0

5

10

15

20

25

Categories & Article Totals

N
um

be
r

Articles

Articles 0 0 18 10 9 1 22 5 1 1 15 0 7 2 0 16 4 7 1 1 1

14a 14b 14c 14d 14e 14f 14g 14h 14i 14j 14k 14l 14m 14n 15a 15b 15c 15d 15e 15f 15g

Figure 6 represents the breakdown of the primary dimension of sub-categories 14a – 15g.

The sub-categories are labeled following their respective main category heading: 14.

Miscellaneous: 14a. General, 14b. Tools, 14c. Concerns, 14d. Programming Techniques, 14e.

Distributed Systems, 14f. Adaptive, 14g. Software Engineering, 14h. Case Study & Experiential,

14i. Architecture, 14j. Performance & Reliability, 14k. Theory, 14l. Aspects, 14m. UML, 14n.

Weaving; and 15. Comparisons & Contrasts: 15a. General, 15b. Programming Techniques, 15c.

Modeling Concerns, 15d. Separating Concerns, 15e. Identifying Concerns, 15f. Distributed

Applications, 15g. Cross-cutting Concerns.

The sub-category with the most articles in figure 6 is 14g with 22. Sub-category 14c falls

in second place with a total 18 articles. The sub-categories with the least amount of articles are

14a, 14b, 14l, and 15a with 0.

In the primary dimension, sub-category 7c, (Applied Theory) has the largest number of

articles, 34. Sub-categories 10d, (Design/Implementation), and 14g, (Software Engineering),

 39

both with 22 follow with the second largest amount of articles in the primary dimension. Lastly,

the primary dimension consists of 494 articles.

Secondary Dimension

Figure 7: Secondary Dimension Totals

Secondary Dimension Totals

0

10

20

30

40

50

60

70

Categories & Totals

N
um

be
r

Articles

Articles 61 4 0 27 8 12 5 10 7 42 3 47 7 55 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7 describes the layout of total articles for each of the main fifteen categories in the

secondary dimension. The secondary categories are numbered 1-15 and include Concerns;

Adaptive; Limitations; Experiential/Case Study; Performance/Reliability; Distributed Systems;

Theory; UML Modeling; Architecture; Software Engineering; Trends/Direction; Aspects;

Weaving; Miscellaneous; and Comparisons/Contrasts. Figure 7 shows the number of articles

and the category they belong to in the secondary dimension of the model. Category 1 had the

largest number of articles with a total of 61 and category 3 had the least with a total of 0. Figures

8 -11 show the sub-categorical breakdown of the secondary dimension.

 40

Figure 8: Secondary Dimension Breakdown (1A – 5D)

Secondary Dimension Breakdown

0

10

20

30

40

Categories & Totals

N
um

be
r

Articles

Articles 5 3 0 32 21 0 2 2 0 0 0 0 3 4 8 1 11 0 1 6 1

1a 1b 1c 1d 1e 2a 2b 2c 3a 3b 3c 3d 4a 4b 4c 4d 4e 5a 5b 5c 5d

Figure 8 illustrates the second dimension sub-categories 1a - 5d. The sub-categories are

labeled following their respective main category heading: 1. Concerns: 1a. General Concerns, 1b.

Modeling Concerns, 1c. Identifying Concerns, 1d. Separating Concerns, 1e. Cross-cutting

Concerns; 2. Adaptive: 2a. General, 2b. Models & Techniques, 2c. Tools & Applications; 3.

Limitations: 3a. General, 3b. Theoretical, 3c. Tools, 3d. Design & Environment; 4. Experiential

& Case Study: 4a. General, 4b. Tools & Languages, 4c. Design Aids & Analysis, 4d. Testing,

Fault Tolerance & Reliability, 4e. Simulation & Modeling; and 5. Performance & Reliability: 5a.

General, 5b. Synchronization, 5c. Reusability, 5d. Security.

The sub-categories with the most articles in figure 8 is 1d with a total of 32 articles and in

second place is sub-category 1e with 21 articles. The sub-categories with the least amount of

articles are 1c, 2a, 3a, 3b, 3c, 3d, and 5a with 0.

 41

Figure 9: Secondary Dimension Breakdown Continued (6A – 9C)

Secondary Dimension Breakdown Cont'd

0

2

4

6

8

10

Categories & Totals

N
um

be
r

Articles

Articles 0 2 2 5 3 0 1 1 0 3 1 0 1 8 0 2 2 3

6a 6b 6c 6d 6e 6f 7a 7b 7c 7d 8a 8b 8c 8d 8e 9a 9b 9c

Figure 9 illustrates sub-categories 6a - 9c in the secondary dimension. The sub-

categories are labeled following their respective main category heading: 6. Distributed Systems:

6a. General, 6b. Networks & Environments, 6c. Client-Server (Web), 6d. Applications, 6e.

Programming, 6f. Real-Time; 7. Theory: 7a. General, 7b. Formal Methods, 7c. Applied, 7d.

Theoretical; 8. UML Modeling: 8a. General, 8b. Tools, 8c. Extensions, 8d. Diagrams, Design

Aids & Simulation, 8e. Verification & Analysis; and 9. Architecture: 9a. General, 9b. Distributed

& Network, 9c. Styles & Models.

The sub-category with the most articles in figure 9 is 8d with 8 articles and coming in

second is sub-category 6d with 5 articles. The sub-categories with the least amount of articles

are 6a, 6f, 7c, 8b, and 8e with 0.

 42

Figure 10: Secondary Dimension Breakdown Continued (10A – 13D)

Secondary Dimension Breakdown Cont'd

0

5

10

15

20

25

Categories & Totals

N
um

be
r

Articles

Articles 4 3 2 11 0 22 0 1 2 0 0 5 10 5 6 8 13 0 3 2 2

10a 10b 10c 10d 10e 10f 11a 11b 11c 11d 11e 12a 12b 12c 12d 12e 12f 13a 13b 13c 13d

Figure 10 illustrates sub-categories 10a - 13d in the secondary dimension. The sub-

categories are labeled following their respective main category heading: 10. Software

Engineering: 10a. General, 10b. Requirements & Specification, 10c. Processes & Metrics, 10d.

Design & Implementation, 10e. Testing & Debugging, 10f. Design Tools & Languages; 11.

Trends & Direction: 11a. General, 11b. Analysis, 11c. Future Domains, 11d. Designs &

Frameworks, 11e. Language Constructs; 12. Aspects: 12a. General, 12b. Methods & Tools, 12c.

Analysis, 12d. Fundamentals, 12e. Models, 12f. Implementations; and 13. Weaving: 13a.

General, 13b. Join Points, 13c. Tools, 13d. Implementation, Techniques & Models.

The sub-category with the most articles in figure 10 is 10f with 22 and coming in second

is sub-category 12f with 13 articles. The sub-categories with the least amount of articles are 10e,

11a, 11d, 11e, and 13a with 0.

 43

Figure 11: Secondary Dimension Breakdown Continued (14A – 15G)

Secondary Dimension Breakdown Cont'd

0

10

20

30

Categories & Totals

N
um

be
r

Articles

Articles 0 0 28 1 3 3 7 4 2 0 1 2 4 0 0 19 0 4 0 0 0

14a 14b 14c 14d 14e 14f 14g 14h 14i 14j 14k 14l 14m 14n 15a 15b 15c 15d 15e 15f 15g

Figure 11 shows the sub-category breakdowns of 14a – 15g in the secondary dimension.

The sub-categories are labeled following their respective main category heading: 14.

Miscellaneous: 14a. General, 14b. Tools, 14c. Concerns, 14d. Programming Techniques, 14e.

Distributed Systems, 14f. Adaptive, 14g. Software Engineering, 14h. Case Study & Experiential,

14i. Architecture, 14j. Performance & Reliability, 14k. Theory, 14l. Aspects, 14m. UML, 14n.

Weaving; and 15. Comparisons & Contrasts: 15a. General, 15b. Programming Techniques, 15c.

Modeling Concerns, 15d. Separating Concerns, 15e. Identifying Concerns, 15f. Distributed

Applications, 15g. Cross-cutting Concerns.

The sub-category with the most articles in figure 11 is 14c with 28 and in second is sub-

category 15b with 19 articles. The sub-categories with the least amount of articles are 14a, 14b,

14j, 14n, 15a, 15c, 15e, 15f and 15g with 0.

In the secondary dimension, sub-category 1d, (Separating Concerns) has the largest

number of articles with a total of 32. The sub-category 14c (Concerns) has the second largest

amount of articles in the secondary dimension with a total 28. Lastly, the secondary dimension

consists of a total of 311 articles.

 44

Tertiary Dimension

Figure 12: Tertiary Dimension Totals

Tertiary Dimension Totals

0

5

10

15

20

Categories & Totals

N
um

be
r

Articles

Articles 19 0 1 4 0 3 0 5 2 14 2 10 5 8 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 12 shows the number of articles and the category they belong to in the tertiary

dimension of the model. Categories without articles in them do not have any tertiary

relationships. The tertiary categories are numbered 1-15 and include Concerns; Adaptive;

Limitations; Experiential/Case Study; Performance/Reliability; Distributed Systems; Theory;

UML Modeling; Architecture; Software Engineering; Trends/Direction; Aspects; Weaving;

Miscellaneous; and Comparisons/Contrasts. Category 1 had the highest number of articles with

a total of 19 and categories 2, 5, and 7 had the least with a total of 0. The following figures 13

and 14 show the sub-categorical breakdown of the tertiary dimension.

 45

Figure 13: Tertiary Dimension Breakdown (1B – 11C)

Tertiary Dimension Breakdown

0

5

10

15

Categories & Totals

N
um

be
r

Articles

Articles 1 1 11 6 1 1 3 2 1 5 1 1 1 3 10 2

1b 1c 1d 1e 3d 4a 4e 6d 6e 8d 9a 9c 10b 10d 10f 11c

Figure 13 demonstrates the breakdown of the tertiary relationship of the articles with sub-

categories 1b – 11c. The sub-categories are labeled following their respective main category

heading: 1. Concerns: 1b. Modeling Concerns, 1c. Identifying Concerns, 1d. Separating

Concerns, 1e. Cross-cutting Concerns; and 3. Limitations: 3d. Design & Environment; and 4.

Experiential & Case Study: 4a. General, 4e. Simulation & Modeling; and 6. Distributed Systems:

6d. Applications, 6e. Programming; and 8. UML Modeling: 8d. Diagrams, Design Aids &

Simulation; and 9. Architecture: 9a. General, 9c. Styles & Models, and 10. Software

Engineering: 10b. Requirements & Specification, 10d. Design & Implementation, 10f. Design

Tools & Languages; and 11. Trends & Direction: 11c. Future Domains.

 The sub-category with the most articles in figure 13 is 1d with 11 and in a close second

is sub-category 10f with 10. The sub-categories with the least amount of articles are 1b, 1c, 3d,

4a, 6e, 9a, 9c, and 10b with 1 article each.

 46

Figure 14: Tertiary Breakdown Continued (12A – 15D)

Tertiary Dimension Breakdown Cont'd

0

2

4

6

Categories and Totals

N
um

be
r

Articles

Articles 2 1 2 5 1 3 1 2 4 2 3 1

12a 12b 12e 12f 13a 13b 13d 14b 14c 14d 15b 15d

Figure 14 illustrates the breakdown of articles for the tertiary relationship starting with

sub-category 12a and ending with sub-category 15d. The sub-categories are labeled following

their respective main category heading: 12. Aspects: 12a. General, 12b. Methods & Tools, 12e.

Models, 12f. Implementations; and 13. Weaving: 13a. General, 13b. Join Points, 13d.

Implementation, Techniques & Models; and 14. Miscellaneous: 14b. Tools, 14d. Programming

Techniques; and 15. Comparisons & Contrasts: 15b. Programming Techniques, 15d. Separating

Concerns.

 The sub-category with the most articles in figure 14 is 12f with 5 and second is sub-

categories 13b and 15b with 3. The sub-categories with the least amount of articles are 12b, 13a,

13d, and 15d with 1 article each.

In the tertiary dimension, sub-category 1d, (Separating Concerns) has the largest number

of articles with a total of 11. The sub-category 12f (Models) has the second largest amount of

articles, 10. Lastly, the tertiary dimension consists of a total of 77 articles.

 47

Quaternary Dimension

Figure 15: Quaternary Dimension Totals

Quaternary Dimension Totals

0

1

2

3

4

5

Categories & Totals

N
um

be
r

Articles

Articles 1 0 0 3 0 0 0 0 0 1 0 1 2 0 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 15 shows the number of articles and the category they belong to in the quaternary

dimension of the model. The quaternary categories are numbered 1-15 and include Concerns;

Adaptive; Limitations; Experiential/Case Study; Performance/Reliability; Distributed Systems;

Theory; UML Modeling; Architecture; Software Engineering; Trends/Direction; Aspects;

Weaving; Miscellaneous; and Comparisons/Contrasts. Category 4 had the highest number of

articles with a total of 3 and categories 2, 3, 5-9, 11, and 14 had the least with a total of 0. The

Figure 16 shows the categorical breakdown of the quaternary dimension.

 48

Figure 16: Quaternary Dimension Breakdown (1D – 15B)

Quaternary Dimension Breakdown

0

1

2

3

4

Categories & Totals

N
um

be
r

Articles

Articles 1 1 1 1 1 1 1 1 2

1d 4b 4c 4e 10d 12c 13a 13b 15b

Figure 16 illustrates the breakdown of articles for the quaternary relationship with sub-

categories 1d – 15b. Categories not represented in the graph did not have any quaternary

relationships. The sub-categories are labeled following their respective main category heading:

1. Concerns: 1d. Separating Concerns; and 4. Experiential & Case Study: 4b. Tools &

Languages, 4c. Design Aids & Analysis, 4e. Simulation & Modeling; and 10. Software

Engineering: 10d. Design & Implementation; and 13. Weaving: 13a. General, 13b. Join Points;

and 15. Comparisons & Contrasts: 15b. Programming Techniques.

All the sub-categories in figure 16 have 1 article except sub-category 15b (Programming

Techniques), which is the highest sub-category with a total of 2 articles. The quaternary

dimension consists of 10 articles.

 49

AOP Yearly Literature Trends

The AOP collected literature illustrates a data timeline that can assist researchers in

finding and seeing the amount of literature produced in a given year, and possibly determine the

“hot” or “done” areas (see figures 17-18).

Figure 17: AOP Year Breakdown

AOP Year Breakdown

0

20

40

60

80

100

120

140

Article Year & Total

N
um

be
r

Articles

Articles 18 35 57 97 121 118 46

1997 1998 1999 2000 2001 2002 2003

Figure 17 shows that the majority of cataloged literature was done in 2001 with a total of

121 articles and the least amount of written material was in 1997 with a total of 18 articles.

However, not indicated in figure 17 are 1993 and 1995 with both years having 1 article each.

Furthermore, the years were excluded because AOP was still being developed and not yet widely

introduced into research and academic environments until 1997 as a programming paradigm.

Thus, figure 17 begins with the year 1997 coinciding with AOP’s availability and introduction to

academic and research communities. The years 2002 and 2003 are lower than 2001 and seem to

 50

indicate a waning interest in AOP, however; the literature used in the taxonomy was not all

inclusive. In addition, the year 2003 has significantly fewer articles (46) compared to 2001 (121)

and 2002 (118) articles because the literature gathering stage ended for this project during the

early part of summer 2003.

Figure 18: AOP Leading Category per Year

Leading Category Per Year

0 5 10 15 20 25 30

Miscellaneous

Theory

Miscellaneous

Miscellaneous

Miscellaneous

Software
Engineering

Software
Engineering

19
97

19
98

19
99

20
00

20
01

20
02

20
03

C
at

eg
or

y
&

 Y
ea

r

Number

Articles

 Figure 18 illustrates the leading category per year that received the most focus by

researchers in the primary dimension. The Miscellaneous category in 1997 with 6 articles is the

lowest leading category per year compared to other years. However, the Miscellaneous category

in 2000 with 28 articles is the overall highest leading category per year compared to other years,

which indicates the bulk of AOP literature for that year. In addition, the Miscellaneous category

 51

 52

was represented the most out of all the categories created in the taxonomy, hence outpacing the

other categories during the following years: 1997 (6 articles), 1999 (14 articles), 2000 (28

articles), and 2001 (23 articles). Furthermore, the figure shows that the Miscellaneous category

may be a “done” focus area, and that the Theory category may be a “hot” area for researchers to

contribute research. However, the Miscellaneous category can be an ever changing category that

encompasses new and various topics, thus, it cannot really be considered a “done” area. The

Software Engineering category is the second leading category among the other categories,

specifically in the years 2002 (22 articles), and 2003 (12 articles) with a combined total of 34

articles. Overall, figure 18 indicates the top category per year for AOP literature and the number

of articles that compose the category.

Figure 19: AOP Leading Sub-Category per Year

Leading Sub-Category Per Year

0 2 4 6 8 10

14d

7c

14c,14g,15d,4b,5b,7b,7c,7d

7c

14c,1d

14g,8c,8d

10c,7c

19
97

19
98

19
99

20
00

20
01

20
02

20
03

C
at

eg
or

y
&

 Y
ea

r

Number

Articles

Figure 19 shows the leading sub-categories per year that received the most focus by

researchers in the primary dimension. The year 1999 had the most sub-categories (8)

represented with each having a total of 3 articles, thus, illustrating the categorical variance of

literature contributed to AOP during 1999. The years 1997, 1998, and 2000 have the least

amount of sub-categories represented with 1 each. The year 2000 had the most articles in a sub-

category with 7c (Applied) under the Theory category having a total of 9 articles. The figure

indicates that sub-category 1d (Separating Concerns) under the Concerns category in 2001 and

 53

 54

that sub-category 10c (Processes & Metrics) under the Software Engineering category in 2003

may be a “hot” areas. However, the figure also shows that sub-categories 7c (Applied) under the

Theory category and 14c (Concerns) under the Miscellaneous category may be “done” areas.

