
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

12-2003

Interworking Methodologies for DCOM and CORBA. Interworking Methodologies for DCOM and CORBA.

Edwin Kraus
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kraus, Edwin, "Interworking Methodologies for DCOM and CORBA." (2003). Electronic Theses and
Dissertations. Paper 824. https://dc.etsu.edu/etd/824

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fetd%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Interworking Methodologies for DCOM and CORBA

A thesis

presented to

the faculty of the Department of Computer and Information Science

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer and Information Sciences

by

Edwin Kraus

December 2003

Dr. Phillip E. Pfeiffer - Chair

Dr. Don Bailes

Dr. Martin L. Barrett

Keywords: COM, DCOM, CORBA, MICO, interworking, distributed computing

2

ABSTRACT

Interworking Methodologies for DCOM and CORBA

by

Edwin Kraus

The DCOM and CORBA standards provide location-transparent access to

network-resident software through language independent object interfaces. Although the

two standards address similar problems, they do so in incompatible ways: DCOM clients

cannot use CORBA objects, and CORBA clients cannot utilize DCOM objects, due to

incompatible object system infrastructures.

This thesis investigates the performance of bridging tools to resolve the

incompatibilities between DCOM and CORBA, in ways that allow clients to cross object

system boundaries. Two kinds of tools were constructed and studied: tools that bind

clients to services at compile time, and tools that support dynamic client-server bindings.

Data developed in the thesis shows that static bridges are on the order of five times faster

than dynamic bridges. Measurements conducted with remote clients also showed that with

increased network delays, performance differences between static and dynamic bridges

become negligible.

3

ACKNOWLEDGEMENTS

First of all I would like to thank Dr. Pfeiffer for his great support, not just for his

help in writing this thesis, but also for his relentless support during the entire course of my

graduate studies. Applying Mr. William Arthur Ward’s classification of teachers: “The

mediocre teacher tells. The good teacher explains. The superior teacher demonstrates. The

great teacher inspires.” ⎯ I must truly say that Dr. Pfeiffer’s teaching style is inspiring.

Many thanks also to Dr. Barrett and Dr. Bailes for their assistance in the thesis

process. I also would like to thank my employer Siemens for their sponsorship, my

colleagues at work for their encouragement, and particularly my supervisor Mr. Ed

Basconi for his patience during my years of study.

Finally, my deepest thanks to my family and friends in Germany, who despite the

distance, provided much needed encouragement and support.

4

CONTENTS

ABSTRACT..2

ACKNOWLEDGEMENTS..3

LIST OF FIGURES ..7

CHAPTER 1 INTRODUCTION ..9

1.1 Thesis Plan ...12

CHAPTER 2 CORBA OVERVIEW ..13

2.1 CORBA Objects...14

2.2 Stubs, Skeletons and Servants..16

2.3 The ORB ..17

2.4 Object References ..20

2.5 Object Adapter ...24

2.6 MICO Overview...27

2.6.1 The MICO ORB...28

2.6.2 The MICO Runtime Service ..32

2.6.3 The MICO Implementation Repository ...35

2.6.4 The MICO Naming Service ...37

2.6.5 The MICO Interface Repository ..38

CHAPTER 3 COM/DCOM OVERVIEW..40

5

3.1 Interfaces ..41

3.2 COM Objects..43

3.2.1 Object References ..44

3.2.2 Object Lifetime Management ..45

3.2.3 Object Creation ..46

3.3 In-Proc, Out-of-Proc, or Remote Servers...48

3.4 MIDL Overview...49

CHAPTER 4 BRIDGING CONCEPTS ...52

4.1 Implementation Strategies..54

4.2 Bridge Architecture ..55

CHAPTER 5 BRIDGE TEST TOOLS...57

5.1 Test Object Servers ..57

5.1.1 COM Test Object Server ...57

5.1.1.1 COM Initialization/Termination ...59

5.1.1.2 Server Self-registration/Un-registration..59

5.1.1.3 Server Lifetime management ..60

5.1.1.4 Message Loop ...61

5.1.1.5 Class Factory Registration/Un-registration...................................61

5.1.1.6 Object Implementation..62

5.1.2 CORBA Test Object Server...63

5.1.2.1 ORB Initialization/Termination ..63

5.1.2.2 POA Creation/Initialization...64

5.1.2.3 Object Creation ...66

6

5.1.2.4 Object Publishing ..67

5.1.2.5 Object Implementation..68

5.2 Test Clients...68

5.2.1 Early Bound COM Test Client ..69

5.2.2 Late Bound COM Test Client ..70

5.2.3 Early Bound CORBA Test Client..73

5.2.4 Late Bound CORBA Test Client ...74

CHAPTER 6 BRIDGE MODELS ..77

6.1 Early Bound Bridge..77

6.1.1 COM_CORBA Bridge...77

6.1.2 CORBA_COM Bridge...79

6.2 Late Bound Bridge ...80

6.2.1 COM_CORBA Bridge...81

6.2.2 CORBA_COM Bridge...83

CHAPTER 7 PERFORMANCE TESTING ...84

7.1 Test Procedure..85

7.2 Data Analysis and Results..86

7.2.1 Performance Test Results ..87

CHAPTER 8 FINAL ASSESMENT AND CONCLUSION..90

APPENDIX A.....COM Test Object Server Class Diagram ..92

APPENDIX BCORBA Test Object Server Class Diagram ..93

7

APPENDIX CCOM Early Bound Client Class Diagram ..94

APPENDIX D....CORBA Early Bound Client Class Diagram ...95

APPENDIX EEarly Bound COM_CORBA Bridge Class Diagram96

APPENDIX F......MIDL Code of the Target COM Object ..97

APPENDIX G....Early Bound CORBA_COM Bridge Class Diagram98

APPENDIX H.....IDL Code of the Target CORBA Object ..99

APPENDIX ILate Bound COM_CORBA Bridge Class Diagram100

APPENDIX JLate Bound CORBA_COM Bridge Class Diagram101

APPENDIX K....Test Data ..102

REFERENCES AND BIBLIOGRAPHY...104

VITA...106

LIST OF FIGURES

Figure 1 The Object Management Architecture (OMA) [4]...14

Figure 2 Relationship between Stub, Skeleton, and Servant ..17

Figure 3 The Common Object Request Broker Architecture (CORBA)............................18

Figure 4 Structure of an IOR ..21

8

Figure 5 Life Cycle States of a Transient CORBA Object ...25

Figure 6 MICO ORB Design Model; adapted from [5]..29

Figure 7 Method Invocation with the MICO ORB...31

Figure 8 Structure of The MICO Runtime Service...35

Figure 9 COM Interface Symbology ..42

Figure 10 Creation of a COM Object housed in a local server [12]47

Figure 11 One-way Bridge..53

Figure 12 Two-way Bridge...53

Figure 13 B/A Interworking Model [8] ..54

Figure 14 COM/CORBA Bridge - Architectural View ..55

Figure 15 Two-Way CORBA/COM Bridge Model..56

Figure 16 Dual Interface and Dispinterface on a COM object; adapted from [10]72

Figure 17 Architectural Model Static COM_CORBA Bridge..78

Figure 18 Architectural Model Static CORBA_COM Bridge..79

Figure 19 Architectural Model Dynamic COM_CORBA Bridge81

Figure 20 Architectural Model Dynamic CORBA_COM Bridge83

Figure 21 Performance Test Plan..84

Figure 22 Test Matrix ...85

Figure 23 Test Results Summary..86

Figure 24 Bridge Performance Test Results ..87

Figure 25 Network Communication Delays ...89

9

CHAPTER 1

INTRODUCTION

Inter-computer communication has been a key area of computer research since

Defense Advanced Research Projects Agency scientists first connected two computers in

1969 [14]. Early research on data communications focused on the reliable transmission of

bits and bytes over distance using guided media. This research, in turn, led to research into

protocols for network communication, including simple, standard protocols for networked

message transmission. One such protocol, the Open Software Foundation’s Distributed

Computing Environment (DCE), was introduced in the early 1990s at a time when

structured procedural programming was the dominant software development model. DCE,

among its other features, supported the use of Remote Procedure Calls (RPC) to invoke

procedures on remote computers as if they were local, and without regard to the details of

the communication infrastructure.

Since 1990, the emergence of object oriented application development has created

a need for more expressive successors to RPC: protocols that allow applications to invoke

not just remote procedures, but procedures associated with specific instances of network-

resident classes. This need was addressed, in one way, by the Object Management

Group’s Object Management Architecture. The Object Management Group (OMG) is a

professional association that develops standards for object-oriented-based distributed

computing. The key standard in the OMG’s Object Management Architecture (OMA) is

the Common Object Request Broker Architecture (CORBA). CORBA defines an

10

infrastructure for enabling communication between the other components of the OMA.

CORBA, like other OMG standards, is a platform independent standard—but, like other

OMG standards, has been deployed primarily on UNIX-like1 systems. This focus on

UNIX is due, in part, to UNIX’s dominance as a platform for distributed computing in the

early 1990’s, when CORBA was originally developed.

While the OMG was developing CORBA, Microsoft, the dominant vendor for PC

operating systems, was developing its own standard for component-based programming.

Microsoft’s Component Object Model (COM) started as a programming model that

supported inter-process communication infrastructure. Later, when desktop PCs were

applied in distributed computing, COM evolved into Distributed COM (DCOM): a

standard that, like CORBA, supports the remote creation and invocation of objects.

The CORBA and DCOM standards address similar problems—and address them

well enough to support the development of a great many diverse applications. Still, the

CORBA and DCOM distributed computing architectures differ in several fundamental

ways. Among the differences are incompatible object models with inconsistent object life

cycle management and a fundamental difference in what objects are.

In order to facilitate interaction between COM- and CORBA-based applications,

the OMG released an interworking specification between COM and CORBA as a part of

its CORBA 2.2 specification. The interworking specification provides a methodology for

enabling communication between objects in DCOM and CORBA, and describes ways for

1 UNIX like systems refers to operating systems that are closely related to the UNIX system developed by
K. Thompson and D. M. Ritchie at Bell Labs in 1971

11

objects to access key services in the foreign object system. A key part of this methodology

is a bridge: a vehicle that enables objects from different object systems to communicate.

This thesis analyzes the characteristics of bridge-based DCOM-CORBA

communication. Bridges can be classified into two types, according to when their

endpoints are bound to target objects: early (static) bound bridges, which are compiled

with specific knowledge of the type of object they service; and late (dynamic) bound

bridges, which rely on runtime type information rather than compile time type information

to provide their services. The thesis assesses on how the choice of bridge type, in

conjunction with the degree of communicating object separation, affects communication

performance and flexibility

The work undertaken here was an empirical study. A pair of COM and CORBA

servers, together with a corresponding pair of COM and CORBA clients, were created,

along with two two-way bridges: one static, and one dynamic. Two series of

measurements were then conducted to determine invocation times. One series represents

invocations by collocated clients, the other invocations by remote clients. The results

showed that dynamic bridges are on the order of five times slower than static bridges.

Indications were also present that for remote clients bridge performance differences

become less significant as network latencies increase.

12

1.1 Thesis Plan

The remainder of this manuscript is divided into eight chapters. Chapters two

through three survey background material, including the COM and CORBA object

management systems. Chapter four presents bridging concepts as they apply to this thesis

project, followed by a description of the test tools in chapter five. Chapter six describes

the bridges themselves. Chapters seven and eight conclude by presenting the data and

discussing the study’s results.

13

CHAPTER 2

CORBA OVERVIEW

As object oriented programming paradigms grew in popularity in the late 1980’s,

the need for standards for manipulating distributed objects increased in importance. A

consortium of software vendors, the Object Management Group (OMG), was founded in

1989 to develop standards for object-based distributed computing [15]. The first OMG

draft standard the Object Management Architecture (OMA), was released in 1991.

Since 1991, the OMA has gained considerable popularity. Most people, however,

now refer to this architecture using a name originally bestowed upon that architecture’s

central element: CORBA.

The CORBA portion of the OMA specification describes an infrastructure and

interfaces needed for creating, locating, and invoking operations on objects, distributed

across a heterogeneous environment of host computers and operating systems. The rest of

the OMA is made up of three somewhat blurry categories of interfaces: CORBA Services,

CORBA Facilities and Application Interfaces. Interfaces that apply to all CORBA objects

normally fall in the CORBA Services category and are often referred to as having

horizontal orientation. Domain-specific interfaces (e.g., manufacturing, banking, health

care) are said to have vertical orientation and fall in the category of CORBA Facilities.

The last category of interfaces, Application Interfaces, is specific to a particular CORBA

application. If similar Application Interfaces are used in different applications, over time

14

these interfaces may become part of the CORBA Facilities, as a common need for these

interfaces is recognized.

 CORBA
Facility C

CORBA
Services

CORBA
Facility B

Object Request Broker

Application
Interfaces

CORBA
Facility A

Figure 1 The Object Management Architecture (OMA) [4]

2.1 CORBA Objects

Before the advent of Object Oriented Programming (OOP), procedure-oriented

programming was the dominant model for software development. In 1984, Birrell and

Nelson [13] devised a strategy for procedure-call-based distributed programming, Remote

Procedure Call (RPC), that frames a network send-receive operation as a procedure call

and subsequent return from procedure. RPC simplified distributed computing by shielding

the programmer from the many details involved in calling a procedure that is in a different

address space, or on a different computer.

The more complex OOP model of software development is based on identifiable

groupings of procedures and data known as objects. Objects are constructed in accordance

with principles like encapsulation, hidden implementation of functionality; polymorphism,

15

variation of behavior depending on object type; and inheritance, propagation of attributes

and functionality to child classes.

In the CORBA approach to OOP, programmers use a multipart strategy for

defining a network object. First, a language known as an Interface Definition Language

(IDL) is used to specify an interface for a class of networked objects. IDLs were first

introduced in the context of RPC programming as a necessary tool for location

transparency. The CORBA standard expanded the role of IDLs, morphing them into tools

that enforce the consequent application of object oriented methods, encapsulation,

inheritance and polymorphism. A CORBA-style IDL definition creates a blueprint for an

object. This blueprint serves as a vehicle for informing clients about the makeup and

behavior of an object, and also as a description of a constructed object’s form.

