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BMP4 Activation and Secretion Are Negatively Regulated by
an Intracellular Gremlin-BMP4 Interaction*
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Jianping Sun‡, Feng-Feng Zhuang§, Jerald E. Mullersman¶, Hui Chen§, Elizabeth J. Robertson�, David Warburton‡,
Yi-Hsin Liu§, and Wei Shi‡§1

From the ‡Developmental Biology Program, The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles,
California 90027, the §Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033,
the ¶Department of Pathology, East Tennessee State University, Johnson City, Tennessee 37614, and the �Wellcome Trust
Center for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom

Bonemorphogenetic protein 4 (BMP4) is a potent growth fac-
tor that is involved inmany important biological processes. Reg-
ulation of the level of secreted mature BMP4 determines the
biological effects of BMP4 on cells in the local microenviron-
ment. Previous studies suggested that Gremlin, a member of
DAN family proteins, antagonizes BMP4 activity by sequester-
ing extracellular BMP4. Herein, we report a novel intracellular
regulatory mechanism by which Gremlin interacts with BMP4
precursor, prevents secretion of mature BMP4, and therefore
inhibits BMP4 activity more efficiently. Furthermore, we also
defined a 30-amino acid peptide sequence within the Gremlin
DAN domain that is essential for BMP4 interaction. This novel
Gremlin-mediated BMP4 posttranslational regulatory mecha-
nism implies that the level of BMP4mRNA expression does not
truly reflect BMP4 activity when Gremlin and BMP4 are coex-
pressed within the same cell. Similar regulatory mechanisms
may be utilized by other DAN family proteins.

Bone morphogenetic protein 4 (BMP4)2 is a well studied
member of the BMP family (1), which plays an important role in
many organ developmental processes including the basic body
plan formation, the proximal-distal, left-right, and dorsal-ven-
tral axes (2). BMP4 elicits different biological responses
depending upon the concentration of the secreted active form.
For example, at early embryonic stages, cells exposed to high
concentrations of BMP4 will commit to a ventral fate, while
cells exposed to low concentrations of active BMP4will develop
into dorsal neural and muscular tissues (3, 4). Therefore, con-
trolling both expression and activation of BMP4 is critical for
BMP4-mediated cell fate decision.
The expression and activity of BMP4 can be regulated at

multiple molecular levels, including transcriptional and post-

translational regulation. At the protein level, BMP4 is initially
synthesized as an inactive 50-kDa precursor protein within
cells. Dimerization of the BMP4 precursor protein occurs by
forming an intermolecular disulfide bond. Then, following pro-
teolytic cleavage by members of the subtilisin-like proprotein
convertase family, an active carboxyl-terminal mature BMP4
protein dimer (25 kDa for the monomer) is produced, which is
then secreted outside the cell to act as a growth factor (5, 6, 7).
Furthermore, the secreted active BMP4 can also be inhibited at
the extracellular level by interactingwith secreted BMP4 antag-
onists, such as noggin, chordin, Cer1, DAN, and Gremlin (8, 9,
10, 11).
Gremlin was originally identified as a molecule capable of

inducing secondary axis formation in the Xenopus embryo (12,
13). Recombinant Gremlin protein is known to bind mature
BMP2/4 in vitro and inhibits these BMP activities. A high level
of Gremlin expression is found in nondividing and terminally
differentiated cells such as neuron, alveolar epithelial cells, and
goblet cells (14). The phenotypes of mice with Gremlin null
mutation have shown that Gremlin plays an essential role in
limb, lung, and kidney development, possibly due to inappro-
priate BMP signaling during the respective organ development
(15, 16).However, themolecularmechanismofGremlin-BMP4
interaction remains largely unexplored. Herein, we have found
that Gremlin can specifically bind to BMP4 precursor protein
inside cells, which prevents the production and secretion of
mature BMP4 protein and thus down-regulates BMP4 ligand
signaling in a most efficient manner. Thus, Gremlin functions
as a highly efficient intracellular BMP4 antagonist, in addition
to its classical extracellular antagonistic effect. Moreover, we
have also mapped the protein sequences in Gremlin that medi-
ate BMP4-Gremlin interaction.

