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ABSTRACT 

Interworking Methodologies for DCOM and CORBA 

by 

Edwin Kraus 

 

The DCOM and CORBA standards provide location-transparent access to 

network-resident software through language independent object interfaces. Although the 

two standards address similar problems, they do so in incompatible ways: DCOM clients 

cannot use CORBA objects, and CORBA clients cannot utilize DCOM objects, due to 

incompatible object system infrastructures. 

This thesis investigates the performance of bridging tools to resolve the 

incompatibilities between DCOM and CORBA, in ways that allow clients to cross object 

system boundaries. Two kinds of tools were constructed and studied: tools that bind 

clients to services at compile time, and tools that support dynamic client-server bindings. 

Data developed in the thesis shows that static bridges are on the order of five times faster 

than dynamic bridges. Measurements conducted with remote clients also showed that with 

increased network delays, performance differences between static and dynamic bridges 

become negligible.  
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CHAPTER 1  

INTRODUCTION 

Inter-computer communication has been a key area of computer research since 

Defense Advanced Research Projects Agency scientists first connected two computers in 

1969 [14]. Early research on data communications focused on the reliable transmission of 

bits and bytes over distance using guided media. This research, in turn, led to research into 

protocols for network communication, including simple, standard protocols for networked 

message transmission. One such protocol, the Open Software Foundation’s Distributed 

Computing Environment (DCE), was introduced in the early 1990s at a time when 

structured procedural programming was the dominant software development model. DCE, 

among its other features, supported the use of Remote Procedure Calls (RPC) to invoke 

procedures on remote computers as if they were local, and without regard to the details of 

the communication infrastructure. 

Since 1990, the emergence of object oriented application development has created 

a need for more expressive successors to RPC: protocols that allow applications to invoke 

not just remote procedures, but procedures associated with specific instances of network-

resident classes. This need was addressed, in one way, by the Object Management 

Group’s Object Management Architecture. The Object Management Group (OMG) is a 

professional association that develops standards for object-oriented-based distributed 

computing. The key standard in the OMG’s Object Management Architecture (OMA) is 

the Common Object Request Broker Architecture (CORBA). CORBA defines an 
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infrastructure for enabling communication between the other components of the OMA. 

CORBA, like other OMG standards, is a platform independent standard—but, like other 

OMG standards, has been deployed primarily on UNIX-like1 systems. This focus on 

UNIX is due, in part, to UNIX’s dominance as a platform for distributed computing in the 

early 1990’s, when CORBA was originally developed. 

While the OMG was developing CORBA, Microsoft, the dominant vendor for PC 

operating systems, was developing its own standard for component-based programming. 

Microsoft’s Component Object Model (COM) started as a programming model that 

supported inter-process communication infrastructure. Later, when desktop PCs were 

applied in distributed computing, COM evolved into Distributed COM (DCOM): a 

standard that, like CORBA, supports the remote creation and invocation of objects. 

The CORBA and DCOM standards address similar problems—and address them 

well enough to support the development of a great many diverse applications. Still, the 

CORBA and DCOM distributed computing architectures differ in several fundamental 

ways. Among the differences are incompatible object models with inconsistent object life 

cycle management and a fundamental difference in what objects are.  

In order to facilitate interaction between COM- and CORBA-based applications, 

the OMG released an interworking specification between COM and CORBA as a part of 

its CORBA 2.2 specification. The interworking specification provides a methodology for 

enabling communication between objects in DCOM and CORBA, and describes ways for 

                                                           
1 UNIX like systems refers to operating systems that are closely related to the UNIX system developed by 
K. Thompson and D. M. Ritchie at Bell Labs in 1971 
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objects to access key services in the foreign object system. A key part of this methodology 

is a bridge: a vehicle that enables objects from different object systems to communicate.  

This thesis analyzes the characteristics of bridge-based DCOM-CORBA 

communication. Bridges can be classified into two types, according to when their 

endpoints are bound to target objects: early (static) bound bridges, which are compiled 

with specific knowledge of the type of object they service; and late (dynamic) bound 

bridges, which rely on runtime type information rather than compile time type information 

to provide their services.  The thesis assesses on how the choice of bridge type, in 

conjunction with the degree of communicating object separation, affects communication 

performance and flexibility 

The work undertaken here was an empirical study.  A pair of COM and CORBA 

servers, together with a corresponding pair of COM and CORBA clients, were created, 

along with two two-way bridges: one static, and one dynamic. Two series of 

measurements were then conducted to determine invocation times. One series represents 

invocations by collocated clients, the other invocations by remote clients. The results 

showed that dynamic bridges are on the order of five times slower than static bridges. 

Indications were also present that for remote clients bridge performance differences 

become less significant as network latencies increase. 
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1.1 Thesis Plan 

The remainder of this manuscript is divided into eight chapters. Chapters two 

through three survey background material, including the COM and CORBA object 

management systems. Chapter four presents bridging concepts as they apply to this thesis 

project, followed by a description of the test tools in chapter five. Chapter six describes 

the bridges themselves. Chapters seven and eight conclude by presenting the data and 

discussing the study’s results. 
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CHAPTER 2  

CORBA OVERVIEW 

As object oriented programming paradigms grew in popularity in the late 1980’s, 

the need for standards for manipulating distributed objects increased in importance. A 

consortium of software vendors, the Object Management Group (OMG), was founded in 

1989 to develop standards for object-based distributed computing [15]. The first OMG 

draft standard the Object Management Architecture (OMA), was released in 1991. 

Since 1991, the OMA has gained considerable popularity. Most people, however, 

now refer to this architecture using a name originally bestowed upon that architecture’s 

central element: CORBA. 

The CORBA portion of the OMA specification describes an infrastructure and 

interfaces needed for creating, locating, and invoking operations on objects, distributed 

across a heterogeneous environment of host computers and operating systems. The rest of 

the OMA is made up of three somewhat blurry categories of interfaces: CORBA Services, 

CORBA Facilities and Application Interfaces. Interfaces that apply to all CORBA objects 

normally fall in the CORBA Services category and are often referred to as having 

horizontal orientation. Domain-specific interfaces (e.g., manufacturing, banking, health 

care) are said to have vertical orientation and fall in the category of CORBA Facilities. 

The last category of interfaces, Application Interfaces, is specific to a particular CORBA 

application. If similar Application Interfaces are used in different applications, over time 
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these interfaces may become part of the CORBA Facilities, as a common need for these 

interfaces is recognized. 

 CORBA 
Facility C

CORBA
Services 

CORBA 
Facility B

Object Request Broker 

Application 
Interfaces 

CORBA 
Facility A 

 

Figure 1 The Object Management Architecture (OMA) [4] 

2.1 CORBA Objects 

Before the advent of Object Oriented Programming (OOP), procedure-oriented 

programming was the dominant model for software development. In 1984, Birrell and 

Nelson [13] devised a strategy for procedure-call-based distributed programming, Remote 

Procedure Call (RPC), that frames a network send-receive operation as a procedure call 

and subsequent return from procedure. RPC simplified distributed computing by shielding 

the programmer from the many details involved in calling a procedure that is in a different 

address space, or on a different computer.  

The more complex OOP model of software development is based on identifiable 

groupings of procedures and data known as objects. Objects are constructed in accordance 

with principles like encapsulation, hidden implementation of functionality; polymorphism, 
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variation of behavior depending on object type; and inheritance, propagation of attributes 

and functionality to child classes. 

In the CORBA approach to OOP, programmers use a multipart strategy for 

defining a network object. First, a language known as an Interface Definition Language 

(IDL) is used to specify an interface for a class of networked objects. IDLs were first 

introduced in the context of RPC programming as a necessary tool for location 

transparency. The CORBA standard expanded the role of IDLs, morphing them into tools 

that enforce the consequent application of object oriented methods, encapsulation, 

inheritance and polymorphism. A CORBA-style IDL definition creates a blueprint for an 

object. This blueprint serves as a vehicle for informing clients about the makeup and 

behavior of an object, and also as a description of a constructed object’s form.  

Logically a CORBA object is an instance of a CORBA interface. CORBA 

provides the programmer with location-transparent, language-independent networked 

objects. Location transparency means that the programmer does not need to specify a 

networked code’s location: IDL-created code automatically calls the remote object’s 

methods, making it appear as if the remote object resides in the local object’s address 

space. Language independence means that the programmer does not have to ensure that a 

code that uses an object is written in that object’s native language, so long as both objects 

are coded in CORBA-supported languages: the IDL compiler automatically creates the 

necessary mappings between method calls and the methods in use. 
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2.2 Stubs, Skeletons and Servants 

The CORBA mechanism for supporting location-transparent method invocation 

involves substantial behind-the-scenes support and indirection. In part this support is 

provided through intermediary entities called Stub and Skeleton objects. A Stub object is 

an object that resides in the client’s address space and has an interface identical to the 

target CORBA object. Likewise, a Skeleton object resides in the server’s address space, 

with the same interface as the target object. The target object, also called a Servant, is the 

entity that actually performs operations associated with its interface. 

Stub and Skeleton objects are proxy objects in the client and server address spaces. 

When a client program invokes an operation on a CORBA object, the work of invocation 

begins in the Stub object. The Stub responds to a request for remote invocation by packing 

(marshalling) the operation’s parameters into a message, then sending a message, through 

mechanisms discussed later, to the Skeleton. The Skeleton then unpacks (unmarshalls) the 

message, and invokes the desired operation on the Servant. When the Servant completes 

this operation the call returns to the Skeleton object, which marshals the results into a 

response, which is returned to the Stub object. The Stub then completes the call by 

returning the results to the client program. Before CORBA 3.0 all calls made to CORBA 

objects via the Stub/Skeleton mechanism were synchronous. CORBA 3.0 also supports 

asynchronous calls 

IDL provides the programmer with all the code needed for the Stub and Skeleton 

objects. Programmers are left with the task of developing the logic for the Servants, which 

represent the meat and potatoes of CORBA objects.  
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Figure 2 shows the relationship between stub objects, skeleton objects and servant 

objects. 

 

 
 

Stub Object 

Client 

call foo() 

 

Skeleton 
Object 

Server

Some 
Object 

call foo() 

Provided by IDL 
compiler 

Servant made by app. 
developer 

 

Figure 2 Relationship between Stub, Skeleton, and Servant 

2.3 The ORB 

The Object Request Broker (ORB), also referred to as CORBA’s object bus, is the 

central CORBA element through which objects on the client side and objects on the server 

side can communicate. The terms CORBA and ORB are often used synonymously; 

however, in this paper the term ORB denotes the ORB core, which acts as the glue that 

holds the different CORBA elements together. 

Figure 3 shows a graphical representation of CORBA and demonstrates the central 

role the ORB plays in the integration of different CORBA elements. What makes the ORB 

central to a CORBA system is that the ORB interfaces with all elements of the 

architecture, as well as with other ORBs on remote host computers.  
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Figure 3 The Common Object Request Broker Architecture (CORBA) 

The communication between ORBs, particularly ORBs from different vendors, 

was standardized in CORBA 2.0, with the introduction of the General Inter-ORB Protocol 

(GIOP) and the Internet Inter-ORB Protocol (IIOP). GIOP defines the communication 

between ORBs in general terms. It describes a Common Data Representation (CDR) 

format and message formats for sending requests and responses between ORBs. GIOP 

was defined independently of any particular transport protocol in order to accommodate a 

wide range of networking infrastructures. IIOP, an Internet-specific implementation of 

GIOP, was released at the same time as GIOP. IIOP provides the full-duplex, connection 

oriented communication channel that GIOP needs, via the TCP/IP protocol. 

Figure 3 shows how client and server applications that reside on different hosts 

would use their respective ORBs to communicate via IIOP. A client and server that are 
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co-located on a single host should communicate using more efficient, inner-ORB 

communication primitives.  