Logically a CORBA object is an instance of a CORBA interface. CORBA

provides the programmer with location-transparent, language-independent networked

objects. Location transparency means that the programmer does not need to specify a

networked code’s location: IDL-created code automatically calls the remote object’s

methods, making it appear as if the remote object resides in the local object’s address

space. Language independence means that the programmer does not have to ensure that a

code that uses an object is written in that object’s native language, so long as both objects

are coded in CORBA-supported languages: the IDL compiler automatically creates the

necessary mappings between method calls and the methods in use.

16

2.2 Stubs, Skeletons and Servants

The CORBA mechanism for supporting location-transparent method invocation

involves substantial behind-the-scenes support and indirection. In part this support is

provided through intermediary entities called Stub and Skeleton objects. A Stub object is

an object that resides in the client’s address space and has an interface identical to the

target CORBA object. Likewise, a Skeleton object resides in the server’s address space,

with the same interface as the target object. The target object, also called a Servant, is the

entity that actually performs operations associated with its interface.

Stub and Skeleton objects are proxy objects in the client and server address spaces.

When a client program invokes an operation on a CORBA object, the work of invocation

begins in the Stub object. The Stub responds to a request for remote invocation by packing

(marshalling) the operation’s parameters into a message, then sending a message, through

mechanisms discussed later, to the Skeleton. The Skeleton then unpacks (unmarshalls) the

message, and invokes the desired operation on the Servant. When the Servant completes

this operation the call returns to the Skeleton object, which marshals the results into a

response, which is returned to the Stub object. The Stub then completes the call by

returning the results to the client program. Before CORBA 3.0 all calls made to CORBA

objects via the Stub/Skeleton mechanism were synchronous. CORBA 3.0 also supports

asynchronous calls

IDL provides the programmer with all the code needed for the Stub and Skeleton

objects. Programmers are left with the task of developing the logic for the Servants, which

represent the meat and potatoes of CORBA objects.

17

Figure 2 shows the relationship between stub objects, skeleton objects and servant

objects.

Stub Object

Client

call foo()

Skeleton
Object

Server

Some
Object

call foo()

Provided by IDL
compiler

Servant made by app.
developer

Figure 2 Relationship between Stub, Skeleton, and Servant

2.3 The ORB

The Object Request Broker (ORB), also referred to as CORBA’s object bus, is the

central CORBA element through which objects on the client side and objects on the server

side can communicate. The terms CORBA and ORB are often used synonymously;

however, in this paper the term ORB denotes the ORB core, which acts as the glue that

holds the different CORBA elements together.

Figure 3 shows a graphical representation of CORBA and demonstrates the central

role the ORB plays in the integration of different CORBA elements. What makes the ORB

central to a CORBA system is that the ORB interfaces with all elements of the

architecture, as well as with other ORBs on remote host computers.

18

G
IO

P/
II

O
P

Server Side ORB

 Client Side ORB

ORB

Interface
Object Adapter

DSI
Dynamic
Skeleton
Interface

IDL
Skeleton

IDL
Skeleton

ORB

Interface

IDL Stub

IDL Stub DII
Dynamic

Invocation
Interface

IDL Stub

IDL
Skeleton

Interface
Repository

Implementation
Repository

Language Mapping from IDL

CORBA Standard Interface

G
IO

P/
II

O
P

GIOP/IIOP

 ORB Implementation Specific

Object
References

Servant Objects

Figure 3 The Common Object Request Broker Architecture (CORBA)

The communication between ORBs, particularly ORBs from different vendors,

was standardized in CORBA 2.0, with the introduction of the General Inter-ORB Protocol

(GIOP) and the Internet Inter-ORB Protocol (IIOP). GIOP defines the communication

between ORBs in general terms. It describes a Common Data Representation (CDR)

format and message formats for sending requests and responses between ORBs. GIOP

was defined independently of any particular transport protocol in order to accommodate a

wide range of networking infrastructures. IIOP, an Internet-specific implementation of

GIOP, was released at the same time as GIOP. IIOP provides the full-duplex, connection

oriented communication channel that GIOP needs, via the TCP/IP protocol.

Figure 3 shows how client and server applications that reside on different hosts

would use their respective ORBs to communicate via IIOP. A client and server that are

19

co-located on a single host should communicate using more efficient, inner-ORB

communication primitives.

Communication between ORBs and their respective applications involves the use

of one of three CORBA interface mechanisms, according to the communication’s type:

• ORB interfaces support communications between applications and interfaces that are

known to those applications at compile time. These interfaces, known as Static

Invocation Interfaces (SIIs), are invoked implicitly by invocations of Object

References (see next section). They are specific to the server application’s objects.

They are represented by the stub and skeleton procedures discussed earlier.

• CORBA’s Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI)

support the invocation and implementation of operations for interfaces where the

applications don’t have knowledge of the interfaces at compile time.

• Finally, Object Adapters (OAs) are logical elements that allow an ORB to make the

connection between the abstract notion of a CORBA object and its implementation,

the Servant.

The ORB interface, OA interface, DII and DSI interfaces are defined by the OMG

and published as part of the CORBA standard [8]. The ORB interface is used for ORB

initialization and administrative interactions between applications and ORB.

An ORB’s operation is also supported by CORBA’s Interface and Implementation

Repositories. The Interface Repository is a database that stores the definition of CORBA

interfaces in IDL. The constructs stored in the Interface Repository are equivalent to the

20

IDL code used to generate the static stubs and skeletons. DII and DSI are the primary

users of the Interface Repository.

The Implementation Repository is a storage facility for server entries. ORBs use

this facility to activate servers on demand. When a client invokes an operation on a

CORBA object, the server hosting the object may not be running at the time of the

request. The ORB responsible for the server must determine if the server is already active,

and activate it if it is not, before passing it the request from the client. The Implementation

Repository maintains a table that associates “Server Name” with “Start Command” and

“Activation Mode”. The “Start Command” is executed in order to start a server when

needed. The “Activation Mode” is a qualifier that specifies if a new server instance should

be started for every client or if clients share the services of a single server instance. More

complex features like load balancing are also possible via the Implementation Repository.

2.4 Object References

A CORBA object is an abstract entity that is realized with the aid of a Stub object,

a Skeleton object, a Servant and a wealth of mechanisms to enable these elements to

interact transparently. An object reference, also referred to as Interoperable Object

Reference (IOR), is a representation of a CORBA object that gives a code an ability to

access that object, while hiding the details of that object’s implementation and status.

Ultimately, for the client the only tangible evidence of a CORBA object’s existence is the

IOR that client holds on that object. Semantically an IOR is very similar to an object

pointer in C++. Vinoski and Henning [4] present the following list of features of an IOR.

21

• Every object reference identifies exactly one object instance.

• Several different references can denote the same object.

• References can be nil (point nowhere)

• References can dangle (like C++ pointers that point at deleted objects)

• References are opaque (the client is not allowed to look at their contents)

• References are strongly typed.

• References support late binding.

• References can be persistent.

• References can be interoperable.

In a language with explicit pointers like C++, an IOR is represented in the client’s

address space as a pointer to an instance of a C++ object. Invoking an operation on this

pointer invokes an operation on the CORBA object, which means that the invocation has

to be propagated through Stub, client ORB, server ORB, object adapter, Skeleton and

ultimately to the Servant. An IOR carries all the necessary information in its structure (see

Figure 4) in order for a client call, on an object interface, to find its target.

Type Information
Repository ID

Endpoint
Information

Object
Key

Communication Profile I

Endpoint
Information

Object
Key

Communication Profile II

………………….

Figure 4 Structure of an IOR

22

The repository ID is a string that identifies an IOR’s type. It can be used for type-

safe downcasting or any other operation that requires knowledge of a CORBA object’s

type. If an ORB implements an Interface Repository, the Repository ID is used as a key to

look up entries in the repository. The OMG has defined three possible formats for the

repository ID: the IDL format, the DCE UUID format, and the Local format. Of these, the

IDL format is by far the most popular. The type of a CORBA object is defined in IDL;

therefore it is the IDL compiler that generates the repository IDs. The repository ID

always corresponds to the most derived type of an IDL interface. For example, the IDL

format of a repository may look like the following:

IDL:Building/Skyscraper:1.0

The IDL source code resulting in the above repository ID would be the following:

module Building {

 interface Skyscraper{

 };

};

The number 1.0 in the above example is a version ID that is added by the IDL compiler.

Besides the repository ID, an IOR also contains at least one communication

profile. A communication profile stores all information required to locate and establish

communication with an object. If an IOR is to be used with different communication

protocols the IOR contains multiple profiles, one for each protocol. However, most IORs

contain only one profile, a profile for IIOP—the most common protocol in use for

CORBA objects.

23

Because IIOP is based on TCP/IP; it represents endpoint information as an IP

address and a port number. A host name that can be resolved via the Domain Name

System (DNS) may be used in place of an IP address. The endpoint information in a

profile designates either the server that implements the object, or an Implementation

Repository that knows the server’s address. The former is called direct binding; the latter,

indirect binding.

 An IOR’s endpoint information allows the ORB to locate the server that

implements an object. Since a server can implement multiple objects, the ORB also needs

additional information that uniquely identifies an object within the server. The additional

information is provided in the object key. The object key is a series of octets that can

contain any information that the server chooses for the identification of an object. This can

range from a string to a Universal Unique Identifier (UUID).

IORs are generated in the servers that implement CORBA objects, and used by

clients to access object operations. From this results the need to distribute IORs from

servers to prospective clients. Currently an IOR can be distributed either by converting it

into a string and sending it via e-mail, or by using a naming or trading service.

A naming service stores associations between an object’s name and its IOR. A

client that knows a naming service’s location and an object’s name can query the naming

service and acquire an IOR. The trading service, which works similarly, stores

associations between object properties and IORs. The client can query for object

references from a trading service not by name, but by object properties.

24

Also noteworthy is the distinction between IORs for transient CORBA objects and

IORs for persistent CORBA objects. IORs for transient CORBA objects reference objects

that become permanently unavailable when a server is shut down. These IORs contain

endpoint information, pointing to the server process that hosts a CORBA object. IORs for

persistent CORBA objects reference objects that can be reactivated on demand. These

IORs contain endpoint information pointing to an Implementation Repository that

activates servers on demand. After server activation, the client is given a new IOR that

points to the server process and is valid until the server is shut down. When the server

becomes unavailable the client falls back to using the persistent IOR.

2.5 Object Adapter

Next to the ORB core, the Object Adapter is the most significant entity in

CORBA—so significant that it is often treated as part of the ORB. Until CORBA version

2.2 the only object adapter in the CORBA specification was the Basic Object Adapter

(BOA). However, omissions in the BOA specifications led the OMG to deprecate the

BOA, replacing it with a new standard, the Portable Object Adapter (POA).

The POA’s main responsibility is to join the interface of a CORBA object,

described in IDL, with its implementation, the Servant. In this regard the POA acts as an

adapter between servants residing in the server and the ORB. POAs also control the life

cycles of CORBA objects and servants. Figure 5 shows the states of a CORBA object

throughout its life cycle. A CORBA object transitions through the individual states during

its life cycle, controlled by POA operations.

25

CORBA’s discipline for separating interface and implementation allows a user to

create a CORBA object without actually providing an implementation at the time of

creation. Two POA operations support object reference creation:

PortableServer::POA::create_reference()

PortableServer::POA::create_reference_with_id().

Either of these operations brings a CORBA object into existence; however, neither

instantiates a servant for the new object.

An object, once created, remains available until its server is shut down. When a

server is shut down, an object that was created by a transient POA ceases to exist

indefinitely. In contrast, an object created by a persistent POA becomes temporarily

unavailable. Figure 5 shows the different states a transient CORBA object assumes in the

course of its life cycle.

Object
Non-Existent

Object
Exists

Object
Activated

Create IOR

Server Down

Create Active
Object Map Entry

Delete Active Object
Map Entry

Figure 5 Life Cycle States of a Transient CORBA Object

Whether a POA creates persistent or transient objects depends on the Policies that

a POA was given at the time of its creation. Policies are equivalent to attributes. Prior to

creating a POA, a list of policies is compiled, which is then passed to the POA create

function. Policies, which control a wide range of POA characteristics, include lifespan

26

policies; policies for mapping objects to servants; implicit activation policies; and Object-

ID to servant association policies.

 The following sample code shows how to apply policies when creating a POA.

// create persistent lifespan policy;

// Persistent POA's require the -POAImplName comand line parameter to be set

// to the same value as the name of the entry for this server in the implementation repo

PortableServer::LifespanPolicy_var lifespan =

 poa->create_lifespan_policy(PortableServer::PERSISTENT);

// create ID assignment policy; default is SYSTEM_ID but we want the user

// to set the object ID; object ID must be unique for the POA

PortableServer::IdAssignmentPolicy_var IDAssignment =

 poa->create_id_assignment_policy(PortableServer::USER_ID);

// create empty policy list for new child POA

CORBA::PolicyList policy_list;

// add to policy list

policy_list.length(2);

policy_list[0] = PortableServer::LifespanPolicy::_duplicate(lifespan);

policy_list[1] = PortableServer::IdAssignmentPolicy::_duplicate(IDAssignment);

// create POA

PortableServer::POA_var test_poa = poa->create_POA("TestPOA", poaman, policy_list);

Connecting a CORBA object, represented by its IOR, to its Servant is called

activating the object. A POA maintains a table called an active object map that associates

object IDs with servants. An object ID is part of the object key (see Figure 4) and is

passed to the POA when a client invokes an operation on an IOR.

27

By and large the POA is a quite complex construct encompassing a vast number of

features. This complexity, however, makes the POA very versatile. It gives CORBA the

ability to work with small applications running on embedded systems, as well as with

large systems, that use millions of objects.

2.6 MICO Overview

MICO is the CORBA implementation used for this study. The name MICO [2]

stands for MICO Is CORBA, following a naming schema introduced by the Free Software

Foundation (FSF) for naming the GNU (GNU’s not Unix) project. In the spirit of the FSF,

MICO is distributed as free software under the GNU public license.

MICO is one of several widely known open source CORBA implementations.

MICO was chosen for this study because it easy to learn and highly modular—i.e.,

capable of supporting emerging features of the CORBA specification.