Lastly, the inferences drawn from the figure only show the leading sub-categories per year and

the number of articles composed in the sub-category.

Conclusion

 The taxonomy on AOP is useful because it helps to create a road map to future research

needed on aspect-oriented programming. It creates an easy mechanism for viewing the leading

papers on the topic as well as the trends of previous research, creating a tool for future

researchers. Overall, the research trending analysis gives researchers various perspectives using

the multi-dimensional views about how and where AOP is being applied.

 55

CHAPTER 4

CONCLUSIONS AND FUTURE WORK

 This thesis has shown the distinctly different and overlapping nature of some the aspect-

oriented programming (AOP) literature, and accounted for that by implementing four

dimensional perspectives, primary, secondary, tertiary, quaternary, which show the varying

applicability of the AOP paradigm. However, a discrepancy exists in the literature composed

within the fifteen categories and sub-categories used in the classification. That is, some

categories and sub-categories contain greater numbers of literature than other categories and sub-

categories, e.g., the category Software Engineering comprised of 62 total articles versus the

category Limitations with 7 total articles, and the sub-category Design and Implementation

comprised of 22 articles under the Software Engineering category versus Theoretical with 1 total

article under the Limitations category. Furthermore, articles that focused almost entirely on a

certain category, e.g., Theory, or sub-category e.g., Formal Methods were placed into their

respective main category and sub-category, which was done after extensive reviews of each

article to better designate the appropriate focus area for the literature.

The taxonomy indicates research trends of the catalogued literature, thus showing areas

where AOP is being applied and possible future direction. An in-depth look at the Miscellaneous

category shows that it has been contributed to the most and may be a “done” area of research, but

of course will continue to grow due to the nature of the category. Conversely, several categories

are potential “hot areas where research should continue, i.e., Adaptive, and Weaving. A clear

caveat must be factored into the taxonomy results when interpreting the trends of the data, which

is the collection of AOP articles gathered is not all inclusive of research literature on the

 56

paradigm, thus creating a limitation of this thesis. The corollary for the limitation of the research

is to continue to add more bibliographic data; however, this was not possible due to project

timeline specifications.

The future has many possibilities for the application of AOP and the data incorporated in

this thesis. Numerous articles have been categorized from various conferences, journals, and

technical reports within the framework of the four dimensional classification model implemented

in the project. Researchers can build on the taxonomy presented in the body of work to enhance

the AOP domain. The taxonomy will be made publicly available so that researchers can extend

and modify the project to improve the categorizations overall. The primary application of this

thesis for future work is to enlighten others to the growing trends and “hot areas” of aspect-

oriented programming, perhaps urging developers and researchers to build better tools and

processes surrounding the AOP paradigm.

In conclusion, a comprehensive analysis of the AOP literature should be completed

annually or semi-annually for tracking purposes. Furthermore, the database should be

continually updated and modified in accordance with the comprehensive analysis to keep up with

the increased pace of computer science literature, and possibly connected with other

bibliographic database driven search engines3. The reports produced from the taxonomy will

help researchers understand which areas of research are being tapped into and will help focus

efforts to commercialize aspect-oriented programming. Lastly, the research conducted can be

greatly improved if others continue to use the taxonomy so that all AOP articles, both past and

present, are classified.

3 Several bibliography search engines exist such as: http://citeseer.org/ and
http://liinwww.ira.uka.de/bibliography/index.html

http://citeseer.org/
http://liinwww.ira.uka.de/bibliography/index.html

 57

REFERENCES

[Achermann ‘00] Achermann, F., (2000), “Language support for feature mixing”, in

Proceedings of Workshop on Multi-Dimensional Separation of Concerns in Software
Engineering (ICSE ‘00).

[Anderson ‘99] Anderson, E., and Patterson, D., (1999), “A retrospective on twelve years

of LISA proceedings, in Proceedings of the 13th Conference on Systems Administration
(LISA 1999).

[Akkawi ‘01] Akkawi, F., Bader, A., and Elrad, T., (2001), “Dynamic weaving for building

reconfigurable software systems”, in Proceedings of Workshop on Advanced Separation
of Concerns (OOPSLA ‘01).

[Aksit ‘01] Aksit, M., Tekinerdogan, B., and Bergmans, L., (2001), “The six concerns for

separation of concerns”, in Proceedings of Workshop on Advanced Separation of
Concerns (ECOOP 2001).

[Aldawud ‘02] Aldawud, O., Bader, A., and Elrad, T., (2002), “Weaving with statecharts”, in

Proceedings of Workshop on Aspect-Oriented Modeling with UML (AOSD-2002).

[Avdicausevic ‘01] Avdicausevic, E., Lenic, M., Mernik, M., and Zumer, V., (2001), “Aspect

COOL: An experiment in design and implementation of aspect-oriented language”, ACM
Sigplan Notices, vol. 36, no. 12.

[Bardou ‘98] Bardou, D., (1998), “Roles, subjects, and aspects: How do they relate?”, in

Proceedings of Workshop on Aspect Oriented Programming (ECOOP 1998).

[Bollert ‘99] Bollert, K., (1999), “On weaving aspects”, in Proceedings of Int’l Workshop on

Aspect-Oriented Programming (ECOOP 1999).

[Brichau ‘02] Brichau, J., Mens, K., and De Volder, K., (2002), “Building composable aspect-

specific languages with logic metaprogramming”, GPCE ’02.

[Brooks ‘95] Brooks, Robert Jr., (1995). “No silver bullet- essence and accident in software

engineering”, in The mythical man-month, Reading, MA: Addison Wesley.

[Capretz ‘03] Capretz, L.F., (2003), “A brief history of the object-oriented approach”, Software

Engineering Notes, vol 28, no 2.

[Chavez ‘01] Chavez, C.V.F.G., and Lucena, C.J.P., (2001), “Design-level support for aspect-

oriented software development”, in Proceedings of OOPSLA 2001.

 58

[Coady ‘03] Coady, Y. and Kiczales, G., (2003), “Back to the future: A retroactive study of
aspect evolution in operating system code”, ACM 2003 (AOSD 2003).

[Constantinides ‘00] Constantinides, C.A., Bader, A., and Elrad, T., (2000), “An aspect-

oriented design framework.” ACM Computing Surveys, March 2000.

[Constantindes ‘01] Constantinides, C.A., Skotiniotis, T., and Elrad, T., (2001), “Providing

dynamic adaptability in an aspect-oriented framework”, in Proceedings of Workshop on
Advanced Separation of Concerns (ECOOP ‘01).

[Cox ‘86] Cox, Brad J., (1986). Object oriented programming: An evolutionary approach.

Reading, MA: Addison-Wesley.

[Dijkstra ‘76] Dijkstra, Edsger W., (1976). A discipline of programming. Englewood, Cliffs, NJ:

Prentice-Hall Inc.

[Dolog ‘01] Dolog, P., Vranic, V., and Bielikova, M, (2001), “Representing change by

aspect”, ACM Sigplan Notices, vol. 36, no. 12.

[Elrad ‘01a] Elrad, T., Aksits. M., Kiczales, G., Lieberherr, K., and Ossher, H., (2001),

“Discussing aspects of aop”, Communications of the ACM, vol. 44, no. 10.

[Elrad ‘01b] Elrad, T., Filman, R.E., and Bader, A., (2001), “Aspect oriented programming”,

Communications of the ACM, vol. 44, no. 10.

[Fabry ‘01] Fabry, J., Brichau, J., and Mens, T., (2001), “Moving code”, in Proceedings of

Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[Filman ‘02] Filman, Robert E., (2002). A bibliography of aspect-oriented software

development, version 1.0. RIACS technical report 02.06. August 2002.

[Giese ‘00] Giese, H. and Vilbig, A, (2000), “Towards aspect-oriented design and

architecture”, in Proceedings of Workshop on Advanced Separation of Concerns
(OOPSLA ‘00).

[Highley ‘99] Highley, T.J., Lack, M., and Myers, P., (1999), “Aspect oriented programming: A

critical analysis of a new programming paradigm, University of Virginia, Department of
Computer Science Technical Report CS-99-29.

[Hilliard ‘99] Hilliard, R., (1999), “Aspects, concerns, subjects, views,..”, in Proceedings of

Workshop on Multi-Dimensional Separation of Concerns (OOPSLA 1999).

[Holmes ‘97] Holmes, D., Noble, J., and Potter, J., (1997), “Aspects of synchronization”, in

Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘97).

 59

[Kiczales ‘97] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
and Irwin, J., (1997), “Aspect-oriented programming”, in Aksit, M. and Matsuoka, S.,
editors, 11th European Conference Object-Oriented Programming, vol. 1241 of LNCS,
pgs. 220-242. Springer Verlag.

[Laddad ‘02] Laddad, R., (2002), “I want my aop! Part 1: Separate software concerns with

aspect-oriented programming”, in Proceedings of Java World Fueling Innovations, 2002.

[Lopes ‘97] Lopes, C.V., and Kiczales, G., (1997), “D: A language framework for distributed

programming:, Xerox, PARC, Palo Alto, CA. Technical report SPL97-010 P9710047.

[Lopes ‘99] Lopes, C.V., (1999), “Modularization revisited: Aspects in the design and

evolution of software systems”, IEEE.

[Ludy ‘02] Ludy, T., (2002), “Aspect-oriented programming can lead to faster, cheaper,

easier-to-use solutions”, Control Solutions.

[Navasa ‘01] Navasa, A., Perez, M.A., and Murillo, J.M., (2001), “Developing component

based systems using AOP concepts”, in Proceedings of Workshop on Advanced
Separation of Concerns (ECOOP ‘01).

[Nordberg ‘01] Nordberg, M.E.III., (2001), “Aspect-oriented dependency inversion”, in

Proceedings of Workshop on Advanced Separation of Concerns in Object-Oriented
Systems (OOPSLA ‘01).

[Orleans ‘01] Orleans, D., (2001), “Separating behavioral concerns with predicate dispatch, or,

if statement considered harmful”, in Proceedings of Workshop on Advanced Separation
of Concerns in Object-Oriented Systems (OOPSLA ‘01).

[Ortin ‘02] Ortin, F. and Cueva, J.M., (2002), “Implementing a real computational-

environment jump in order to develop a runtime-adaptable reflective platform”, ACM
Sigplan Notices, vol. 37, no. 8.

[Ossher ‘98] Ossher, H., (1998), “Operation-level composition: A case in (join) point”, in

Proceedings of ICSE 98.

[Parnas ‘01] Parnas, David L., (2001). Some software engineering principles. in Software

fundamentals: collected papers by David Parnas. Edited by Hoffman, Daniel M., and
Weiss, David M. New York, New York: Addison-Wesley.

[Pawlak’ 02] Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L., and

Martelli, L., (2002), “A UML notation for aspect-oriented software design”, in
Proceedings of Workshop on Aspect-Oriented Modeling with UML (AOSD ‘02).

 60

[Putrycz ‘02] Putrycz, E. and Bernard, G., (2002), “Using aspect oriented programming to build
a portable load balancing service”, in Proceedings of 2nd Int’l Workshop on Aspect
Oriented Programming for Distributed Computing Systems (ICDCS ‘02).

[Rashid ‘02] Rashid, A., (2002), “Weaving aspects in a persistent environment”, ACM Sigplan

Notices, vol. 37, no. 2.

[Soares ‘02] Soares, S., and Borba, P., (2002), “Progressive implementation with aspect-

oriented programming”, in Springer Verlag, editor, The 12th Workshop for PhD Students
in Object--Oriented Systems, ECOOP 02.

[Stein ‘02] Stein, D., Hanenberg, S., and Unland, R., (2002), “On representing join points in

the uml”, in Proceeding of AOSD 2002.

[Van Roy ‘97] Van Roy, P., Haridi, S., Brand, P., Smolka, G., Mehl, M., and Scheidhauer, R.,

(1997), “Using mobility to make transparent distribution practical”, in Proceedings of
Workshop on Aspect Oriented Programming (ECOOP ‘97).

[Walker ‘99] Walker, R.J., Baniassad, E.L.A., and Murphy, G.C., (1999), “An initial

assessment of aspect-oriented programming”, in Proceedings of 21st Int’l Conference
Software Engineering (ICSE ‘99).

 61

APPENDICES

 62

APPENDIX A

Literature Used in Taxonomy

[1] Achermann, F., (2000), “Language support for feature mixing”, in Proceedings of Workshop
on Multi-Dimensional Separation of Concerns in Software Engineering (ICSE ‘00).

[2] Akkawi, F., Bader, A., and Elrad, T., (2001), “Aspect-oriented technology for business

applications: A case study in stock trading”, IEEE ‘01.

[3] Akkawi, F., Bader, A., and Elrad, T., (2001), “Dynamic weaving for building reconfigurable

software systems”, in Proceedings of Workshop on Advanced Separation of Concerns
(OOPSLA ‘01).

[4] Aksit, M. and Bergmans, L., (1998), “Examples of reusing synchronization code in aspect-

oriented programming using composition filters”, MCSEAI ’98.

[5] Aksit, M and Tekinerdogan, B., (1998), “Formalizing adaptability aspects”, in Proceedings

of ICSE ‘98.

[6] Aksit, M. and Tekinerdogan, B., (1998), “Solving the modeling problems of object-oriented

languages by composing multiple aspects using composition filters”, in Proceedings of
Workshop on Aspect Oriented Programming (ECOOP ‘98).

[7] Aksit, M., Tekinerdogan, B., and Bergmans, L., (2001), “The six concerns for separation of

concerns”, in Proceedings of Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[8] Aldawud, O., Bader, A., and Elrad, T., (2002), “Weaving with statecharts”, in Proceedings of

Workshop on Aspect-Oriented Modeling with UML (AOSD ‘02).

[9] Aldawud, O., Elrad, T., and Bader, A., (2001), “A UML profile for aspect oriented

modeling”, in Proceedings of Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (OOPSLA ‘01).

[10] Aldawud, O., Elrad, T, and Bader, A., (2003), “Uml profile for aspect-oriented software

development”, AOSD ’03.

[11] Aldrich, J., (2000), “Challenge problems for separation of concerns”, in Proceedings of

Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[12] Aldrich, J., Chambers, C., Sirer, E.G., and Eggers, S., (1999), “Static analyses for

eliminating unnecessary synchronization from java programs.”

 63

[13] Anderson, K., (2000), “An example of using collaborator and adapters to reuse a
synchronization pattern”, in Proceedings of Workshop on Advanced Separation of Concerns
(OOPSLA ‘00).

[14] Andrews, J., (2001), “Process-algebraic foundations of aspect-oriented programming”, in

Reflection, LNCS 2192.

[15] Andrews, J., (2001), “Using process algebra as a foundation for programming by

separation of concerns”, in Proceedings of Workshop on Advanced Separation of Concerns
in Software Engineering (ICSE ‘01).

[16] Araujo, J., Moreira, A., Brito, I., and Rashid, A., (2002), “Aspect-oriented requirements

with uml”, in Proceedings of Workshop on Aspect Oriented Modeling with UML.

[17] Assmann, U., (1997), “Aop with design patterns as meta-programming operators”,

Technical Report 28.

[18] Aβmann, U., (2000), “A component model for invasive composition”, in Proceedings of

Workshop on Aspects and Dimensions of Concerns (ECOOP ‘00).

[19] Aβmann, U. and Ludwig, A., (1999), “Aspect weaving with graph rewriting”, GCSE ’99.

[20] Atkinson, C. and Kuhne, T., (2000), “Separation of concerns through stratified

architectures”, in Proceedings of Workshop on Aspects and Dimensions of Concerns
(ECOOP ‘00).

[21] Atkinson, C. and Kuhne, T., (2003), “Aspect-oriented development with stratified

frameworks”, IEEE ‘03.

[22] Avdicausevic, E., Lenic, M., Mernik, M., and Zumer, V., (2001), “Aspect COOL: An

experiment in design and implementation of aspect-oriented language”, ACM Sigplan
Notices, vol. 36, no. 12.

[23] Bachmendo, B. and Unland, R., (2001), “Aspect-based workflow evolution”, in

Proceedings of the Workshop on Aspect-oriented Programming and Separation of Concerns.

[24] Baker, J., and Hsieh, W., (2002), “Runtime aspect weaving through metaprogramming”,

ACM 2002 (AOSD ‘02).

[25] Baniassad, E., Murphy, G.C., and Schwanninger, C., (2001), “Determining the “why” of

concerns”, in Proceedings of Workshop on Advanced Separation of Concerns in Software
Engineering (ICSE ‘01).

 64

[26] Baniassad, E., Murphy, G.C., Schwanninger, C., and Kircher, M., (2000), “Where are
programmers faced with concerns?”, in Proceedings of Workshop on Advanced Separation
of Concerns (OOPSLA ‘00).

[27] Baniassad, E., Murphy, G., Schwanninger, C., and Kircher, M., (2002), “Managing

crosscutting concerns during software evolution tasks”, ACM ’02.

[28] Bardou, D., (1998), “Roles, subjects, and aspects: How do they relate?”, in Proceedings

of Workshop on Aspect Oriented Programming (ECOOP ‘98).

[29] Barros, J.P. and Gomes, L., (2002), “Activities as behaviour aspects”, in Proceedings of

AOSD ‘02.