Communication between ORBs and their respective applications involves the use 

of one of three CORBA interface mechanisms, according to the communication’s type: 

• ORB interfaces support communications between applications and interfaces that are 

known to those applications at compile time. These interfaces, known as Static 

Invocation Interfaces (SIIs), are invoked implicitly by invocations of Object 

References (see next section). They are specific to the server application’s objects. 

They are represented by the stub and skeleton procedures discussed earlier. 

• CORBA’s Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI) 

support the invocation and implementation of operations for interfaces where the 

applications don’t have knowledge of the interfaces at compile time. 

• Finally, Object Adapters (OAs) are logical elements that allow an ORB to make the 

connection between the abstract notion of a CORBA object and its implementation, 

the Servant. 

The ORB interface, OA interface, DII and DSI interfaces are defined by the OMG 

and published as part of the CORBA standard [8]. The ORB interface is used for ORB 

initialization and administrative interactions between applications and ORB. 

An ORB’s operation is also supported by CORBA’s Interface and Implementation 

Repositories. The Interface Repository is a database that stores the definition of CORBA 

interfaces in IDL. The constructs stored in the Interface Repository are equivalent to the 
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IDL code used to generate the static stubs and skeletons. DII and DSI are the primary 

users of the Interface Repository.  

The Implementation Repository is a storage facility for server entries. ORBs use 

this facility to activate servers on demand. When a client invokes an operation on a 

CORBA object, the server hosting the object may not be running at the time of the 

request. The ORB responsible for the server must determine if the server is already active, 

and activate it if it is not, before passing it the request from the client. The Implementation 

Repository maintains a table that associates “Server Name” with “Start Command” and 

“Activation Mode”. The “Start Command” is executed in order to start a server when 

needed. The “Activation Mode” is a qualifier that specifies if a new server instance should 

be started for every client or if clients share the services of a single server instance. More 

complex features like load balancing are also possible via the Implementation Repository. 

2.4 Object References 

A CORBA object is an abstract entity that is realized with the aid of a Stub object, 

a Skeleton object, a Servant and a wealth of mechanisms to enable these elements to 

interact transparently. An object reference, also referred to as Interoperable Object 

Reference (IOR), is a representation of a CORBA object that gives a code an ability to 

access that object, while hiding the details of that object’s implementation and status. 

Ultimately, for the client the only tangible evidence of a CORBA object’s existence is the 

IOR that client holds on that object. Semantically an IOR is very similar to an object 

pointer in C++. Vinoski and Henning [4] present the following list of features of an IOR. 
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• Every object reference identifies exactly one object instance. 

• Several different references can denote the same object. 

• References can be nil (point nowhere) 

• References can dangle (like C++ pointers that point at deleted objects) 

• References are opaque (the client is not allowed to look at their contents) 

• References are strongly typed. 

• References support late binding. 

• References can be persistent. 

• References can be interoperable. 

In a language with explicit pointers like C++, an IOR is represented in the client’s 

address space as a pointer to an instance of a C++ object. Invoking an operation on this 

pointer invokes an operation on the CORBA object, which means that the invocation has 

to be propagated through Stub, client ORB, server ORB, object adapter, Skeleton and 

ultimately to the Servant. An IOR carries all the necessary information in its structure (see 

Figure 4) in order for a client call, on an object interface, to find its target. 

 

Type Information 
Repository ID 

Endpoint
Information

Object 
Key 

Communication Profile I

Endpoint
Information

Object 
Key 

Communication Profile II 

…………………. 

 

Figure 4 Structure of an IOR 
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The repository ID is a string that identifies an IOR’s type. It can be used for type-

safe downcasting or any other operation that requires knowledge of a CORBA object’s 

type. If an ORB implements an Interface Repository, the Repository ID is used as a key to 

look up entries in the repository. The OMG has defined three possible formats for the 

repository ID: the IDL format, the DCE UUID format, and the Local format. Of these, the 

IDL format is by far the most popular. The type of a CORBA object is defined in IDL; 

therefore it is the IDL compiler that generates the repository IDs. The repository ID 

always corresponds to the most derived type of an IDL interface. For example, the IDL 

format of a repository may look like the following: 

IDL:Building/Skyscraper:1.0 

The IDL source code resulting in the above repository ID would be the following: 

module Building { 

 interface Skyscraper{ 

 }; 

}; 

The number 1.0 in the above example is a version ID that is added by the IDL compiler. 

Besides the repository ID, an IOR also contains at least one communication 

profile. A communication profile stores all information required to locate and establish 

communication with an object. If an IOR is to be used with different communication 

protocols the IOR contains multiple profiles, one for each protocol. However, most IORs 

contain only one profile, a profile for IIOP—the most common protocol in use for 

CORBA objects.  
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Because IIOP is based on TCP/IP; it represents endpoint information as an IP 

address and a port number. A host name that can be resolved via the Domain Name 

System (DNS) may be used in place of an IP address. The endpoint information in a 

profile designates either the server that implements the object, or an Implementation 

Repository that knows the server’s address. The former is called direct binding; the latter, 

indirect binding. 

 An IOR’s endpoint information allows the ORB to locate the server that 

implements an object. Since a server can implement multiple objects, the ORB also needs 

additional information that uniquely identifies an object within the server. The additional 

information is provided in the object key. The object key is a series of octets that can 

contain any information that the server chooses for the identification of an object. This can 

range from a string to a Universal Unique Identifier (UUID). 

IORs are generated in the servers that implement CORBA objects, and used by 

clients to access object operations. From this results the need to distribute IORs from 

servers to prospective clients. Currently an IOR can be distributed either by converting it 

into a string and sending it via e-mail, or by using a naming or trading service.  

A naming service stores associations between an object’s name and its IOR. A 

client that knows a naming service’s location and an object’s name can query the naming 

service and acquire an IOR. The trading service, which works similarly, stores 

associations between object properties and IORs. The client can query for object 

references from a trading service not by name, but by object properties. 
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Also noteworthy is the distinction between IORs for transient CORBA objects and 

IORs for persistent CORBA objects. IORs for transient CORBA objects reference objects 

that become permanently unavailable when a server is shut down. These IORs contain 

endpoint information, pointing to the server process that hosts a CORBA object. IORs for 

persistent CORBA objects reference objects that can be reactivated on demand. These 

IORs contain endpoint information pointing to an Implementation Repository that 

activates servers on demand. After server activation, the client is given a new IOR that 

points to the server process and is valid until the server is shut down. When the server 

becomes unavailable the client falls back to using the persistent IOR.  

2.5 Object Adapter 

Next to the ORB core, the Object Adapter is the most significant entity in 

CORBA—so significant that it is often treated as part of the ORB. Until CORBA version 

2.2 the only object adapter in the CORBA specification was the Basic Object Adapter 

(BOA). However, omissions in the BOA specifications led the OMG to deprecate the 

BOA, replacing it with a new standard, the Portable Object Adapter (POA). 

The POA’s main responsibility is to join the interface of a CORBA object, 

described in IDL, with its implementation, the Servant. In this regard the POA acts as an 

adapter between servants residing in the server and the ORB. POAs also control the life 

cycles of CORBA objects and servants. Figure 5 shows the states of a CORBA object 

throughout its life cycle. A CORBA object transitions through the individual states during 

its life cycle, controlled by POA operations. 
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CORBA’s discipline for separating interface and implementation allows a user to 

create a CORBA object without actually providing an implementation at the time of 

creation. Two POA operations support object reference creation: 

PortableServer::POA::create_reference() 

PortableServer::POA::create_reference_with_id(). 

Either of these operations brings a CORBA object into existence; however, neither 

instantiates a servant for the new object. 

An object, once created, remains available until its server is shut down. When a 

server is shut down, an object that was created by a transient POA ceases to exist 

indefinitely. In contrast, an object created by a persistent POA becomes temporarily 

unavailable. Figure 5 shows the different states a transient CORBA object assumes in the 

course of its life cycle. 
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Figure 5 Life Cycle States of a Transient CORBA Object 

Whether a POA creates persistent or transient objects depends on the Policies that 

a POA was given at the time of its creation. Policies are equivalent to attributes. Prior to 

creating a POA, a list of policies is compiled, which is then passed to the POA create 

function. Policies, which control a wide range of POA characteristics, include lifespan 
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policies; policies for mapping objects to servants; implicit activation policies; and Object-

ID to servant association policies. 

 The following sample code shows how to apply policies when creating a POA. 

// create persistent lifespan policy;  

// Persistent POA's require the -POAImplName comand line parameter to be set  

// to the same value as the name of the entry for this server in the implementation repo  

PortableServer::LifespanPolicy_var lifespan =  

  poa->create_lifespan_policy(PortableServer::PERSISTENT); 

 

// create ID assignment policy; default is SYSTEM_ID but we want the user 

// to set the object ID; object ID must be unique for the POA  

PortableServer::IdAssignmentPolicy_var IDAssignment =  

  poa->create_id_assignment_policy(PortableServer::USER_ID); 

 

// create empty policy list for new child POA 

CORBA::PolicyList policy_list; 

 

// add to policy list 

policy_list.length(2); 

policy_list[0] = PortableServer::LifespanPolicy::_duplicate(lifespan); 

policy_list[1] = PortableServer::IdAssignmentPolicy::_duplicate(IDAssignment); 

 

// create POA 

PortableServer::POA_var test_poa = poa->create_POA("TestPOA", poaman, policy_list); 

Connecting a CORBA object, represented by its IOR, to its Servant is called 

activating the object. A POA maintains a table called an active object map that associates 

object IDs with servants. An object ID is part of the object key (see Figure 4) and is 

passed to the POA when a client invokes an operation on an IOR.  
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By and large the POA is a quite complex construct encompassing a vast number of 

features. This complexity, however, makes the POA very versatile. It gives CORBA the 

ability to work with small applications running on embedded systems, as well as with 

large systems, that use millions of objects. 

 

2.6 MICO Overview 

 
MICO is the CORBA implementation used for this study. The name MICO [2] 

stands for MICO Is CORBA, following a naming schema introduced by the Free Software 

Foundation (FSF) for naming the GNU (GNU’s not Unix) project. In the spirit of the FSF, 

MICO is distributed as free software under the GNU public license. 

MICO is one of several widely known open source CORBA implementations. 

MICO was chosen for this study because it easy to learn and highly modular—i.e., 

capable of supporting emerging features of the CORBA specification.  

A partial list of features in MICO 2.3.7, the version used for this study, reads as 

follows: 

• IDL to C++ mapping  

• Dynamic Invocation Interface (DII)  

• Dynamic Skeleton Interface (DSI)  

• Interface Repository (IR)  

• IIOP as native protocol (ORB prepared for multi-protocol support)  
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• Portable Object Adapter (POA)  

• Objects by Value (OBV)  

• CORBA Components (CCM)  

• Dynamic Any  

• Interceptors  

• Support for secure communication and authentication using SSL  

• Support for nested method invocations  

• Implementation Repository  

• Interoperable Naming service  

• Trading service  

• Event service  

2.6.1 The MICO ORB 

The design of the MICO ORB [5] is based on the micro-kernel approach to 

operating systems design. The ORB core provides only the most basic functionality 

required of an ORB: 

• Relaying of method invocations 

• Bootstrapping 

• Support for the creation of IORs 
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Relaying of method invocations is the primary function of an ORB. The MICO 

designers placed great emphasis on generalizing this function in the ORB. They 

interjected intermediary objects between applications and the ORB core to achieve 

maximum generalization of the ORB core. These intermediary objects implement standard 

CORBA interfaces on the application side, and they use the generalized interfaces on the 

ORB side. From the ORB’s point of view, the intermediary objects fall into two 

categories: request objects and execution objects. Request objects generate method 

invocation requests; execution objects process these requests. The ORB implements an 

interface for each of the two categories of intermediary objects–a method invocation 

interface, and a method execution interface.  

CORBA request objects are typically called “Stub” objects. Applications interact 

with stub objects either through the SII or DII interface. Requests originate in client 

applications and are forwarded by the stub objects to the ORB core via the ORB’s method 

invocation interface.  