A partial list of features in MICO 2.3.7, the version used for this study, reads as

follows:

• IDL to C++ mapping

• Dynamic Invocation Interface (DII)

• Dynamic Skeleton Interface (DSI)

• Interface Repository (IR)

• IIOP as native protocol (ORB prepared for multi-protocol support)

28

• Portable Object Adapter (POA)

• Objects by Value (OBV)

• CORBA Components (CCM)

• Dynamic Any

• Interceptors

• Support for secure communication and authentication using SSL

• Support for nested method invocations

• Implementation Repository

• Interoperable Naming service

• Trading service

• Event service

2.6.1 The MICO ORB

The design of the MICO ORB [5] is based on the micro-kernel approach to

operating systems design. The ORB core provides only the most basic functionality

required of an ORB:

• Relaying of method invocations

• Bootstrapping

• Support for the creation of IORs

29

Relaying of method invocations is the primary function of an ORB. The MICO

designers placed great emphasis on generalizing this function in the ORB. They

interjected intermediary objects between applications and the ORB core to achieve

maximum generalization of the ORB core. These intermediary objects implement standard

CORBA interfaces on the application side, and they use the generalized interfaces on the

ORB side. From the ORB’s point of view, the intermediary objects fall into two

categories: request objects and execution objects. Request objects generate method

invocation requests; execution objects process these requests. The ORB implements an

interface for each of the two categories of intermediary objects–a method invocation

interface, and a method execution interface.

CORBA request objects are typically called “Stub” objects. Applications interact

with stub objects either through the SII or DII interface. Requests originate in client

applications and are forwarded by the stub objects to the ORB core via the ORB’s method

invocation interface.

ORB Core
Method Invocation Interface Method Execution Interface

Request Objects Execution Objects

Applications

SII

Object

DII

Object
IIOP

Object
IIOP

Object
DSI

Object

SSI

Object

Figure 6 MICO ORB Design Model; adapted from [5]

30

The ORB core relays requests generated through its method invocation interface to

the appropriate execution object, using its method execution interface. Execution objects

are called “Skeleton” objects in CORBA. Skeleton objects interact with server

applications either via the DSI interface or the SSI interface. Skeleton objects, like Stub

objects, forward requests to server applications, which ultimately perform the requested

services.

The IIOP object shown in Figure 6 plays a dual role, as either a request object or

as an execution object. IIOP objects are communication objects that simply forward and

also receive invocations; applications don’t interact with these objects directly. When an

ORB cannot find a local execution object to satisfy a request, it uses an IIOP object to

forward the request to a remote ORB. In the missing object scenario, each ORB, the local

and the remote ORB, uses an IIOP object for communication. The local ORB uses an

IIOP object in the role of an execution object, whereas the remote ORB uses an IIOP

object in the role of a request object.

Through the use of generically defined, ORB specific interfaces, the MICO ORB

allows object adapters or transport objects to be changed without changing the ORB core

itself.

31

 ORB A

Invocation Interface

DII

IDL
Stub

IIOP
Transport

Object

Execution Interface

Object
Adapter

DSI

IDL
Skel.

IIOP
Transport

Object

 ORB B

Invocation Interface

DII

IDL
Stub

IIOP
Transport

Object

Execution Interface

Object
Adapter

DSI

IDL
Skel.

IIOP
Transport

Object

Client

Remote Server

 Language Mapping from IDL CORBA Standard Interface ORB Implementation Specific

Local Server

Figure 7 Method Invocation with the MICO ORB

Bootstrapping, the second most important task of an ORB core, is the ability of an

ORB to give a CORBA application the ability to acquire an object reference. It is

generally thought that bootstrapping is accomplished with the aid of a naming service or a

trading service. However, before a naming service can supply IORs, an IOR to the name

service itself must be acquired first. For this purpose, the MICO ORB implements the

MICO binder, an ORB internal minimal naming service. Using the MICO binder, the

ORB can obtain IORs for several key services at startup. To use the binder, the ORB must

provide a tuple of locator, object ID, and type ID.

Applications may request IORs for key services from the ORB by calling

resolve_initial_references(). This function is provided as part of the OMG-standard ORB

interface. In order for calls to resolve_initial_references() to succeed, the ORB must be

told at startup what the locators are, to be used in finding objects that implement CORBA

32

services. The CORBA specification defines rules for passing command line arguments to

the ORB, which enable the ORB to implement bootstrapping.

Per the CORBA specification, every CORBA server must initialize the ORB by

calling CORBA::ORB_init() upon startup. The initialization function receives the

application’s command line parameters for parsing of ORB parameters. ORB parameters

are of the form “–ORB[ParameterName] [ParmeterValue]”. The ORB removes its

parameters before returning the command line to the application. One of these command-

line parameters, “-ORBIIOPAddr”, specifies the port that the MICO ORB’s IIOP server

uses to listen for requests. Other ORB parameters include the IP addresses of CORBA

services objects, like Interface Repository, Implementation Repository, and Naming

Service

Finally, the MICO ORB supports the creation of IORs through a template. IIOP

transport objects contribute the communication endpoint information to the template.

Object adapters request the template from the ORB every time an IOR must be created, as

they bear the responsibility of creating IORs.

2.6.2 The MICO Runtime Service

A CORBA client application that requires the services of a particular CORBA

object must use an IOR to access those services. To obtain an IOR the client may use a

CORBA naming or trading service. MICO’s implementation of CORBA’s naming service

is described later in this document.

33

Once in possession of an IOR a CORBA client makes calls to the object,

completely unaware if the server is running or not. Ensuring that a server is running when

calls are made to its objects is the responsibility of the MICO runtime service. A runtime

service is a process that is started when its host is powered up. In a Unix environment

these background processes are known as daemons; in Windows they are referred to as

services. A single CORBA implementation may actually use multiple daemons for

different CORBA services.

MICO’s primary daemon process (micod.exe) contains a mediator object that

works closely with the MICO Implementation Repository to start servers on demand. The

mediator object intercepts a client’s first call to an IOR and starts the server process on the

client’s behalf. However, this is only possible if an entry for the server is found in the

Implementation Repository.

In order for the mediator to be able to intercept calls between client and server, the

IOR the client uses must contain the endpoint information for the mediator object—and

not, more specifically, for the CORBA object it targets. This type of IOR is created by a

POA with the persistent lifespan policy. When an IOR is created by a persistent POA, the

mediator process’s endpoint information is placed into the IOR instead of the endpoint

information of the CORBA objects process. Consequently a call made with such an IOR

results in a call that is redirected to the mediator object.

The mediator maintains a list of active servers, which is consulted every time a call

arrives from a client. If the mediator determines that the requested server is not currently

running, it automatically starts the server. Once activated the server informs the mediator

34

of its readiness, and also conveys its endpoint information to the mediator. The mediator

then creates a new IOR for the client, this time placing the CORBA server’s address in the

IOR. The new IOR is then returned to the client in an IIOP forward message. With the

new IOR the client can contact the server directly and invoke the operations it requires.

All of this indirection activity is performed transparently to the client.

The approach described above for bringing server and client together is referred to

as indirect binding. The alternative method is direct binding. Direct binding requires a

server to run permanently. Since this is not possible, a method is required for sending an

IOR to the client every time a server restarts. With indirect binding, persistent CORBA

objects become possible. IORs to persistent objects remain valid when a server is shut

down, and servers can be moved to different hosts without breaking existing IORs. The

main drawback of indirect binding is that the first call a client makes takes slightly longer

to complete than if the first IOR would have contained the server’s address directly.

35

Client

ORB

Server

ORB

Host Process
(micod.exe)

1

3 4

6

57

8

Server Activation Sequence

1) Client makes a call on a persistent IOR

2) Mediator checks its list of active servers to see if
the requested server is already active.

3) If the server cannot be found in the active server
list, the mediator looks up a record for this server
in the implementation repository.

4) The implementation repository stores the records
for registered servers. It returns the record for a
server to the mediator upon request.

5) The mediator starts the server with a command
string received from the repository.

6) The server returns its communication endpoint
information to the mediator.

7) The mediator constructs a new IOR and returns it
to the client.

8) The client uses the new IOR to communicate with
the server without intervention from the mediator
as long as the server is active.

Implementation
Repository

Mediator 2

ORB

Administrative
Client

(imr.exe)

ORB

Figure 8 Structure of The MICO Runtime Service

2.6.3 The MICO Implementation Repository

According to Henning and Vinoski [4] a CORBA Implementation Repository is

responsible for all the functions described in the previous section, “The MICO Runtime

Service”. However, the MICO documentation characterizes the Implementation

Repository as a repository of server records, which provides information to the ORB

daemon process.

36

Each record in the MICO Implementation Repository contains the following

information:

• A server name

• The server activation mode (persistent; shared; unshared; per method; library; poa)

• The server activation command

• A list of objects hosted by the server

The following is an example of a record in the MICO repository:

 server name: TestServer

 activation mode: poa

 activation command: D:\CORBA\TestServer\Debug\TestServer.exe

 object #0: IDL:IPort:1.0

In this record, the server name uniquely identifies a server in the Repository.

The activation mode specifies how and when a new server process should be

started. An entry of “persistent” for the activation mode means that the server is started by

some other means than the ORB daemon. A server started as “shared” only needs to be

started once as all clients share the same server. In the case of an “unshared” server, a new

server instance must be started for every client. With “per method” servers a new server

instance must be started for every operation invocation on an object in the server.

“Library” servers are servers implemented through a dynamic link library and are

therefore linked directly into the client process.

Another specialty of the MICO Implementation Repository is the activation mode

“poa”. The MICO daemon process uses two types of mediators for activating servers. One

37

type activates BOA based servers, and the other POA based servers. The activation mode

“poa” makes the POA mediator responsible for server activation, which starts the server

as shared.

The server activation command contains the command line string for starting the

server. This command line string may contain any parameters that need to be passed to the

server upon startup.

 The record’s last field lists object types hosted by the server. The object types are

expressed by Interface Repository IDs.

For administrative purposes, MICO provides a program called imr. This program

registers and un-registers servers with the repository. It also provides listing and forced

activation capabilities.

2.6.4 The MICO Naming Service

CORBA naming services allow CORBA clients to use an object’s name to

discover that object’s location. A naming service stores name-to-IOR associations called

name bindings in a hierarchical structure whose nodes are referred to as naming contexts.

Each naming context is an object containing a table of name bindings. The total construct

resulting from this abstraction is called a naming graph [9].

MICO implements its CORBA naming service through a daemon process called

nsd, and an administration tool called nsadmin. Nsd is configured at startup via command

line parameters to listen on the desired TCP port for client requests. Likewise the clients

are given the naming service’s address as a command line parameter at startup.

38

A naming service stores object bindings, which are associations between names

and object references. Object bindings are stored in a hierarchical tree like structure, very

similar to the structure of a file system. The nodes of this structure are called contexts and

the leaves are the object references.

The names clients use to denote an object are compound names consisting of an id

field and a kind field. This makes the syntax of a name in string format somewhat

cumbersome. However, the kind field can be omitted when not in use, which happens

fairly often. To fully qualify an object reference, a string containing naming contexts from

the root of the tree to the object name—a notation similar to a file system designation—

can be used. The following is an example of an object name:

root_context/node_context1/node_context2/object_name

The OMG naming service specification describes in great detail the exact

representation of object names as strings, including the use of escapes for the “/” character

and the representation of a string’s kind field.

2.6.5 The MICO Interface Repository

The Interface Repository stores interface definitions, which are equivalent to the

interface definitions stored in IDL files. The Interface Repository enables processes that

have an incomplete understanding of an object at compile time to access that object via

dynamic invocation. The IR is most often used with the Dynamic Invocation Interface

(DII) and Dynamic Skeleton Interface (DSI) to discover the parameters and parameter

39

types of interface operations at run-time. With this information, the data can be marshaled

for transport across ORB boundaries, and also across object system boundaries.

The Interface Repository is itself implemented as a CORBA object. In MICO the

server that hosts the Interface Repository is called ird. Ird is configured at startup through

a command line parameter to listen on the desired TCP port for client requests. The same

mechanism is used to convey to the client on what port ird is listening.

Information is entered into the Interface Repository through the MICO IDL

compiler. This use of the IDL compiler to feed idl files into the repository is an obvious

implementation decision, since IDL compilers are designed to interpret idl files. The

compiler can also re-create idl files from the information in the Interface Repository.

The following is an example of a command that feeds an idl file into a repository:

idl --feed-ir --no-codegen-c++ filename.idl

The parameter “--no-codegen-c++“ suppresses the creation of language mapping

files for C++. The reverse for the previous operation is as follows:

idl --repo-id=IDL:InterfaceName:1.0 --no-codegen-c++ --codegen-idl --name=FileName

The command above extracts the information for the interface specified by a

repository ID, and creates the idl file specified by the name parameter.

The Interface Repository stores information on interfaces in hierarchical

groupings. At the top of the hierarchy are CORBA modules.

40

CHAPTER 3

COM/DCOM OVERVIEW

The idea at the root of COM is to break up monolithic applications into smaller,

more manageable components2. A monolithic application is understood as a compiled and

linked unit of code that is distributed to end-users. The problem with monolithic

applications is that they are difficult to maintain. To counteract aging and obsolescence,

applications must continuously be updated with newer code. By building applications

from discrete components, the upgrading process can be simplified to replacing only the

out of date components as opposed to the entire application.

The concepts behind COM seem very much inspired by the concepts of object-

oriented programming, with only the motivation and problem domain being somewhat

different. Microsoft saw component based application development as a means of

overcoming problems related to the realities of application development, distribution, and

maintenance.

One cornerstone of COM, as well as object oriented programming, is the notion of

encapsulation. According to Rogerson [10], the concept of encapsulation places the

following constraints on components:

• A component must hide the programming language used for its implementation, to

enable any client written in any language to use the component.

41

• A component must be transparently relocatable on a network, to avoid breaking

clients when a component is moved to a new location

The balance of this chapter describes how the COM design supports these

constraints. Not surprisingly, many of COM’s architectural features have direct

counterparts in the CORBA framework.

3.1 Interfaces

An interface, as it is understood in COM, describes the behavior of a software

component. An interface specification can be likened to a contract between a component

and its clients, whereby the component trades the right to change existing interfaces for

the certainty that it will always be able to communicate with correctly designed clients. If

the need arises to modify an existing component, new interfaces may be added to it, but

old interfaces must also be kept intact, because COM interfaces are defined as immutable.

At the functional level, interfaces are groupings of related methods, defined in a

meta language called MIDL (Microsoft Interface Definition Language). MIDL is used to

describe the interfaces in terms of their operations, operation parameters, operation return

types, and interface identifier.