[30] Bastani, F.B., Yen, I.L., Sung, K., Linn, J., and Rao, K., (2001), “Reliability of systems

of independently developable end-user assessable logical (ideal) programs”, IEEE ‘01.

[31] Batenin, A. and O’Neill, E., (2002), “Towards unanticipated composition of concerns in

hyperspaces”, in Proceedings of Workshop on Identifying, Separating and Verifying
Concerns in the Design (AOSD ‘02).

[32] Batory, D., (2000), “Refinements and separation of concerns”, in Proceedings of

Workshop on Multi-Dimensional Separation of Concerns in Software Engineering (ICSE
‘00).

[33] Bayer, J., (2000), “Towards engineering product lines using concerns”, in Proceedings of

Workshop on Multi-Dimensional Separation of Concerns in Software Engineering (ICSE
‘00).

[34] Becker, C. and Geihs, K., (1998), “Quality of service-aspects of distributed programs”, in

Proceedings of Workshop on Aspect Oriented Programming (ICSE ‘98).

[35] Becker, C. and Geihs, K., (2001), “Quality of service and object-oriented middleware-

Multiple concerns and their separation”, IEEE ‘01.

[36] Becker, U., (1998), “D2AL: A design-based aspect language for distribution control”, in

Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘98).

[37] Beier, G. and Kern, M., (2002), “Aspects in uml models from a code generation

perspective”, in Proceedings of AOSD ‘02.

[38] Bergenti, F. and Poggi, A., (2000), “Aspect views as a means to promote reuse in aspect-

oriented languages”, in Proceedings of ADC ‘00.

[39] Berger, L., (2000), “Junction point aspect: A solution to simplify implementation of

aspect languages and dynamic management of aspect programs”, ECOOP ’00.

 65

[40] Berger, L., Dery, A.M., and Fornarino, M., (1998), “Interactions between objects: An
aspect of object-oriented languages”, in Proceedings of Int’l Workshop on Aspect Oriented
Programming (ICSE ‘98).

[41] Bergmans, L. and Aksit, M., (1999), “Analyzing multi-dimensional programming in AOP

and composition filters”, in Proceedings of Workshop on Multi-Dimensional Separation of
Concerns (OOPSLA ‘99).

[42] Bergmans, L.M.J. and Aksit, M., (2000), “Aspects & crosscutting in layered middleware

systems”, in Proceedings of Workshop in Reflective Middleware ’00.

[43] Bergmans, L. and Aksit, M., (2000), “Composing software from multiple concerns: A

model and composition anomalies”, in Proceedings of Workshop on Multi-Dimensional
Separation of Concerns in Software Engineering (ICSE ‘00).

[44] Bergmans, L. and Aksit, M., (2001), “Composing crosscutting concerns using

composition filters”, Communications of the ACM, vol. 44, no. 10.

[45] Bergmans, L. and Aksit, M., (2001), “How to deal with encapsulation in aspect-

orientation”, in Proceedings of Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (OOPSLA ‘01).

[46] Bergmans, L., Tekinerdogan, B., Glandrup, M., and Aksit, M., (2000), “On composing

separated concerns: Composability and composition anomalies”, in Proceedings of
Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[47] Beugnard, A., (1999), “How to make aspect reusable, a proposition”, in Proceedings of

Int’l Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[48] Black, A.P. and Jones M.P., (2000), “Perspectives on software”, in Proceedings of

Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[49] Black, A.P. and Walpole, J., (2000), “Aspects of information flow”, in Proceedings of

Workshop on Aspects and Dimensions of Concerns (ECOOP ‘00).

[50] Blair, L. and Blair, G.S., (1998), “The impact of aspect-oriented programming on formal

methods”, Technical Reports, MPG-98-08, Lancaster University.

[51] Blair, L. and Blair, G., (1999), “A tool suite to support aspect-oriented specification”, in

Proceedings of Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[52] Blair, L. and Monga, M., (2003), “Reasoning on aspectJ programmes”, GI-AOSDG ’03.

[53] Blank, G. and Vayngrib, G., (1998), “Aspects of enterprise java beans”, in Proceedings of

Workshop on Aspect Oriented Programming (ECOOP ‘98).

 66

[54] Blay-Fornarino, M., Pinna-Derry, A.M., and Riveill, M., (2002), “Towards dynamic
configuration of distributed applications”, in Proceedings of ICDCS ‘02.

[55] Bogda, J. and Holzle, U., (1999), “Removing unnecessary synchronization in java”,

ACM ’99, (OOPSLA ’99).

[56] Bollert, K., (1998), “Aspect-oriented programming case study: System management

application”, in Proceedings of Workshop on Aspect-Oriented Programming (ECOOP ‘98).

[57] Bollert, K., (1999), “On weaving aspects”, in Proceedings of Int’l Workshop on Aspect-

Oriented Programming (ECOOP ‘99).

[58] Borba, P. and Soares, S., (2002), “Refactoring and code generation tools for aspectJ”,

OOPSLA ’02.

[59] Bouraqadi, N., (2000), “Concern oriented programming using reflection”, in Proceedings

of Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[60] Bouraqadi-Saadanii, M.M.N. and Ledoux, T., (2001), “How to weave?”, in Proceedings

of Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[61] Braga, A.M., Darab, R., and Rubira, C.M.F., (2000), “A meta-object protocol for secure

composition of security mechanisms”, in Proceedings of Workshop on Advanced Separation
of Concerns (OOPSLA ‘00).

[62] Brichau, J., (2000), “Declarative composable aspects”, in Proceedings of Workshop on

Advanced Separation of Concerns (OOPSLA ‘00).

[63] Brichau, J., De Meuter, W., and De Volder, K., (2000), “Jumping aspects”, in

Proceedings of Workshop on Aspects and Dimensions of Concerns (ECOOP ‘00).

[64] Brichau, J., Mens, K., and De Volder, K., (2002), “Building composable aspect-specific

languages with logic metaprogramming”, GPCE ’02.

[65] Brito, I., Moreira, A., and Araujo, J., (2002), “A requirements model for quality

attributes”, in Proceedings of Workshop on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design (AOSD ‘02).

[66] Brodsky, A., Brodsky, D., Chan, I., Coady, Y., Gudmundson, S., Pomkoski, J., and Ong,

J.S., (2001), “Coping with evolution: Aspects vs. aspirin”, in Proceedings of Workshop on
Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA ‘01).

[67] Buhr, R.J.A., (1998), “A possible design notation for aspect-oriented programming”, in

Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘98).

 67

[68] Bussard, L., (2000), “Towards a pragmatic composition model of CORBA services based
on AspectJ”, in Proceedings of Workshop on Aspects and Dimensions of Concerns (ECOOP
‘00).

[69] Cabri, G., Leonardi, L., and Zambonelli, F., (2002), “Separation of concerns in agent

applications by roles”, in Proceedings of 2nd Int’l Workshop on Aspect Oriented
Programming for Distributed Computing Systems (ICDCS ‘02), Vol. 2.

[70] Campo, M.R. and Diaz-Pace, J.A., (2001), “Analyzing the role of aspects in software

design”, Communications of the ACM, vol. 44, no. 10.

[71] Capouillez, A., Crescenzo, P., and Lahire, P., (2001), “Separation of concerns in OFL”,

in Proceedings of Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[72] Carver, L., (2000), “A practical hyperspace application: Lessons from the option

processing task”, in Proceedings of Workshop on Advanced Separation of Concerns (ICSE
‘00).

[73] Carver, L., (2000), “Combining selector-guarded blocks: Difficulties from the option-

processing task”, in Proceedings of Workshop on Aspects and Dimensions of Concerns
(ECOOP ‘00).

[74] Carver, L., (2000), “Using brackets to corral jumping aspects”, in Proceedings of

Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[75] Carver, L., (2002), “Composition behaviors for application construction”, in Proceedings

of Workshop on Identifying, Separating, and Verifying Concerns in the Design (AOSD ‘02).

[76] Carver, L. and Griswold, W.G., (1999), “Sorting out concerns”, in Proceedings of

Workshop on Multi-Dimensional Separation of Concerns (OOPSLA ‘99).

[77] Chavez, C. and Lucena, C.J., (2001), “Design-level support for aspect-oriented software

development”, in Proceedings of OOPSLA ‘01.

[78] Chavez, C. and Lucena, C., (2002), “A metamodel for aspect-oriented modeling”, in

Proceedings of Workshop on Aspect-Oriented Modeling with UML (AOSD ‘02).

[79] Chechik, M. and Easterbrook, S., (2001), “Reasoning about compositions of concerns”,

in Proceedings of Workshop on Advanced Separation of Concerns in Software Engineering
(ICSE ‘01).

[80] Chiba, S., (2001), “What are the best join points?”, in Proceedings of Workshop on

Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA ‘01).

 68

[81] Chitchyan, R., Sommerville, I., and Rashid, A., (2002), “An analysis of design
approaches for crosscutting concerns”, in Proceedings of Workshop on Identifying,
Separating and Verifying Concerns in the Design (AOSD ‘02).

[82] Choi, J.P., (2000), “Aspect-oriented programming with enterprise javabeans”, IEEE

2000.

[83] Chu-Carroll, M., (2000), “Separation of concerns: An organizational approach”, in

Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[84] Chu-Carroll, M., (2000), “Software configuration management as a mechanism for

multidimensional separation of concerns”, in Proceedings of Workshop on Multi-
Dimensional Separation of Concerns in Software Engineering (ICSE ‘00).

[85] Chu-Carroll, M., (2001), “Separation of concerns in software configuration

management”, in Proceedings of Workshop on Advanced Separation of Concerns in
Software Engineering (ICSE ‘01).

[86] Chu-Carroll, M., Wright, J., and Ying, A.T.T., (2003), “Visual separation of concerns

through multidimensional program storage”, ACM ‘03 (AOSD ‘03).

[87] Clarke, S., (2000), “Designing reusable patterns of cross-cutting behaviour with

composition patterns”, in Proceedings of Workshop on Advanced Separation of Concerns
(OOPSLA ‘00).

[88] Clarke, S., (2000), “Extending UML metamodel for design composition”, in Proceedings

of Workshop on Multi-Dimensional Separation of Concerns in Software Engineering (ICSE
‘00).

[89] Clarke, S. and Murphy, J., (1998), “Developing a tool to support the application of

aspect-oriented programming principles to the design phase”, in Proceedings of Int’l
Workshop on Aspect Oriented Programming (ICSE ‘98).

[90] Clarke, S., Harrison, W., Ossher, H., and Tarr, P., (1999), “Separating concerns

throughout the development lifecycle”, in Proceedings of Int’l Workshop on Aspect-Oriented
Programming (ECOOP ‘99).

[91] Clarke, S., Harrison, W., Ossher, H., and Tarr, P., (1999), “The dimension of separating

requirements concerns for the duration of the development lifecycle”, in Proceedings of
Workshop on Multi-Dimensional Separation of Concerns (OOPSLA ‘99).

[92] Clarke, S. and Walker, R.J., (2001), “Composition patterns: An approach to designing

reusable aspects”, IEEE ‘01.

 69

[93] Clarke, S. and Walker, R.J., (2001), “Mapping composition patterns to AspectJ and
Hyper/J”, in Proceedings of Workshop on Advanced Separation of Concerns in Software
Engineering (ICSE ‘01).

[94] Clarke, S. and Walker, R.J., (2001), “Separating crosscutting concerns across the

lifecycle: From composition patterns to aspectJ and hyperJ”, Technical Report TCD-CS.

[95] Clarke, S. and Walker, R.J., (2002), “Towards a standard design language for AOSD”,

ACM 2002, (AOSD ‘02).

[96] Clemente, P.J. and Hernandez, J., (2003), “Aspect component based software

engineering”, AOSD ’03.

[97] Clemente, P.J., Hernandez, J. Murillo, J.M., Perez, M.A., and Sanchez, F., (2002),

“Aspect CCM: An aspect-oriented extension of the corba component model”, IEEE ‘02.

[98] Clifton, C. and Leavens, G.T., (2002), “Observers and assistants: A proposal for modular

aspect-oriented reasoning”, in Proceedings of FOAL 2002: Foundations of Aspect-Oriented
Languages (AOSD ‘02).

[99] Coady, Y., Brodsky, A., Brodsky, D., Pomkoski, J., Gudmundson, S., Ong, J.S., and

Kiczales, G., (2000), “Can AOP support extensibility in client-server architectures?”, in
Proceedings of Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[100] Coady, Y. and Kiczales, G., (2003), “Back to the future: A retroactive study of aspect

evolution in operating system code”, ACM 2003 (AOSD 2003).

[101] Coady, Y., Kiczales, G., and Feeley, M., (2000), “Exploring an aspect-oriented approach

to operating system code”, in Proceedings of Workshop on Advanced Separation of
Concerns (OOPSLA ‘00).

[102] Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N., and Ong, J.S., (2001), “Structuring

operating system aspects: Using AOP to improve OS structure modularity”, Communications
of the ACM, vol. 44, no. 10, pp. 79-82.

[103] Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N., and Ong, J.S., (2001), “Structuring

system aspects”, in Proceedings of Workshop on Advanced Separation of Concerns in
Software Engineering (ICSE 2001).

[104] Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N., Ong, J.S., and Gudmundson, S.,

(2001), “Position summary: Aspect-oriented system structure”, IEEE 2001.

[105] Coady, Y., Kiczales, G., Feeley, M., and Smolyn, G., (2001), “Using aspectC to improve

the modularity of path-specific customization in operating system code”, ACM 2001
(ESEC/FSE 2001).

 70

[106] Cohen, G.A., (1999), “Recombing concerns: Experience with transformation”, in
Proceedings of Workshop on Multi-Dimensional Separation of Concerns (OOPSLA ‘99).

[107] Cohen, G.A., (2000), “A taxonomy of transformation”, in Proceedings of Workshop on

Advanced Separation of Concerns (OOPSLA ‘00).

[108] Constantinides, C.A., Bader, A., and Elrad, T., (1999), “A framework to address a two-

dimensional composition of concerns”, in Proceedings of Workshop on Multi-Dimensional
Separation of Concerns (OOPSLA ‘99).

[109] Constantinides, C., Bader, A., and Elrad, T., (1999), “An aspect-oriented design

framework for concurrent systems”, in Proceedings of Int’l Workshop on Aspect-Oriented
Programming (ECOOP 1999).

[110] Constantinides, C.A., Bader, A., and Elrad, T., (2000), “An aspect-oriented design

framework”, ACM Computing Surveys, March 2000.

[111] Constantinides, C.A., Bader, A., and Elrad, T., (2000), “Separation of concerns in the

design of concurrent software systems”, in Proceedings of Workshop on Aspects and
Dimensions of Concerns (ECOOP ‘00).

[112] Constantinides, C.A., Bader, A., and Elrad, T., Fayad, M.E., and Netinant, P., (2000),

“Designing an aspect-oriented framework in an object-oriented environment”, ACM ‘00.

[113] Constantinides, C.A. and Elrad, T., (2000), “On the requirements for concurrent software

architectures to support advanced separation of concerns”, in Proceedings of Workshop on
Advanced Separation of Concerns (OOPSLA ‘00).

[114] Constantinides, C.A., and Elrad, T., (2000), “Towards a two-dimensional separation of

concerns”, ACM ‘00 (OOPSLA ‘00).

[115] Constantinides, C.A., and Elrad, T., (2001), “Composing concerns with a framework

approach”, IEEE ‘01.

[116] Constantinides, C.A., Skotiniotis, T., and Elrad, T., (2001), “Providing dynamic

adaptability in an aspect-oriented framework”, in Proceedings of Workshop on Advanced
Separation of Concerns (ECOOP ‘01).

[117] Costanza, P., (2000), “Separation of object identity concerns”, in Proceedings of

Workshop on Aspects and Dimensions of Concerns (ECOOP ‘00).

[118] Costanza, P., (2000), “Vanishing aspects”, in Proceedings of Workshop on Advanced

Separation of Concerns (OOPSLA ‘00).

 71

[119] Costanza, P., Kniesel, G., and Austermann, M., (2001), “Independent extensibility for
aspect-oriented systems”, in Proceedings of Workshop on Advanced Separation of Concerns
(ECOOP ‘01).

[120] Cugola, G., Ghezzi, C., and Monga, M., (1999), “Coding different design paradigms for

distributed applications with aspect-oriented programming”, WSDAAL ’99.

[121] Cugola, G., Ghezzi, C., Monga, M., and Picco, G.P., (2000), “Malaj: A proposal to

eliminate clashes between aspect-oriented and object-oriented programming”, ICS ’00.

[122] Czarnecki, K. and Eisenecker, U.W., (2000), “Separating the configuration aspect to

support architecture evolution”, in Proceedings of Workshop on Aspects and Dimensions of
Concerns (ECOOP ‘00).

[123] Czarnecki, K., Eisenecker, U.W., and Steyaert, P., (1997), “Beyond objects: Generative

programming”, in Proceedings of Workshop on Aspect Oriented Programming (ECOOP
‘97).

[124] David, P.C., Ledoux, T., and Bouraqadi-Saadani, N.M.N., (2001), “Two-step weaving

with reflection using AspectJ”, in Proceedings of Workshop on Advanced Separation of
Concerns in Object-Oriented Systems (OOPSLA ‘01).

[125] de Alwis, B., Gudmundson, S., Smolyn, G., and Kiczales, G., (2000), “Coding issues in

AspectJ”, in Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[126] de Bruin, H. and van Vliet, H., (2002), “Top-down composition of software

architectures”, ECBS ’02.