ORB Core 
Method Invocation Interface Method Execution Interface 

Request Objects Execution Objects

Applications 

 
SII 

Object 

 
DII 

Object 
IIOP 

Object 
IIOP 

Object 
DSI 

Object 

 
SSI 

Object 

 

Figure 6 MICO ORB Design Model; adapted from [5] 
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The ORB core relays requests generated through its method invocation interface to 

the appropriate execution object, using its method execution interface. Execution objects 

are called “Skeleton” objects in CORBA. Skeleton objects interact with server 

applications either via the DSI interface or the SSI interface. Skeleton objects, like Stub 

objects, forward requests to server applications, which ultimately perform the requested 

services.  

The IIOP object shown in Figure 6 plays a dual role, as either a request object or 

as an execution object. IIOP objects are communication objects that simply forward and 

also receive invocations; applications don’t interact with these objects directly. When an 

ORB cannot find a local execution object to satisfy a request, it uses an IIOP object to 

forward the request to a remote ORB. In the missing object scenario, each ORB, the local 

and the remote ORB, uses an IIOP object for communication. The local ORB uses an 

IIOP object in the role of an execution object, whereas the remote ORB uses an IIOP 

object in the role of a request object. 

Through the use of generically defined, ORB specific interfaces, the MICO ORB 

allows object adapters or transport objects to be changed without changing the ORB core 

itself. 
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Figure 7 Method Invocation with the MICO ORB 

Bootstrapping, the second most important task of an ORB core, is the ability of an 

ORB to give a CORBA application the ability to acquire an object reference. It is 

generally thought that bootstrapping is accomplished with the aid of a naming service or a 

trading service. However, before a naming service can supply IORs, an IOR to the name 

service itself must be acquired first. For this purpose, the MICO ORB implements the 

MICO binder, an ORB internal minimal naming service. Using the MICO binder, the 

ORB can obtain IORs for several key services at startup. To use the binder, the ORB must 

provide a tuple of locator, object ID, and type ID. 

Applications may request IORs for key services from the ORB by calling 

resolve_initial_references(). This function is provided as part of the OMG-standard ORB 

interface. In order for calls to resolve_initial_references() to succeed, the ORB must be 

told at startup what the locators are, to be used in finding objects that implement CORBA 
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services. The CORBA specification defines rules for passing command line arguments to 

the ORB, which enable the ORB to implement bootstrapping. 

Per the CORBA specification, every CORBA server must initialize the ORB by 

calling CORBA::ORB_init() upon startup. The initialization function receives the 

application’s command line parameters for parsing of ORB parameters. ORB parameters 

are of the form “–ORB[ParameterName] [ParmeterValue]”. The ORB removes its 

parameters before returning the command line to the application. One of these command-

line parameters, “-ORBIIOPAddr”, specifies the port that the MICO ORB’s IIOP server 

uses to listen for requests. Other ORB parameters include the IP addresses of CORBA 

services objects, like Interface Repository, Implementation Repository, and Naming 

Service 

Finally, the MICO ORB supports the creation of IORs through a template. IIOP 

transport objects contribute the communication endpoint information to the template. 

Object adapters request the template from the ORB every time an IOR must be created, as 

they bear the responsibility of creating IORs.  

2.6.2 The MICO Runtime Service 

A CORBA client application that requires the services of a particular CORBA 

object must use an IOR to access those services. To obtain an IOR the client may use a 

CORBA naming or trading service. MICO’s implementation of CORBA’s naming service 

is described later in this document.  
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Once in possession of an IOR a CORBA client makes calls to the object, 

completely unaware if the server is running or not. Ensuring that a server is running when 

calls are made to its objects is the responsibility of the MICO runtime service. A runtime 

service is a process that is started when its host is powered up. In a Unix environment 

these background processes are known as daemons; in Windows they are referred to as 

services. A single CORBA implementation may actually use multiple daemons for 

different CORBA services. 

MICO’s primary daemon process (micod.exe) contains a mediator object that 

works closely with the MICO Implementation Repository to start servers on demand. The 

mediator object intercepts a client’s first call to an IOR and starts the server process on the 

client’s behalf. However, this is only possible if an entry for the server is found in the 

Implementation Repository. 

In order for the mediator to be able to intercept calls between client and server, the 

IOR the client uses must contain the endpoint information for the mediator object—and 

not, more specifically, for the CORBA object it targets. This type of IOR is created by a 

POA with the persistent lifespan policy. When an IOR is created by a persistent POA, the 

mediator process’s endpoint information is placed into the IOR instead of the endpoint 

information of the CORBA objects process. Consequently a call made with such an IOR 

results in a call that is redirected to the mediator object.  

The mediator maintains a list of active servers, which is consulted every time a call 

arrives from a client. If the mediator determines that the requested server is not currently 

running, it automatically starts the server. Once activated the server informs the mediator 
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of its readiness, and also conveys its endpoint information to the mediator. The mediator 

then creates a new IOR for the client, this time placing the CORBA server’s address in the 

IOR. The new IOR is then returned to the client in an IIOP forward message. With the 

new IOR the client can contact the server directly and invoke the operations it requires. 

All of this indirection activity is performed transparently to the client.  

The approach described above for bringing server and client together is referred to 

as indirect binding. The alternative method is direct binding. Direct binding requires a 

server to run permanently. Since this is not possible, a method is required for sending an 

IOR to the client every time a server restarts. With indirect binding, persistent CORBA 

objects become possible. IORs to persistent objects remain valid when a server is shut 

down, and servers can be moved to different hosts without breaking existing IORs. The 

main drawback of indirect binding is that the first call a client makes takes slightly longer 

to complete than if the first IOR would have contained the server’s address directly.  
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Figure 8 Structure of The MICO Runtime Service 

2.6.3 The MICO Implementation Repository 

According to Henning and Vinoski [4] a CORBA Implementation Repository is 

responsible for all the functions described in the previous section, “The MICO Runtime 

Service”. However, the MICO documentation characterizes the Implementation 

Repository as a repository of server records, which provides information to the ORB 

daemon process.  
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Each record in the MICO Implementation Repository contains the following 

information: 

• A server name  

• The server activation mode (persistent; shared; unshared; per method; library; poa)  

• The server activation command 

• A list of objects hosted by the server 

The following is an example of a record in the MICO repository: 

 server name: TestServer 

 activation mode: poa 

 activation command: D:\CORBA\TestServer\Debug\TestServer.exe 

 object #0: IDL:IPort:1.0 

In this record, the server name uniquely identifies a server in the Repository.  

The activation mode specifies how and when a new server process should be 

started. An entry of “persistent” for the activation mode means that the server is started by 

some other means than the ORB daemon. A server started as “shared” only needs to be 

started once as all clients share the same server. In the case of an “unshared” server, a new 

server instance must be started for every client. With “per method” servers a new server 

instance must be started for every operation invocation on an object in the server. 

“Library” servers are servers implemented through a dynamic link library and are 

therefore linked directly into the client process.  

Another specialty of the MICO Implementation Repository is the activation mode 

“poa”. The MICO daemon process uses two types of mediators for activating servers. One 
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type activates BOA based servers, and the other POA based servers. The activation mode 

“poa” makes the POA mediator responsible for server activation, which starts the server 

as shared. 

The server activation command contains the command line string for starting the 

server. This command line string may contain any parameters that need to be passed to the 

server upon startup. 

 The record’s last field lists object types hosted by the server. The object types are 

expressed by Interface Repository IDs.  

For administrative purposes, MICO provides a program called imr. This program  

registers and un-registers servers with the repository. It also provides listing and forced 

activation capabilities. 

2.6.4 The MICO Naming Service 

CORBA naming services allow CORBA clients to use an object’s name to 

discover that object’s location. A naming service stores name-to-IOR associations called 

name bindings in a hierarchical structure whose nodes are referred to as naming contexts. 

Each naming context is an object containing a table of name bindings. The total construct 

resulting from this abstraction is called a naming graph [9].  

MICO implements its CORBA naming service through a daemon process called 

nsd, and an administration tool called nsadmin. Nsd is configured at startup via command 

line parameters to listen on the desired TCP port for client requests. Likewise the clients 

are given the naming service’s address as a command line parameter at startup.  
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A naming service stores object bindings, which are associations between names 

and object references. Object bindings are stored in a hierarchical tree like structure, very 

similar to the structure of a file system. The nodes of this structure are called contexts and 

the leaves are the object references.  

The names clients use to denote an object are compound names consisting of an id 

field and a kind field. This makes the syntax of a name in string format somewhat 

cumbersome. However, the kind field can be omitted when not in use, which happens 

fairly often. To fully qualify an object reference, a string containing naming contexts from 

the root of the tree to the object name—a notation similar to a file system designation—

can be used. The following is an example of an object name: 

root_context/node_context1/node_context2/object_name 

The OMG naming service specification describes in great detail the exact 

representation of object names as strings, including the use of escapes for the “/” character 

and the representation of a string’s kind field.  

2.6.5 The MICO Interface Repository 

The Interface Repository stores interface definitions, which are equivalent to the 

interface definitions stored in IDL files. The Interface Repository enables processes that 

have an incomplete understanding of an object at compile time to access that object via 

dynamic invocation. The IR is most often used with the Dynamic Invocation Interface 

(DII) and Dynamic Skeleton Interface (DSI) to discover the parameters and parameter 
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types of interface operations at run-time. With this information, the data can be marshaled 

for transport across ORB boundaries, and also across object system boundaries.  

The Interface Repository is itself implemented as a CORBA object. In MICO the 

server that hosts the Interface Repository is called ird. Ird is configured at startup through 

a command line parameter to listen on the desired TCP port for client requests. The same 

mechanism is used to convey to the client on what port ird is listening. 

Information is entered into the Interface Repository through the MICO IDL 

compiler. This use of the IDL compiler to feed idl files into the repository is an obvious 

implementation decision, since IDL compilers are designed to interpret idl files. The 

compiler can also re-create idl files from the information in the Interface Repository. 

The following is an example of a command that feeds an idl file into a repository: 

idl --feed-ir --no-codegen-c++ filename.idl  

The parameter “--no-codegen-c++“ suppresses the creation of language mapping 

files for C++. The reverse for the previous operation is as follows: 

idl --repo-id=IDL:InterfaceName:1.0 --no-codegen-c++ --codegen-idl --name=FileName 

The command above extracts the information for the interface specified by a 

repository ID, and creates the idl file specified by the name parameter. 

The Interface Repository stores information on interfaces in hierarchical 

groupings. At the top of the hierarchy are CORBA modules. 
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CHAPTER 3  

COM/DCOM OVERVIEW 

The idea at the root of COM is to break up monolithic applications into smaller, 

more manageable components2. A monolithic application is understood as a compiled and 

linked unit of code that is distributed to end-users. The problem with monolithic 

applications is that they are difficult to maintain. To counteract aging and obsolescence, 

applications must continuously be updated with newer code. By building applications 

from discrete components, the upgrading process can be simplified to replacing only the 

out of date components as opposed to the entire application. 

The concepts behind COM seem very much inspired by the concepts of object-

oriented programming, with only the motivation and problem domain being somewhat 

different. Microsoft saw component based application development as a means of 

overcoming problems related to the realities of application development, distribution, and 

maintenance.  

One cornerstone of COM, as well as object oriented programming, is the notion of 

encapsulation. According to Rogerson [10], the concept of encapsulation places the 

following constraints on components: 

• A component must hide the programming language used for its implementation, to 

enable any client written in any language to use the component. 
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• A component must be transparently relocatable on a network, to avoid breaking 

clients when a component is moved to a new location 

The balance of this chapter describes how the COM design supports these 

constraints. Not surprisingly, many of COM’s architectural features have direct 

counterparts in the CORBA framework. 

3.1 Interfaces 

An interface, as it is understood in COM, describes the behavior of a software 

component. An interface specification can be likened to a contract between a component 

and its clients, whereby the component trades the right to change existing interfaces for 

the certainty that it will always be able to communicate with correctly designed clients. If 

the need arises to modify an existing component, new interfaces may be added to it, but 

old interfaces must also be kept intact, because COM interfaces are defined as immutable.  