At the lowest level, the binary level, interfaces are list structures of pointers to

functions. The COM runtime library uses these function pointers to invoke the operations

of an interface on behalf of a client. The COM documentation specifies interfaces at this

2 Components are self-contained units of code with a well-defined method of access.

42

lowest level to allow the use of any programming language, capable of producing the

structures of function pointers described by COM, for component development that is.

Apart from defining the structure of interfaces, the COM specification also defines

a set of standard interfaces. Standard interfaces describe essential operations, which form

the backbone of the infrastructure for component lifetime management, interface

discovery, and many other essential services. In many respects, standard interfaces have

the same purpose as services and facilities in CORBA. IUnknown is the one standard

interface all other interfaces must inherit from in order to be considered COM interfaces.

Interface inheritance is the commonly employed method in COM programming to extend

or modify the behavior of an interface. The COM specification recommends a graphical

notation format, which depicts interfaces as circles or jacks (see Figure 9), for clients to

plug into the components.

ComponentClient

Custom
Interfaces

Standard
Interfaces

Figure 9 COM Interface Symbology

COM interfaces are sometimes classified as Custom or Automation interfaces.

This nomenclature refers to an interface’s ability to support different programming

languages. Although COM is a binary interface standard, and therefore independent of

syntactic standards, scripting languages like VB Script or Java Script lack the capability to

43

access the binaries that define an interface. To enable these languages to use COM

components, developers may choose to support a standard COM interface called

IDispatch. This interface is commonly known as the Automation interface. The IDispatch

interface provides scripting languages and other languages that don’t support direct access

to function pointer tables with the ability to use COM components. Essentially, IDispatch

binds components to callable procedures at runtime, thereby trading speed of access for

ease of use.

Languages that support the use and creation of custom interfaces include C, C++

and recent versions of VB. VB can now read and interpret type library files (*.tlb files),

which are a binary representation of the interfaces supported by a particular component.

3.2 COM Objects

 Interfaces, rather than objects, are the key conceptual element in COM. A COM

object—also known as a COM component, or coclass—is a kind of secondary element

that serves as a concentrator for a set of interfaces.

A COM object’s identity is established through a globally unique identifier

(GUID). GUIDs are system-generated names that, supposedly, are generated in ways that

prevent their reuse after generation. GUIDs identify several kinds of COM entities: a

GUID that identifies a COM object is also known as class ID (CLSID).

COM also supports a second type identifier for COM objects. These identifiers,

known as programmatic identifiers (ProgIDs), are easier to read than CLSIDs—but they

44

are not guaranteed to be unique in time and space. COM supports mapping operations

between ProgIDs and CLSIDs.

3.2.1 Object References

COM does not directly support the notion of an object reference, or the use of

references to access COM codes. The entity in the COM standard that most closely

resembles an object reference is a COM interface pointer. A COM interface pointer is

essentially a pointer to a table of function pointers that corresponds to a particular

interface. In contrast to CORBA object references COM interface pointers are simply

references to memory structures in the client process. The memory structures pointed to

are responsible for establishing the link to the interface implementation. CORBA

references have more semantic depth in that they themselves represent the link to the

object implementation.

To acquire interface pointers, clients use the one standard interface, which is

implemented on all COM objects and is known as IUnknown. IUnknown is defined in

MIDL by the COM specification as follows:

[local, object, uuid(00000000-0000-0000-C000-000000000046),

 pointer_default(unique)]

interface IUnknown

{

HRESULT QueryInterface(

 [in] REFIID riid, [out, iid_is(riid)] void **ppvObject);

ULONG AddRef();

ULONG Release();

}

45

TheAddRef() and Release() functions, which support object lifetime management,

are discussed later. The remaining function, QueryInterface(), takes two parameters: an

interface identifier and a variable that serves as placeholder for the corresponding

interface pointer. Interfaces identifiers are GUIDs and are usually referred to as IIDs.

When called, the implementation of QueryInterface() looks for a match on the requested

IID. If one is found, the corresponding interface pointer is returned.

Since all COM interfaces inherit from IUnknown, QueryInterface() can be called

from any interface pointer. Consequently a client can navigate from any interface of an

object to any other interface of that object.

3.2.2 Object Lifetime Management

Unlike in CORBA, where object lifetime is distinct from object server lifetime, the

lifetime management of COM objects is closely related to the lifetime management of the

component server. Details related to COM component servers are discussed in following

sections. The end of life determination for COM objects relies on a technique known as

reference counting. The reference counting mechanism is implemented through the

IUnknown interface.

Two of the three operations described in IUnknown, AddRef() and Release(),

support interface reference counting. The reference count for an interface must be

incremented when an interface is acquired, and the reference count must be decremented

when the use of an interface is no longer required. Several exceptions to these rules make

reference counting error prone despite its simplicity. For example, functions that return

46

interface pointers are responsible for incrementing that interface’s reference count, and

leave the caller responsible for calling the Release() function.

When the reference counts of all interfaces of a COM object reach zero, the object

is released from memory. The notion of a persistent object, as supported by CORBA, is

non-existent in COM. COM object references or interface pointers always become

permanently invalid when the object server is shut down. However, COM does provide a

mechanism for persisting object state with the aid of special components called Monikers.

3.2.3 Object Creation

COM objects are created through the use of a COM runtime entity called the

Service Control Manager (SCM), and a type of COM component known as a class

factory. COM clients as well as COM servers interact with the SCM through an SCM

API. The SCM’s role is similar to the role of a CORBA ORB, and the API used by COM

applications is semantically similar to the ORB interface.

Class factories, otherwise known as class objects, are special COM components

that implement an interface called IClassFactory (as a COM object, a class factory must of

course implement IUnknown as well). The IClassFactory interface defines two methods,

CreateInstance() and LockServer(). CreateInstance() implements the knowledge of how to

create an instance of a specific type of COM object, and LockServer() is used for server

lifetime management, and is described later.

The process of creating a COM object begins with a call from the COM client to

the SCM’s CoGetClassObject() method . CoGetClassObject() is given a CLSID that is

47

used to locate and activate the class factory for the requested COM object.

CoGetClassObject() returns an IClassFactory interface pointer. The client uses the

IClassFactory pointer to call CreateInstance() to create the COM object it desires.

Class factories are implemented by the component developers, and are normally

housed in the same server as the components themselves. Therefore, the SCM must locate

and activate the component server before it can create a class factory. The directory for

COM objects is the Windows registry, which is where the SCM looks for the executables

for component servers. Figure 10 shows the sequence of steps required to create a COM

object housed in an out of process server.

COM Object
Or CoClass

Class Object
Or

Class Factory

EXE Housing

WinMain
CoInitialize
Create class factory

CoRegisterClassObject
returning IClassFactory

CoGetClassObject
Look up CLSID in registry
Look up EXE for CLSID
Launch EXE

Return Class Factory
pointer to client

COM

CoInitialize
Call CoGetClassObject
CreateInstance()

Use object

Client

 1

 5

 2

 4

IClassFactory 6

 8

 9

 3

 7

Figure 10 Creation of a COM Object housed in a local server [12]

Objects created with CoGetClassObject() are usually in the same initial state after

each startup, because CoGetClassObject() does not support the notion of object

persistence. COM facilitates object persistence through components that implement the

48

standard interface IMoniker, and are therefore simply called Monikers. Monikers are a

type of factory component that create a COM component, and restore it to a previous state

on the client’s behalf. The responsibility of implementing the code for state persistence

lies with the component itself. By implementing the standard COM interface IPersist, the

objects state can be persisted and restored by the client via the components Moniker.

3.3 In-Proc, Out-of-Proc, or Remote Servers

COM interfaces are implemented by creating a software component that behaves

according to the interface’s specifications. It can therefore be said that interfaces exist in

the context of the components that implement them. The components themselves also

need an environment in which to exist. This environment is usually a Dynamic Link

Library (DLL) or an executable file (EXE). In COM terminology it is said that DLLs and

EXEs are component housings. The term “Server” typically designates a component

housing in COM.

The precise relationship between servers and clients varies according to the degree

to which they are separated. A server that executes on a different host from its client is

known as a remote server. A server that executes on the same host as its client but in

different processes is known as an out-of-process server or local server. A server that

executes in the same process as its client, is known as an in-process server.

Remote and out-of-process servers are implemented as EXEs. When executed,

they reside in their own processes. In-process servers are implemented as DLLs: blocks of

49

code that are loaded into the calling process and that share the process’s resources with the

caller.

A server’s behavior does not necessarily depend on whether it is implemented as

remote, in-proc, or out-of-proc. However, the degree of separation between client and

server affects server response time. In-proc servers can be accessed through simple

function calls, which take micro seconds to perform. To access an out-of-proc server, a

client utilizes local procedure calls (LPC), which can take milliseconds to complete.

Accessing a remote server is the most time consuming of all. Transmitting messages

across a network can take seconds or even minutes, depending on network traffic. The

server’s intended application must be considered when determining its implementation.

For this study, COM servers are implemented as out-of-proc servers, primarily because

the code for an out-of-proc server and a remote server is identical and the transition from

one to the other is relatively easy.

The degree of separation between client and server also affects process robustness.

Out-of-proc and remote servers are more stable than in-proc servers. The crash of an out-

of-proc or remote server process should not produce a corresponding crash of the

corresopnding client process. From the server’s perspective, a misbehaved client cannot

take down the entire server and disturb the operation of other clients.

3.4 MIDL Overview

The Microsoft Interface Definition Language (MIDL) is based in large part on the

IDL developed by the OSF. An interface definition language’s main purpose is to provide

50

developers with a tool for describing interfaces, their operations, and parameters. Since

MIDL is just a metalanguage for describing interfaces, it cannot be used to write interface

implementations.

MIDL and its associated compiler simplify the work of component development

by generating all the support code needed to invoke remote objects. Without the

metalanguage all the support code would have to be provided by the developer. This

support code enables clients to make calls to objects located outside their address space, in

the same way as they would make calls to objects in their own address space.

MIDL is not directly compatible with IDL due to Microsoft’s modifications to fit

the COM specification. One notable difference between the standards is MIDL’s use of

braces ([]) to flag the MIDL keyword following an attribute. Another is MIDL’s support

for Microsoft type libraries: files that contain binary representations of the components

and interfaces defined in MIDL. Programmers reference these files from languages used

for component development, or client development in order to discover interface syntax

for components.

When a file containing MIDL code is compiled, the compiler produces a number

of mapping files from MIDL to C++. The following is a full list of files generated by the

MIDL compiler:

• A C++ header file (*.h)

• C++ code files with GUIDs (*.c)

• A binary representation of the interface definitions (*.tlb)

51

• Stub and proxy code for marshalling (*_p.c)

• Definitions to build the stub and proxy DLL (dlldata.c)

The files generated by the MIDL compiler provide the means for marshalling calls

between client and server. Marshalling is the mechanism through which function calls are

packaged and relayed from the client process to the server process. Similar to the stub and

skeleton objects used by CORBA, COM uses proxy and stub objects for the same

purpose.

52

CHAPTER 4

BRIDGING CONCEPTS

In many respects COM and CORBA are similar. They both, for example, provide

infrastructures for object distribution, a language for describing access to objects, and

object directories. Yet there are numerous details in their implementations that make

COM and CORBA objects incompatible: COM clients cannot make direct use of CORBA

objects, and CORBA clients cannot access COM objects.

These incompatibilities between COM and CORBA can be resolved through the

use of a bridge. A bridge allows a client of one object system to access objects of a

different object system, by making the necessary conversions between object access

protocols. Bridges resemble COM proxy objects and CORBA proxy objects in their use of

marshalling function calls between client and server to disguise these conversions. In

addition to parameter marshalling and call forwarding, bridging objects must also map the

identities and life cycle models of the different object systems.

Bridges can be one-way or two-way. One-way bridges enable clients in object

system A to access objects in object system B (see Figure 11) but the reverse is not

possible. Two-way bridges enable clients in both object systems to access objects in the

respective other object system (see Figure 12). An implementation of a two-way bridge

would have to consist of two generic bridge objects. One bridge object would map COM

objects to CORBA clients, and the other would map CORBA objects to COM clients.

53

Object System A

Client
One-Way

Bridge

Object System B

Object

Figure 11 One-way Bridge

Object System A

Client

Two-Way
Bridge

Object

Object System B

Client

Object

Figure 12 Two-way Bridge

The CORBA interworking specification uses the terms “view of A in B” and “A/B

view” to refer to the entities representing an object of object system A to a client in object

system B; e.g. a CORBA object visible to a COM client would be called a CORBA/COM

view. Figure 13 shows the interworking model as it is defined in the CORBA specification

[8]. The bridge object holds a reference to a target object in B and maps this reference to a

reference in A. A client in object system A can use the reference exposed by the bridge

object and make calls on the object in B.

54

Object System A Object System B

Target object
implementation

in B

View of target in B
(bridging object)

Bridge

Object
Reference in B

Object
Reference in A

Figure 13 B/A Interworking Model [8]

4.1 Implementation Strategies

COM proxy objects and CORBA stub objects—hereafter referred to as proxy

objects, for simplicity—can be implemented as either early bound or late bound objects.

Early bound proxies are created by the IDL (or MIDL) compiler, and are sometimes

referred to as static or interface-specific proxies. Late bound proxies are generic proxies

that can be used for mapping any object and interface, and are sometimes referred to as

dynamic proxies.

The main reason for using early bound proxies to implement bridges is

performance. Since the operations and operation signatures of an early bound proxy are

known at compile time, early bound proxies have less run-time overhead than late-bound

proxies. In order to implement an early bound bridge, separate bridge objects must be

constructed for every distinct pair of objects to be bridged. These bridge objects can be

constructed manually, or using a compiler that generates the bridge objects from IDL

55

code. Building two-way bridges between CORBA and COM would require a compiler

that could compile both IDL and MIDL code.

The main reason for using late bound proxies to implement bridges is flexibility.

Late-bound bridges can be used to invoke any type of object at any point in a program’s

operation. However, late bound bridges, like late bound proxies, still need to process

target interfaces to satisfy requests. Late bound bridges, like late bound proxies, use a

repository to examine the operations and operation signatures of a requested interface at

runtime. Using these signatures, a bridge can perform the required parameter conversions

at the time of the call. The examination of operation signatures and marshalling of

parameters is a time consuming process, thus making late bound bridges uniformly slower

than early bound bridges.