EXPERIMENTAL PROCEDURES

Antibodies and Reagents—The antibodies to BMP4,
Gremlin, TGN38, and c-Myc epitope-tag antibodies were
purchased from Santa Cruz Biotechnology. Anti-HA
epitope-tag antibody was purchased from Covalence. Alexa
Fluor 594- or 488-labeled anti-mouse, anti-rabbit, and anti-
goat secondary antibodies were purchased from Invitrogen.
Human recombinant BMP4 was from R&D Systems. Short
peptides corresponding to the amino acid sequence of
mouse Gremlin 37–52 (DKAQHNDSEQTQSPPQ) and

* This work was supported by National Institutes of Health Grants HL68597
and HL61286, American Heart Association grant-in-aid, and Childrens Hos-
pital Los Angeles Research Career Developmental Award. The costs of pub-
lication of this article were defrayed in part by the payment of page
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accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom correspondence should be addressed: Developmental Biology
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146–175 (PKKFTTMMVTLNCPELQPPTKKKRVTRVKQ)
were synthesized by Genscript (Scotch Plains, NJ).
Plasmid Constructs—Myc-tagged mouse BMP4 cDNA

(Myc-BMP4) and HA-tagged mouse Gremlin cDNA (GRE-
HA), as generated previously (7), were subcloned into pcDNA3
expression vector. The Myc epitope was inserted into the
carboxyl-terminal immediately adjacent to the cleavage site
of mature BMP4, so that both precursor and mature forms of
exogenously expressed BMP4 can be detected by Myc
epitope. Partial cDNA of mouse Mucin-2, which encodes a
Mucin-2 protein fragment of 114 amino acids on the car-
boxyl terminus (PQNQ . . . LGRK, GenBankTM accession
number XP_620590), was generated by high fidelity RT-PCR
(Pfu, Stratagene) and verified by DNA sequencing. An HA
epitope was also added to the carboxyl terminus of Mucin-2
by inverted PCR. Partial deletions of Gremlin and a variety of
Gremlin-Mucin-2 chimeric cDNA constructs were created
by inverted PCR in combination with restricted digestion
and ligation of PCR products.
Cell Culture andTransient Transfection—COS-1 andC2C12

cells (ATCC) were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal calf serum at 37 °C in 5%
CO2. Plasmid DNAs were transfected into the cells with Lipo-
fectamine Plus (Invitrogen). The transfected cells were first cul-

tured in the medium containing
10% fetal calf serum for 20 h and
then cultured in serum-free condi-
tioned medium (CM) for additional
48 h prior to analysis. Experiments
were repeated at least three times.
Western Blot and Protein Co-im-

munoprecipitation—Equal amounts
of total cell lysate protein or CM
from different samples were sepa-
rated in NuPAGE 4–12% gradient
SDS-PAGE gels using a MOP buff-
ering system (Invitrogen). After
protein was transferred into polyvi-
nylidene difluoride membrane, pro-
teins of interest were detected by
specific antibodies. Proteins in dif-
ferent subcellular compartments
were fractionated using the Proteo-
Extract subcellular proteome extrac-
tion kit (Calbiochem). The fraction-
ation of cytosolic, membrane/
organelle, and nucleic proteins has
been confirmed as reported (17).
For co-immunoprecipitation ex-

periments, cells were lysed at 4 °C in
Nonidet P-40 lysis buffer. Lysates
were cleared of insoluble material
by centrifugation, followed by incu-
bation with Protein A/G-agarose
beads (Santa Cruz Biotechnology).
The supernatants of cell lysates
were then incubated with HA-spe-
cific antibody for 1 h, followed by

further incubation with Protein A/G-agarose beads overnight
at 4 °C. The precipitated protein complexes were examined by
Western blot.
Immunostaining—Co-immunofluorescence staining of

endogenous BMP4 and Gremlin was performed in E14.5
embryonicmouse lung using rabbit anti-Gremlin and goat anti-
BMP4 antibodies. Co-localization of exogenously expressed
Myc-BMP4 andGRE-HA in cultured cells was detected byMyc
andHA epitope co-immunofluorescence staining under a Zeiss
LSM510 confocal microscope with 400X optical magnification
and 4� digital zoom.
Measurement of BMP4 Activity—BMP-stimulated mouse

myoblast C2C12 cell differentiation into osteoblast cells was
used to measure BMP4 activity. Briefly, C2C12 cells were
grown in 96-well plate until 90% confluence. Agents (BMP4 or
conditioned medium) were then added into the culture
medium (Dulbecco’s modified Eagle’s medium with 5% fetal
bovine serum), and the cells were cultured for another 3 days.
The cells were then lysed with 0.1% Triton X-100, and the alka-
line phosphatase (ALP) activity in the cell lysate was quantified
by adding substrate p-nitrophenyl phosphate and measuring
A405. Triplicate measurements were always performed for each
sample. For BMP4 inhibitory assay by Gremlin peptides, the
culture medium containing BMP4 (100 ng/ml) was preincu-

FIGURE 1. Co-localization and interaction of BMP4 and Gremlin proteins in mouse fetal lung. A, E14.5
mouse fetal lung tissue was co-immunostained by goat anti-BMP4 and rabbit anti-Gremlin antibodies. B,
endogenous Gremlin protein in tissues lysate was immunoprecipitated (IP) by anti-Gremlin antibody (Ab1
from Santa Cruz Biotechnology; Ab2 generated in our laboratory), and the co-precipitated BMP4 precursor
protein was detected by immunoblot (IB) using anti-BMP4 antibody. NS, normal serum control.