At the functional level, interfaces are groupings of related methods, defined in a 

meta language called MIDL (Microsoft Interface Definition Language). MIDL is used to 

describe the interfaces in terms of their operations, operation parameters, operation return 

types, and interface identifier. 

At the lowest level, the binary level, interfaces are list structures of pointers to 

functions. The COM runtime library uses these function pointers to invoke the operations 

of an interface on behalf of a client. The COM documentation specifies interfaces at this 

                                                                                                                                                                              
2 Components are self-contained units of code with a well-defined method of access. 
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lowest level to allow the use of any programming language, capable of producing the 

structures of function pointers described by COM, for component development that is. 

Apart from defining the structure of interfaces, the COM specification also defines 

a set of standard interfaces. Standard interfaces describe essential operations, which form 

the backbone of the infrastructure for component lifetime management, interface 

discovery, and many other essential services. In many respects, standard interfaces have 

the same purpose as services and facilities in CORBA. IUnknown is the one standard 

interface all other interfaces must inherit from in order to be considered COM interfaces. 

Interface inheritance is the commonly employed method in COM programming to extend 

or modify the behavior of an interface. The COM specification recommends a graphical 

notation format, which depicts interfaces as circles or jacks (see Figure 9), for clients to 

plug into the components.  

ComponentClient

Custom
Interfaces

Standard
Interfaces

 

Figure 9 COM Interface Symbology 

COM interfaces are sometimes classified as Custom or Automation interfaces. 

This nomenclature refers to an interface’s ability to support different programming 

languages. Although COM is a binary interface standard, and therefore independent of 

syntactic standards, scripting languages like VB Script or Java Script lack the capability to 
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access the binaries that define an interface. To enable these languages to use COM 

components, developers may choose to support a standard COM interface called 

IDispatch. This interface is commonly known as the Automation interface. The IDispatch 

interface provides scripting languages and other languages that don’t support direct access 

to function pointer tables with the ability to use COM components. Essentially, IDispatch  

binds components to callable procedures at runtime, thereby trading speed of access for 

ease of use. 

Languages that support the use and creation of custom interfaces include C, C++ 

and recent versions of VB. VB can now read and interpret type library files (*.tlb files), 

which are a binary representation of the interfaces supported by a particular component. 

3.2 COM Objects 

 Interfaces, rather than objects, are the key conceptual element in COM. A COM 

object—also known as a COM component, or coclass—is a kind of secondary element 

that serves as a concentrator for a set of interfaces. 

A COM object’s identity is established through a globally unique identifier 

(GUID). GUIDs are system-generated names that, supposedly, are generated in ways that 

prevent their reuse after generation. GUIDs identify several kinds of COM entities: a 

GUID that identifies a COM object is also known as class ID (CLSID).  

COM also supports a second type identifier for COM objects. These identifiers, 

known as programmatic identifiers (ProgIDs), are easier to read than CLSIDs—but they 
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are not guaranteed to be unique in time and space. COM supports mapping operations 

between ProgIDs and CLSIDs. 

3.2.1 Object References 

COM does not directly support the notion of an object reference, or the use of 

references to access COM codes. The entity in the COM standard that most closely 

resembles an object reference is a COM interface pointer. A COM interface pointer is 

essentially a pointer to a table of function pointers that corresponds to a particular 

interface. In contrast to CORBA object references COM interface pointers are simply 

references to memory structures in the client process. The memory structures pointed to 

are responsible for establishing the link to the interface implementation. CORBA 

references have more semantic depth in that they themselves represent the link to the 

object implementation. 

To acquire interface pointers, clients use the one standard interface, which is 

implemented on all COM objects and is known as IUnknown. IUnknown is defined in 

MIDL by the COM specification as follows: 

[local, object, uuid(00000000-0000-0000-C000-000000000046), 

 pointer_default(unique)] 

interface IUnknown 

{ 

HRESULT QueryInterface(  

 [in] REFIID riid, [out, iid_is(riid)] void **ppvObject ); 

ULONG AddRef(); 

ULONG Release(); 

} 
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TheAddRef() and Release() functions, which support object lifetime management, 

are discussed later. The remaining function, QueryInterface(), takes two parameters: an 

interface identifier and a variable that serves as placeholder for the corresponding 

interface pointer. Interfaces identifiers are GUIDs and are usually referred to as IIDs. 

When called, the implementation of QueryInterface() looks for a match on the requested 

IID. If one is found, the corresponding interface pointer is returned. 

Since all COM interfaces inherit from IUnknown, QueryInterface() can be called 

from any interface pointer. Consequently a client can navigate from any interface of an 

object to any other interface of that object. 

 

3.2.2 Object Lifetime Management 

Unlike in CORBA, where object lifetime is distinct from object server lifetime, the 

lifetime management of COM objects is closely related to the lifetime management of the 

component server. Details related to COM component servers are discussed in following 

sections. The end of life determination for COM objects relies on a technique known as 

reference counting. The reference counting mechanism is implemented through the 

IUnknown interface.  

Two of the three operations described in IUnknown, AddRef() and Release(), 

support interface reference counting. The reference count for an interface must be 

incremented when an interface is acquired, and the reference count must be decremented 

when the use of an interface is no longer required. Several exceptions to these rules make 

reference counting error prone despite its simplicity. For example, functions that return 
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interface pointers are responsible for incrementing that interface’s reference count, and 

leave the caller responsible for calling the Release() function.  

When the reference counts of all interfaces of a COM object reach zero, the object 

is released from memory. The notion of a persistent object, as supported by CORBA, is 

non-existent in COM. COM object references or interface pointers always become 

permanently invalid when the object server is shut down. However, COM does provide a 

mechanism for persisting object state with the aid of special components called Monikers.  

3.2.3 Object Creation 

COM objects are created through the use of a COM runtime entity called the 

Service Control Manager (SCM), and a type of COM component known as a class 

factory. COM clients as well as COM servers interact with the SCM through an SCM 

API. The SCM’s role is similar to the role of a CORBA ORB, and the API used by COM 

applications is semantically similar to the ORB interface. 

Class factories, otherwise known as class objects, are special COM components 

that implement an interface called IClassFactory (as a COM object, a class factory must of 

course implement IUnknown as well). The IClassFactory interface defines two methods, 

CreateInstance() and LockServer(). CreateInstance() implements the knowledge of how to 

create an instance of a specific type of COM object, and LockServer() is used for server 

lifetime management, and is described later. 

The process of creating a COM object begins with a call from the COM client to 

the SCM’s CoGetClassObject() method . CoGetClassObject() is given a CLSID that is 
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used to locate and activate the class factory for the requested COM object. 

CoGetClassObject() returns an IClassFactory interface pointer. The client uses the 

IClassFactory pointer to call CreateInstance() to create the COM object it desires.  

Class factories are implemented by the component developers, and are normally 

housed in the same server as the components themselves. Therefore, the SCM must locate 

and activate the component server before it can create a class factory. The directory for 

COM objects is the Windows registry, which is where the SCM looks for the executables 

for component servers. Figure 10 shows the sequence of steps required to create a COM 

object housed in an out of process server. 
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Figure 10 Creation of a COM Object housed in a local server [12] 

Objects created with CoGetClassObject() are usually in the same initial state after 

each startup, because CoGetClassObject() does not support the notion of object 

persistence. COM facilitates object persistence through components that implement the 
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standard interface IMoniker, and are therefore simply called Monikers. Monikers are a 

type of factory component that create a COM component, and restore it to a previous state 

on the client’s behalf. The responsibility of implementing the code for state persistence 

lies with the component itself. By implementing the standard COM interface IPersist, the 

objects state can be persisted and restored by the client via the components Moniker. 

3.3 In-Proc, Out-of-Proc, or Remote Servers 

COM interfaces are implemented by creating a software component that behaves 

according to the interface’s specifications. It can therefore be said that interfaces exist in 

the context of the components that implement them. The components themselves also 

need an environment in which to exist. This environment is usually a Dynamic Link 

Library (DLL) or an executable file (EXE). In COM terminology it is said that DLLs and 

EXEs are component housings. The term “Server” typically designates a component 

housing in COM. 

The precise relationship between servers and clients varies according to the degree 

to which they are separated. A server that executes on a different host from its client is 

known as a remote server. A server that executes on the same host as its client but in 

different processes is known as an out-of-process server or local server. A server that 

executes in the same process as its client, is known as an in-process server.  

Remote and out-of-process servers are implemented as EXEs. When executed, 

they reside in their own processes. In-process servers are implemented as DLLs: blocks of 
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code that are loaded into the calling process and that share the process’s resources with the 

caller. 

A server’s behavior does not necessarily depend on whether it is implemented as 

remote, in-proc, or out-of-proc. However, the degree of separation between client and 

server affects server response time. In-proc servers can be accessed through simple 

function calls, which take micro seconds to perform. To access an out-of-proc server, a 

client utilizes local procedure calls (LPC), which can take milliseconds to complete. 

Accessing a remote server is the most time consuming of all. Transmitting messages 

across a network can take seconds or even minutes, depending on network traffic. The 

server’s intended application must be considered when determining its implementation. 

For this study, COM servers are implemented as out-of-proc servers, primarily because 

the code for an out-of-proc server and a remote server is identical and the transition from 

one to the other is relatively easy. 

The degree of separation between client and server also affects process robustness. 

Out-of-proc and remote servers are more stable than in-proc servers. The crash of an out-

of-proc or remote server process should not produce a corresponding crash of the 

corresopnding client process. From the server’s perspective, a misbehaved client cannot 

take down the entire server and disturb the operation of other clients. 

3.4 MIDL Overview 

The Microsoft Interface Definition Language (MIDL) is based in large part on the 

IDL developed by the OSF. An interface definition language’s main purpose is to provide 
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developers with a tool for describing interfaces, their operations, and parameters. Since 

MIDL is just a metalanguage for describing interfaces, it cannot be used to write interface 

implementations.  

MIDL and its associated compiler simplify the work of component development 

by generating all the support code needed to invoke remote objects. Without the 

metalanguage all the support code would have to be provided by the developer. This 

support code enables clients to make calls to objects located outside their address space, in 

the same way as they would make calls to objects in their own address space. 

MIDL is not directly compatible with IDL due to Microsoft’s modifications to fit 

the COM specification. One notable difference between the standards is MIDL’s use of 

braces ([ ]) to flag the MIDL keyword following an attribute. Another is MIDL’s support 

for Microsoft type libraries: files that contain binary representations of the components 

and interfaces defined in MIDL. Programmers reference these files from languages used 

for component development, or client development in order to discover interface syntax 

for components.  

When a file containing MIDL code is compiled, the compiler produces a number 

of mapping files from MIDL to C++. The following is a full list of files generated by the 

MIDL compiler: 

• A C++ header file (*.h) 

• C++ code files with GUIDs (*.c) 

• A binary representation of the interface definitions (*.tlb) 
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• Stub and proxy code for marshalling (*_p.c) 

• Definitions to build the stub and proxy DLL (dlldata.c) 

The files generated by the MIDL compiler provide the means for marshalling calls 

between client and server. Marshalling is the mechanism through which function calls are 

packaged and relayed from the client process to the server process. Similar to the stub and 

skeleton objects used by CORBA, COM uses proxy and stub objects for the same 

purpose. 



52 

CHAPTER 4  

BRIDGING CONCEPTS 

In many respects COM and CORBA are similar. They both, for example, provide 

infrastructures for object distribution, a language for describing access to objects, and 

object directories. Yet there are numerous details in their implementations that make 

COM and CORBA objects incompatible: COM clients cannot make direct use of CORBA 

objects, and CORBA clients cannot access COM objects.  

These incompatibilities between COM and CORBA can be resolved through the 

use of a bridge. A bridge allows a client of one object system to access objects of a 

different object system, by making the necessary conversions between object access 

protocols. Bridges resemble COM proxy objects and CORBA proxy objects in their use of 

marshalling function calls between client and server to disguise these conversions. In 

addition to parameter marshalling and call forwarding, bridging objects must also map the 

identities and life cycle models of the different object systems. 