4.2 Bridge Architecture

To conduct the research for this study, two two-way bridges were developed: one

based on early binding, and the other on late. Both bridges have the architecture depicted

in Figure 14.

CORBA Client

COM Server CORBA Server

COM/CORBA
Bridge

COM Client

DCOM

DCOM

DCOM

GIOP

GIOP

GIOP

Figure 14 COM/CORBA Bridge - Architectural View

56

The COM client in Figure 14 communicates with the COM server using DCOM

protocols, and the CORBA server using the COM/CORBA Bridge. The bridge translates

from DCOM to GIOP communication, as required by the CORBA standard. Similarly the

CORBA client may communicate with the CORBA server using the CORBA native GIOP

protocol, or with the COM server using the translation service provided by the bridge.

Internally the bridge receives calls with the server object, and forwards the calls to its

internal client object, which then dispatches the calls to the server in the target object

system.

C
O

R
B

A_
C

O
M

 B
rid

ge COM
Server Object

CORBA
Client Object

COM Client

CORBA Server

C
O

M
_C

O
R

B
A

 B
ridge

COM
Client Object

CORBA
Server Object

COM Server

CORBA Client

C
O

M
C

O
R

B
A

C
O

M
C

O
R

B
A

Figure 15 Two-Way CORBA/COM Bridge Model

57

CHAPTER 5

BRIDGE TEST TOOLS

 In addition to the bridges, the work described in this thesis included the creation

of codes for testing the bridges. These codes included early-bound and late-bound

versions of CORBA and COM server and client tasks (see Figure 15).

5.1 Test Object Servers

The test object servers are the containers that house the test objects. For each

object system one object server was built: a simple calculator object that supports one

interface, the BasicMath interface, with a single function, Add(). Add() accepts two in

parameters and returns an out parameter: the addition’s result.

A server’s code, regardless for which object system, has two main purposes:

• Bootstrapping and communication with the object system controller

• Implementation of objects

Both of these aspects of an object server are significantly different for COM and CORBA.

The balance of this section describes the implementation of the COM and CORBA test

object servers.

5.1.1 COM Test Object Server

 A COM server’s bootstrap code depends on the type of COM server. As

mentioned earlier, a COM server is either an in-process server, an out-of-process server,

58

or a remote server. The COM nomenclature is somewhat confusing, since out-of-process

and remote servers are identical with respect to the server implementation. The two kinds

of servers do, however, vary from the viewpoint of the object system controller. An out-

of-process server may run as a local server—i.e., on the same host as the client —or a

remote server—i.e., on a different host. The two kinds of servers use the same executable

file format. All COM servers used in this thesis are out-of-process servers, which is why

only the bootstrapping for an out-of-process server is discussed.

The task of bootstrapping and communication with the object system controller

can be further subdivided into the following sub-tasks:

• COM initialization/termination

• Server self-registration/un-registration

• Lifetime management

• Message loop

• Class factory registration/un-registration

The COM object test server implements the concepts and requirements presented

in the following section with the classes shown in the class diagram in Appendix A. All

operations for bootstrapping described in the following sections, are implemented in the

HousingManagerClass, the ExeHousingManagerClass, the COMFactoryClass, and the

CalculatorFactoryClass.

59

5.1.1.1 COM Initialization/Termination

When the executable file of a COM server is first loaded into memory and starts

executing, it is just another process running on a host. This process becomes a COM

server when it starts communicating with the COM object system controller. The object

system controller in COM is called the Service Control Manager (SCM). COM provides

developers with an API for communication with the SCM contained in the dynamic link

library OLE32.DLL. The first call a process must make to announce itself to the SCM is

CoInitialize(). CoInitialize() initializes the COM library for use by the current process.

Any other calls to the COM library before calling CoInitialize() result in error conditions.

To announce the termination of a COM process to the SCM the function CoUnitialize().

5.1.1.2 Server Self-registration/Un-registration

In order for the SCM to activate a COM object, the SCM must first locate and

activate the server that houses the requested object. The information regarding the server

for a specific COM object is stored in the Windows Registry. The SCM locates objects in

the Windows Registry based on their CLSID.

Entering the information related to a COM object into the registry is the object

developer’s responsibility. The information can be entered into the registry in several

ways. Distributing a *.reg file and merging it into the registry upon installation is one way

of registering a server. Another method is the use of a script resource written in registry

script language, as provided by the Visual Studio Environment. However, the preferred

technique is server self-registration. Server self-registration avoids the distribution of

special registration files because the necessary information for registration is kept inside

60

the server executable. Servers supporting self-registration check the command line for the

parameters -RegServer or -UnregServer, and perform the necessary steps to register or un-

register the COM objects housed in the server.

5.1.1.3 Server Lifetime management

The lifetime of a server is the period of time from the moment the server process is

started to the moment the server process is shut down. Shutting the server down is the

responsibility of the server itself. The server knows that it has to shut down when there are

no more clients using any of its interfaces and no server locks are active. Reference

counting is the basic mechanism to determine when an interface is in use.

Lifetime management is defined in the most standard of all COM interfaces, the

IUnknown interface. As mentioned earlier, the IUnknown interface supports three

functions:

• QueryInterface()

• AddRef()

• Release()

The QueryInterface() function returns a handle on a specified interface, if that

interface has been implemented. Before returning, QueryInterface() also calls the

interface’s AddRef() function. AddRef() increments the reference counter and Release()

decrements the reference counter for an interface. Clients have the responsibility to

AddRef() and later Release() an interface when done using an interface.

61

A client may also choose to activate a server before starting to use any of the

server’s interfaces. In that case the client must increment a server locks counter to keep

the server loaded into memory. The functionality for locking the server is provided via

another standard COM function, the LockServer() function of the IClassFactory interface.

The server monitors the interface reference counter and the server locks counter.

When both counters reach zero the server shuts itself down.

5.1.1.4 Message Loop

A message loop is a function that keeps the server in memory while it waits for

client requests. A message loop is implemented by a simple program loop, which yields

the server process’ CPU time to the operating system if no client is requesting services

from an object in the process.

5.1.1.5 Class Factory Registration/Un-registration

COM objects are created based on the creational pattern Factory Method [11].

COM defines an abstract class, the IClassFactory interface, for which programmers

develop implementations, known as class objects or class factories. Clients must acquire

an IClassFactory interface in order to create the COM object they wish to use. To obtain

an IClassFactory interface clients contact the SCM, which then searches its directory of

class objects for the appropriate class factory. The directory of class objects is known in

COM as the class object table, and it has some similarities with the active object table

implemented by CORBA’s POA.

62

Object servers make entries into the class object table at startup, using the COM

library function CoRegisterClassObject(). Entries in the class object table are only valid

for the duration of a server’s lifetime. Hence a server must delete its entries before exiting.

The COM library provides the CoRevokeClassObject() function for servers to remove

entries from the class object table.

5.1.1.6 Object Implementation

COM objects are implemented by creating concrete classes for the interfaces

described in MIDL. When implementing COM objects in C++, the concrete class inherits

from abstract classes created by the MIDL compiler. The concrete class must provide

implementations for all virtual functions it inherited from the abstract interface class. This

includes all the functions defined by standard interfaces.

The concrete class for the COM test object is the ICalculator_BasicMathClass

(see Appendix A). ICalculator_BasicMathClass implements the functions for the standard

interfaces IUnknown and IDispatch, along with the ICalculator_BasicMath interface.

IUnknown must be implemented, as it provides the basic COM object lifetime and

interface discovery functions. The implementation of IDispatch is required for objects that

are to be used in a late bound fashion3. Details of the IDispatch implementation will be

given in a later section, when describing the late bound bridge. Finally, by implementing

the ICalculator_BasicMath interface, the ICalculator_BasicMathClass provides an

implementation for the function Add(), which were used for bridge testing.

3 Com objects implementing both IUnknown and IDispatch are also known as objects implementing a dual
interface.

63

5.1.2 CORBA Test Object Server

The bootstrapping requirements in a CORBA server differ in the nuances of the

object system specifics, but conceptually they are similar to the bootstrapping

requirements of a COM server. The following sub-tasks must be implemented in order to

create a CORBA server’s frame:

• ORB initialization/termination

• POA creation/initialization

• Object creation

• Object publishing

• Message loop

• Object implementation

5.1.2.1 ORB Initialization/Termination

When a CORBA server starts, it initializes communication with the CORBA

object system controller, the ORB, by calling the static method CORBA::ORB_init(). The

server uses ORB_init() to pass the server application’s command line parameters to the

ORB, and to obtain a pointer to an ORB instance. The ORB pointer is then used to call the

ORB interface’s operations. The ORB uses its command line parameters to establish

communication with critical CORBA services, like a naming service, a trading service,

and the interface repository. This activity enables ORB users to gain access to these

services by calling the ORB interface’s resolve_initial_references() function. This

function returns a CORBA object pointer, which, after narrowing to the appropriate type,

64

may be used to access the service. Once in possession of a reference to a CORBA naming

or trading service, a client may acquire any object it requires to perform its tasks.

5.1.2.2 POA Creation/Initialization

The POA plays a key role in linking client invocations on object references to their

respective implementations (see section 2.5). Creating and initializing a POA is therefore

another prerequisite for the creation and publication of server-resident objects.

CORBA servers can have many different POAs, organized in a hierarchical tree

structure. At the root of this tree structure is the root POA, which is created during the

ORB initialization. A reference to the root POA can be obtained from the ORB by using

the resolve_initial_references() function. The code sample below demonstrates how a

reference to the root POA can be obtained from the ORB.

 // get the root POA reference

 CORBA::Object_ptr obj = m_ORB->resolve_initial_references("RootPOA");

 // now cast the object reference into a POA reference

 m_RootPOA = PortableServer::POA::_narrow(obj);

 // don't need the temporary storage for the object reference anymore

 CORBA::release(obj);

CORBA specifies the operation create_POA(), on the POA interface, which creates new

POAs. Newly created POAs are children of the POA whose create_POA() function was

called. The create_POA() function takes as parameters the new POA’s name, a reference

to the POA manager, and a list of POA policies.

65

POA policies control the behavior and characteristics of POAs and their objects, as

described in section 2.5. The test server object’s POA is a persistent POA that allows the

user to set the object IDs, and is created as follows:

// create empty policy list for new child POA

CORBA::PolicyList policy_list;

// create persisten lifespan policy;

PortableServer::LifespanPolicy_var lifespan =

m_RootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

// create ID assignment policy; default is SYSTEM_ID

PortableServer::IdAssignmentPolicy_var IDAssignment =

m_RootPOA->create_id_assignment_policy(PortableServer::USER_ID);

// add to policy list

policy_list.length(2);

policy_list[0] = PortableServer::LifespanPolicy::_duplicate(lifespan);

policy_list[1] =

PortableServer::IdAssignmentPolicy::_duplicate(IDAssignment);

// create child POA

PortableServer::POA_ptr

new_poa = m_RootPOA->create_POA(POAName.c_str(), m_RootPOAManager,

policy_list);

lifespan->destroy();

IDAssignment->destroy();

return new_poa;

The POA manager is a control entity that controls the flow of requests into its associated

POAs. The POA manager can be set to one of four different states: holding, discarding,

66

active, or inactive. When set to active, a POA manager passes requests to the connected

POAs as soon as they arrive. POA managers manage the flow of requests to POAs,

particularly during startup, shutdown, and high load conditions.

5.1.2.3 Object Creation

Object creation is dependant on the POA that creates the object. As described in

the previous section, each POA is configured with a set of policies that give the POA its

characteristics. The characteristics of a POA are reflected in the types of objects that that

POA creates.

The Calculator object used for bridge testing is a persistent object, which means

that clients holding a reference to this object may use that reference as long as they whish.

Even if the server is shut down, a client can make a call on the reference of a persistent

object and re-activate the server.

The creation of a persistent object is typically a four step process, involving the

creation of a servant, the creation of an object ID, the activation of the object, and the

creation of an object reference. The sample code below demonstrates how the

“Calculator” object is created.

 // instantiate servant

 CalculatorClass servant;

 // create an object ID

 PortableServer::ObjectId_var

 objectID = PortableServer::string_to_ObjectId(“Calculator”);

67

 // activate the object

 POA->activate_object_with_id(objectID, servant);

 // get the reference for the new object

 CORBA::Object_ptr objectRef = servant->_this();

5.1.2.4 Object Publishing

Once created, an object must be published before client objects can use it. An

object can be published simplistically by exporting the objects IOR as a string, or in a

more sophisticated fashion by registering the object with a naming or trading service. The

Calculator object is published through a CORBA naming service.

An object is registered with the name service with the aid of an object pointer to a

naming context, returned by the ORB’s resolve_initial_references() function. The naming

service’s interface has two operations, bind() and rebind(), either one of which can

register an object with the name service. Parameters required by bind() and rebind() are a

name for the object, and a reference to the object to bind to the name. The combination of

a name and the object reference is referred to as name binding. The sample code below

demonstrates the registration of an object with a CORBA name service.

CosNaming::Name name;

 name.length (1);

 name[0].id = “Calculator”; // name of the object

 name[0].kind = CORBA::string_dup ("");

 // register object with the naming service

 m_NamingContext->rebind(name, objectRef);

68

Rebind() deletes a binding for the same name, if one exists already, and creates a

new binding. When bind() is used and a binding with the same name exists already, a

CORBA system exception is thrown.

5.1.2.5 Object Implementation

Object implementation is straightforward in CORBA. CORBA servants, unlike

COM objects, don’t have to implement specific standard interfaces, thanks to CORBA’s

strict separation of interface and implementation. All a CORBA object developer has to

do is write the IDL code for the object, inherit the servant class from the skeleton class

generated by the IDL compiler, and implement the interfaces specific to the objects role.

Even access to a CORBA object via the DII is transparent to the object developer. More

on this is given in a section 5.2.4, when describing the implementation of a late bound

client with the DII.

5.2 Test Clients

Bridge testing requires the use of a number of different clients. Access to COM or

CORBA objects is transparent for the clients only if the objects can be early bound. This

is the case for clients accessing the test object of its own object system, or clients

accessing the foreign object system’s objects via the early bound bridge. Use of a generic

bridge is not transparent to COM or CORBA clients, as they must prepare the argument

structure to be passed to the dynamic invocation interface’s invoke() function.

69

5.2.1 Early Bound COM Test Client

A COM client is considered early bound when it can use the IUnknown interface.