[127] De Meuter, W., (1997), “Monads as a theoretical foundation for AOP”, in Proceedings of

Workshop on Aspect Oriented Programming (ECOOP ‘97).

[128] de Moura, A.L., Ururahy, C., Cerque, R., and Rodriguez, N., (2002), “Dynamic support

for distributed auto-adaptive applications”, in Proceedings of 2nd Int’l Workshop on Aspect
Oriented Programming for Distributed Computing Systems (ICDCS ‘02), vol. 2.

[129] De Paoli, F., (2000), “Multidimensional separation of concerns”, in Proceedings of ICSE

‘00.

[130] De Volder, K., (1998), “Aspect-oriented logic meta programming”, in Proceedings of

Workshop on Aspect Oriented Programming (ECOOP ‘98).

[131] De Volder, K., (2000), “Inheritance with destructive mixins for better separation of

concerns”, in Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA
‘00).

 72

[132] De Volder, K., (2001), “Code reuse, an essential concern in the design of aspect
languages?”, in Proceedings of Workshop on Advanced Separation of Concerns (ECOOP
‘01).

[133] De Win, B., Vanhaute, B., and De Decker, B., (2001), “Towards an open weaving

process”, in Proceedings of Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (OOPSLA ‘01).

[134] Dempsey, J. and Cahill, V., (1997), “Aspects of system support for distributed

computing”, in Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘97).

[135] Denaro, G. and Monga, M., (2002), “An experience on verification of aspect properties”,

ACM ’02, (IWPSE ‘01).

[136] Deters, M. and Cytron, R.K., (2001), “Introduction of program instrumentation using

aspects”, in Proceedings of Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (OOPSLA ‘01).

[137] Devanbu, P., Balzer, B., Batory, D., Kiczales, G., Launchbury, J., Parnas, D., and Tarr,

P., (2003), “Modularity in the new millennium: A panel summary”, IEEE ‘03.

[138] D’Hondt, M. and D’Hondt, T., (1999), “Is domain knowledge an aspect?”, in

Proceedings of Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[139] Diaz-Herrera, J.L., Chadha, J., and Pittsley, N., (2002), “Aspect-oriented UML modeling

for developing embedded systems product lines”, in Proceedings of Workshop on Aspect-
Oriented Modeling with UML (AOSD ‘02).

[140] Dingwal-Smith, A. and Finkelstein, A., (2002), “From requirements to monitors by way

of aspects”, in Proceedings of Workshop on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design (AOSD ‘02).

[141] Dolog, P., Vranic, V., and Bielikova, M., (2001), “Representing change by aspect”, ACM

Sigplan Notices, vol. 36, no. 12.

[142] Dominick, L., (1999), “Aspect of lifecycle control in a C++ framework”, in Proceedings

of Int’l Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[143] Dominick, L., (2000), “Position paper: Instrumentation aspects require symmetric join

points”, in Proceedings of Workshop on Aspects and Dimensions of Concerns (ECOOP ‘00).

[144] Dominick, L. and Ostermann, K., (2000), “Supporting extension of components with new

paradigms”, in Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA
‘00).

 73

[145] Douence, R., Motelet, O., and Sudholt, M., (2001), “A formal definition of crosscuts”,
Lecture Notes in Computer Science, vol. 2192.

[146] Douence, R., Motelet, O., and Sudholt, M., (2001), “Sophisticated crosscuts for e-

commerce”, in Proceedings of Workshop on Advanced Separation of Concerns (ECOOP
‘01).

[147] D’Souza, D., Sane, A., and Birchenough, A., (1999), “First-class extensibility for uml-

packaging of profiles, stereotypes, patterns”, in Proceedings of OOPSLA ‘99.

[148] Duclos, F., Estublier, J., and Morat, P., (2002), “Describing and using non functional

aspects in component based applications, ACM ‘02 (AOSD ‘02).

[149] Edison, T., Dongarra, J., and Eijkhout, V., (2003), “Applying aspect-orient programming

concepts to a component-based programming model”, IEEE ‘03.

[150] Eide, E., Reid, A., Flatt, M., and Lepreau, J., (2001), “Aspect weaving as component

knitting: Separating concerns with knit”, in Proceedings of Workshop on Advanced
Separation of Concerns in Software Engineering (ICSE ‘01).

[151] Elrad, T., Aksits. M., Kiczales, G., Lieberherr, K., and Ossher, H., (2001), “Discussing

aspects of aop”, Communications of the ACM, vol. 44, no. 10.

[152] Elrad, T., Filman, R.E., and Bader, A., (2001), “Aspect oriented programming”,

Communications of the ACM, vol. 44, no. 10.

[153] Ernst, E., (2000), “Separation of concerns and then what”, in Proceedings of Workshop

on Aspects and Dimensions of Concerns (ECOOP ‘00).

[154] Ernst, E., (2000), “Syntax based modularization: Invasive or not?”, in Proceedings of

Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[155] Ernst, E., (2001), “Loosely coupled class families”, in Proceedings of Workshop on

Advanced Separation of Concerns (ECOOP ‘01).

[156] Ernst, E. and Lorenz, D.H., (2003), “Aspects and polymorphism in aspectJ”, ACM ‘03

(AOSD ‘03).

[157] Fabry, J., (1998), “Replication as an aspect”, in Proceedings of Workshop on Aspect

Oriented Programming (ECOOP ‘98).

[158] Fabry, J., Brichau, J., and Mens, T., (2001), “Moving code”, in Proceedings of Workshop

on Advanced Separation of Concerns (ECOOP ‘01).

 74

[159] Feng, L., Marcus, A., and Schaffer, K., (2001), “An overview of aspect oriented
programming”, in Advanced Programming Languages, Fall ’01 at Kent State University,
Department of Computer Science.

[160] Filman, R.E., (1998), “Injecting ilities”, in Proceedings of Int’l Workshop on Aspect

Oriented Programming (ICSE ‘98).

[161] Filman, R.E., (2000), “Applying aspect-oriented programming to intelligent synthesis”,

in Proceedings of Workshop on Aspects and Dimensions of Concerns (ECOOP ‘00).

[162] Filman, R.E., (2001), “What is aspect-oriented programming, revisited”, in Proceedings

of Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[163] Filman, R.E., (2003), “Understanding aop through the study of interpreters”, FOAL ’03.

[164] Filman, R.E. and Friedman, D.P., (2000), “Aspect-oriented programming is

quantification and obliviousness”, in Proceedings of Workshop on Advanced Separation of
Concerns (OOPSLA ‘00).

[165] Filman, R.E. and Havelund, K., (2002), “Realizing aspects by transforming for events”,

in Proceedings Automated Software Engineering Workshop on Declarative Meta
Programming to Support Software Development.

[166] Filman, R.E. and Havelund, K., (2002), “Source-code instrumentation and quantification

of events”, in Proceedings of FOAL 2002: Foundations of Aspect-Oriented Languages
(AOSD ‘02), pgs. 45-49.

[167] Filman, R.E. and Lee, D.D., (2001), “Redirecting by injector”, IEEE ‘01.

[168] Fontura, M., (1999), “Dimension templates: Multi-dimensional separation of concerns in

UML”, in Proceedings of Workshop on Multi-Dimensional Separation of Concerns
(OOPSLA ‘99).

[169] Forman, I.R., (2000), “Superimposition: A form of separation of concerns for distributed

systems”, in Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[170] Fradet, P. and Sudholt, M., (1998), “AOP: Towards a generic framework using program

transformation and analysis”, in Proceedings of Workshop on Aspect Oriented Programming
(ECOOP ‘98).

[171] Fradet, P. and Sudholt, M., (1999), “An aspect language for robust programming”, in

Proceedings of Int’l Workshop on Aspect-Oriented Programming (ECOOP ‘99).

 75

[172] Frezza, S.T., (2001), “The ubiquitous overlapping, dynamic concerns project vs.
product”, in Proceedings of Workshop on Advanced Separation of Concerns in Software
Engineering (ICSE ‘01).

[173] Furfaro, A., Nigro, L., and Pupo, F., (2002), “Aspect oriented programming using

actors”, in Proceedings of 2nd Int’l Workshop on Aspect Oriented Programming for
Distributed Computing Systems (ICDCS ‘02).

[174] Gal, A., Franz, M., and Beuche, D., (2003) “Learning from components: Fitting aop for

system software”, AOSP ’03.

[175] Gal, A., Schroeder-Preikschat, W., and Spinczyk, O., (2001), “AspectC++” Language

proposal and prototype implementation”, in Proceedings of Workshop on Advanced
Separation of Concerns in Object-Oriented Systems (OOPSLA ‘01).

[176] Gal, A., Spinczyk, O., and Schroeder-Preikschat, W., (2002), “On aspect-orientation in

distributed real-time dependable systems”, IEEE ‘02.

[177] Garcia, A., Chavez, C., Silva, O., Silva, V., and Lucena C., (2001), “Promoting advanced

separation of concerns in intra-agent and inter-agent software engineering”, in Proceedings of
Workshop on Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA ‘01).

[178] Garcia, A.F. and de Lucena, C.J.P., (2001), “An aspect-based object-oriented model for

multi-agent systems”, in Proceedings of Workshop on Advanced Separation of Concerns in
Software Engineering (ICSE ‘01).

[179] Geihs, K. and Becker, C., (2001) “A framework for re-use and maintenance of quality of

service mechanisms in distributed object systems”, ICSM ’01.

[180] Genβler, T. and Lowe, W., (1998), “Correct composition of distributed systems”, IEEE

’98.

[181] Georg, G., Ray, I., and France, R., (2002), “Using aspects to design a secure system”,

IEEE ‘02.

[182] Giese, H., (2001), “Towards ruling component-based distributed systems with role-based

modeling and cross-cutting aspects”, in Proceedings of Workshop on Advanced Separation
of Concerns in Software Engineering (ICSE ‘01).

[183] Giese, H. and Vilbig, A, (2000), “Towards aspect-oriented design and architecture”, in

Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[184] Glandrup, M. and Rensink, A., (2001), “Formal foundations for reasoning about

evolution”, in Proceedings of Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (OOPSLA ‘01).

 76

[185] Graversen, K.B. and Beye, J., (2002), “Conceptual programming using roles”, in
Proceedings of Workshop on Identifying, Separating and Verifying Concerns in the Design
(AOSD ‘02).

[186] Gray, J., (2001), “Using software component generators to construct a meta-weaver

framework”, IEEE ‘01.

[187] Gray, J., Bapty. T., and Neema, S., (2000), “Aspectifying constraints in model-integrated

computing”, in Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA
‘00).

[188] Gray, J., Bapty, T., Neema, S., and Tuck, J., (2001), “Handling crosscutting constraints in

domain-specific modeling: Uniting aop with model-integrated computing”, ACM ‘01.

[189] Greefhorst, D., (2000), “Separating concerns in software logistics”, in Proceedings of

Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[190] Grier, M., (1999), “Motivation for enabling separation of concerns in software product

lines”, in Proceedings of Workshop on Multi-Dimensional Separation of Concerns
(OOPSLA ‘99).

[191] Griswold, W.G., Kato, Y., and Yuan, J.J., (1999), “Aspect browser: Tool support for

managing dispersed aspects”, in Proceedings of Workshop on Multi-Dimensional Separation
of Concerns (OOPSLA ‘99).

[192] Groher, I. and Schulze, S., (2003), “Generating aspect code from uml models”, in

Proceedings of Workshop on Aspect-Oriented Modeling with UML (AOSD ’03).

[193] Gruenbacher, P., Egyed, A., and Medvidovic, N., (2000), “Dimensions of concerns in

requirements negotiation and architecture modeling”, in Proceedings of Workshop on Multi-
Dimensional Separation of Concerns in Software Engineering (ICSE ‘00).

[194] Grundy, J., (1998), “Aspect-oriented requirements engineering for component-based

software systems”, IEEE ’98.

[195] Grundy, J., (2000), “A method and support environment for distributed software

component engineering”, IEEE ‘00.

[196] Grundy, J. and Patel, R., (2001), “Developing software components with the uml,

enterprise java beans and aspects”, IEEE ‘01.

[197] Gschwind, T. and Oberleitner, J., (2003), “Improving dynamic data analysis with aspect-

oriented programming”, IEEE ‘03.

 77

[198] Gudmundson, S. and Kiczales, G., (2001), “Addressing practical software development
issues in AspectJ with a pointcut interface”, in Proceedings of Workshop on Advanced
Separation of Concerns (ECOOP ‘01).

[199] Gybels, K., and Brichau, J., (2003), “Arranging language features for more robust

pattern-based crosscuts”, ACM ‘03 (AOSD ‘03).

[200] Habra, N., (2001), “Separation of concerns in software engineering education”, in

Proceedings of Workshop on Advanced Separation of Concerns in Software Engineering
(ICSE 2001).

[201] Hanenberg, S. and Unland, R., (2001), “Concerning aop and inheritance”, Technical

Report, tr-ri-01-223.

[202] Hanenberg, S. and Unland, R., (2001), “Grouping objects using aspect-oriented

adapters”, in Proceedings of Workshop on Aspect-oriented programming & Separation of
Concerns.

[203] Hanenberg, S. and Unland, R., (2001), “Using and reusing aspects in AspectJ”, in

Proceedings of Workshop on Advanced Separation of Concerns in Object-Oriented Systems
(OOPSLA ‘01).

[204] Hanenberg, S. and Unland, R., (2002), “A proposal for classifying tangled code”, AOSD

’02.

[205] Hanenberg, S., and Unland, R., (2003), “Parametric introductions”, ACM ‘03 (AOSD

‘03).

[206] Hannemann, J. and Kiczales, G., (2001), “Overcoming the prevalent decomposition in

legacy code”, in Proceedings of Workshop on Advanced Separation of Concerns in Software
Engineering (ICSE 2001).

[207] Hannemann, J. and Kiczales, G., (2002), “Design pattern implementation in java and

aspectJ”, ACM ‘02 (OOPSLA ‘02).

[208] Hao, R., Boloni, L., Jun, K., and Marinescu, D.C., (1998), “An aspect-oriented approach

to distributed object security”, IEEE ’98.

[209] Harrison, W., (2001), “Composition and multiple-inheritance in OO design (Where in the

madness is the method?)”, in Proceedings of Workshop on Advanced Separation of Concerns
in Object-Oriented Systems (OOPSLA ‘01).

[210] Harrison, W. and Ossher, H., (2002), “Member-group relationships among objects”, in

Proceedings of FOAL 2002: Foundations of Aspect-Oriented Languages (AOSD ‘02).

 78

[211] Harrison, W., Ossher, H., and Tarr, P., (1997), “The beginnings of a graphical
environment for subject-oriented programming”, in Proceedings of Workshop on Aspect
Oriented Programming (ECOOP ‘97).

[212] Harrison, W., Tarr, P., and Ossher, H., (2002), “A position on considerations in UML

design of aspects”, in Proceedings of Workshop on Aspect-Oriented Modeling with UML
(AOSD ‘02).

[213] Hauck, F.J., Becker, U., Geier, M., Meier, E., Rastofer, U., and Steckermeier, M., (1998),

“AspectIX: A middleware for aspect-oriented programming”, in Proceedings of Workshop
on Aspect Oriented Programming (ECOOP ‘98).

[214] Hernandez, J., Papathomas, M., Murillo, H.M., and Sanchez, F., (1997), “Coordinating

concurrent objects: How to deal with the coordination aspect?”, in Proceedings of Workshop
on Aspect Oriented Programming (ECOOP ‘97).

[215] Herrero, J.L., Sanchez, F., and Toro, M., (2001), “Fault tolerance as an aspect using

Jreplica”, IEEE ‘01.

[216] Herrmann, S., (2000), “Dynamic view connectors for separating concerns in software

engineering environments”, in Proceedings of Workshop on Multi-Dimensional Separation
of Concerns in Software Engineering (ICSE ‘00).

[217] Herrmann, S., (2002), “Composable designs with UFA”, in Proceedings of Workshop on

Aspect-Oriented Modeling with UML (AOSD ‘02).

[218] Herrmann, S. and Mezini, M., (2000), “On the need for a unified MDSOC model:

Experiences from constructing a modular software engineering environment”, in Proceedings
of Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[219] Herrmann, S. and Mezini, M., (2000), “PIROL: A case study for multidimensional

separation of concerns in software engineering environments”, ACM ‘00 (OOPSLA ‘00).

[220] Herrmann, S. and Mezini, M., (2001), “Combining composition styles in the evolvable

language LAC”, in Proceedings of Workshop on Advanced Separation of Concerns in
Software Engineering (ICSE ‘01).

[221] Herrmann, S. and Wloka, J., (2003), “Seven steps from an idea to industrial adoption”,

AOSD ’03.

[222] Highley, T.J., Lack, M., and Myers, P., (1999), “Aspect oriented programming: A critical

analysis of a new programming paradigm”, University of Virginia, Department of Computer
Science Technical Report CS-99-29.

 79

[223] Hilliard, R., (1999), “Aspects, concerns, subjects, views..”, in Proceedings of Workshop
on Multi-Dimensional Separation of Concerns (OOPSLA ‘99).

[224] Hirschfeld, R., (2001), “Aspects – AOP with squeak”, in Proceedings of Workshop on

Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA ‘01).

[225] Hirschfield, R., (2002), “Advice activation in aspectS”, AOSD ’02.

[226] Hirschfield, R., (2002), “Aspect-oriented programming with aspectS”, NODE ’02.

[227] Hirschfield, R., Lammel, R., and Wagner, M., (2003), “Design patterns and aspects-

Modular designs with seamless run-time integration”, in Proceedings of the 3rd German
International Workshop on Aspect-oriented Software Development.