Bridges can be one-way or two-way. One-way bridges enable clients in object 

system A to access objects in object system B (see Figure 11) but the reverse is not 

possible. Two-way bridges enable clients in both object systems to access objects in the 

respective other object system (see Figure 12). An implementation of a two-way bridge 

would have to consist of two generic bridge objects. One bridge object would map COM 

objects to CORBA clients, and the other would map CORBA objects to COM clients. 



53 

 

Object System A

Client
One-Way

Bridge

Object System B

Object

 

Figure 11 One-way Bridge 
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Figure 12 Two-way Bridge 

The CORBA interworking specification uses the terms “view of A in B” and “A/B 

view” to refer to the entities representing an object of object system A to a client in object 

system B; e.g. a CORBA object visible to a COM client would be called a CORBA/COM 

view. Figure 13 shows the interworking model as it is defined in the CORBA specification 

[8]. The bridge object holds a reference to a target object in B and maps this reference to a 

reference in A. A client in object system A can use the reference exposed by the bridge 

object and make calls on the object in B. 
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Figure 13 B/A Interworking Model [8] 

 

4.1 Implementation Strategies 

COM proxy objects and CORBA stub objects—hereafter referred to as proxy 

objects, for simplicity—can be implemented as either early bound or late bound objects. 

Early bound proxies are created by the IDL (or MIDL) compiler, and are sometimes 

referred to as static or interface-specific proxies. Late bound proxies are generic proxies 

that can be used for mapping any object and interface, and are sometimes referred to as 

dynamic proxies.  

The main reason for using early bound proxies to implement bridges is 

performance. Since the operations and operation signatures of an early bound proxy are 

known at compile time, early bound proxies have less run-time overhead than late-bound 

proxies. In order to implement an early bound bridge, separate bridge objects must be 

constructed for every distinct pair of objects to be bridged. These bridge objects can be 

constructed manually, or using a compiler that generates the bridge objects from IDL 
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code. Building two-way bridges between CORBA and COM would require a compiler 

that could compile both IDL and MIDL code. 

The main reason for using late bound proxies to implement bridges is flexibility. 

Late-bound bridges can be used to invoke any type of object at any point in a program’s 

operation. However, late bound bridges, like late bound proxies, still need to process 

target interfaces to satisfy requests. Late bound bridges, like late bound proxies, use a 

repository to examine the operations and operation signatures of a requested interface at 

runtime. Using these signatures, a bridge can perform the required parameter conversions 

at the time of the call. The examination of operation signatures and marshalling of 

parameters is a time consuming process, thus making late bound bridges uniformly slower 

than early bound bridges.  

4.2 Bridge Architecture 

To conduct the research for this study, two two-way bridges were developed: one 

based on early binding, and the other on late. Both bridges have the architecture depicted 

in Figure 14. 

CORBA Client
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Figure 14 COM/CORBA Bridge - Architectural View  
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The COM client in Figure 14 communicates with the COM server using DCOM 

protocols, and the CORBA server using the COM/CORBA Bridge. The bridge translates 

from DCOM to GIOP communication, as required by the CORBA standard. Similarly the 

CORBA client may communicate with the CORBA server using the CORBA native GIOP 

protocol, or with the COM server using the translation service provided by the bridge. 

Internally the bridge receives calls with the server object, and forwards the calls to its 

internal client object, which then dispatches the calls to the server in the target object 

system. 
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Figure 15 Two-Way CORBA/COM Bridge Model 
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CHAPTER 5  

BRIDGE TEST TOOLS 

 In addition to the bridges, the work described in this thesis included the creation 

of codes for testing the bridges. These codes included early-bound and late-bound 

versions of CORBA and COM server and client tasks (see Figure 15). 

5.1 Test Object Servers 

The test object servers are the containers that house the test objects. For each 

object system one object server was built: a simple calculator object that supports one 

interface, the BasicMath interface, with a single function, Add(). Add() accepts two in 

parameters and returns an out parameter: the addition’s result. 

A server’s code, regardless for which object system, has two main purposes: 

• Bootstrapping and communication with the object system controller 

• Implementation of objects 

Both of these aspects of an object server are significantly different for COM and CORBA. 

The balance of this section describes the implementation of the COM and CORBA test 

object servers. 

5.1.1 COM Test Object Server 

 A COM server’s bootstrap code depends on the type of COM server. As 

mentioned earlier, a COM server is either an in-process server, an out-of-process server, 
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or a remote server. The COM nomenclature is somewhat confusing, since out-of-process 

and remote servers are identical with respect to the server implementation. The two kinds 

of servers do, however, vary from the viewpoint of the object system controller. An out-

of-process server may run as a local server—i.e., on the same host as the client —or a 

remote server—i.e., on a different host. The two kinds of servers use the same executable 

file format. All COM servers used in this thesis are out-of-process servers, which is why 

only the bootstrapping for an out-of-process server is discussed. 

The task of bootstrapping and communication with the object system controller 

can be further subdivided into the following sub-tasks:  

• COM initialization/termination  

• Server self-registration/un-registration 

• Lifetime management 

• Message loop  

• Class factory registration/un-registration 

The COM object test server implements the concepts and requirements presented 

in the following section with the classes shown in the class diagram in Appendix A. All 

operations for bootstrapping described in the following sections, are implemented in the 

HousingManagerClass, the ExeHousingManagerClass, the COMFactoryClass, and the 

CalculatorFactoryClass.  
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5.1.1.1 COM Initialization/Termination 

When the executable file of a COM server is first loaded into memory and starts 

executing, it is just another process running on a host. This process becomes a COM 

server when it starts communicating with the COM object system controller. The object 

system controller in COM is called the Service Control Manager (SCM). COM provides 

developers with an API for communication with the SCM contained in the dynamic link 

library OLE32.DLL. The first call a process must make to announce itself to the SCM is 

CoInitialize(). CoInitialize() initializes the COM library for use by the current process. 

Any other calls to the COM library before calling CoInitialize() result in error conditions. 

To announce the termination of a COM process to the SCM the function CoUnitialize().  

5.1.1.2 Server Self-registration/Un-registration 

In order for the SCM to activate a COM object, the SCM must first locate and 

activate the server that houses the requested object. The information regarding the server 

for a specific COM object is stored in the Windows Registry. The SCM locates objects in 

the Windows Registry based on their CLSID.  

Entering the information related to a COM object into the registry is the object 

developer’s responsibility. The information can be entered into the registry in several 

ways. Distributing a *.reg file and merging it into the registry upon installation is one way 

of registering a server. Another method is the use of a script resource written in registry 

script language, as provided by the Visual Studio Environment. However, the preferred 

technique is server self-registration. Server self-registration avoids the distribution of 

special registration files because the necessary information for registration is kept inside 
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the server executable. Servers supporting self-registration check the command line for the 

parameters -RegServer or -UnregServer, and perform the necessary steps to register or un-

register the COM objects housed in the server.  

5.1.1.3 Server Lifetime management 

The lifetime of a server is the period of time from the moment the server process is 

started to the moment the server process is shut down. Shutting the server down is the 

responsibility of the server itself. The server knows that it has to shut down when there are 

no more clients using any of its interfaces and no server locks are active. Reference 

counting is the basic mechanism to determine when an interface is in use.  

Lifetime management is defined in the most standard of all COM interfaces, the 

IUnknown interface. As mentioned earlier, the IUnknown interface supports three 

functions: 

• QueryInterface() 

• AddRef() 

• Release() 

The QueryInterface() function returns a handle on a specified interface, if that 

interface has been implemented. Before returning, QueryInterface() also calls the 

interface’s AddRef() function. AddRef() increments the reference counter and Release() 

decrements the reference counter for an interface. Clients have the responsibility to 

AddRef() and later Release() an interface when done using an interface.  
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A client may also choose to activate a server before starting to use any of the 

server’s interfaces. In that case the client must increment a server locks counter to keep 

the server loaded into memory. The functionality for locking the server is provided via 

another standard COM function, the LockServer() function of the IClassFactory interface. 

The server monitors the interface reference counter and the server locks counter. 

When both counters reach zero the server shuts itself down.  

5.1.1.4 Message Loop 

A message loop is a function that keeps the server in memory while it waits for 

client requests. A message loop is implemented by a simple program loop, which yields 

the server process’ CPU time to the operating system if no client is requesting services 

from an object in the process. 

5.1.1.5 Class Factory Registration/Un-registration 

COM objects are created based on the creational pattern Factory Method [11]. 

COM defines an abstract class, the IClassFactory interface, for which programmers 

develop implementations, known as class objects or class factories. Clients must acquire 

an IClassFactory interface in order to create the COM object they wish to use. To obtain 

an IClassFactory interface clients contact the SCM, which then searches its directory of 

class objects for the appropriate class factory. The directory of class objects is known in 

COM as the class object table, and it has some similarities with the active object table 

implemented by CORBA’s POA. 
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Object servers make entries into the class object table at startup, using the COM 

library function CoRegisterClassObject(). Entries in the class object table are only valid 

for the duration of a server’s lifetime. Hence a server must delete its entries before exiting. 

The COM library provides the CoRevokeClassObject() function for servers to remove 

entries from the class object table. 

5.1.1.6 Object Implementation 

COM objects are implemented by creating concrete classes for the interfaces 

described in MIDL. When implementing COM objects in C++, the concrete class inherits 

from abstract classes created by the MIDL compiler. The concrete class must provide 

implementations for all virtual functions it inherited from the abstract interface class. This 

includes all the functions defined by standard interfaces. 

The concrete class for the COM test object is the ICalculator_BasicMathClass 

(see Appendix A). ICalculator_BasicMathClass implements the functions for the standard 

interfaces IUnknown and IDispatch, along with the ICalculator_BasicMath interface. 

IUnknown must be implemented, as it provides the basic COM object lifetime and 

interface discovery functions. The implementation of IDispatch is required for objects that 

are to be used in a late bound fashion3. Details of the IDispatch implementation will be 

given in a later section, when describing the late bound bridge. Finally, by implementing 

the ICalculator_BasicMath interface, the ICalculator_BasicMathClass provides an 

implementation for the function Add(), which were used for bridge testing. 

                                                           
3 Com objects implementing both IUnknown and IDispatch are also known as objects implementing a dual 
interface. 
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5.1.2 CORBA Test Object Server 

The bootstrapping requirements in a CORBA server differ in the nuances of the 

object system specifics, but conceptually they are similar to the bootstrapping 

requirements of a COM server. The following sub-tasks must be implemented in order to 

create a CORBA server’s frame: 

• ORB initialization/termination  

• POA creation/initialization 

• Object creation 

• Object publishing 

• Message loop  

• Object implementation 

5.1.2.1 ORB Initialization/Termination 

When a CORBA server starts, it initializes communication with the CORBA 

object system controller, the ORB, by calling the static method CORBA::ORB_init(). The 

server uses ORB_init() to pass the server application’s command line parameters to the 

ORB, and to obtain a pointer to an ORB instance. The ORB pointer is then used to call the 

ORB interface’s operations. The ORB uses its command line parameters to establish 

communication with critical CORBA services, like a naming service, a trading service, 

and the interface repository. This activity enables ORB users to gain access to these 

services by calling the ORB interface’s resolve_initial_references() function. This 

function returns a CORBA object pointer, which, after narrowing to the appropriate type, 
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may be used to access the service. Once in possession of a reference to a CORBA naming 

or trading service, a client may acquire any object it requires to perform its tasks. 

5.1.2.2 POA Creation/Initialization 

The POA plays a key role in linking client invocations on object references to their 

respective implementations (see section 2.5). Creating and initializing a POA is therefore 

another prerequisite for the creation and publication of server-resident objects.  

CORBA servers can have many different POAs, organized in a hierarchical tree 

structure. At the root of this tree structure is the root POA, which is created during the 

ORB initialization. A reference to the root POA can be obtained from the ORB by using 

the resolve_initial_references() function. The code sample below demonstrates how a 

reference to the root POA can be obtained from the ORB. 