A client using the IUnknown interface has complete understanding of the interfaces,

operations, and operation parameters at compile time. This knowledge is provided to the

client via the MIDL code that was written when the COM object was developed, or via the

type library created by the MIDL compiler.

The following list is the series of common steps an early bound client has to

perform in order to make calls to an object:

• Initialize COM

• Request a COM factory object

• Call CreateInstance() on the factory object

• Call QueryInterface() on the IUnknown pointer returned by CreateInstance()

• Make calls on the object pointer returned by QueryInterface()

For the same reason COM servers have to make initial communication with the

COM library, COM clients also must call CoInitialize() before being able to perform other

COM interaction.

As described earlier, COM creates objects based on the Factory Method pattern.

Clients must therefore obtain a factory object interface to create the object they wish to

interact with. COM provides the library function CoGetClassObject() to retrieve a factory

object. CoGetClassObject() takes the CLSID of the object to be created as a parameter,

and returns a pointer to an IClassFactory interface.

70

The client can then call the CreateInstance() operation on the IClassFactory

pointer. CreateInstance() creates the COM object that the client is interested in, and

returns an interface pointer to that object. The type of interface pointer to be returned is

specified in the call to CreateInstance() by passing the desired interface’s IID. The bridge

test clients combine object creation and initial interface pointer acquisition in one function

called ResolveObjectGUID(). ResolveObjectGUID() always specifies an IUnknown

pointer to be returned by CreateInstance(). QueryInterface() can then be called using the

returned IUnknown pointer, to obtain a pointer to the desired interface on the test object.

5.2.2 Late Bound COM Test Client

The main difference between early- and late bound clients is that late bound

clients, given the lack of compile-time type information about the interfaces they wish to

use, cannot use the IUnknown interface. COM does provide an alternative interface

known as the IDispatch or Automation interface to invoke operations on interfaces not

known at compile time. However, the IDispatch interface is far less straightforward for

C++ clients to use4.

A late bound client makes calls on a COM object implementing the IDispatch

interface by performing the following steps:

• Initialize COM

4 For scripting clients the use of IDispatch is straightforward, but only because the environment in which
they execute normally provides a lot of behind the scenes support.

71

• Request a COM factory object

• Call CreateInstance() on the factory object

• Get the DispID of the function to call

• Prepare the argument structure for the call

• Make the call to the object

The late bound client is assumed to know the target object’s CLSID. Consequently

the steps required to create the remote object are identical to the early bound client. If the

late bound client knows only the remote object’s ProgID, an additional call to the COM

library is needed to discover the target object’s CLSID.

The differences between early and late bound clients start when CreateInstance()

returns. For a late bound client, CreateInstance() returns an IDispatch pointer instead the

IUnknown pointer.

Making a call to a COM object via the IDispatch method requires the Invoke()

function. The most important parameters to Invoke() are the dispID and the argument

structure. DispIDs are numerical identifiers for the functions that may be called through

the dispinterface: i.e., the set of functions accessible via the invoke() method of an

IDispatch interface. The dispID is needed in order to identify the dispinterface function to

invoke.

IDispatch provides a function, GetIDsOfNames(), that must be called to prepare

the call to Invoke(). GetIDsOfNames() takes a function name as a parameter and returns

the corresponding dispID.

72

&QueryInterface
&AddRef
&Release

&GetTypeInfoCount
&GetTypeInfo

&GetIDsOfNames
&Invoke

&Add

IUnknown

IDispatch

ICalculator_BasicMath

1 “Add”
dispID Function Name

Dual Interface Dispinterface

dispID

Figure 16 Dual Interface and Dispinterface on a COM object; adapted from [10]

Figure 16 illustrates the structure of the virtual function table (vtbl) for a dual

interface COM object, and an access to that table via the Dispinterface. The COM object’s

functions can be accessed by early bound clients via the vtbl or by late bound clients via

the Dispinterface.

The next step in preparation for the call to Invoke() is the creation and

initialization of a structure to be passed to Invoke(). This structure, which contains the

arguments for the remote object call, is an array of Variants, a type commonly used in

Visual Basic to hold an arbitrary value. Variants are very important in the context of

IDispatch, as they enable the passing of arbitrary values between clients and servers. A

variant stores the scalar value and the type of the value it carries. The ability of variants to

store values and type identifiers enables the configuration of the arguments to Invoke() at

run time. Type information may be provided at run time by extraction from a type library,

or other sources that can store type information. IDispatch provides methods to discover

type information of an object via the GetTypeInfoCount() and GetTypeInfo() methods.

Operations a client can access through IDispatch have a numerical identifier

known as the DispID. IDispatch exposes an operation called GetIDsOfNames(), which

73

enables clients to get the DispID of a function from the component, by sending in the

name of the function as a string. The client needs the DispID when it makes a call to the

COM component via the IDispatch method Invoke().

Invoke() also takes a parameter of type DISPPARAMS. DISPPARAMS is a

structure containing the arguments that are passed on to the component implementation

that processes the call. Much of a late bound client’s work involves the creation of the

argument structure. Once this structure is created and initialized, the dispID of the

function to call is known: a call to the remote object can be made as such:

DISPPARAMS parameters = {myVars, 0, 3, 0};

 pIDispatch->Invoke (dispid, IID_NULL, LOCALE_SYSTEM_DEFAULT,

 DISPATCH_METHOD, ¶meters, NULL, NULL,NULL);

5.2.3 Early Bound CORBA Test Client

A CORBA client is considered early bound when it uses IDL stub code to make

invocations. The IDL compiler generates the stubs, otherwise known as static invocation

interfaces. The target object’s developer normally provides the IDL files to the client

developer. A typical sequence of steps for a CORBA client to make an invocation is as

follows:

• Initialize ORB

• Obtain object reference

• Narrow the IOR to the appropriate type

• Make invocation on object reference

74

The ORB initialization is performed in exactly the same way as it is done for a

CORBA server, which means calling CORBA::ORB_init() and passing in the command

line parameters.

Object references can be obtained in various ways. One very simple method is to

pass the IOR as a string on the command line, which is only useful for debugging or quick

testing. Much more practical is the use of a naming or trading service to acquire an IOR.

Clients in this study use the MICO naming service as the source for IORs. The naming

service reference, returned by the resolve_initial_references() function, provides the

function resolve() to request an IOR from the directory. Resolve() takes the name of an

object and returns a CORBA::Object_ptr.

The CORBA::Object_ptr must then be cast, or narrowed in CORBA terminology,

to the appropriate type for the target object. The stub code generated by the IDL compiler

provides the means for narrowing the CORBA::Object_ptr with the function _narrow().

Being able to narrow an object pointer to the type of object described in an IDL file is the

staple feature of the static invocation interface, and depends on the availability of compile

time type information.

The object pointer narrowed to the target object type can then be used as if it

where the “real thing”, in the client’s address space.

5.2.4 Late Bound CORBA Test Client

In the absence of an IDL file to provide type information and stub code, late bound

CORBA clients have to resort to the DII. The DII, like COMs IDispatch interface,

75

provides the necessary operations to construct and dispatch requests to CORBA objects,

based on type information available at runtime. A key DII element is a pseudo object5

called CORBA::Request. CORBA::Request encapsulates the details for an invocation via

the DII. A typical sequence of steps in a late bound client invocation is as follows:

• Initialize ORB

• Obtain an object reference

• Create an argument structure

• Create a request object

• Make the invocation

Initializing the ORB and obtaining an object reference is no different for a late

bound client than it is for an early bound client, and has been discussed in previous

sections.

The creation of an argument structure is necessary to provide the ORB with the

information it needs to marshal the arguments for a call. In early bound clients this task is

fulfilled by the stub code, but in late bound clients it is up to the client code.

CORBA provides a number of different ways to construct the argument structure.

One possible way is to create a request object first, then use the request object’s

operations to add one argument at a time to the request. The operations to generate

requests are provided by the CORBA::Object type. Adding one argument at a time to the

request can be quite time consuming; because the CORBA implementation may consult

5 A pseudo object is an object that has all the characteristics of a CORBA object, with the limitation that it is
local to the client process, and no IOR to it can be generated.

76

the interface repository each time an argument is added, to verify that argument’s validity.

The CORBA specification leaves it to the CORBA implementation developer to decide

this behavior.

Another, more efficient method to create a request object is to use the ORB, either

with or without the aid of the interface repository to construct the argument list first. Once

created, the argument list can be used to initialize the request object as it is created.

Argument lists are create by the ORB with create_list() or create_operation_list(), and are

of type CORBA::NVList. Create_list() takes a single parameter, the number of elements

in the list, and returns an empty named value list (NVList). The client then initializes the

elements in the NVList by specifying argument types, directions, and values.

Create_operation_list() eases the work of coding by creating an NVList based on a

CORBA::OperationDef, returning an NVList with argument types and directions already

set from the OperationDef. CORBA::OperationDefs are descriptions of an operation and

its arguments, created by an Interface Repository.

With the request created and configured, the client can make invocations on the

target object by calling the requests invoke() method.

77

CHAPTER 6

BRIDGE MODELS

6.1 Early Bound Bridge

To construct an early bound bridge, the bridge developer must build a bridge

object server for the bridge client’s object system. The bridge server must contain a view

object, for each object in the target system to be mapped to the client object system. The

objects housed in the bridge server are created based on the target object system’s

translated IDL code6. The bridge server also entails the functionality of a client in the

target object system in order to forward request to the target objects.

6.1.1 COM_CORBA Bridge

The COM_CORBA bridge described in this section is essentially a CORBA server

that also behaves like a COM client (see Figure 17). This characterization necessitates the

implementation of elements for CORBA servers and COM clients described in earlier

sections.

6 IDL code refers here to code describing interfaces, regardless of the object system for which the code was
generated.

78

CORBA
Client

Uses IDL stub

COM
Target
Object

CORBA
View

Object

COM
Proxy
Client

Bridge Server

Object System
Boundary

Uses IDL
skeleton

Uses MIDL proxyUses MIDL
stub

MIDL to IDL Translation

Static
Invocation
Interface

Static
Invocation
Interface

Figure 17 Architectural Model Static COM_CORBA Bridge

A prerequisite for building static CORBA View Objects is the availability of IDL

code that describes the objects. Therefore, the MIDL code created by the COM object

developer must be translated into the equivalent CORBA IDL code. This translation is

nontrivial and requires an extensive rule set. The OMG CORBA specification invests

approx. 150 pages on the rule set for mapping COM and CORBA interface definitions.

The MIDL to IDL mapping for the test object used for bridge testing was

translated manually based on the CORBA interworking specification. It is conceivable

that an automated translation tool could be used to convert MIDL to IDL and vice versa.

However, the author is not aware of such a tool in the open source domain.

The IDL code resulting from the translation is used to create a CORBA view of the

target COM object. The implementation of the CORBA view object is analogous to the

implementation of a CORBA servant. A CORBA view implementation differs from a

regular CORBA servant in that it does not process requests from clients; it simply

forwards requests to a COM proxy object in its address space. The COM proxy object

79

then forwards the request to the target object for processing. Appendix E shows additional

details of the COM_CORBA bridge implementation.

The key aspect of an early bound bridge is that all communication between clients

and target object is based on static information, i.e. known at compile time.

6.1.2 CORBA_COM Bridge

The bridge described in this section represents the 2nd leg of the early bound

bridge, which provides COM clients with the means of accessing CORBA objects via the

static invocation interface. As in the previous scenario, the COM_CORBA bridging, this

bridge also requires the translation of the interface description from the target object

system into the client object system. Again the translation was done manually.

COM
Client

Uses MIDL proxy

CORBA
Target
Object

COM
View

Object

CORBA
Proxy
Client

Bridge Server

Object System
Boundary

Uses MIDL
stub

Uses IDL skeletonUses IDL
stub

IDL to MIDL Translation

Static
Invocation
Interface

Static
Invocation
Interface

Figure 18 Architectural Model Static CORBA_COM Bridge

As shown in Figure 18 the client makes invocation on the bridge server, which has

all the characteristics of a COM server. The bridge server uses a replica of the target COM

80

view object to receive requests from clients, and dispatches the requests via a CORBA

proxy object to the target CORBA object. Parameter marshalling is performed by the stub,

proxy and skeleton objects, which were generated by the IDL and MIDL compilers.

Additional implementation details for this leg of the static bridge can be found in

Appendix G.

6.2 Late Bound Bridge

The most characteristic feature of a late bound bridge is that at compile time it

does not have any information of the types of objects that it will convey invocations for.

This idiosyncrasy allows it to serve as a bridge for any object, making late bound bridges

far more universally usable than early bound bridges.

Late bound or dynamically bound bridges achieve their flexibility by using type

information stored in an interface repository rather than the type information in an IDL

file. Since the information in an interface repository is loaded dynamically at runtime a

bridge can also load this information at runtime, thus enabling dynamic binding to objects

for which it can find type information in an interface repository.

81

6.2.1 COM_CORBA Bridge

CORBA
Client

COM
Target
Object

CORBA
View

Object

COM
Proxy
Client

Bridge Server

Object System
Boundary

MIDL stub

DII/DSI IDispatch

Interface
Repository MIDL CodeIDL Code

MIDL to IDL
translation

Dynamic
Type Info

Figure 19 Architectural Model Dynamic COM_CORBA Bridge

A late bound COM_CORBA bridge, like its early bound counterpart, uses view

objects, except that the view object in the former is usable as a view for any object in the

target object system. To be universally usable, the CORBA view object must implement

the Dynamic Skeleton Interface (DSI). The DSI is an interface of the POA, and is

provided to servants through inheritance from PortableServer::DynamicImplementation.

The DSI is transparent to the client, just as the DII is transparent to a CORBA object. The

DSI, like the DII, uses a pseudo object, CORBA::ServerRequest, to accomplish its primary

function of making generic invocations on an object servant.

The POA passes an object of type CORBA::ServerRequest to a servant’s invoke()

function, which it inherited from PortableServer::DynamicImplementation. The

CORBA::ServerRequest object carries the function name and parameters to be invoked on

the target object.