Gremlin and BMP4 Intracellular Interaction

29350 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 281 • NUMBER 39 • SEPTEMBER 29, 2006



bated with the related peptide at a concentration of 0.5 �M for
3 h at 37 °C before added into C2C12 cells.

RESULTS

BMP4 Precursor Interacts with Gremlin Intracellularly in
Mouse Embryonic Lung—BMP4 gradient formation in tissue is
thought to be determined by extracellular interaction between
BMP4 and related antagonists. However, for cells that coex-
press BMP4 and BMP antagonists, intracellular interaction
between BMP4 and BMP antagonists cannot be excluded. To
determine the interaction between Gremlin and BMP4, the
endogenous protein expression patterns of these twomolecules
were first compared in developing lung, where both BMP4 and
Gremlin play important roles in its organogenesis (15, 16). By
co-immunofluorescence staining, Gremlin and BMP4 exhib-
ited a partially overlapping epithelial expression pattern in
E14.5 mouse embryonic lung (Fig. 1A), suggesting the possibil-
ity that these two proteins could interact intracellularly. There-
fore, physical interaction of endogenous Gremlin and BMP4
precursor inside cells was examined by co-immunoprecipita-
tion in mouse fetal tissue lysate. As shown in Fig. 1B, a precur-
sor form of BMP4 (50 kDa) was specifically co-immunoprecipi-
tatedwithGremlin protein in fetalmouse lung tissue lysate, but
not in kidney tissue, which suggested that tissue specific intra-
cellular interaction between Gremlin and BMP4 precursor can
occur in vivo. The biological significance of intracellular Grem-
lin-BMP4 precursor protein interaction and related molecular
mechanisms were then further analyzed in cultured cells.
Intracellular Interaction ofGremlin-BMP4Precursor Inhibits

BMP4 Activity Most Efficiently—Intracellular interaction of
BMP4 and Gremlin was further studied by coexpression of
these proteins in culturedC2C12 cells. BothHAepitope-tagged
Gremlin (GRE-HA) and Myc-epitope tagged BMP4 (Myc-
BMP4) were co-localized in the cytoplasm of co-transfected
cells, as shown by co-immunofluorescence staining under a
confocal microscope (Fig. 2A). Furthermore, expressed Myc-
BMP4 orGRE-HAwas also co-localized with TGN38, amarker
for the trans-Golgi network (18), suggesting that both proteins
are trafficking through the same intracellular compartments
(Fig. 2B-2C). The subcellular localizations of Myc-BMP4 and
GRE-HA were also verified by Western blot detection in frac-
tionated cell lysates (Fig. 2D). Expression of both Myc-BMP4
and GRE-HA was detected in the membrane/organelle protein

FIGURE 2. Subcellular localization and protein interaction of coexpressed
BMP4 and Gremlin. A–C, detection of protein expression in co-transfected
C2C12 cells under confocal microscope. Expression of Myc-BMP4 and GRE-HA
proteins overlaps in cytoplasm (A). Trans-Golgi marker TGN38 was also over-
lapped with either Myc-BMP4 (B) or GRE-HA (C ). Cell nuclei were counter-
stained by 4�,6-diamidino-2-phenylindole (blue color). D, subcellular localiza-
tion of expressed Myc-BMP4 and GRE-HA was also determined by Western
blot detection in different subcellular fractions (Cy, cytosol; Me, membrane/
organelle; Nu, nuclei). E, BMP4 precursor protein, but not mature BMP4, was
specifically co-immunoprecipitated with Gremlin in co-transfected COS-1 cell
lysate. F, BMP4 activities in the conditioned media (CM) of COS-1 cells trans-
fected with the indicated plasmids were evaluated by their stimulatory
effects on C2C12 cell differentiation into osteoblast cells, as measured by ALP
activity. (1), CM collected separately from the COS-1 cells transfected with
either Myc-BMP4 or GRE-HA were mixed and preincubated for 1 h before
added into C2C12 cells; (2), COS-1 cells transfected separately with either
Myc-BMP4 or GRE-HA were trypsinized and co-cultured during CM collection.
*, p � 0.05 as compared with the CM with BMP4 only.
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extract fraction (including endoplasmic reticulum and Golgi)
but not in the cytosolic and nucleic protein extract fractions.
The physical interaction between BMP4 and Gremlin proteins
in co-transfected COS-1 cells was then examined by protein
co-immunoprecipitation. Myc-BMP4 precursor in cell lysate,
but not mature Myc-BMP4 protein in conditioned medium
(CM), was co-immunoprecipitated with GRE-HA (Fig. 2E).
The activity of BMP4 secreted into CM was then measured