[228] Hirschfield, R., Osterbye, K., and Wagner, M., (2003), “System integration using aop”,

AOSD ’03.

[229] Ho, W.M., Jezequel, J.M., Pennaneac’h, F., and Plouzeau, N., (2002), “A toolkit for

weaving aspect oriented uml designs”, ACM ’02, (AOSD ‘02).

[230] Ho, W.M., Pennaneach, F., Jezequel, M., and Plouzeau, N., (2000), “Aspect-oriented

design with the UML”, in Proceedings of Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering (ICSE ‘00).

[231] Ho, W.M., Pennaneach, F., Jezequel, M., and Plouzeau, N., (2000), “UMLAUT: A

framework for weaving uml-based aspect-oriented designs”, IEEE ‘00.

[232] Holmes, D., Noble, J., and Potter, J., (1997), “Aspects of synchronization”, in

Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘97).

[233] Holmes, D., Noble, J., and Potter, J., (1998), “Towards reusable synchronization for

object-oriented languages”, in Proceedings of Workshop on Aspect Oriented Programming
(ECOOP ‘98).

[234] Hruby, P., (1999), “Dimensions for the separation of concerns in describing software

development processes”, in Proceedings of Workshop on Multi-Dimensional Separation of
Concerns (OOPSLA ‘99).

[235] Huang, J., (2000), “Experience using AspectJ to implementation cord”, in Proceedings of

Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[236] Hunleth, F. and Cytron, R.K., (2002), “Footprint and feature management using aspect-

oriented programming techniques”, ACM ‘02 (LCTES ‘02 and SCOPES ‘02).

 80

[237] Hunleth, F., Cytron, R., and Gill, C., (2001), “Building customizable middleware using
aspect oriented programming”, in Proceedings of Workshop on Advanced Separation of
Concerns in Object-Oriented Systems (OOPSLA ‘01).

[238] Hursch, W.L. and Lopes, C.V., (1995), “Separation of concerns”, Northeastern

University Technical Report NU-CCS-95-03.

[239] Ishio, T., Kusumoto, S., and Inoue, K., (2003), “Application of aspect-oriented

programming to calculation of program slice”, IPSJ Journal, vol. 44, no. 7. {C: 10c}

[240] Jezequel, J.M., Plouzeau, N., Weis, T., and Geihs, K., (2002), “From contracts to aspects

in UML designs”, in Proceedings of Workshop on Aspect-Oriented Modeling with UML
(AOSD ‘02).

[241] Kaminski, P., (2001), “Applying multi-dimensional separation of concerns to software

visualization”, in Proceedings of Workshop on Advanced Separation of Concerns in
Software Engineering (ICSE ‘01).

[242] Kande, M.M., Kienzle, J., and Strohmeier, A., (2002), “From aop to uml - A bottom-up

approach”, in Proceedings of Workshop on Aspect-Oriented Modeling with UML (AOSD
‘02)

[243] Kande, M.M., Kienzle, J., and Strohmeier, A., (2002), “From aop to uml: Towards an

aspect-oriented architectural modeling approach”, in Proceedings of Workshop on Aspect
Oriented Modeling.

[244] Kande, M.M. and Strohmeier, A., (2000), “On the role of multi-dimensional separation of

concerns in software architecture”, in Proceedings of Workshop on Advanced Separation of
Concerns (OOPSLA ‘00).

[245] Kande, M.M. and Strohmeier, A., (2001), “Modeling crosscutting concerns using

software connectors”, in Proceedings of Workshop on Advanced Separation of Concerns in
Object-Oriented Systems (OOPSLA ‘01).

[246] Kaplan, M., (2000), “Dynamic selection: The discriminating developer’s way to

compose”, in Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA
‘00).

[247] Kasten, E.P., McKinley, P.K., Sadjadi, S.M., and Stirewalt, R.E.K., (2002), “Separating

introspection and intercession to support metamorphic distributed systems”, in Proceedings
of 2nd Int’l Workshop on Aspect Oriented Programming for Distributed Computing Systems
(ICDCS ‘02).

[248] Katara, M., (2002), “Superimposing UML class diagrams”, in Proceedings of Workshop

on Aspect-Oriented Modeling with UML (AOSD ‘02).

 81

[249] Katara, M. and Katz, S., (2002), “Towards aspect architectures and remodularization”, in
Proceedings of The Israeli Workshop on Programming Languages and Development (PLE
’02).

[250] Katara, M. and Katz, S., (2003), “Architectural views of aspects”, ACM ‘03 (AOSD ‘03).

[251] Katara, M. and Mikkonen, T., (2001), “Aspect-oriented specification architectures for

distributed real-time systems”, IEEE ‘01.

[252] Katara, M. and Mikkonen, T., (2002), “Refinements and aspects in uml”, in Proceedings

of AOSD ‘02.

[253] Katz, S. and Gil, Y., (1999), “Aspects and superimpositions”, in Proceedings of

Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[254] Kellomaki, P., (2002), “A formal basis for aspect-oriented specification with

superimposition”, in Proceedings of FOAL 2002: Foundations of Aspect-Oriented Languages
(AOSD ‘02).

[255] Kellomaki, P., (2002), “Composing distributed systems from reusable aspects of

behavior”, in Proceedings of 2nd Int’l Workshop on Aspect Oriented Programming for
Distributed Computing Systems (ICDCS ‘02).

[256] Kendall, E.A., (1998), “Agent roles and aspects”, in Proceedings of Workshop on Aspect

Oriented Programming (ECOOP ‘98).

[257] Kendall, E.A., (1999), “Aspect-oriented programming for role models”, in Proceedings of

Int’l Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[258] Kendall, E.A., (1999), “Role model designs and implementations with aspect-oriented

programming”, ACM ‘99 (OOPSLA ‘99).

[259] Kendall, L., (2000), “Reengineering for separation of concerns”, in Proceedings of

Workshop on Multi-Dimensional Separation of Concerns in Software Engineering (ICSE
‘00).

[260] Kenens, P., Michiels, S., Matthijs, F., Robben, B., Truyen, E., Vanhaute, B., Joosen, W.,

and Verbaeten, P., (1998), “An AOP case with static and dynamic aspects”, in Proceedings
of Workshop on Aspect Oriented Programming (ECOOP ‘98).

[261] Kersten, M.A. and Murphy, G.C., (1999), “Atlas: A case study in building a web-based

learning environment using aspect-oriented programming”, in Proceedings of ACM
Conference Object-Oriented Programming, Systems, Languages, and Applications, pgs. 340-
352.

 82

[262] Kiciman, E. and Fox, A., (2001), “Separation of concerns in networked service
composition”, in Proceedings of Workshop on Advanced Separation of Concerns in Software
Engineering (ICSE ‘01).

[263] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W.G.,

(2001), “An overview of aspectJ”, ECOOP ’01.

[264] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W.G.,

(2001), “Getting started with aspectj”, Communications of the ACM, vol. 44, no. 10.

[265] Kiczales, G., Hugunin, J., Kersten, M., Lamping, J., Lopes, C., and Griswold, W.G.,

(2000), “Semantics-based crosscutting in AspectJ”, in Proceedings of Workshop on Multi-
Dimensional Separation of Concerns in Software Engineering (ICSE ‘00).

[266] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., and

Irwin, J., (1997), “Aspect-oriented programming”, in Aksit, M. and Matsuoka, S., editors,
11th European Conference Object-Oriented Programming, ol. 1241 of LNCS, pgs. 220-242.
Springer Verlag.

[267] Kimelman, D., (1999), “Multidimensional tree-structured spaces for separation of

concerns in software development environments”, in Proceedings of Workshop on Multi-
Dimensional Separation of Concerns (OOPSLA ‘99).

[268] Kircher, M., Jain, P., and Corsaro, A., (2002), “XP + aop=better software”, XP ’02.

[269] Kishi, T. and Noda, N., (2000), “Aspect-oriented analysis for product line architecture”,

in Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[270] Kishi, T. and Noda, N., (2001), “Analyzing concerns used in analysis/design techniques”,

in Proceedings of Workshop on Advanced Separation of Concerns in Software Engineering
(ICSE ‘01).

[271] Kishi, T. and Noda, N., (2002), “Aspect-oriented analysis for architectural design”, ACM

‘02 (IWPSE ‘01).

[272] Knudsen, J., (1999), “Aspect-oriented programming in BETA using the fragment

system”, in Proceedings of Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[273] Kruskal, V., (2000), “A blast from the past: Using P-EDIT for multidimensional editing”,

in Proceedings of Workshop on Multi-Dimensional Separation of Concerns in Software
Engineering (ICSE ‘00).

[274] Kuloor, C. and Eberlein, A., (2003), “Aspect-oriented requirements engineering for

software product lines”, IEEE ‘03.

 83

[275] Laddaga, R., Robertson, P., and Shrobe, H., (2001), “Aspects of the real-world”, in
Proceedings of Workshop on Advanced Separation of Concerns in Object-Oriented Systems
(OOPSLA ‘01).

[276] Lai, A. and Murphy, G.C., (1999), “The structure of features in java code: An exploratory

investigation”, in Proceedings of Workshop on Multi-Dimensional Separation of Concerns
(OOPSLA ‘99).

[277] Lai, A. and Murphy, G.C., (2001), “Capturing concerns with conceptual models”, in

Proceedings of Workshop on Advanced Separation of Concerns in Software Engineering
(ICSE ‘01).

[278] Lai, A., Murphy, G.C., and Walker, R.J., (2000), “Separating concerns with HyperJ: An

experience report”, in Proceedings of Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering (ICSE ‘00).

[279] Lammel, R., (1999), “Declarative aspect-oriented programming”, PEPM ’99.

[280] Lammel, R., (2002), “A semantical approach to method-call interception”, ACM ‘02

(AOSD ‘02).

[281] Lammel, R., Riedewald, G., and Lohmann, W., (1999), “Adaptation of functional object

programs”, in Proceedings of Int’l Workshop on Aspect-Oriented Programming (ECOOP
‘99).

[282] Lammel, R., Visser, E., and Visser, J., (2003), “Strategic programming meets adaptive

programming”, ACM ‘03 (AOSD ‘03).

[283] Lamping, J., (1997), “The interaction of components and aspects”, in Proceedings of

Workshop on Aspect-Oriented Programming (ECOOP ‘97).

[284] Lamping, J., (1999), “The role of the base in aspect-oriented programming”, in

Proceedings of Workshop on Multi-Dimensional Separation of Concerns (OOPSLA ‘99).

[285] Li, H., Krishnamurthi, S., and Fisler, K., (2002), “Verifying cross-cutting features as

open systems”, ACM ‘02 (SIGSOFT ‘02).

[286] Lieberherr, K., Lorenz, D.H., and Wu, P., (2003), “A case for statically executable

advice: Checking the law of Demeter with aspectj”, ACM 2003 (AOSD ‘03).

[287] Lieberherr, K. and Orleans, D., (1997), “Preventive program maintenance in

Demeter/java”, ACM ’97.

[288] Lieberherr, K., Orleans, D., and Ovlinger, J., (2001), “Aspect-oriented programming with

adaptive methods”, Communications of the ACM, vol. 44, no. 10.

 84

[289] Lions, J.M., Simoneau, D., Pitette, G., and Moussa, I., (2002), “Extending open tool/uml
using metamodeling: An aspect oriented programming case study”, in Proceedings of 2nd
Int’l Workshop on Aspect Oriented Modeling with UML.

[290] Lippert, M. and Lopes, C., (1993), “A study on exception detection and handling using

aspect-oriented programming”, Technical Report, Xerox PARC.

[291] Lopes, C., Hilsdale, E., Hugunin, J., Kersten, M., and Kiczales, G., (2000), “Illustrations

of crosscutting”, ECOOP ’00.

[292] Lopes, C., Hugunin, J., Kersten, M., Lippert, M., Hilsdale, E., and Kiczales, G., (2000),

“Using aspectJ for programming the detection and handling of exceptions”, ECOOP ’00.

[293] Lopes, C.V. and Kiczales, G., (1998), “Recent developments in AspectJ”, in Proceedings

of Workshop on Aspect Oriented Programming (ECOOP ‘98).

[294] Lorenz, D.H., (1998), “Visitor beans: An aspect-oriented pattern”, in Proceedings of

Workshop on Aspect Oriented Programming (ECOOP ‘98).

[295] Loughran, N. and Rashid, A., (2002), “Mining aspects”, in Proceedings of Workshop on

Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design (AOSD
‘02).

[296] Low, T., (2002), “Designing, modelling and implementing a toolkit for aspect-oriented

tracing (TAST)”, in Proceedings of Workshop on Aspect Oriented Programming Modeling
with UML (AOSD ‘02).

[297] Ludy, T., (2002), “Aspect-oriented programming can lead to faster, cheaper, easier-to-use

solutions”, Control Solutions, vol. 11.

[298] Lunau, C.P., (1998), “Is composition of metaobjects = aspect oriented programming”, in

Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘98).

[299] Mahieu, T., Vanhaute, B., De Vlaminck, K., Janssens, G., and Joosen, W., (2000),

“Using AOP to build complex data centric component frameworks”, in Proceedings of
Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[300] Mahrenholz, D., Spinczyk, O., Gal, A., and Schroder-Preikschat, W., (2002), “An aspect-

oriented implementation of interrupt synchronization in the pure operating system family”, in
Proceedings of ECOOP ‘02.

[301] Mahrenholz, D., Spinczyk, O., Schroder-Preikschat, W., (2002), “Program

instrumentation for debugging and monitoring with aspectC++”, IEEE ‘02.

 85

[302] Massoni, T., Sampaio, A., and Borba, P., (2001), “Progressive implementation of
aspects”, in Proceedings of Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (OOPSLA ‘01).

[303] Masuhara, H., Kiczales, G., and Dutchyn, C., (2002), “Compilation semantics of aspect-

oriented programs”, in Proceedings of FOAL 2002: Foundations of Aspect-Oriented
Languages (AOSD ‘02).

[304] Matta, I., Eltoweissy, M., and Lieberherr, K., (1998), “From cscw applications to

multicast routing: An integrated QoS architecture”, IEEE ICC ’98.

[305] Matthijs, F., Joosen, W., Vanhaute, B., Robben, B., and Verbaeten, P., (1997), “Aspects

should not die”, in Proceedings of Workshop on Aspect Oriented Programming (ECOOP
‘97).

[306] McDirmid, S., and Hsieh, W.C., (2003), “Aspect-oriented programming with jiazzi”,

ACM 2003 (AOSD ‘03).

[307] Mehner, K. and Wagner, A., (1999), “On the role of method families in aspect-oriented

programming”, in Proceedings of Int’l Workshop on Aspect Oriented Programming (ECOOP
‘99).

[308] Memmert, J., (2000), “Application development in java: From OOP to SOP”, in

Proceedings of Workshop on Multi-Dimensional Separation of Concerns in Software
Engineering (ICSE ‘00).

[309] Memmert, J., (2001), “Advanced separation of concerns: Separation of concerns at the

source”, in Proceedings of Workshop on Advanced Separation of Concerns in Software
Engineering (ICSE ‘01).

[310] Memmert, J., (2002), “Designing with cosmos”, in Proceedings of Workshop on

Identifying, Separating and Verifying Concerns in the Design (AOSD ‘02).

[311] Mendhekar, A., Kiczales, G., and Lamping, J., (1997). “RG: A case-study for aspect-

oriented programming”, Technical Report SPL97-009 P9710044, Xerox Palo Alto Research
Center.

[312] Mens, K., (2000), “Multiple cross-cutting architectural views”, in Proceedings of

Workshop on Multi-Dimensional Separation of Concerns in Software Engineering (ICSE
‘00).

[313] Mens, K., (2002), “Architectural aspects”, in Proceedings of Workshop on Early Aspects:

Aspect-Oriented Requirements Engineering and Architecture Design (AOSD ‘02).

 86

[314] Mens, K., Mens, T., and Wermelinger, M., (2002), “Maintaining software through
intentional source-code views”, ACM ‘02 (SEKE ‘02).

[315] Mesquita, C., Barbosa, S., and de Lucena, C., (2002), “Towards the identification of

concerns in personalization mechanisms via scenarios”, in Proceedings of Workshop on
Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design (AOSD
‘02).

[316] Mezini, M., and Ostermann, K., (2002), “Integrating independent components with on-

demand remodularization”, ACM ‘02 (OOPSLA ’02).

[317] Mikkonen, T., (2002), “On objects, aspects, and specifications addressing their

collaboration”, in Proceedings of Workshop on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design (AOSD ‘02).

[318] Mili, H., Dargham, J., and Bendelloul, S., (1999), “Separation of concerns and typing: A

first stab”, in Proceedings of Workshop on Multi-Dimensional Separation of Concerns
(OOPSLA ‘99).

[319] Mili, H., Mcheick, H., and Sadou, S., (2002), “Distributing objects with multiple

aspects”, IEEE ‘02.

[320] Miller, S.K., (2001), “Aspect –oriented programming takes aim at software complexity”,

Technology News, April.

[321] Monga, M., (2000), “Ad-hoc constructs for non-functional aspects”, WSDAAL ’00.

[322] Monga, M., (2000), “Concern-specific aspect-oriented programming with malaj”, in

Proceedings of Workshop on Multi-Dimensional Separation of Concerns in Software
Engineering (ICSE 2000).

[323] Moreira, A., Araujo, J., and Brito, I., (2002), “Crosscutting quality attributes for

requirements engineering”, ACM 2002 (SEKE 2002).