82

Calling invoke() on the CORBA view object’s servant in Figure 19 requires the

servant to package (marshal) the “in” arguments in a way that allows them to be sent to

the target COM object. The servant must invoke the function on the COM object, and un-

package (un-marshal) the “out” arguments when the call returns

A COM proxy client object supports the CORBA servant object in making the call

to the target COM object. The COM proxy object encapsulates the knowledge of how to

communicate to the target COM object via COM’s dynamic invocation interface

IDispatch. Although primarily designed to provide easy access to COM objects by

scripting languages, the IDispatch interface can be used very well for dynamic

invocations. IDispatch was discussed earlier when describing late bound clients. The

COM proxy client in the late bound COM_CORBA bridge, a good example of a late

bound client, uses the IDispatch interface.

In addition to forwarding invocations the bridge server must also provide a

bootstrapping mechanism to clients: unlike early bound bridges, late bound bridges are not

transparent to clients. The COM_CORBA bridge server provides bootstrapping through a

CORBA object called COMFactory. CORBA clients can statically bind the COMFactory

object, and by calling the CreateObject() function create a CORBA view object that is

dynamically bound to the specified COM object. The client uses the CORBA view object,

which was created on its behalf, for invocations on the target COM object.

83

6.2.2 CORBA_COM Bridge

COM
Client

CORBA
Target
Object

COM
View

Object

CORBA
Proxy
Client

Bridge Server

Object System
Boundary

IDL skeleton

DIIIDispatch

Type
Library IDL CodeMIDL Code

IDL to MIDL
translation

Dynamic
Type Info

Figure 20 Architectural Model Dynamic CORBA_COM Bridge

The CORBA_COM bridge is the second leg of the two-way, late-bound bridge

between the two object systems. The bridge server acts as a middleman between COM

clients and the target CORBA objects. Again the bridge server plays a dual role: to the

COM client it plays the role of a COM server, and to the CORBA target object it plays the

role of a CORBA client. Communication between COM client and COM View object is

conducted via IDispatch. CORBA client/server communication is conducted via DII. The

target object’s IDL code is translated into MIDL code and subsequently compiled to

create the type library, which serves as the source for type information about the target

object, for the client and the bridge. The CORBA_COM bridge also provides a

bootstrapping object that enables the client to create the view object of the target. The

COM client binds statically to the bootstrapping object and calls CreateObject() to create a

view of the target object.

84

CHAPTER 7

PERFORMANCE TESTING

Differences in performance are an important characteristic when comparing static

and dynamic bound bridges. The tests described in this chapter were designed to quantify

the differences in performance for the two styles of bridges. As a control, measurements

were also taken for clients accessing the test object of their own object system via static

and dynamic invocation.

Client
Object System A

Static
Bridge

Dynamic
Bridge

Test Object
Object System B

Static Invoc.

Dynamic Invoc.
Static Invoc.

Dynamic Invoc.

Test Object
Object System A

Figure 21 Performance Test Plan

Figure 21 shows a graphical representation of the measurements that were taken to

determine the bridges’ relative performance, including the time required to make direct

calls to objects in the clients’ own object systems. The test plan in Figure 21 was applied

to both COM and CORBA clients. The effects of co-location7 of clients with test object

7 Collocation means that client process, server process, and bridge process all execute on the same host.

85

server and bridge server were also assessed, using two series of measurements. For

one series the client was co-located and in a second series the client was remote, with

respect to the object server and the bridge server. Bridge servers and test object servers

were co-located in both series. The resulting test-matrix from the above stated conditions

is as follows:

 Native object
static

invocation

Native object
dynamic

invocation

Foreign object
static

invocation

Foreign object
dynamic

invocation
Co-located
COM Client

Co-located
CORBA Client

Remote COM
Client

Remote
CORBA Client

Figure 22 Test Matrix

7.1 Test Procedure

The test-system used for the co-located client test has an AMD CPU clocked at

800MHz, with 512 MB of RAM, and runs Windows 2000 as its operating system. The test

objects are implemented as servers running in separate processes from the client’s process,

as out-of-proc servers in COM terminology. For the remote client test series, a host with a

Cyrix 333MHz CPU, 256MB RAM, and Windows 2000 was used. The network link

between the two hosts was a 10Mbit/s Ethernet connection.

The measure for performance used in these tests is call execution time. Measuring

call execution time in a non real-time operating system like Windows 2000 requires a

significant number of repetitions to achieve statistical significance. Each test run consists

86

of 1000 calls, made to the BasicMath interface’s Add function. The call takes two in

parameters of type short, and returns one out parameter of type long. Each test run was

repeated ten times.

Execution time was measured with a high-resolution counter implemented in

hardware. The Win32 API counter-access functions used for this study included

QueryPerformanceFrequency() and QueryPerformanceCounter(). The counter frequency

was 3.58 MHz, giving it a resolution of 0.28µs.

7.2 Data Analysis and Results

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

Native object static
invocation

Native object dynamic
invocation

Foreign object static
invocation

Foreign object dynamic
invocation

ru
n

ex
ec

ut
io

n
tim

e
[m

s]

Co-located COM Client Co-located CORBA Client
Remote COM Client Remote CORBA Client

Early Bound Bridge

Late Bound Bridge1 run = 1,000 calls

Figure 23 Test Results Summary

87

The data collect during the test runs can be found in Appendix K. The median for

each series of ten measurements was calculated to serve as the representative figure for

that series. Figure 23 plots the medians for each run, giving a comprehensive overview of

all measurements taken.

7.2.1 Performance Test Results

To determine the relative performance for the two types of bridges, and also for

static vs. dynamic invocation on native objects, ratios were calculated between the

respective contestants.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Co-located COM
Client

Remote COM Client Co-located CORBA
Client

Remote CORBA
Client

Performance Ratio Static vs. Dynamic Invocation
Performance Ratio Late-Bound vs. Early-Bound Bridge

Figure 24 Bridge Performance Test Results

As expected the plot of the ratios in Figure 24 shows that a late bound bridge is

significantly slower than an early bound bridge. The invocation of an object via a late

88

bound bridge is on the order of five times slower than the invocation via a static bridge.

This is not surprising as the overhead for parameter marshalling is significant. For the

remote clients the performance of the late bound bridges was a little better because

network latency started to impact the measurements. With increasing network traffic

delays, network latencies would tend to dominate communications time, lessening the

performance disadvantage of a late bound bridge. This would lead to the conclusion that

for remote clients the style of bridge used becomes less important as the distance to the

bridge and object host increases.

The plot of the ratio static invocation vs. dynamic also shows the expected

behavior, which is that dynamic invocation is slower than static invocation. However, the

difference here is far less pronounced—a factor of circa 1.5 to 1.7—than for the bridge

performance. Therefore the impact of network latency is not as easily detectable in the

ratio dynamic vs. static invocation.

Another observation that can be made is that COM native object invocations are

substantially faster than CORBA invocations. COM client dynamic invocations on native

objects are even faster than CORBA client static invocations on native objects. The

relative slowness of CORBA invocations could be a function of CORBA’s more complex

object model, which requires deeper nested calls. However, it could also be caused by the

MICO implementation model, which is based on a highly modular—and presumably less

streamlined—design.

89

Another perspective on the collected data can be gained by plotting the percentage

to which the network latencies contribute to the overall measured run times. The bars in

Figure 25 were calculated from:

NWL = (RCET – CCET) / RCET * 100

RCET = Remote Client Execution Time

CCET = Collocate Client Execution Time

NWL = Network Latency Weight

The plot of NWL in Figure 25 shows that roughly 75% of a call to a remote COM

client is due to network latency, with 25% due to target-object processing. Static as well

as dynamic invocations appear to encounter the same network latencies. The proportion of

the network latency is relatively large because invocations on native objects are relatively

fast. Invocations via the bridges show the weight of network access times as less

significant since call processing time is relatively long compared to network access time.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Native object static
invocation

Native object dynamic
invocation

Foreign object static
invocation

Foreign object dynamic
invocation

COM Client Network Latency Impact CORBA Client Network Latency Impact

Figure 25 Network Communication Delays

90

CHAPTER 8

FINAL ASSESMENT AND CONCLUSION

This thesis has presented an analysis of the time needed to bridge between the

COM and CORBA object systems. An early bound bridge has been shown to be faster in

handling invocations than a late bound bridge, due to the availability of type information

at compile time. However, this speed advantage comes at the cost of flexibility. An early

bound bridge is specifically build for certain kinds of objects, excluding any objects the

bridge’s developer did not anticipate. The construction of an early bound bridge always

requires the translation of a target object’s interface description code into the equivalent of

the client object system. The translation process could be improved by the creation of a

cross-compiler between MIDL and IDL: a tool that translated the interface definitions, and

possibly even generated the code for a bridge object, thus providing a static bridge with

the advantages of a late bound bridge.

A late bound bridge has been shown to be on the order of five times slower than an

early bound bridge. Yet a late bound bridge has the advantage of being universally

applicable. The all-purpose characteristic of a late bound bridge is rooted in the fact that it

uses runtime type information for call marshalling. The creation of runtime type

information also requires the translation of interface description code, but no static bridge

objects must be generated to use the target object. Instead, the type information is stored

in interface repositories that are accessed by bridges at runtime to discover type

91

information. Late bound bridges are more appealing from a bridge user’s perspective as

they don’t require the building of any special code.

92

APPENDIX A

COM Test Object Server Class Diagram

+CalculatorClass()
+~CalculatorClass()
+AddRef()
+GetIDsOfNames()
+GetTypeInfo()
+GetTypeInfoCount()
+GetTypeInfoForGUID()
+Invoke()
+LoadTypeLibrary()
+QueryInterface()
+Release()

-m_pICalculator_BasicMathClass
-m_pITypeInfo
-m_pTLib
-m_refCount

CalculatorClass

+HousingManagerClass()
+~HousingManagerClass()
+getCOMFactoryClassPtr()
+getLIBID()
+getServerExecutableFile()
+getServerLocks()
+getTypeLibraryFile()
+GUIDtoString()
+InitializeRegistryMap()
+Lock()
+RegisterServer()
+UnLock()
+UnRegisterServer()

#m_Factories
#m_LIBID
#m_LibraryDescription
#m_ServerLocks
#m_ServerType

HousingManagerClass

+ExeHousingManagerClass()
+~ExeHousingManagerClass()
+EmbeddingTest()
+InitializeCOM()
-MakeServerExecutableRegistryKey()
+MessageLoop()
+RegisterClassFactories()
+RegisterServer()
+RegistrationTest()
+TerminateCOM()
+UnRegisterClassFactories()
+UnRegisterServer()
+UnRegistrationTest()

-m_ComandLineString
ExeHousingManagerClass

+COMFactoryClass()
+~COMFactoryClass()
+AddRef()
+getClassFactoryRegIDPtr()
+getCLSID()
+getDescription()
+getPROGID()
+getVersionIndependentPROGID()
+LockServer()
+QueryInterface()
+Release()

-m_ClassFactoryRegID
-m_refCount

COMFactoryClass

+CalculatorFactoryClass()
+~CalculatorFactoryClass()
+CreateInstance()
+getCLSID()
+getDescription()
+getPROGID()
+getVersionIndependentPROGID()

-m_CLSID
-m_Description
-m_PROGID
-m_VersionIndependentPROGID

CalculatorFactoryClass

+ICalculator_BasicMathClass()
+ICalculator_BasicMathClass()
+~ICalculator_BasicMathClass()
+Add()
+AddRef()
+GetIDsOfNames()
+GetTypeInfo()
+GetTypeInfoCount()
+Invoke()
+QueryInterface()
+Release()

-m_pParent
ICalculator_BasicMathClass

1

1..*

«instance»

1

1

93

APPENDIX B

CORBA Test Object Server Class Diagram

+HousingManagerClass()
+~HousingManagerClass()
+CreateObject(in ObjectName, inout POA : POA*, inout servant : ServantBase*)
+CreatePersistentPOA(in POAName)
+InitializeCORBA(in argc : int, inout argv[] : char*)
+MessageLoop()
+ORBShutdown()
+RegisterObject(inout objectRef : Object*, inout POA : POA*)
+setPOAManagerActive(in active : bool)
+TerminateCORBA()

-m_NamingContext
-m_ORB
-m_RootPOA
-m_RootPOAManager

HousingManagerClass

corba_server::POA_CORBACalculator

+CalculatorClass()
+~CalculatorClass()
+Add(in x : short, in y : short, inout z : long&)

CalculatorClass«uses»

94

APPENDIX C

COM Early Bound Client Class Diagram

+COMClientClass()
+~COMClientClass()
+InitializeCOM()
+ResolveObjectGUID(in objGUID : _GUID)
+TerminateCOM()

-pClassFactory
-pIUnknown

COMClientClass

+HighResolutionTimerClass(in strName : string)
+~HighResolutionTimerClass()
+Start()
+Stop()

-m_CPUFrequency
-m_Name
-m_StartTicks

HighResolutionTimerClass

Returns an IUnknown pointer

COM Late Bound Client Class Diagram

+COMClientClass()
+~COMClientClass()
+InitializeCOM()
+ResolveObject(in ProgID : string)
+ResolveObjectGUID(in objGUID : _GUID)
+TerminateCOM()

-pClassFactory
-pIDispatch

COMClientClass

+HighResolutionTimerClass(in strName : string)
+~HighResolutionTimerClass()
+Start()
+Stop()

-m_CPUFrequency
-m_Name
-m_StartTicks

HighResolutionTimerClass

Returns an IDispatch pointer

95

APPENDIX D

CORBA Early Bound Client Class Diagram

+CORBAClientClass()
+~CORBAClientClass()
+InitializeCORBA(in argc : int, inout argv[] : char*)
+ResolveObjectName(in objName : string)
+TerminateCORBA()

-m_CORBA_NC
-m_orb

CORBAClientClass

BasicMath

CORBA::Object

Stub Code Class

COM Late Bound Client Class Diagram

+RequestClass(inout orb : ORB*, inout ServerObj : Object*)
+RequestClass()
+~RequestClass()
+CreateArgumentList(in size : unsigned int)
+Invoke(in functionName : string, inout args : NVList*)

-m_orb
-m_request
-m_ServerObj

RequestClass

+CORBAClientClass()
+~CORBAClientClass()
+CreateRequest(inout obj : Object*)
+InitializeCORBA(in argc : int, inout argv[] : char*)
+ResolveObjectName(in objName : string)
+TerminateCORBA()

-m_CORBA_NC
-m_orb

CORBAClientClass

96

APPENDIX E

Early Bound COM_CORBA Bridge Class Diagram

+HousingManagerClass()
+~HousingManagerClass()
+CreateObject()
+CreatePersistentPOA()
+getCOMClient()
+InitializeCOM()
+InitializeCORBA()
+MessageLoop()
+ORBShutdown()
+RegisterObject()
+setPOAManagerActive()
+TerminateCOM()
+TerminateCORBA()

-m_NamingContext
-m_ORB
-m_pCOMClient
-m_RootPOA
-m_RootPOAManager

HousingManagerClass

+CalculatorClass()
+~CalculatorClass()
+add()

-m_COMProxy
-m_pCOMClient

CalculatorClass

-POA_CORBAViewCalculator()
#POA_CORBAViewCalculator()
+~POA_CORBAViewCalculator()
-operator=()
+_get_interface()
+_is_a()
+_make_stub()
+_narrow()
+_narrow_helper()
+_primary_interface()
+_this()
+dispatch()
+invoke()

POA_CORBAViewCalculator

+COMClientClass()
+~COMClientClass()
+InitializeCOM()
+ResolveObjectGUID()
+TerminateCOM()

-pClassFactory
-pIUnknown

COMClientClass

1

1
«instance»

Corba skeleton class:
Marshalls parameters between
CORBA client and bridge

CORBA servant/bridge class:
Receives calls from CORBA clients
and makes calls to the COM proxy
object on behalf of CORBA clients.
Must have specific type information
about target object at compile time.