 // get the root POA reference 

 CORBA::Object_ptr obj = m_ORB->resolve_initial_references("RootPOA"); 

  

 // now cast the object reference into a POA reference 

 m_RootPOA = PortableServer::POA::_narrow(obj); 

  

 // don't need the temporary storage for the object reference anymore 

 CORBA::release(obj); 

CORBA specifies the operation create_POA(), on the POA interface, which creates new 

POAs. Newly created POAs are children of the POA whose create_POA() function was 

called. The create_POA() function takes as parameters the new POA’s name, a reference 

to the POA manager, and a list of POA policies.  
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POA policies control the behavior and characteristics of POAs and their objects, as 

described in section 2.5. The test server object’s POA is a persistent POA that allows the 

user to set the object IDs, and is created as follows: 

// create empty policy list for new child POA 

CORBA::PolicyList policy_list; 

 

// create persisten lifespan policy;  

PortableServer::LifespanPolicy_var lifespan =  

m_RootPOA->create_lifespan_policy(PortableServer::PERSISTENT); 

 

// create ID assignment policy; default is SYSTEM_ID 

PortableServer::IdAssignmentPolicy_var IDAssignment =  

m_RootPOA->create_id_assignment_policy(PortableServer::USER_ID); 

 

// add to policy list 

policy_list.length(2); 

policy_list[0] = PortableServer::LifespanPolicy::_duplicate(lifespan); 

policy_list[1] = 

PortableServer::IdAssignmentPolicy::_duplicate(IDAssignment); 

 

// create child POA 

PortableServer::POA_ptr  

new_poa = m_RootPOA->create_POA(POAName.c_str(), m_RootPOAManager, 

policy_list); 

 

lifespan->destroy(); 

IDAssignment->destroy(); 

 

return new_poa; 

 

The POA manager is a control entity that controls the flow of requests into its associated 

POAs. The POA manager can be set to one of four different states: holding, discarding, 
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active, or inactive. When set to active, a POA manager passes requests to the connected 

POAs as soon as they arrive. POA managers manage the flow of requests to POAs, 

particularly during startup, shutdown, and high load conditions. 

 

5.1.2.3 Object Creation 

Object creation is dependant on the POA that creates the object. As described in 

the previous section, each POA is configured with a set of policies that give the POA its 

characteristics. The characteristics of a POA are reflected in the types of objects that that 

POA creates.  

The Calculator object used for bridge testing is a persistent object, which means 

that clients holding a reference to this object may use that reference as long as they whish. 

Even if the server is shut down, a client can make a call on the reference of a persistent 

object and re-activate the server.  

The creation of a persistent object is typically a four step process, involving the 

creation of a servant, the creation of an object ID, the activation of the object, and the 

creation of an object reference. The sample code below demonstrates how the 

“Calculator” object is created. 

 // instantiate servant 

 CalculatorClass servant;   

 

 // create an object ID 

 PortableServer::ObjectId_var  

  objectID = PortableServer::string_to_ObjectId(“Calculator”); 
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 // activate the object 

 POA->activate_object_with_id(objectID, servant); 

 

 // get the reference for the new object 

 CORBA::Object_ptr objectRef = servant->_this(); 

 

5.1.2.4 Object Publishing 

Once created, an object must be published before client objects can use it. An 

object can be published simplistically by exporting the objects IOR as a string, or in a 

more sophisticated fashion by registering the object with a naming or trading service. The 

Calculator object is published through a CORBA naming service.  

An object is registered with the name service with the aid of an object pointer to a 

naming context, returned by the ORB’s resolve_initial_references() function. The naming 

service’s interface has two operations, bind() and rebind(), either one of which can 

register an object with the name service. Parameters required by bind() and rebind() are a 

name for the object, and a reference to the object to bind to the name. The combination of 

a name and the object reference is referred to as name binding. The sample code below 

demonstrates the registration of an object with a CORBA name service.  

CosNaming::Name name; 

 name.length (1); 

 name[0].id = “Calculator”; // name of the object 

 name[0].kind = CORBA::string_dup (""); 

 

 // register object with the naming service 

 m_NamingContext->rebind(name, objectRef); 
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Rebind() deletes a binding for the same name, if one exists already, and creates a 

new binding. When bind() is used and a binding with the same name exists already, a 

CORBA system exception is thrown. 

5.1.2.5 Object Implementation 

Object implementation is straightforward in CORBA. CORBA servants, unlike 

COM objects, don’t have to implement specific standard interfaces, thanks to CORBA’s 

strict separation of interface and implementation. All a CORBA object developer has to 

do is write the IDL code for the object, inherit the servant class from the skeleton class 

generated by the IDL compiler, and implement the interfaces specific to the objects role. 

Even access to a CORBA object via the DII is transparent to the object developer. More 

on this is given in a section 5.2.4, when describing the implementation of a late bound 

client with the DII. 

5.2 Test Clients 

Bridge testing requires the use of a number of different clients. Access to COM or 

CORBA objects is transparent for the clients only if the objects can be early bound. This 

is the case for clients accessing the test object of its own object system, or clients 

accessing the foreign object system’s objects via the early bound bridge. Use of a generic 

bridge is not transparent to COM or CORBA clients, as they must prepare the argument 

structure to be passed to the dynamic invocation interface’s invoke() function.  
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5.2.1 Early Bound COM Test Client 

A COM client is considered early bound when it can use the IUnknown interface. 

A client using the IUnknown interface has complete understanding of the interfaces, 

operations, and operation parameters at compile time. This knowledge is provided to the 

client via the MIDL code that was written when the COM object was developed, or via the 

type library created by the MIDL compiler. 

The following list is the series of common steps an early bound client has to 

perform in order to make calls to an object: 

• Initialize COM 

• Request a COM factory object 

• Call CreateInstance() on the factory object 

• Call QueryInterface() on the IUnknown pointer returned by CreateInstance() 

• Make calls on the object pointer returned by QueryInterface() 

For the same reason COM servers have to make initial communication with the 

COM library, COM clients also must call CoInitialize() before being able to perform other 

COM interaction. 

As described earlier, COM creates objects based on the Factory Method pattern. 

Clients must therefore obtain a factory object interface to create the object they wish to 

interact with. COM provides the library function CoGetClassObject() to retrieve a factory 

object. CoGetClassObject() takes the CLSID of the object to be created as a parameter, 

and returns a pointer to an IClassFactory interface.  
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The client can then call the CreateInstance() operation on the IClassFactory 

pointer. CreateInstance() creates the COM object that the client is interested in, and 

returns an interface pointer to that object. The type of interface pointer to be returned is 

specified in the call to CreateInstance() by passing the desired interface’s IID. The bridge 

test clients combine object creation and initial interface pointer acquisition in one function 

called ResolveObjectGUID(). ResolveObjectGUID() always specifies an IUnknown 

pointer to be returned by CreateInstance().  QueryInterface() can then be called using the 

returned IUnknown pointer, to obtain a pointer to the desired interface on the test object. 

 

5.2.2 Late Bound COM Test Client 

The main difference between early- and late bound clients is that late bound 

clients, given the lack of compile-time type information about the interfaces they wish to 

use, cannot use the IUnknown interface. COM does provide an alternative interface 

known as the IDispatch or Automation interface to invoke operations on interfaces not 

known at compile time. However, the IDispatch interface is far less straightforward for 

C++ clients to use4.  

A late bound client makes calls on a COM object implementing the IDispatch 

interface by performing the following steps: 

• Initialize COM 

                                                           
4 For scripting clients the use of IDispatch is straightforward, but only because the environment in which 
they execute normally provides a lot of behind the scenes support.  
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• Request a COM factory object 

• Call CreateInstance() on the factory object 

• Get the DispID of the function to call 

• Prepare the argument structure for the call 

• Make the call to the object 

The late bound client is assumed to know the target object’s CLSID. Consequently 

the steps required to create the remote object are identical to the early bound client. If the 

late bound client knows only the remote object’s ProgID, an additional call to the COM 

library is needed to discover the target object’s CLSID. 

The differences between early and late bound clients start when CreateInstance() 

returns. For a late bound client, CreateInstance() returns an IDispatch pointer instead the 

IUnknown pointer. 

Making a call to a COM object via the IDispatch method requires the Invoke() 

function. The most important parameters to Invoke() are the dispID and the argument 

structure. DispIDs are numerical identifiers for the functions that may be called through 

the dispinterface: i.e., the set of functions accessible via the invoke() method of an 

IDispatch interface. The dispID is needed in order to identify the dispinterface function to 

invoke. 

IDispatch provides a function, GetIDsOfNames(), that must be called to prepare 

the call to Invoke(). GetIDsOfNames() takes a function name as a parameter and returns 

the corresponding dispID. 
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Figure 16 Dual Interface and Dispinterface on a COM object; adapted from [10] 

Figure 16 illustrates the structure of the virtual function table (vtbl) for a dual 

interface COM object, and an access to that table via the Dispinterface. The COM object’s 

functions can be accessed by early bound clients via the vtbl or by late bound clients via 

the Dispinterface. 

The next step in preparation for the call to Invoke() is the creation and 

initialization of a structure to be passed to Invoke(). This structure, which contains the 

arguments for the remote object call, is an array of Variants, a type commonly used in 

Visual Basic to hold an arbitrary value. Variants are very important in the context of 

IDispatch, as they enable the passing of arbitrary values between clients and servers. A 

variant stores the scalar value and the type of the value it carries. The ability of variants to 

store values and type identifiers enables the configuration of the arguments to Invoke() at 

run time. Type information may be provided at run time by extraction from a type library, 

or other sources that can store type information. IDispatch provides methods to discover 

type information of an object via the GetTypeInfoCount() and GetTypeInfo() methods. 

Operations a client can access through IDispatch have a numerical identifier 

known as the DispID. IDispatch exposes an operation called GetIDsOfNames(), which 
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enables clients to get the DispID of a function from the component, by sending in the 

name of the function as a string. The client needs the DispID when it makes a call to the 

COM component via the IDispatch method Invoke(). 

Invoke() also takes a parameter of type DISPPARAMS. DISPPARAMS is a 

structure containing the arguments that are passed on to the component implementation 

that processes the call.  Much of a late bound client’s work involves the creation of the 

argument structure. Once this structure is created and initialized, the dispID of the 

function to call is known: a call to the remote object can be made as such: 

DISPPARAMS parameters = {myVars, 0, 3, 0}; 

 pIDispatch->Invoke (dispid, IID_NULL, LOCALE_SYSTEM_DEFAULT,   

      DISPATCH_METHOD, &parameters, NULL, NULL,NULL); 

5.2.3 Early Bound CORBA Test Client 

A CORBA client is considered early bound when it uses IDL stub code to make 

invocations. The IDL compiler generates the stubs, otherwise known as static invocation 

interfaces. The target object’s developer normally provides the IDL files to the client 

developer. A typical sequence of steps for a CORBA client to make an invocation is as 

follows: 

• Initialize ORB 

• Obtain object reference 

• Narrow the IOR to the appropriate type 

• Make invocation on object reference 
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The ORB initialization is performed in exactly the same way as it is done for a 

CORBA server, which means calling CORBA::ORB_init() and passing in the command 

line parameters. 

Object references can be obtained in various ways. One very simple method is to 

pass the IOR as a string on the command line, which is only useful for debugging or quick 

testing. Much more practical is the use of a naming or trading service to acquire an IOR. 

Clients in this study use the MICO naming service as the source for IORs. The naming 

service reference, returned by the resolve_initial_references() function, provides the 

function resolve() to request an IOR from the directory. Resolve() takes the name of an 

object and returns a CORBA::Object_ptr.  

The CORBA::Object_ptr must then be cast, or narrowed in CORBA terminology, 

to the appropriate type for the target object. The stub code generated by the IDL compiler 

provides the means for narrowing the CORBA::Object_ptr with the function _narrow(). 