[324] Mousavi, M., Russello, G., Chaudron, M., Reniers, M.A., Basten, T., Corsaro, A.,

Shukla, S., Gupta, R., and Schmidt, D., (2002), “Aspects + GAMMA = AspectGAMMA: A
formal framework for aspect-oriented specification”, in Proceedings of Workshop on Early
Aspects: Aspect-Oriented Requirements Engineering and Architecture Design (AOSD ‘02).

[325] Mousavi, M., Russello, G., Chaudron, M., Reniers, M.A., Basten, T., Corsaro, A.,

Shukla, S., Gupta, R., and Schmidt, D., (2002), “Using aspect-gamma in the design of
embedded systems”, IEEE ’02.

[326] Mraidha, C. and Benzakki, J., (2003), “A two-aspect approach for a clearer behaviour

model”, IEEE ‘03.

 87

[327] Muller, J.K., (1997), “Aspect-design in the building-block method”, in Proceedings of
Workshop on Aspect Oriented Programming (ECOOP ‘97).

[328] Murphy, G.C., Lai, A., Walker, R.J., and Robillard, M.P., (2001), “Separating features in

source code: An exploratory study”, in Proceedings of 23rd Int’l Conference Software
Engineering, pgs. 275-284. IEEE Computer Society.

[329] Murphy, G.C., Walker, R.J., and Baniassad, E.L.A., (1999), “Evaluating emerging

software development technologies: Lessons learned from assessing aspect-oriented
programming”, IEEE Transactions on Software Engineering, vol. 25, no. 4, pgs. 438-455.

[330] Murphy, G.C., Walker, R.J., Banissad, E.L.A., Robillard, M.P., Lai, A., and Kersten,

M.A., (2002), “Does aspect-oriented programming work?”, Communications of the ACM,
vol. 44, no.10.

[331] Nakajima, S., (1999), “Separation of concerns in early stage of framework development”,

in Proceedings of Workshop on Multi-Dimensional Separation of Concerns (OOPSLA ‘99).

[332] Navasa, A., Perez, M.A., and Murillo, J.M., (2001), “Developing component based

systems using AOP concepts”, in Proceedings of Workshop on Advanced Separation of
Concerns (ECOOP ‘01).

[333] Navasa, A., Perez, M.A., Murillo, J.M., and Hernandez, J., (2002), “Aspect-oriented

software architecture: A structural perspective”, in Proceedings of Workshop on Early
Aspects: Aspect-Oriented Requirements Engineering and Architectural Design (AOSD ‘02).

[334] Nebbe, R.D., (1998), “Coordination and composition: The two paradigms underlying

AOP?”, in Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘98).

[335] Nelson, T., Alencar, P., and Cowan, D., (2000), “Verifying multiple-perspective

composition”, in Proceedings of Workshop on Advanced Separation of Concerns OOPSLA
‘00).

[336] Nelson, T., Cowan, D., and Alencar, P., (1999), “Towards a formal model of object-

oriented hyperslices”, in Proceedings of Workshop on Multi-Dimensional Separation of
Concerns (OOPSLA ‘99).

[337] Nelson, T., Cowan, D., and Alencar, P., (2001), “Formal verification of a bounded buffer

with three separate concerns”, in Proceedings of Workshop on Advanced Separation of
Concerns in Software Engineering (ICSE ‘01).

[338] Nentwich, C., Emmerich, W., and Finkelstei, A., (2002), “Edit, compile, debug-From

hacking to distributed engineering”, in Proceedings of Workshop on Identifying, Separating
and Verifying Concerns in the Design (AOSD ‘02).

 88

[339] Netinant, P., Constantinides, C.A., Elrad, T., and Fayad, M.E., (2000), “Aspect-oriented
frameworks: The design of adaptable operating systems”, ACM ‘00 (OOPSLA ‘00).

[340] Netinant, P., Constantinides, C.A., Elrad, T., Fayad, M.E., and Bader, A., (2002),

“Supporting the design of adaptable operating systems using aspect-oriented frameworks.”

[341] Netinant, P., Elrad, T., and Fayad, M.E., (2001), “A layered approach: To building open

aspect-oriented systems”, Communications of the ACM, vol. 44, no. 10.

[342] Newman, E., (2001), “Localizing views for separation of concerns”, in Proceedings of

Workshop on Advanced Separation of Concerns in Software Engineering (ICSE ‘01).

[343] Noda, N. and Kishi, T., (1998), “On aspect-oriented design: An approach to designing

quality attributes”, IEEE ’98.

[344] Noda, N. and Kishi, T., (1999), “On aspect-oriented design-Applying ‘multidimensional

separation of concerns’ in designing quality attributes”, in Proceedings of Workshop on
Multi-Dimensional Separation of Concerns (OOPSLA ‘99).

[345] Noda, N. and Kishi, T., (2001), “Implementing design patterns using advanced separation

of concerns”, in Proceedings of Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (OOPSLA ‘01).

[346] Nordberg, M.E.III., (2001), “Aspect-oriented dependency inversion”, in Proceedings of

Workshop on Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA ‘01).

[347] Noro, M. and Kumazaki, A., (2002), “On aspect-oriented software architecture: It implies

a process as well as a product”, IEEE ‘02.

[348] Odgers, B. and Thompson, S., (1999), “Aspect-oriented process engineering”, in

Proceedings of Int’l Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[349] Orleans, D., (2001), “Separating behavioral concerns with predicate dispatch, or, if

statement considered harmful”, in Proceedings of Workshop on Advanced Separation of
Concerns in Object-Oriented Systems (OOPSLA ‘01).

[350] Orleans, D., (2002), “Incremental programming with extensible decisions”, ACM ‘02

(AOSD ‘02).

[351] Ortin, F. and Cueva, J.M., (2002), “Implementing a real computational-environment

jump in order to develop a runtime-adaptable reflective platform”, ACM Sigplan Notices, vol.
37, no. 8.

[352] Ossher, H. and Tarr, P., (1998), “Operation-level composition: A case in (join) point”, in

Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘98).

 89

[353] Ossher, H. and Tarr, P., (2000), “Multi-dimensional separation of concerns in
hyperspace: Position paper”, in Proceedings of Symposium on Software Architectures and
Component Technology: The State of the Art in Software Development.

[354] Ossher, H. and Tarr, P., (2000), “On the need for on-demand remodularization”, ECOOP

’00.

[355] Ossher, H. and Tarr, P., (2001), “Hyper/J: Multi-dimensional separation of concerns for

java”, IEEE ‘01.

[356] Ossher, H. and Tarr, P., (2001), “Some micro-reuse challenges”, in Proceedings of

Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[357] Ossher, H. and Tarr, P., (2001), “Using multidimensional separation of concerns to

(re)shape evolving software”, Communications of the ACM, vol. 44, no.10.

[358] Ostermann, K. and Mezini, M., (2001), “Object-oriented composition is tangled”, in

Proceedings of Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[359] Ovlinger, J., (2003), “From aspect-oriented model to implementation”, AOSD ’03.

[360] Pace, J.A.D., Trilnik, F., and Campo, M.R., (2000), “How to handle interacting

concerns?”, in Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA
‘00).

[361] Palsberg, J., (1997), “Class-graph inference for adaptive programs”, Theory & Practice of

Object Systems, vol. 3, no. 2.

[362] Pang, J. and Blair, L., (2002), “An adaptive run time manager for the dynamic integration

and interaction resolution of features”, in Proceedings of 2nd Int’l Workshop on Aspect
Oriented Programming for Distributed Computing Systems (ICDCS ‘02).

[363] Park, S.H., Park, S.H., and Baik, D.K., (1997), “Platform independent class repository of

tmn in personal communication network using entity-aspect oriented programming”, IEEE
‘97 (RTCSA ’97).

[364] Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L., and Martelli, L.,

(2002), “A UML notation for aspect-oriented software design”, in Proceedings of Workshop
on Aspect-Oriented Modeling with UML (AOSD ‘02).

[365] Pawlak, R., Duchien, L., Florin, G., Martelli, L., and Seinturier, L., (2000), “Distributed

separation of concerns with aspect components”, IEEE ‘00.

[366] Pawlak, R., Duchien, L., and Seinturier, L., (2001), “Dynamic wrappers: Handling the

composition issue with jac”, IEEE ‘01.

 90

[367] Pazzi, L., (1999), “Explicit aspect composition by part-whole state charts”, in
Proceedings of Int’l Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[368] Pike, S.M., (2001), “Binary trees: A challenge problem for separating concerns”, in

Proceedings of Workshop on Advanced Separation of Concerns in Software Engineering
(ICSE ‘01).

[369] Pinto, M., Amor, M., Fuentes, L., and Troya, J.M., (2001), “Collaborative virtual

environment development: An aspect-oriented approach”, IEEE ‘01.

[370] Pinto, M., Amor, M., Fuentes, L., and Troya, J.M., (2001), “Run-time coordination of

components: Design patterns vs. component-aspect based platforms”, in Proceedings of
Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[371] Pinto, M., Fuentes, L., Fayad, M.E., and Troya, J.M., (2002), “Separation of coordination

in a dynamic aspect oriented framework”, ACM 2002 (AOSD ‘02).

[372] Pinto, M., Fuentes, L., and Troya, J.M., (2001), “Towards an aspect-oriented framework

in the design of collaborative virtual environments”, IEEE ‘01.

[373] Piveta, E.K. and Devegil, A.J., (2002), “Aspects in the rational unified process analysis

and design workflow”, in Proceedings of Workshop on Identifying, Separating and Verifying
Concerns in the Design (AOSD ‘02).

[374] Piveta, E.K. and Zancanella, L.C., (2001), “Aurelia: Aspect oriented programming using

a reflective approach”, in Proceedings of Workshop on Advanced Separation of Concerns
(ECOOP ‘01).

[375] Popovici, A., Alonso, G., Gross, T., (2001), “AOP support for mobile systems”, in

Proceedings of Workshop on Advanced Separation of Concerns in Object-Oriented Systems
(OOPSLA ‘01).

[376] Popovici, A., Gross, T., and Alonso, G., (2001), “Dynamic homogenous aop with prose”,

Technical Report.

[377] Popovici, A., Gross, T., and Alonso, G., (2002), “Dynamic weaving for aspect-oriented

programming”, ACM ‘02 (AOSD ’02).

[378] Prasad, M.D. and Chaudhary, B.D., (2003), “Aop support for C#”, AOSD ’03.

[379] Pratap, R., Cytron, R.K., Sharp, D., and Pla, E., (2003), “Transport layer abstraction in

event channels for embedded systems”, ACM ’03, (LCTES ‘03).

[380] Prehofer, C., (2002), “Feature interactions in statechart diagrams or graphical

composition of components”, in Proceedings of UML ‘02.

 91

[381] Prehofer, C., (2002), “Graphical composition of components with feature interactions”, in
Proceedings of Workshop on Aspect-Oriented Modeling with UML (AOSD ‘02).

[382] Pryor, J. and Bastan, N., (1999), “A reflective architecture for the support of aspect-

oriented programming in smalltalk”, in Proceedings of Int’l Workshop on Aspect-Oriented
Programming (ECOOP ‘99).

[383] Pulvermuller, E., Speck., A., and Rashid, A., (2000), “Implementing collaboration-based

designs using aspect-oriented programming”, IEEE ‘00.

[384] Putrycz, E. and Bernard, G., (2002), “Using aspect oriented programming to build a

portable load balancing service”, in Proceedings of 2nd Int’l Workshop on Aspect Oriented
Programming for Distributed Computing Systems (ICDCS ‘02).

[385] Quintero, A.M and Valderrama, J.T., (2002), “Separating the navigational aspect”, IEEE

‘02.

[386] Raje, R.R., Zhong, M., and Wang, T., (2001), “Case study: A distributed concurrent

system with aspectJ”, ACM ’01.

[387] Rashid, A., (2002), “Weaving aspects in a persistent environment”, ACM Sigplan

Notices, vol. 37, no. 2.

[388] Rashid, A. and Chitchyan, R., (2003), “Persistence as an aspect”, ACM 2003 (AOSD

‘03).

[389] Rashid, A. and Kotonya, G., (2001), “Risk management in component-based

development: A separation of concerns perspective”, in Proceedings of Workshop on
Advanced Separation of Concerns (ECOOP ‘01).

[390] Rashid, A. and Loughram, N., (2002), “Relational database support for aspect-oriented

programming”, NODE ’02.

[391] Rashid, A., Moreira, A., and Araujo, J., (2003), “Modularisation and composition of

aspectual requirements”, ACM ‘03 (AOSD ‘03).

[392] Rashid, A. and Sawyer, P., (2000), “Object database evolution using separation of

concerns”, ACM SIGMOD Record, vol. 29, no. 4.

[393] Rashid, A., Sawyer, P., Moreira, A., and Araujo, J., (2002), “Early aspects: A model for

aspect-oriented requirements engineering”, IEEE ‘02.

 92

[394] Reis, R.Q., Reis, C.A.L., Schlebbe, H., and Nunes, D.J., (2002), “Towards an aspect-
oriented approach to improve the reusability of software process models”, in Proceedings of
Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture
Design (AOSD ‘02).

[395] Robben, B. and Steyaert, P., (2000), “Aspects on tv”, ECOOP ’00.

[396] Robillard, M.P. and Murphy, G.C., (1999), “Migrating a static analysis tool to AspectJ”,

in Proceedings of Workshop on Multi-Dimensional Separation of Concerns (OOPSLA ‘99).

[397] Robillard, M.P. and Murphy, G.C., (2001), “Analyzing concerns using class member

dependencies”, in Proceedings of Workshop on Advanced Separation of Concerns in
Software Engineering (ICSE ‘01).

[398] Roman, M., Kon, F., and Campbell, R.H., (1999), “Design and implementation of

runtime reflection in communication middleware: The dynamicTAO case”, ICDCS ’99.

[399] Roudier, Y. and Ichisugi, Y., (1998), “Mixin composition strategies for the modular

implementation of aspect weaving”, in Proceedings of Int’l Workshop on Aspect Oriented
Programming (ICSE ‘98).

[400] Rouvellou, I., Sutton Jr., S.M., and Tai, S., (2000), “Multidimensional separation of

concerns in middleware”, in Proceedings of Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering (ICSE ‘00).

[401] Sanchez, F., Hernandez, J., Murillo, J.M., and Pedarza, E., (1998), “Run-time

adaptability of synchronization policies in concurrent object-oriented languages”, in
Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘98).

[402] Sapir, N., Tyszberowicz, S., and Yehudai, A., (2002), “Extending uml with aspect usage

constraints in the analysis and design phases”, in Proceedings of AOSD ‘02.

[403] Sassen, A., Amoros, G., Donth, P., Geihs, K., Jezequel, J., Odent, K., Plouzeau, N., and

Weis, T., (2002), “QCCS: A methodology for the development of contract-aware
components based on aspect-oriented design”, in Proceedings of Workshop on Early
Aspects: Aspect-Oriented Requirements Engineering and Architecture Design (AOSD ‘02).

[404] Savolainen, J., (2000), “Improving product line development with subject-oriented

programming”, in Proceedings of Workshop on Multi-Dimensional Separation of Concerns
in Software Engineering (ICSE ‘00).

[405] Savolainen, J., (2000), “Towards multi-dimensional methods”, in Proceedings of

Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

 93

[406] Sazawal, V., (2001), “Separation of concerns for ubiquitous computing”, in Proceedings
of Workshop on Advanced Separation of Concerns in Software Engineering (ICSE ‘01).

[407] Schmidmeier, A., Hanenberg, S., and Unland, R., (2003), “Implementing known concepts

in aspectJ”, in Proceedings of 3rd International German Workshop on Aspect-oriented
Software Development of the SIG Object-oriented software development.

[408] Schmidt, R. and Assmann, U., (1998), “Extending aspect-oriented programming in order

to flexibly support workflows”, in Proceedings of Int’l Workshop on Aspect Oriented
Programming (ICSE ‘98).

[409] Schonger, S., Pulvermuller, E., and Sarstedt, S., (2002), “Aspect-oriented programming

and component weaving: Using xml representations of abstract syntax trees”, in Proceedings
of Workshop on Aspect-oriented Software Development.

[410] Schult, W. and Polze, A., (2002), “Aspect-oriented programming with c# and .net”, IEEE

‘02.

[411] Schult, W. and Polze, A., (2002), “Speed vs memory usage: An approach to deal with

contrary aspects”, ACM ‘02.

[412] Seinturier, L., (1999), “JST: An object synchronization aspect for java”, in Proceedings

of Int’l Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[413] Seiter, L., Mezini, M., and Lieberherr, K., (1999), “Dyanmic component gluing”, in

Proceedings of Workshop on Multi-Dimensional Separation of Concerns (OOPSLA ‘99).

[414] Sereni, D., and de Moor, O., (2003), “Static analysis of aspects”, ACM ‘03.

[415] Shah, V. and Hill, F., (2003), “An aspect-oriented security framework”, IEEE ‘03.

[416] Shomrat, M. and Yehudai, A., (2002), “Obvious or not? Regulating architectural

decisions using aspect-oriented programming”, ACM ’02, (AOSD ‘02).

[417] Sihman, M. and Katz, S., (2002), “A calculus of superimpositions for distributed

systems”, ACM ‘02 (AOSD ‘02).

[418] Silva, A.R., (1999), “Separation and composition of overlapping and interacting

concerns”, in Proceedings of Workshop on Multi-Dimensional Separation of Concerns
(OOPSLA ‘99).

[419] Simmonds, I. and Ing, D., (2000), “Clues in the search for ever more valuable separation

of concern”, in Proceedings of Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering (ICSE ‘00).

 94

[420] Skipper, M., (1999), “The watson subject compiler and aspectj (A critique of practical
objects)”, in Proceedings of Workshop on Multi-Dimensional Separation of Concerns
(OOPSLA ‘99).