COM proxy class:
Makes calls on the target COM object on behalf
of the CORBA servant/bridge class

97

APPENDIX F

MIDL Code of the Target COM Object

import "oaidl.idl";

[
 object,
 uuid(51BEE260-CBF9-4f57-86CA-217A7EA2DC71),
 oleautomation
]

interface ICalculator_BasicMath:IUnknown
{
 HRESULT add([in] short x, [in] short y, [out] long* z);
};

[
 uuid(B11E5D95-F527-4de8-8F60-065513920635), //LIBID
 version(1.0), helpstring("COM Calculator Library")
]
library COMCalculatorLibrary
{
 importlib("stdole32.tlb");
 [uuid(9FD7A036-D00B-4907-A460-D1212ED68E69)] //CLSID
 coclass COMCalculator
 {
 [default] interface ICalculator_BasicMath;
 };
};

MIDL to IDL Translation for the CORBA View of the Target Object

interface BasicMath {
 void add(in short x, in short y, out long z);
};

interface CORBAViewCalculator : BasicMath
{
};

98

APPENDIX G

Early Bound CORBA_COM Bridge Class Diagram

HousingManagerClass

COMFactoryClass

-theHousingmanager 1

-COMFactory

1..*

ExeHousingManagerClass

RegistrarClass

1

1

«utility»
RegistryValueClass

+CreateInstance()

CalculatorFactoryClass

IClassFactory

IUnknown

«instance»

ICalculator_BasicMath

1

1

1

+

«call»

+CalculatorClass()
+~CalculatorClass()
+AddRef()
+getCORBAProxy()
+QueryInterface()
+Release()

-m_CORBAProxy
-m_pCORBAClient
-m_pICalculator_BasicMathClass
-m_refCount

CalculatorClass

+CORBAClientClass()
+~CORBAClientClass()
+InitializeCORBA()
+ResolveObjectName()
+TerminateCORBA()

-m_CORBA_NC
-m_orb

CORBAClientClass

«implementation class»
ICalculator_BasicMathClass

COM stub class:
Marshalls parameters between
COM client and bridge.

CORBA proxy class:
Makes calls on the target object
on behalf of the COM bridge class.

COM bridge class:
Receives calls from COM clients
abd makes calls to the CORBA
proxy object on behalfof COM
clients. Must have specific type
information about the target object
at compile time.

99

APPENDIX H

IDL Code of the Target CORBA Object

interface BasicMath {
 void Add(in short x, in short y, out long z);
};

interface CORBACalculator : BasicMath
{
};

IDL to MIDL Translation for the COM View of the Target Object

import "oaidl.idl";

[
 object,
 uuid(0A597D75-FCCD-4f93-A4F0-FAC890A2CEE5),
 oleautomation
]

interface ICalculator_BasicMath:IUnknown
{
 HRESULT Add([in] short x, [in] short y, [out] long* z);
};

[
 uuid(C2648F1C-3DD1-4da9-A076-42F7E269035C), //LIBID
 version(1.0), helpstring("COMView Calculator Library")
]
library COMViewCalculatorLibrary
{
 importlib("stdole32.tlb");
 [uuid(0528DA48-23B1-4da7-8DBC-AD5BC6081C7E)] //CLSID
 coclass COMViewCalculator
 {
 [default] interface ICalculator_BasicMath;
 };
};

100

APPENDIX I

Late Bound COM_CORBA Bridge Class Diagram

+HousingManagerClass()
+~HousingManagerClass()
+CreateObject()
+CreatePersistentPOA()
+getORB()
+InitializeCORBA()
+MessageLoop()
+ORBShutdown()
+RegisterObject()
+setPOAManagerActive()
+TerminateCORBA()

-m_NamingContext
-m_ORB
-m_RootPOA
-m_RootPOAManager

HousingManagerClass

+CORBAViewCreatorClass()
+~CORBAViewCreatorClass()
+CreateObject()
+getORB()

-m_CORBAView
-m_ORB
-m_pCOMClient

CORBAViewCreatorClass

+_non_existent()
+_primary_interface()
-getInterfaceDef()
-initializeIR()
+InitializeProxy()
+invoke()
-MarshallArguments()
-setObjectName()
-setORB()
-UnMarshallArguments()

-m_intf_def
-m_IR
-m_ObjectName
-m_ORB
-m_pCOMClient
-m_pIDispatch
-m_Request

CORBAView_ProxyClass

+RequestClass()
+~RequestClass()
+Create_COM_Arguments()
+Create_CORBA_Arguments()
+Invoke()

-m_arguments
-m_intf_def
-m_IR
-m_orb
-m_pIDispatch

RequestClass

-POA_COMFactory()
#POA_COMFactory()
+~POA_COMFactory()
-operator=()
+_get_interface()
+_is_a()
+_make_stub()
+_narrow()
+_narrow_helper()
+_primary_interface()
+_this()
+CreateObject()
+dispatch()
+invoke()

POA_COMFactory

«instance»

«instance»

PortableServer::DynamicImplementation

1

*

+COMClientClass()
+~COMClientClass()
+InitializeCOM()
+ResolveObject()
+ResolveObjectGUID()
+TerminateCOM()

-pClassFactory
-pIDispatch

COMClientClass

1

1

CORBA dynamic skeleton class:
The CORBA view must inherit from
this abstract class and implement
dynamic skeleton interface (DSI)
operations.

CORBA servant/bridge class:
Receives calls from CORBA clients
and makes calls to the COM proxy
object on behalf of CORBA clients.
Uses type information from an
interface repository to marshall
function arguments.

COM proxy class:
Makes calls on the target COM object on behalf
of the CORBA servant/bridge class via the
IDispatch interface.

101

APPENDIX J

Late Bound CORBA_COM Bridge Class Diagram

HousingManagerClass

ExeHousingManagerClass

COMFactoryClass

+COMView_ProxyClass()
+~COMView_ProxyClass()
+AddRef()
+CreateRequest()
+GetIDsOfNames()
-getListofOperations()
+GetTypeInfo()
+GetTypeInfoCount()
+Invoke()
-MarshallArguments()
+QueryInterface()
+Release()
-UnMarshallArguments()

COMView_ProxyClass

+CORBA_COM_BridgeClass()
+~CORBA_COM_BridgeClass()
+AddRef()
+CreateObject()
+GetIDsOfNames()
+GetObjectW()
+GetTypeInfo()
+GetTypeInfoCount()
+GetTypeInfoForGUID()
+Invoke()
+LoadTypeLibrary()
+QueryInterface()
+Release()

CORBA_COM_BridgeClass

+CORBA_COM_Bridge_FactoryClass()
+~CORBA_COM_Bridge_FactoryClass()
+CreateInstance()
+getCLSID()
+getDescription()
+getPROGID()
+getVersionIndependentPROGID()

CORBA_COM_Bridge_FactoryClass

+CORBAClientClass()
+~CORBAClientClass()
+getIR()
+getORB()
+InitializeCORBA()
+ResolveObjectName()
+TerminateCORBA()

CORBAClientClass

Windows::IClassFactory

Windows::IUnknown

Windows::IDispatch

1

1

«instance»

1

*

RegistrarClass

1

1

«utility»
RegistryValueClass

«instance»

+RequestClass()
+~RequestClass()
+CreateArgumentList()
+Invoke()

RequestClass

1

1

COM View Class:
Receives calls from COM
clients via IDispatch, and
forwards the calls to a
CORBA proxy object. Uses
information from a type
to marshal arguments.

CORBA Proxy Class::
Makes calls on the target
CORBA object via DII, on
behalf of CORBA View objects.

102

APPENDIX K

Test Data

COM Client Co-located

test run
number

COM object
static invocation

COM object
dynamic invocation

CORBA object
static invocation

CORBA object
dynamic invocation

1 110.4 182.0 949.2 4929.1
2 110.7 181.1 949.6 4942.3
3 109.3 183.4 952.9 4941.8
4 109.9 182.4 949.6 4922.8
5 110.1 182.6 953.2 4939.2
6 109.1 189.0 951.8 4938.9
7 109.5 182.3 951.0 4944.4
8 109.3 182.0 957.8 4931.6
9 109.6 182.5 955.3 4927.1

10 109.1 182.1 954.4 4935.1

Median 109.6 182.4 952.4 4937.0

CORBA Client Co-located

test run
number

CORBA object
static invocation

CORBA object
dynamic invocation

COM object static
invocation

COM object
dynamic invocation

1 457.3 635.7 930.2 5155.1
2 448.5 633.6 942.0 5167.2
3 448.9 630.6 951.5 5177.1
4 449.5 632.8 935.7 5169.7
5 448.1 707.7 941.0 5183.1
6 448.5 635.7 935.9 5189.4
7 449.1 629.1 941.1 5178.6
8 453.0 633.5 934.4 5221.3
9 453.0 633.7 933.3 5192.3

10 450.1 624.8 936.0 5196.1

Median 449.3 633.6 936.0 5180.9

103

COM Client Remote

test run
number

COM object static
invocation

COM object
dynamic invocation

CORBA object
static invocation

CORBA object
dynamic invocation

1 866.8 1272.9 1578.1 5856.9
2 797.9 1284.0 1571.5 5850.9
3 812.5 1254.2 1576.2 5852.3
4 791.2 1265.8 1565.3 5857.3
5 798.8 1259.0 1587.6 5836.3
6 772.8 1245.6 1562.1 5823.0
7 776.3 1240.5 1571.8 5849.4
8 774.3 1239.1 1577.1 5844.1
9 771.8 1230.7 1559.1 5828.0
10 776.5 1244.4 1563.3 5853.7

Median 783.9 1249.9 1571.7 5850.2

CORBA Client Remote

test run
number

CORBA object
static invocation

CORBA object
dynamic invocation

COM object
static invocation

COM object
dynamic invocation

1 994.5 1651.1 1468.0 5943.3
2 997.1 1551.0 1302.2 5953.7
3 984.4 1553.8 1297.2 5933.0
4 989.0 1528.5 1299.0 5957.6
5 968.7 1532.9 1287.3 5963.6
6 970.3 1537.2 1282.3 5954.1
7 979.4 1555.4 1282.2 6003.6
8 973.2 1544.1 1286.3 5970.9
9 971.3 1540.7 1281.9 5979.6
10 970.0 1547.1 1273.1 6211.8

Median 976.3 1545.6 1286.8 5960.6

104

REFERENCES AND BIBLIOGRAPHY

[1] Arno Puder, Kay Römer; MICO An Open Source CORBA Implementation;
Morgan Kaufmann Publishers 1999

[2] MICO Homepage http://www.mico.org/ (accessed 1/2/03)

[3] TAO Homepage
http://www.cs.wustl.edu/~schmidt/TAO.html (accessed 1/2/03)

[4] Michi Henning, Steve Vinoski; Advanced CORBA Programming with
C++; Addison Wesley 1999

[5] Kay Römer; MICO is CORBA Eine Erweiterbare CORBA-
Implementierung für Forschung und Ausbildung; Diploma Thesis Johann
Wolfgang Goethe-University Frankfurt 1998

[6] Fintan Bolton; Pure CORBA; SAMS Publishing 2001

[7] Frank Pillhofer; Design and Implementation of the Portable Object
Adapter; Diploma Thesis Johann Wolfgang Goethe-University Frankfurt
1999

[8] OMG, Common Object Request Broker Architecture: Core Specification,
December 2002 Version 3.0.2 - Editorial update

[9] OMG, Naming Service Specification, September 2002 Version 1.2,
http://www.omg.org

[10] Dale Rogerson, Inside COM, Microsoft Press 1996

[11] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides; Design
Patterns; Addison-Wesley 1994

[12] Kraig Brockschmidt, “Inside OLE” 2nd Ed. Microsoft Press 1995

[13] Birrell, A.D. & Nelson, B.J. "Implementing Remote Procedure Calls."
ACM Transactions on Computer Systems 2, 1 (February 1984): 39-59.

105

[14] Andrew S. Tanenbaum, "Computer Networks" Third Edition, Prentice Hall
1994

[15] OMG History, http://www.omg.org/news/about/index.htm
(accessed 10/9/03)

106

VITA

EDWIN KRAUS

Personal Data: Date of Birth: January 20, 1970

Place of Birth: Mediasch, Romania

Marital Status: Single

Education: Public High-school, Bochum, Germany

Professional School, Bochum Germany; major in Electronics 1991

FH-Bochum, Bochum, Germany; Bachelor in Mechatronics

(Electrical/Mechanical Engineering & Computer Science),

1997

East Tennessee State University, Johnson City, Tennessee;

Information Science, M.S. 2003

Professional
Experience:

Nokia Electronics, Bochum, Germany; Technician, 1987-1991

University of Bochum, Bochum, Germany; Student Assistant,

department of physics, 1995

OVAKO Ajax, York, South Carolina; Engineering Intern 1996

Siemens Energy&Automation, Johnson City, Tennessee; Process

Engineer, since 1997

Honors and Awards: Member of Upsilon Pi Epsilon

Member of Phi Kappa Phi

	Interworking Methodologies for DCOM and CORBA.
	Recommended Citation

	Microsoft Word - Thesis_Manuscript.doc