Being able to narrow an object pointer to the type of object described in an IDL file is the 

staple feature of the static invocation interface, and depends on the availability of compile 

time type information. 

The object pointer narrowed to the target object type can then be used as if it 

where the “real thing”, in the client’s address space.  

5.2.4 Late Bound CORBA Test Client 

In the absence of an IDL file to provide type information and stub code, late bound 

CORBA clients have to resort to the DII. The DII, like COMs IDispatch interface, 
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provides the necessary operations to construct and dispatch requests to CORBA objects, 

based on type information available at runtime. A key DII element is a pseudo object5 

called CORBA::Request. CORBA::Request encapsulates the details for an invocation via 

the DII. A typical sequence of steps in a late bound client invocation is as follows: 

• Initialize ORB 

• Obtain an object reference 

• Create an argument structure 

• Create a request object 

• Make the invocation 

Initializing the ORB and obtaining an object reference is no different for a late 

bound client than it is for an early bound client, and has been discussed in previous 

sections. 

The creation of an argument structure is necessary to provide the ORB with the 

information it needs to marshal the arguments for a call. In early bound clients this task is 

fulfilled by the stub code, but in late bound clients it is up to the client code.  

CORBA provides a number of different ways to construct the argument structure. 

One possible way is to create a request object first, then use the request object’s 

operations to add one argument at a time to the request. The operations to generate 

requests are provided by the CORBA::Object type. Adding one argument at a time to the 

request can be quite time consuming; because the CORBA implementation may consult 

                                                           
5 A pseudo object is an object that has all the characteristics of a CORBA object, with the limitation that it is 
local to the client process, and no IOR to it can be generated. 
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the interface repository each time an argument is added, to verify that argument’s validity. 

The CORBA specification leaves it to the CORBA implementation developer to decide 

this behavior. 

Another, more efficient method to create a request object is to use the ORB, either 

with or without the aid of the interface repository to construct the argument list first. Once 

created, the argument list can be used to initialize the request object as it is created. 

Argument lists are create by the ORB with create_list() or create_operation_list(), and are 

of type CORBA::NVList. Create_list() takes a single parameter, the number of elements 

in the list, and returns an empty named value list (NVList). The client then initializes the 

elements in the NVList by specifying argument types, directions, and values. 

Create_operation_list() eases the work of coding by creating an NVList based on a 

CORBA::OperationDef, returning an NVList with argument types and directions already 

set from the OperationDef. CORBA::OperationDefs are descriptions of an operation and 

its arguments, created by an Interface Repository. 

With the request created and configured, the client can make invocations on the 

target object by calling the requests invoke() method.  
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CHAPTER 6  

BRIDGE MODELS 

6.1 Early Bound Bridge 

To construct an early bound bridge, the bridge developer must build a bridge 

object server for the bridge client’s object system. The bridge server must contain a view 

object, for each object in the target system to be mapped to the client object system. The 

objects housed in the bridge server are created based on the target object system’s 

translated IDL code6. The bridge server also entails the functionality of a client in the 

target object system in order to forward request to the target objects. 

6.1.1 COM_CORBA Bridge 

The COM_CORBA bridge described in this section is essentially a CORBA server 

that also behaves like a COM client (see Figure 17). This characterization necessitates the 

implementation of elements for CORBA servers and COM clients described in earlier 

sections. 

                                                           
6 IDL code refers here to code describing interfaces, regardless of the object system for which the code was 
generated.  



78 

CORBA
Client

Uses IDL stub

COM
Target
Object

CORBA
View

Object

COM
Proxy
Client

Bridge Server

Object System
Boundary

Uses IDL
skeleton

Uses MIDL proxyUses MIDL
stub

MIDL to IDL Translation

Static
Invocation
Interface

Static
Invocation
Interface

 

Figure 17 Architectural Model Static COM_CORBA Bridge 

A prerequisite for building static CORBA View Objects is the availability of IDL 

code that describes the objects. Therefore, the MIDL code created by the COM object 

developer must be translated into the equivalent CORBA IDL code. This translation is 

nontrivial and requires an extensive rule set. The OMG CORBA specification invests 

approx. 150 pages on the rule set for mapping COM and CORBA interface definitions.  

The MIDL to IDL mapping for the test object used for bridge testing was 

translated manually based on the CORBA interworking specification. It is conceivable 

that an automated translation tool could be used to convert MIDL to IDL and vice versa. 

However, the author is not aware of such a tool in the open source domain.  

The IDL code resulting from the translation is used to create a CORBA view of the 

target COM object. The implementation of the CORBA view object is analogous to the 

implementation of a CORBA servant. A CORBA view implementation differs from a 

regular CORBA servant in that it does not process requests from clients; it simply 

forwards requests to a COM proxy object in its address space. The COM proxy object 
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then forwards the request to the target object for processing. Appendix E shows additional 

details of the COM_CORBA bridge implementation. 

The key aspect of an early bound bridge is that all communication between clients 

and target object is based on static information, i.e. known at compile time. 

6.1.2 CORBA_COM Bridge 

The bridge described in this section represents the 2nd leg of the early bound 

bridge, which provides COM clients with the means of accessing CORBA objects via the 

static invocation interface. As in the previous scenario, the COM_CORBA bridging, this 

bridge also requires the translation of the interface description from the target object 

system into the client object system. Again the translation was done manually. 
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Figure 18 Architectural Model Static CORBA_COM Bridge 

 

As shown in Figure 18 the client makes invocation on the bridge server, which has 

all the characteristics of a COM server. The bridge server uses a replica of the target COM 
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view object to receive requests from clients, and dispatches the requests via a CORBA 

proxy object to the target CORBA object. Parameter marshalling is performed by the stub, 

proxy and skeleton objects, which were generated by the IDL and MIDL compilers. 

Additional implementation details for this leg of the static bridge can be found in 

Appendix G. 

6.2 Late Bound Bridge 

The most characteristic feature of a late bound bridge is that at compile time it 

does not have any information of the types of objects that it will convey invocations for. 

This idiosyncrasy allows it to serve as a bridge for any object, making late bound bridges 

far more universally usable than early bound bridges.  

Late bound or dynamically bound bridges achieve their flexibility by using type 

information stored in an interface repository rather than the type information in an IDL 

file. Since the information in an interface repository is loaded dynamically at runtime a 

bridge can also load this information at runtime, thus enabling dynamic binding to objects 

for which it can find type information in an interface repository. 
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6.2.1 COM_CORBA Bridge 
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Figure 19 Architectural Model Dynamic COM_CORBA Bridge 

A late bound COM_CORBA bridge, like its early bound counterpart, uses view 

objects, except that the view object in the former is usable as a view for any object in the 

target object system. To be universally usable, the CORBA view object must implement 

the Dynamic Skeleton Interface (DSI). The DSI is an interface of the POA, and is 

provided to servants through inheritance from PortableServer::DynamicImplementation. 

The DSI is transparent to the client, just as the DII is transparent to a CORBA object. The 

DSI, like the DII, uses a pseudo object, CORBA::ServerRequest, to accomplish its primary 

function of making generic invocations on an object servant.  

The POA passes an object of type CORBA::ServerRequest to a servant’s invoke() 

function, which it inherited from PortableServer::DynamicImplementation. The 

CORBA::ServerRequest object carries the function name and parameters to be invoked on 

the target object.  
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Calling invoke() on the CORBA view object’s servant in Figure 19 requires the 

servant to package (marshal) the “in” arguments in a way that allows them to be sent to 

the target COM object. The servant must invoke the function on the COM object, and un-

package (un-marshal) the “out” arguments when the call returns 

A COM proxy client object supports the CORBA servant object in making the call 

to the target COM object. The COM proxy object encapsulates the knowledge of how to 

communicate to the target COM object via COM’s dynamic invocation interface 

IDispatch. Although primarily designed to provide easy access to COM objects by 

scripting languages, the IDispatch interface can be used very well for dynamic 

invocations. IDispatch was discussed earlier when describing late bound clients. The 

COM proxy client in the late bound COM_CORBA bridge, a good example of a late 

bound client, uses the IDispatch interface. 

In addition to forwarding invocations the bridge server must also provide a 

bootstrapping mechanism to clients: unlike early bound bridges, late bound bridges are not 

transparent to clients. The COM_CORBA bridge server provides bootstrapping through a 

CORBA object called COMFactory. CORBA clients can statically bind the COMFactory 

object, and by calling the CreateObject() function create a CORBA view object that is 

dynamically bound to the specified COM object. The client uses the CORBA view object, 

which was created on its behalf, for invocations on the target COM object. 
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6.2.2 CORBA_COM Bridge 
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Figure 20 Architectural Model Dynamic CORBA_COM Bridge 

The CORBA_COM bridge is the second leg of the two-way, late-bound bridge 

between the two object systems. The bridge server acts as a middleman between COM 

clients and the target CORBA objects. Again the bridge server plays a dual role: to the 

COM client it plays the role of a COM server, and to the CORBA target object it plays the 

role of a CORBA client. Communication between COM client and COM View object is 

conducted via IDispatch. CORBA client/server communication is conducted via DII. The 

target object’s IDL code is translated into MIDL code and subsequently compiled to 

create the type library, which serves as the source for type information about the target 

object, for the client and the bridge. The CORBA_COM bridge also provides a 

bootstrapping object that enables the client to create the view object of the target. The 

COM client binds statically to the bootstrapping object and calls CreateObject() to create a 

view of the target object. 
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CHAPTER 7  

PERFORMANCE TESTING 

Differences in performance are an important characteristic when comparing static 

and dynamic bound bridges. The tests described in this chapter were designed to quantify 

the differences in performance for the two styles of bridges. As a control, measurements 

were also taken for clients accessing the test object of their own object system via static 

and dynamic invocation.  

Client
Object System A

Static
Bridge

Dynamic
Bridge

Test Object
Object System B

Static Invoc.

Dynamic Invoc.
Static Invoc.

Dynamic Invoc.

Test Object
Object System A

 

Figure 21 Performance Test Plan 

Figure 21 shows a graphical representation of the measurements that were taken to 

determine the bridges’ relative performance, including the time required to make direct 

calls to objects in the clients’ own object systems. The test plan in Figure 21 was applied 

to both COM and CORBA clients. The effects of co-location7 of clients with test object  

                                                           
7 Collocation means that client process, server process, and bridge process all execute on the same host. 
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server and bridge server were also assessed, using two series of measurements. For 

one series the client was co-located and in a second series the client was remote, with 

respect to the object server and the bridge server. Bridge servers and test object servers 

were co-located in both series. The resulting test-matrix from the above stated conditions 

is as follows: 

 Native object 
static 

invocation  

Native object 
dynamic 

invocation 

Foreign object 
static 

invocation 

Foreign object 
dynamic 

invocation 
Co-located 
COM Client 

    

Co-located 
CORBA Client 

    

Remote COM 
Client 

    

Remote 
CORBA Client 

    

Figure 22 Test Matrix 

7.1 Test Procedure 

The test-system used for the co-located client test has an AMD CPU clocked at 

800MHz, with 512 MB of RAM, and runs Windows 2000 as its operating system. The test 

objects are implemented as servers running in separate processes from the client’s process, 

as out-of-proc servers in COM terminology. For the remote client test series, a host with a 

Cyrix 333MHz CPU, 256MB RAM, and Windows 2000 was used. The network link 

between the two hosts was a 10Mbit/s Ethernet connection. 

The measure for performance used in these tests is call execution time. Measuring 

call execution time in a non real-time operating system like Windows 2000 requires a 

significant number of repetitions to achieve statistical significance. Each test run consists 
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of 1000 calls, made to the BasicMath interface’s Add function. The call takes two in 

parameters of type short, and returns one out parameter of type long. Each test run was 

repeated ten times. 

Execution time was measured with a high-resolution counter implemented in 

hardware. The Win32 API counter-access functions used for this study included 

QueryPerformanceFrequency() and QueryPerformanceCounter(). The counter frequency 

was 3.58 MHz, giving it a resolution of 0.28µs. 