[421] Skipper, M., (2000), “A model of composition oriented programming”, in Proceedings of

Workshop on Multi-Dimensional Separation of Concerns in Software Engineering (ICSE
‘00).

[422] Skipper, M., (2001), “Semantics of an object-oriented language with aspects and advice”,

in Proceedings of Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[423] Skipper, M. and Drossopoulou, S., (1999), “Formalising composition-oriented

programming”, in Proceedings of ECOOP ‘99.

[424] Soares, S. and Borba, P., (2002), “PaDA: A pattern for distribution aspects”, in

Proceedings of the Second Latin American Conference on Pattern Languages of
Programming-Sugarloaf PLOP ’02.

[425] Soares, S., Laureano, E., and Borba, P., (2002), “Implementing distribution and

persistence aspects with aspectJ”, ACM ’02, (OOPSLA ‘02).

[426] Spinczyk, O., Gal, A., and Schroder-Preikschat, W., (2002), “Aspect C++: An aspect-

oriented extension to the C++ programming language”, in Proceedings of 40th International
Conference on Technology of Object-Oriented Languages and Systems.

[427] Stearns, M. and Piccinelli, G., (2002), “Managing interaction concerns in web-service

systems”, in Proceedings of ICDCS ‘02.

[428] Stein, D., Hanenberg, S., and Unland, R., (2002), “A uml-based aspect-oriented design

notation for aspectj”, ACM ’02, (AOSD ’02).

[429] Stein, D., Hanenberg, S., and Unland, R., (2002), “Designing aspect-oriented crosscutting

in uml”, in Proceedings of Workshop on Aspect-Oriented Modeling with UML (AOSD ‘02).

[430] Stein, D., Hanenberg, S., and Unland, R., (2002), “On representing join points in the

uml”, in Proceedings of AOSD ‘02.

[431] Stein, D., Hanenberg, S., and Unland, R., (2003), “Position paper on aspect-oriented

modeling: Issues on representing crosscutting features”, in Proceedings of 3rd International
Workshop on Aspect Oriented Modeling with UML.

[432] Stojanovic, Z. and Dahanayak, A., (2002), “Components and viewpoints as integrated

separations of concerns in system designing”, in Proceedings of Workshop on Identifying,
Separating and Verifying Concerns in the Design (AOSD ‘02).

 95

[433] Storzer, M., (2003), “Analysis of aspectJ programs”, AOSD-GI ’03.

[434] Storzer, M. and Krinke, J., (2003), “Interference analysis for aspectJ”, FOAL ’03.

[435] Storzer, M., Krinke, J., and Breu, S., (2003), “Trace analysis for aspect application”, in

Proceedings of Analysis of Aspect-oriented Software (AAOS ’03).

[436] Sullivan, G.T., (2001), “Aspect-oriented programming using reflection”, in Proceedings

of Workshop on Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA
‘01).

[437] Sullivan, K., Go, L., and Cai, Y., (2002), “Non-modularity in aspect-oriented languages:

Integration as a crosscutting concern for aspectJ”, ACM 2002 (AOSD ‘02).

[438] Sunetnanta, T. and Finkelstein, A., (2001), “Automated consistency checking for

multiperspective software specifications”, in Proceedings of Workshop on Advanced
Separation of Concerns in Software Engineering (ICSE ‘01).

[439] Sutton, Jr., S.M., (1999), “Multiple dimensions of concern in software testing”, in

Proceedings of Workshop on Multi-Dimensional Separation of Concerns OOPSLA ‘99).

[440] Sutton, Jr., S.M., (2002), “Early-stage concern modeling”, in Proceedings of Workshop

on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design
(AOSD ‘02).

[441] Sutton, Jr., S.M. and Rouvellou, I., (2000), “Concerns in the design of a software cache”,

in Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[442] Sutton, Jr., S.M. and Rouvellou, I., (2001), “Applicability of categorization theory to

multidimensional separation of concerns”, in Proceedings of Workshop on Advanced
Separation of Concerns in Object-Oriented Systems (OOPSLA ‘01).

[443] Sutton, Jr., S.M. and Rouvellou, I., (2001),”Issues in the design and implementation of a

concern-space modeling schema”, in Proceedings of Workshop on Advanced Separation of
Concerns in Software Engineering (ICSE ‘01).

[444] Sutton, Jr., S.M. and Tarr, P., (2002),”Aspect-oriented design needs concern modeling”,

in Proceedings of Workshop on Identifying, Separating and Verifying Concerns in the
Design (AOSD ‘02).

[445] Suvee, D., Vanderperren, W., and Jonckers, V., (2003), “JasCo: An aspect-oriented

approach tailored for component based software development”, ACM 2003 (AOSD ‘03).

 96

[446] Suzuki, J. and Yamamoto, Y., (199), “Extending uml with aspects: Aspect support in the
design phase”, in Proceedings of Int’l Workshop on Aspect-Oriented Programming (ECOOP
‘99).

[447] Tarr, P., Ossher, H., and Henkel, J., (2001), “Visualization as an aid to compositional

software engineering”, in Proceedings of Workshop on Advanced Separation of Concerns in
Object-Oriented Systems (OOPSLA ‘01).

[448] Tekinerdogan, B. and Aksit, M., (1998), “Deriving design aspects from canonical

models”, in Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘98).

[449] Tekinerdogan, B. and Aksit, M., (2000), “Separation and composition of concerns

through synthesis-based design”, in Proceedings of Workshop on Advanced Separation of
Concerns (OOPSLA ‘00).

[450] Thai, J., Pekilis, B., Lau, A., and Seviora, R., (2001), “Aspect-oriented implementation of

software health indicators”, IEEE ‘01.

[451] Thorup, K.K., (1997), “Contextual class extensions”, in Proceedings of Workshop on

Aspect Oriented Programming (ECOOP ‘97).

[452] Tip, F. and Ryder, B., (2000), “Can program slicing be used for separation of concerns?”,

in Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA ’00).

[453] Top, S., Jorgensen, B., Thybo, C., and Thusgaard, P., (2001), “Meta-level architectures

for fault tolerant control (ftc) in embedded software systems”, in Proceedings of ECOOP ‘01.

[454] Top, S., Norregaard, B., and Angelov, C., (2002), “Separation of fault tolerant control

concern in embedded control system”, in Proceedings of Workshop on Identifying,
Separating and Verifying Concerns in the Design (AOSD ‘02).

[455] Tourwe, T., Brichau, J., and Gybels, K., (2003), “On the existence of the aosd-evolution

paradox”, AOSD ’03.

[456] Trilnik, F., Pace, A.D., and Campo, M., (2002), “Smartweaver: An agent-based approach

for aspect-oriented development”, ACM ‘02 (ICSE ‘02).

[457] Truyen, E. and Joosen, W., (2001), “Customization of on-line services with simultaneous

client-specific views”, in Proceedings of Workshop on Advanced Separation of Concerns in
Software Engineering (ICSE ‘01).

[458] Truyen, E., Jorgensen, B.N., Joosen, W., and Verbaeten, P., (2000), “Aspects for run-

time component integration”, ECOOP ’00.

 97

[459] Tucker, D.B. and Krishnamurthi, S., (2003), “Pointcuts and advice in higher-order
languages”, ACM ’03, (AOSD ‘03).

[460] Ubayashi, N. and Tamai, T., (2002), “Aspect-oriented programming with model

checking”, ACM ‘02.

[461] Ungar, D., (1999), “The limits to factoring”, in Proceedings of Workshop on Multi-

Dimensional Separation of Concerns (OOPSLA ‘99).

[462] Vanhaute, B., De Win, B., and De Decker, B., (2001), “Building frameworks in aspectJ”,

in Proceedings of Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[463] Vanhaute, B., Truyen, E., Joosen, W., and Verbaeten, P., (1999), “Composing non-

orthogonal meta-programs”, in Proceedings of Workshop on Multi-Dimensional Separation
of Concerns (OOPSLA ‘99).

[464] VanHilst, M., (1997), “Subcomponent decomposition as a form of aspect oriented

programming”, in Proceedings of ECOOP ‘97.

[465] Van Roy, P., Haridi, S., Brand, P., Smolka, G., Mehl, M., and Scheidhauer, R., (1997),

“Using mobility to make transparent distribution practical”, in Proceedings of Workshop on
Aspect Oriented Programming (ECOOP ‘97).

[466] Viega, J., (2000), “Separation of concerns for security”, in Proceedings of Workshop on

Multi-Dimensional Separation of Concerns in Software Engineering (ICSE ‘00).

[467] Viega, J. and Voas, J., (2000), “Can aspect-oriented programming lead to more reliable

software?”, IEEE ‘00.

[468] Wagelaar, D. and Bergmans, L., (2002), “Using a concept-based approach to aspect-

oriented software design”, in Proceedings of Workshop on Identifying, Separating and
Verifying Concerns in the Design (AOSD ‘02).

[469] Walker, R.J., Baniassad, and Murphy, G., (1998), “Assessing aspect-oriented

programming and design”, in Proceedings of Workshop on Aspect Oriented Programming
(ECOOP ‘98).

[470] Walker, R.J., Baniassad, E.L.A., and Murphy, G.C., (1999), “An initial assessment of

aspect-oriented programming”, in Proceedings of 21st Int’l Conference Software Engineering
(ICSE ‘99).

[471] Walker, R.J. and Murphy, G.C., (2001), “Joinpoints as ordered events: Towards applying

implicit context to aspect-orientation”, in Proceedings of Workshop on Advanced Separation
of Concerns at the 23rd International Conference on Software Engineering.

 98

[472] Wand, M., Kiczales, G., and Dutchyn, C., (2002), “A semantics for advice and dynamic
join points in aspect-oriented programming”, in Proceedings of FOAL ‘02: Foundations of
Aspect-Oriented Languages (AOSD ‘02).

[473] Wegener, H. and Rida, A., (2000), “Reenginnering of metalevel abstractions with data

mining methods”, in Proceedings of Workshop on Advanced Separation of Concerns
(OOPSLA ‘00).

[474] Welch, I. and Stroud, R., (1999), “Load-time application of aspects to java cots

software”, in Proceedings of Int’l Workshop on Aspect-Oriented Programming (ECOOP
‘99).

[475] Wermelinger, M., Fiadeiro, J.L., Andrade, L., Koutsoukos, G., and Gouveia, J., (2001),

“Separation of core concerns: Computation, coordination, and configuration”, in Proceedings
of Workshop on Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA
‘01).

[476] Wijnstra, J.G., (2001), “Quality attributes and aspects of a medical product family”, IEEE

‘01.

[477] Willink, E. and Muchnick, V., (1999), “Weaving a way past the c++ one definition rule”,

in Proceedings of Int’l Workshop on Aspect-Oriented Programming (ECOOP ‘99).

[478] Wohlstadter, E. and Devanbu, P., (2001), “A lazy approach to separating architectural

concerns”, in Proceedings of Workshop on Advanced Separation of Concerns in Software
Engineering (ICSE ‘01).

[479] Wohlstadter, E., Keen, A., Jackson, S., and Devanbu, P., (2001), “Accommodating

evolution in aspectJ”, in Proceedings of Workshop on Advanced Separation of Concerns in
Object-Oriented Systems (OOPSLA ‘01).

[480] Wohlstadter, E., Keen, A., Jackson, S., and Devanbu, P., (2003), DADO: Enhancing

middleware to support crosscutting features in distributed, heterogeneous systems”, IEEE
’03.

[481] Xie, X. and Shatz, S.M., (2000), “An approach to using formal methods in aspect

orientation”, in Proceedings of the Int’l Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA ‘00).

[482] Yang, Z., Cheng, B.H.C., Stirewalt, R.E.K., Sowell, J., Sadjadi, S.M., and McKinley,

P.K., (2002), “An aspect-oriented approach to dynamic adaptation”, ACM ‘02 (WOSS ‘02).

[483] Yokomori, R., Ishio, T., Yamamoto, T., Matsushita, M., Kusumoto, S., and Inoue, K.,

(2003), “Java program analysis projects in osaka university: Aspect-based slicing system
adas and ranked-component search system spars-j”, IEEE ‘03.

 99

[484] Zakaria, A.A., Hosny, H., and Zeid, A., (2002), “A uml extension for modeling aspect-
oriented systems”, in Proceedings of AOSD ‘02.

[485] Zdun, U., (2003), “Using structure and dependency tracing patterns for aspect

composition”, in Proceedings of 3rd Workshop on Aspect-Oriented Software Development.

[486] Zhang, H., Jarzabek, S., and Swe, S.M., (2001), “X-frame approach for handling variants

within concerns”, in Proceedings of Workshop on Advanced Separation of Concerns in
Software Engineering (ICSE ‘01).

[487] Zhang, C. and Jacobsen, H.A., (2003), “Quantifying aspects in middleware platforms”,

ACM ’03, (AOSD ‘03).

[488] Zhao, J., (2002), “Change impact analysis for aspect-oriented software evolution”, ACM

‘02.

[489] Zhao, J., (2002), “Slicing aspect-oriented software”, IEEE ‘02.

[490] Zhao, J., (2002), “Tool support for unit testing of aspect-oriented software”, OOPSLA

’02.

[491] Zhao, J., (2002), “Towards a metrics suite for aspect-oriented software”, Technical

Report SE-136-25, Information Processing Society of Japan (IPSJ).

[492] Zhao, J and Rinard, M., (2003), “Pipa: A behavioral interface specification language for

aspectJ”, FASE ’03.

[493] Zhao, J. and Rinard, M., (2003), “System dependence graph construction for aspect-

oriented programs”, MIT-LCS-TR-891.

[494] Zinky, J., Shapiro, R., Loyall, J., Pal, P., and Atighetchi, M., (2001), “Separation of

concerns for resuse of systemic adaptation in quo 3.0”, in Proceedings of Workshop on
Advanced Separation of Concerns (ECOOP ‘01).

 100

APPENDIX B

Primary Dimension Articles and Categories

Sub-category Article Number

1.A 62

1.B 444, 187, 76

1.C 315, 153, 49

1.D 486, 475, 392, 360, 349, 331, 309, 188, 177, 129, 115, 32, 7

1.E 437, 291, 265, 45, 27

2.B 494, 401, 362, 357, 351, 340, 339, 288, 287, 116, 2

2.C 482, 304

3.B 455

3.C 144

3.D 284, 214, 158, 119, 63

4.A 470, 469, 386, 328, 311, 261, 125, 56

4.B 483, 459, 425, 420, 396, 276, 236, 235, 220, 218, 143, 50, 40, 22

4.C 456, 450, 414, 294, 292, 259, 207, 41, 17

4.D 395

4.E 300, 299, 237, 142, 138, 135, 102, 101, 66

5.A 411, 290

5.B 412, 233, 232, 55, 13, 12

5.C 356, 203, 47

5.D 466, 462, 415, 181, 171

6.A 208, 160, 157, 34

6.B 487, 480, 384, 375, 365, 262, 213, 179, 68, 42

6.C 457, 427, 385, 146

 101

Sub-category Article Number

6.D 372, 369, 173, 134, 120, 54

6.E 255, 180

6.F 251, 176

7.A 421

7.B 481, 423, 422, 410, 324, 281, 254, 216, 191, 183, 170, 149, 145, 14, 5

7.C 493, 492, 489, 474, 464, 460, 436, 409, 390, 343, 335, 327, 310, 307, 224, 205,

189, 178, 175, 132, 130, 122, 121, 114, 108, 89, 86, 67, 38, 36, 26, 25, 20, 1

7.D 472, 433, 342, 334, 303, 279, 253, 223, 204, 202, 166, 127, 104, 98, 52, 28

8.A 243, 242, 240, 230, 10, 9

8.B 231, 229

8.C 484, 446, 428, 429, 402, 364, 302, 289, 217, 196, 192

8.D 431, 430, 367, 326, 256, 248, 212, 139, 78, 29, 8

8.E 359, 252, 37

9.A 416, 271, 250, 244, 161, 126

9.B 99

9.C 458, 453, 432, 382, 370, 347, 333, 332, 317, 313, 312, 298, 269, 249, 35, 21

10.B 393, 391, 274, 194, 113, 94, 51, 16

10.C 491, 488, 435, 434, 394, 373, 348, 323, 286, 228

10.D 468, 405, 403, 366, 346, 344, 341, 325, 322, 314, 239, 227, 210, 198, 197, 154,

111, 105, 103, 77, 75, 48

10.E 490, 301, 296, 215

10.F 479, 445, 426, 378, 376, 374, 306, 293, 272, 264, 263, 226, 225, 97, 95, 82, 58,

39

11.A 320, 297, 266, 159, 152

 102

Sub-category Article Number

11.B 467, 330, 329, 222, 164, 162, 151

11.C 408, 383, 295, 268, 221, 174, 163, 64, 53

11.D 371, 112, 110, 109

11.E 201

12.A 321, 260, 118, 100

12.B 448, 165, 141, 30

12.C 305, 136, 70

12.D 283

12.E 424, 258, 257, 156

12.F 388, 23

13.A 377, 133, 60, 57, 3

13.B 471, 80

13.C 150, 24, 19

13.D 485, 399, 387, 186, 124

14.C 476, 454, 442, 419, 400, 389, 368, 336, 267, 246, 238, 206, 200, 190, 172, 117,

81, 71

14.D 451, 413, 404, 363, 355, 350, 211, 123, 72, 59

14.E 465, 417, 398, 379, 247, 195, 182, 128, 69

14.F 361

14.G 439, 438, 397, 354, 338, 316, 308, 285, 280, 241, 234, 193, 148, 140, 137, 107,

91, 85, 84, 65, 43, 18

14.H 473, 278, 273, 219, 11

14.I 478

14.J 61

 103

Sub-category Article Number

14.K 461, 452, 449, 406, 358, 199, 184, 169, 155, 106, 83, 79, 74, 46, 15

14.M 381, 380, 245, 209, 168, 147, 88

14.N 477, 463

15.B 447, 352, 319, 282, 275, 185, 167, 96, 92, 87, 73, 44, 33, 31, 6, 4

15.C 443, 441, 440, 337

15.D 418, 353, 345, 318, 270, 131, 90

15.E 277

15.F 407

15.G 93

 104

APPENDIX C

Secondary Dimension Articles and Categories

Sub-category Article Number

1.A 306, 276, 223, 322, 313

1.B 443, 440, 337

1.D 86, 325, 319, 339, 249, 318, 326, 418, 466, 21, 432, 366, 35, 344, 48, 396, 385,

365, 357, 353, 427, 424, 244, 218, 111, 259, 270, 262, 131, 114, 239, 33

1.E 173, 362, 214, 455, 407, 63, 431, 429, 340, 42, 101, 44, 300, 480, 78, 146, 93,

145, 314, 312, 415

2.B 392, 115

2.C 50, 375

4.A 76, 100, 329

4.B 260, 486, 289, 310

4.C 421, 12, 27, 447, 269, 55, 188, 26

4.D 453

4.E 364, 233, 67, 70, 13, 129, 458, 462, 105, 2, 347

5.B 401

5.C 4, 132, 394, 38, 307, 179

5.D 208

6.B 66, 236

6.C 261, 99

6.D 158, 386, 212, 494, 143

6.E 237, 36, 425

7.A 444

 105

Sub-category Article Number

7.B 32

7.D 171, 482, 45

8.A 403

8.C 250

8.D 323, 287, 384, 92, 87, 457, 456, 16

9.A 183, 122

9.B 113, 304

9.C 20, 251, 487

10.A 217, 9, 10, 230

10.B 243, 254, 176

10.C 460, 189

10.D 446, 441, 359, 351, 343, 345, 333, 315, 120, 96, 90

10.F 277, 175, 242, 216, 139, 196, 130, 192, 177, 17, 321, 89, 377, 402, 410, 19,

485, 484, 489, 493, 294, 492

11.B 170

11.C 428, 436

12.A 62, 295, 367, 57, 387

12.B 138, 51, 412, 37, 240, 29, 5, 191, 299, 252

12.C 103, 413, 135, 253, 56

12.D 437, 411, 47, 327, 481, 284

12.E 224, 142, 220, 331, 178, 213, 49, 324

12.F 302, 116, 119, 408, 153, 181, 180, 157, 68, 360, 474, 298, 232

13.B 430, 118, 303

13.C 231, 229

 106

Sub-category Article Number

13.D 472, 8

14.C 155, 85, 91, 11, 439, 278, 182, 15, 84, 106, 449, 452, 273, 168, 59, 69, 43, 245,

354, 46, 355, 413, 241, 219, 397, 83, 406, 79

14.D 246

14.E 169, 363, 308

14.F 247, 128, 419

14.G 200, 389, 211, 209, 195, 451, 267

14.H 398, 140, 72, 404

14.I 473, 193

14.K 147

14.L 148, 74

14.M 65, 358, 234, 438

15.B 97, 144, 121, 28, 75, 41, 108, 94, 423, 1, 342, 409, 248, 422, 210, 205, 464,

420, 309

15.D 154, 150, 328, 124

 107

APPENDIX D

Tertiary Dimension Articles and Categories

Sub-category Article Number

1.B 441

1.C 323

1.D 345, 342, 189, 216, 287, 420, 310, 240, 421, 90, 113

1.E 243, 26, 96, 94, 87, 16

3.D 466

4.A 427

4.E 214, 176, 480

6.D 418, 482

6.E 13

8.D 486, 261, 17, 339, 340

9.A 179

9.C 129

10.B 324

10.D 384, 183, 487

10.F 447, 364, 36, 114, 119, 474, 33, 38, 86, 409

11.C 139, 78

12.A 223, 307

12.B 365

12.E 42, 218

12.F 28, 432, 66, 396, 425

13.A 367

 108

Sub-category Article Number

13.B 63, 47, 143

13.D 56

14.B 72, 106

14.C 473, 247, 234, 169

14.D 168, 308

15.B 45, 357, 76

15.D 177

 109

APPENDIX E

Quaternary Dimension Articles and Categories

Sub-category Article Number

1.D 17

4.B 365

4.C 63

4.E 177

10.D 287

12.C 143

13.A 409

13.B 28

15.B 421, 216

 110

APPENDIX F

Some Recommended AOP Literature

[1] Berger, L., (2000), “Junction point aspect: A solution to simplify implementation of aspect
languages and dynamic management of aspect programs”, ECOOP ’00.

[2] Berger, L., Dery, A.M., and Fornarino, M., (1998), “Interactions between objects: An aspect

of object-oriented languages”, in Proceedings of Int’l Workshop on Aspect Oriented
Programming (ICSE ‘98).

[3] Bergmans, L. and Aksit, M., (2001), “How to deal with encapsulation in aspect-orientation”,

in Proceedings of Workshop on Advanced Separation of Concerns in Object-Oriented
Systems (OOPSLA ‘01).

[4] Bollert, K., (1999), “On weaving aspects”, in Proceedings of Int’l Workshop on Aspect-

Oriented Programming (ECOOP ‘99).

[5] Brichau, J., Mens, K., and De Volder, K., (2002), “Building composable aspect-specific

languages with logic metaprogramming”, GPCE ’02.

[6] Chavez, C. and Lucena, C.J., (2001), “Design-level support for aspect-oriented software

development”, in Proceedings of OOPSLA ‘01.

[7] Chavez, C. and Lucena, C., (2002), “A metamodel for aspect-oriented modeling”, in

Proceedings of Workshop on Aspect-Oriented Modeling with UML (AOSD ‘02).

[8] Clarke, S. and Walker, R.J., (2002), “Towards a standard design language for AOSD”, ACM

2002, (AOSD ‘02).

[9] Clifton, C. and Leavens, G.T., (2002), “Observers and assistants: A proposal for modular

aspect-oriented reasoning”, in Proceedings of FOAL 2002: Foundations of Aspect-Oriented
Languages (AOSD ‘02).

[10] Coady, Y., Brodsky, A., Brodsky, D., Pomkoski, J., Gudmundson, S., Ong, J.S., and

Kiczales, G., (2000), “Can AOP support extensibility in client-server architectures?”, in
Proceedings of Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[11] Coady, Y., Kiczales, G., and Feeley, M., (2000), “Exploring an aspect-oriented approach

to operating system code”, in Proceedings of Workshop on Advanced Separation of
Concerns (OOPSLA ‘00).

 111

[12] Constantinides, C., Bader, A., and Elrad, T., (1999), “An aspect-oriented design
framework for concurrent systems”, in Proceedings of Int’l Workshop on Aspect-Oriented
Programming (ECOOP 1999).

[13] Constantinides, C.A., Bader, A., and Elrad, T., (2000), “An aspect-oriented design

framework”, ACM Computing Surveys, March 2000.

[14] Constantinides, C.A., Bader, A., and Elrad, T., Fayad, M.E., and Netinant, P., (2000),

“Designing an aspect-oriented framework in an object-oriented environment”, ACM ‘00.

[15] Costanza, P., Kniesel, G., and Austermann, M., (2001), “Independent extensibility for

aspect-oriented systems”, in Proceedings of Workshop on Advanced Separation of Concerns
(ECOOP ‘01).

[16] Filman, R.E., (2000), “Applying aspect-oriented programming to intelligent synthesis”,

in Proceedings of Workshop on Aspects and Dimensions of Concerns (ECOOP ‘00).

[17] Filman, R.E., (2001), “What is aspect-oriented programming, revisited”, in Proceedings

of Workshop on Advanced Separation of Concerns (ECOOP ‘01).

[18] Filman, R.E. and Friedman, D.P., (2000), “Aspect-oriented programming is

quantification and obliviousness”, in Proceedings of Workshop on Advanced Separation of
Concerns (OOPSLA ‘00).

[19] Fradet, P. and Sudholt, M., (1998), “AOP: Towards a generic framework using program

transformation and analysis”, in Proceedings of Workshop on Aspect Oriented Programming
(ECOOP ‘98).

[20] Furfaro, A., Nigro, L., and Pupo, F., (2002), “Aspect oriented programming using

actors”, in Proceedings of 2nd Int’l Workshop on Aspect Oriented Programming for
Distributed Computing Systems (ICDCS ‘02).

[21] Georg, G., Ray, I., and France, R., (2002), “Using aspects to design a secure system”,

IEEE ‘02.

[22] Giese, H. and Vilbig, A, (2000), “Towards aspect-oriented design and architecture”, in

Proceedings of Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[23] Groher, I. and Schulze, S., (2003), “Generating aspect code from uml models”, in

Proceedings of Workshop on Aspect-Oriented Modeling with UML (AOSD ’03).

[24] Gschwind, T. and Oberleitner, J., (2003), “Improving dynamic data analysis with aspect-

oriented programming”, IEEE ‘03.

 112

[25] Hanenberg, S. and Unland, R., (2001), “Concerning aop and inheritance”, Technical
Report, tr-ri-01-223.

[26] Hirschfield, R., Osterbye, K., and Wagner, M., (2003), “System integration using aop”,

AOSD ’03.

[27] Ho, W.M., Pennaneach, F., Jezequel, M., and Plouzeau, N., (2000), “Aspect-oriented

design with the UML”, in Proceedings of Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering (ICSE ‘00).

[28] Kenens, P., Michiels, S., Matthijs, F., Robben, B., Truyen, E., Vanhaute, B., Joosen, W.,

and Verbaeten, P., (1998), “An AOP case with static and dynamic aspects”, in Proceedings
of Workshop on Aspect Oriented Programming (ECOOP ‘98).

[29] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., and

Irwin, J., (1997), “Aspect-oriented programming”, in Aksit, M. and Matsuoka, S., editors,
11th European Conference Object-Oriented Programming, ol. 1241 of LNCS, pgs. 220-242.
Springer Verlag.

[30] Kircher, M., Jain, P., and Corsaro, A., (2002), “XP + aop=better software”, XP ’02.

[31] Lamping, J., (1997), “The interaction of components and aspects”, in Proceedings of

Workshop on Aspect-Oriented Programming (ECOOP ‘97).

[32] Lieberherr, K., Lorenz, D.H., and Wu, P., (2003), “A case for statically executable

advice: Checking the law of Demeter with aspectj”, ACM 2003 (AOSD ‘03).

[33] Lieberherr, K., Orleans, D., and Ovlinger, J., (2001), “Aspect-oriented programming with

adaptive methods”, Communications of the ACM, vol. 44, no. 10.

[34] Ludy, T., (2002), “Aspect-oriented programming can lead to faster, cheaper, easier-to-use

solutions”, Control Solutions, vol. 11.

[35] Mahieu, T., Vanhaute, B., De Vlaminck, K., Janssens, G., and Joosen, W., (2000),

“Using AOP to build complex data centric component frameworks”, in Proceedings of
Workshop on Advanced Separation of Concerns (OOPSLA ‘00).

[36] Masuhara, H., Kiczales, G., and Dutchyn, C., (2002), “Compilation semantics of aspect-

oriented programs”, in Proceedings of FOAL 2002: Foundations of Aspect-Oriented
Languages (AOSD ‘02).

[37] Miller, S.K., (2001), “Aspect –oriented programming takes aim at software complexity”,

Technology News, April.

 113

[38] Murphy, G.C., Walker, R.J., and Baniassad, E.L.A., (1999), “Evaluating emerging
software development technologies: Lessons learned from assessing aspect-oriented
programming”, IEEE Transactions on Software Engineering, vol. 25, no. 4, pgs. 438-455.

[39] Murphy, G.C., Walker, R.J., Banissad, E.L.A., Robillard, M.P., Lai, A., and Kersten,

M.A., (2002), “Does aspect-oriented programming work?”, Communications of the ACM,
vol. 44, no.10.

[40] Navasa, A., Perez, M.A., Murillo, J.M., and Hernandez, J., (2002), “Aspect-oriented

software architecture: A structural perspective”, in Proceedings of Workshop on Early
Aspects: Aspect-Oriented Requirements Engineering and Architectural Design (AOSD ‘02).

[41] Nebbe, R.D., (1998), “Coordination and composition: The two paradigms underlying

AOP?”, in Proceedings of Workshop on Aspect Oriented Programming (ECOOP ‘98).

[42] Netinant, P., Constantinides, C.A., Elrad, T., and Fayad, M.E., (2000), “Aspect-oriented

frameworks: The design of adaptable operating systems”, ACM ‘00 (OOPSLA ‘00).

[43] Nordberg, M.E.III., (2001), “Aspect-oriented dependency inversion”, in Proceedings of

Workshop on Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA ‘01).

[44] Noro, M. and Kumazaki, A., (2002), “On aspect-oriented software architecture: It implies

a process as well as a product”, IEEE ‘02.

[45] Ovlinger, J., (2003), “From aspect-oriented model to implementation”, AOSD ’03.

[46] Popovici, A., Alonso, G., Gross, T., (2001), “AOP support for mobile systems”, in

Proceedings of Workshop on Advanced Separation of Concerns in Object-Oriented Systems
(OOPSLA ‘01).

[47] Popovici, A., Gross, T., and Alonso, G., (2002), “Dynamic weaving for aspect-oriented

programming”, ACM ‘02 (AOSD ’02).

[48] Rashid, A. and Loughram, N., (2002), “Relational database support for aspect-oriented

programming”, NODE ’02.

[49] Rashid, A., Sawyer, P., Moreira, A., and Araujo, J., (2002), “Early aspects: A model for

aspect-oriented requirements engineering”, IEEE ‘02.

[50] Schmidmeier, A., Hanenberg, S., and Unland, R., (2003), “Implementing known concepts

in aspectJ”, in Proceedings of 3rd International German Workshop on Aspect-oriented
Software Development of the SIG Object-oriented software development.

 114

[51] Schonger, S., Pulvermuller, E., and Sarstedt, S., (2002), “Aspect-oriented programming
and component weaving: Using xml representations of abstract syntax trees”, in Proceedings
of Workshop on Aspect-oriented Software Development.

[52] Schult, W. and Polze, A., (2002), “Aspect-oriented programming with c# and .net”, IEEE

‘02.

[53] Shah, V. and Hill, F., (2003), “An aspect-oriented security framework”, IEEE ‘03.

[54] Shomrat, M. and Yehudai, A., (2002), “Obvious or not? Regulating architectural

decisions using aspect-oriented programming”, ACM ’02, (AOSD ‘02).

[55] Spinczyk, O., Gal, A., and Schroder-Preikschat, W., (2002), “Aspect C++: An aspect-

oriented extension to the C++ programming language”, in Proceedings of 40th International
Conference on Technology of Object-Oriented Languages and Systems.

[56] Stein, D., Hanenberg, S., and Unland, R., (2002), “A uml-based aspect-oriented design

notation for aspectj”, ACM ’02, (AOSD ’02).

[57] Storzer, M., (2003), “Analysis of aspectJ programs”, AOSD-GI ’03.

[58] Sullivan, K., Go, L., and Cai, Y., (2002), “Non-modularity in aspect-oriented languages:

Integration as a crosscutting concern for aspectJ”, ACM 2002 (AOSD ‘02).

[59] Viega, J. and Voas, J., (2000), “Can aspect-oriented programming lead to more reliable

software?”, IEEE ‘00.

[60] Wagelaar, D. and Bergmans, L., (2002), “Using a concept-based approach to aspect-

oriented software design”, in Proceedings of Workshop on Identifying, Separating and
Verifying Concerns in the Design (AOSD ‘02).

[61] Walker, R.J., Baniassad, E.L.A., and Murphy, G.C., (1999), “An initial assessment of

aspect-oriented programming”, in Proceedings of 21st Int’l Conference Software Engineering
(ICSE ‘99).

[62] Zakaria, A.A., Hosny, H., and Zeid, A., (2002), “A uml extension for modeling aspect-

oriented systems”, in Proceedings of AOSD ‘02.

[63] Zhao, J., (2002), “Change impact analysis for aspect-oriented software evolution”, ACM

‘02.

[64] Zhao, J., (2002), “Towards a metrics suite for aspect-oriented software”, Technical

Report SE-136-25, Information Processing Society of Japan (IPSJ).

VITA

MARIO BERNARD HANKERSON

Personal Data: Date of Birth: October 23, 1975
 Place of Birth: Oglethorpe, Georgia
 Marital Status: Single

Education: Macon County High School, Montezuma, Georgia, 1994

 East Tennessee State University, Johnson City, Tennessee;
 Criminal Justice, B.S., 1998

 East Tennessee State University, Johnson City, Tennessee;
 Criminal Justice and Criminology, M.A., 2002

 East Tennessee State University, Johnson City, Tennessee;

Computer Science, M.S., 2003

Professional
Experience: Technical Support, Sears Payment Systems, Gray, TN, 1999-

2000

 Graduate Assistant, East Tennessee State University,
 College of Arts and Sciences, 1999-2003

 Graduate Assistant, East Tennessee State University,
 Ronald McNair and Cultural Affairs, 2003

Honors and
Awards: Member- ACM and the IEEE Computer Society

	Towards a Taxonomy of Aspect-Oriented Programming.
	Recommended Citation

	From OOP to AOP