7.2 Data Analysis and Results 
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Figure 23 Test Results Summary 
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The data collect during the test runs can be found in Appendix K. The median for 

each series of ten measurements was calculated to serve as the representative figure for 

that series. Figure 23 plots the medians for each run, giving a comprehensive overview of 

all measurements taken. 

7.2.1 Performance Test Results 

To determine the relative performance for the two types of bridges, and also for 

static vs. dynamic invocation on native objects, ratios were calculated between the 

respective contestants.  
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Figure 24 Bridge Performance Test Results 

 
As expected the plot of the ratios in Figure 24 shows that a late bound bridge is 

significantly slower than an early bound bridge. The invocation of an object via a late 
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bound bridge is on the order of five times slower than the invocation via a static bridge. 

This is not surprising as the overhead for parameter marshalling is significant. For the 

remote clients the performance of the late bound bridges was a little better because 

network latency started to impact the measurements. With increasing network traffic 

delays, network latencies would tend to dominate communications time, lessening the 

performance disadvantage of a late bound bridge. This would lead to the conclusion that 

for remote clients the style of bridge used becomes less important as the distance to the 

bridge and object host increases.  

The plot of the ratio static invocation vs. dynamic also shows the expected 

behavior, which is that dynamic invocation is slower than static invocation. However, the 

difference here is far less pronounced—a factor of circa 1.5 to 1.7—than for the bridge 

performance. Therefore the impact of network latency is not as easily detectable in the 

ratio dynamic vs. static invocation. 

Another observation that can be made is that COM native object invocations are 

substantially faster than CORBA invocations. COM client dynamic invocations on native 

objects are even faster than CORBA client static invocations on native objects. The 

relative slowness of CORBA invocations could be a function of CORBA’s more complex 

object model, which requires deeper nested calls. However, it could also be caused by the 

MICO implementation model, which is based on a highly modular—and presumably less 

streamlined—design. 
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Another perspective on the collected data can be gained by plotting the percentage 

to which the network latencies contribute to the overall measured run times. The bars in 

Figure 25 were calculated from: 

NWL = (RCET – CCET) / RCET * 100 

RCET = Remote Client Execution Time 

CCET = Collocate Client Execution Time 

NWL = Network Latency Weight 

The plot of NWL in Figure 25 shows that roughly 75% of a call to a remote COM 

client is due to network latency, with 25% due to target-object processing. Static as well 

as dynamic invocations appear to encounter the same network latencies. The proportion of 

the network latency is relatively large because invocations on native objects are relatively 

fast. Invocations via the bridges show the weight of network access times as less 

significant since call processing time is relatively long compared to network access time. 
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Figure 25 Network Communication Delays 
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CHAPTER 8  

FINAL ASSESMENT AND CONCLUSION 

This thesis has presented an analysis of the time needed to bridge between the 

COM and CORBA object systems. An early bound bridge has been shown to be faster in 

handling invocations than a late bound bridge, due to the availability of type information 

at compile time. However, this speed advantage comes at the cost of flexibility. An early 

bound bridge is specifically build for certain kinds of objects, excluding any objects the 

bridge’s developer did not anticipate. The construction of an early bound bridge always 

requires the translation of a target object’s interface description code into the equivalent of 

the client object system. The translation process could be improved by the creation of a 

cross-compiler between MIDL and IDL: a tool that translated the interface definitions, and 

possibly even generated the code for a bridge object, thus providing a static bridge with 

the advantages of a late bound bridge. 

A late bound bridge has been shown to be on the order of five times slower than an 

early bound bridge. Yet a late bound bridge has the advantage of being universally 

applicable. The all-purpose characteristic of a late bound bridge is rooted in the fact that it 

uses runtime type information for call marshalling. The creation of runtime type 

information also requires the translation of interface description code, but no static bridge 

objects must be generated to use the target object. Instead, the type information is stored 

in interface repositories that are accessed by bridges at runtime to discover type 
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information. Late bound bridges are more appealing from a bridge user’s perspective as 

they don’t require the building of any special code. 
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APPENDIX A 

COM Test Object Server Class Diagram 
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APPENDIX B 

CORBA Test Object Server Class Diagram 
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APPENDIX C 

COM Early Bound Client Class Diagram 
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COM Late Bound Client Class Diagram 
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APPENDIX D 

CORBA Early Bound Client Class Diagram 
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COM Late Bound Client Class Diagram 
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APPENDIX E 

Early Bound COM_CORBA Bridge Class Diagram 
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APPENDIX F 

MIDL Code of the Target COM Object 

import "oaidl.idl"; 
 
[ 
 object, 
 uuid(51BEE260-CBF9-4f57-86CA-217A7EA2DC71), 
 oleautomation 
] 
 
interface ICalculator_BasicMath:IUnknown 
{ 
 HRESULT add( [in] short x, [in] short y, [out] long* z ); 
}; 
 
[ 
 uuid(B11E5D95-F527-4de8-8F60-065513920635), //LIBID 
 version(1.0), helpstring("COM Calculator Library") 
] 
library COMCalculatorLibrary 
{ 
 importlib("stdole32.tlb"); 
 [uuid(9FD7A036-D00B-4907-A460-D1212ED68E69)] //CLSID 
 coclass COMCalculator 
 { 
  [default] interface ICalculator_BasicMath; 
 }; 
}; 
 
 

MIDL to IDL Translation for the CORBA View of the Target Object 

interface BasicMath { 
 void add( in short x, in short y, out long z ); 
}; 
 
interface CORBAViewCalculator : BasicMath 
{ 
}; 
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APPENDIX G 

Early Bound CORBA_COM Bridge Class Diagram 

HousingManagerClass

COMFactoryClass

-theHousingmanager 1

-COMFactory

1..*

ExeHousingManagerClass

RegistrarClass

1

1

«utility»
RegistryValueClass

+CreateInstance()

CalculatorFactoryClass

IClassFactory

IUnknown

«instance»

ICalculator_BasicMath

1

1

1

+

«call»

+CalculatorClass()
+~CalculatorClass()
+AddRef()
+getCORBAProxy()
+QueryInterface()
+Release()

-m_CORBAProxy
-m_pCORBAClient
-m_pICalculator_BasicMathClass
-m_refCount

CalculatorClass

+CORBAClientClass()
+~CORBAClientClass()
+InitializeCORBA()
+ResolveObjectName()
+TerminateCORBA()

-m_CORBA_NC
-m_orb

CORBAClientClass

«implementation class»
ICalculator_BasicMathClass

COM stub class:
Marshalls parameters between
COM client and bridge.

CORBA proxy class:
Makes calls on the target object
on behalf of the COM bridge class.

COM bridge class:
Receives calls from COM clients
abd makes calls to the CORBA
proxy object on behalfof COM
clients. Must have specific type
information about the target object
at compile time.
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APPENDIX H 

IDL Code of the Target CORBA Object 

 
interface BasicMath { 
 void Add( in short x, in short y, out long z ); 
}; 
 
interface CORBACalculator : BasicMath 
{ 
}; 
 

IDL to MIDL Translation for the COM View of the Target Object 

import "oaidl.idl"; 
 
[ 
 object, 
 uuid(0A597D75-FCCD-4f93-A4F0-FAC890A2CEE5), 
 oleautomation 
] 
 
interface ICalculator_BasicMath:IUnknown 
{ 
 HRESULT Add([in] short x, [in] short y, [out] long* z); 
}; 
 
 
[ 
 uuid(C2648F1C-3DD1-4da9-A076-42F7E269035C), //LIBID 
 version(1.0), helpstring("COMView Calculator Library") 
] 
library COMViewCalculatorLibrary 
{ 
 importlib("stdole32.tlb"); 
 [uuid(0528DA48-23B1-4da7-8DBC-AD5BC6081C7E)] //CLSID 
 coclass COMViewCalculator 
 { 
  [default] interface ICalculator_BasicMath; 
 }; 
}; 
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APPENDIX I 

Late Bound COM_CORBA Bridge Class Diagram 
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+ResolveObjectGUID()
+TerminateCOM()

-pClassFactory
-pIDispatch

COMClientClass

1

1

CORBA dynamic skeleton class:
The CORBA view must inherit from
this abstract class and implement
dynamic skeleton interface (DSI)
operations.

CORBA servant/bridge class:
Receives calls from CORBA clients
and makes calls to the COM proxy
object on behalf of CORBA clients.
Uses type information from an
interface repository to marshall
function arguments.

COM proxy class:
Makes calls on the target COM object on behalf
of the CORBA servant/bridge class via the
IDispatch interface.
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APPENDIX J 

Late Bound CORBA_COM Bridge Class Diagram 
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COM View Class:
Receives calls from COM
clients via IDispatch, and
forwards the calls to a
CORBA proxy object. Uses
information from a type
to marshal arguments.

CORBA Proxy Class::
Makes calls on the target
CORBA object via DII, on
behalf of CORBA View objects.  
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APPENDIX K 

Test Data 

COM Client Co-located 

test run 
number 

COM object 
static invocation  

COM object 
dynamic invocation

CORBA object 
static invocation 

CORBA object 
dynamic invocation 

1 110.4 182.0 949.2 4929.1 
2 110.7 181.1 949.6 4942.3 
3 109.3 183.4 952.9 4941.8 
4 109.9 182.4 949.6 4922.8 
5 110.1 182.6 953.2 4939.2 
6 109.1 189.0 951.8 4938.9 
7 109.5 182.3 951.0 4944.4 
8 109.3 182.0 957.8 4931.6 
9 109.6 182.5 955.3 4927.1 

10 109.1 182.1 954.4 4935.1 
  

Median 109.6 182.4 952.4 4937.0 
 

CORBA Client Co-located 

test run 
number 

CORBA object 
static invocation  

CORBA object 
dynamic invocation 

COM object static 
invocation 

COM object 
dynamic invocation 

1 457.3 635.7 930.2 5155.1 
2 448.5 633.6 942.0 5167.2 
3 448.9 630.6 951.5 5177.1 
4 449.5 632.8 935.7 5169.7 
5 448.1 707.7 941.0 5183.1 
6 448.5 635.7 935.9 5189.4 
7 449.1 629.1 941.1 5178.6 
8 453.0 633.5 934.4 5221.3 
9 453.0 633.7 933.3 5192.3 

10 450.1 624.8 936.0 5196.1 
     
Median 449.3 633.6 936.0 5180.9 
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COM Client Remote 

test run 
number 

COM object static 
invocation 

COM object 
dynamic invocation 

CORBA object 
static invocation 

CORBA object 
dynamic invocation 

1 866.8 1272.9 1578.1 5856.9 
2 797.9 1284.0 1571.5 5850.9 
3 812.5 1254.2 1576.2 5852.3 
4 791.2 1265.8 1565.3 5857.3 
5 798.8 1259.0 1587.6 5836.3 
6 772.8 1245.6 1562.1 5823.0 
7 776.3 1240.5 1571.8 5849.4 
8 774.3 1239.1 1577.1 5844.1 
9 771.8 1230.7 1559.1 5828.0 
10 776.5 1244.4 1563.3 5853.7 

     
Median 783.9 1249.9 1571.7 5850.2 

 
 

CORBA Client Remote 

test run 
number 

CORBA object 
static invocation 

CORBA object 
dynamic invocation 

COM object 
static invocation 

COM object 
dynamic invocation 

1 994.5 1651.1 1468.0 5943.3 
2 997.1 1551.0 1302.2 5953.7 
3 984.4 1553.8 1297.2 5933.0 
4 989.0 1528.5 1299.0 5957.6 
5 968.7 1532.9 1287.3 5963.6 
6 970.3 1537.2 1282.3 5954.1 
7 979.4 1555.4 1282.2 6003.6 
8 973.2 1544.1 1286.3 5970.9 
9 971.3 1540.7 1281.9 5979.6 
10 970.0 1547.1 1273.1 6211.8 

     
Median 976.3 1545.6 1286.8 5960.6 
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