by its effect on myoblast C2C12 cell differentiation into osteo-
blasts (Fig. 2F), inwhich characteristicALP is expressed and the
ALP level reflects BMP4 activity. The BMP4 activity in the CM
of Myc-BMP4 transfected cells was inhibited by 20 � 9% when
an equal amount of CM collected from GRE-HA transfected
cells was added. Interestingly, the CM collected from mixed
cells that had been transfected separately by either Myc-BMP4

or GRE-HA exhibited a higher BMP4 inhibitory effect (55 �
5%), possibly due to prolonged interaction between BMP4 and
Gremlin in the CM. However, BMP4 activity in the CM from
cells co-transfected with equal amounts of both GRE-HA and
Myc-BMP4 was even more markedly inhibited (86 � 4%, p �
0.05), suggesting a more efficient inhibitory effect of intracellu-
lar Gremlin-BMP4 interaction than extracellular antagonistic
effect (Fig. 2F).
Intracellular Gremlin-BMP4 Precursor Interaction Prevents

Mature BMP4 Secretion—The precursor and mature forms of
BMP4 protein in transfected cell lysates and CM were further
analyzed. Consistent with previous reports (7), no mature
BMP4 was detected in the cell lysate, whereas mature but no
precursor BMP4 was detected in concentrated CM (Fig. 3A).
Most interestingly, reduced amounts of secretedmature BMP4
protein in CM were detected in inverse proportion to intracel-
lular Gremlin expression (Fig. 3A). Therefore, lack of mature
BMP4 in the CM of co-transfected cells may explain that no
mature BMP4 was co-immunoprecipitated with Gremlin, as
shown above in Fig. 2E. The level of BMP4 precursor in cell
lysatewas not significantly increased, even thoughBMP4 secre-
tionwas reduced, suggesting that BMP4-Gremlin complexmay
subject to facilitated degradation to maintain the same level of
BMP4 precursor pool inside cell. Furthermore, both secreted
forms of Gremlin and mature Myc-BMP4 in CMwere dramat-
ically increasedwhen coexpressedGremlinwasmutated to lose
its BMP4 binding activity (Gre-Muc-HA, see below for details),
while the level of mutated Gremlin was low in cell lysate. These
data suggest that intracellular interaction of Myc-BMP4 pre-
cursor and GRE-HA may prevent Myc-BMP4 precursor proc-

FIGURE 3. Expression of Gremlin prevents mature BMP4 secretion from
co-transfected COS-1 cells. A, COS-1 cells were co-transfected with the indi-
cated expression vectors, and the expressed GER-HA and Myc-BMP4 proteins
were detected in both cell lysate and concentrated CM with anti-HA and
anti-Myc antibodies, respectively. GRE-Muc-HA is a mutated Gremlin that
does not bind to BMP4. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) detection was used for protein loading control. B, the net activities of
BMP4 in the CM of the co-transfected cells were measured based on its effect
on C2C12 cell differentiation into osteoblast cells by adding equivalent
amount of CM into C2C12 cell culture medium. C, the same level of exoge-
nous BMP4 mRNA was confirmed by Myc-tag-specific quantitative real-time
RT-PCR.

FIGURE 4. Gremlin DAN domain is essential for its BMP4 binding activity.
A, schematic diagram of truncated Gremlin molecules. B, co-immunoprecipi-
tation of Myc-BMP4 with different mutant Gremlin molecules from co-trans-
fected COS-1 cell lysate and CM was detected by Western blot.
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essing and mature Myc-BMP4 secretion. The net BMP4 activ-
ities in the above CM were also quantified by the BMP-
stimulated C2C12 cell differentiation assay (Fig. 3B). The

alterations of BMP4 activities in the CM were consistent with
changes in secreted BMP4mature protein levels as detected by
Western blot in Fig. 3A. Moreover, transient Myc-BMP4 gene

FIGURE 5. Mapping BMP4-binding motif on Gremlin DAN domain. A, DAN domain protein sequences between Gremlin and Mucin-2 are aligned, and the
identical residues are highlighted in bold. The Cys residues for the knot structure are also depicted. B, a schematic diagram for a variety of Gremlin-Mucin-2
chimeras is illustrated. The result of BMP4-Gremlin co-immunoprecipitation in C is also summarized. C, co-immunoprecipitated Myc-BMP4 and Gremlin were
detected by Western blot using the related epitope antibodies. D, net activities of BMP4 in CM from transfected COS-1 cells were analyzed by their stimulatory
effects on osteoblast cell differentiation of C2C12 cells, as measured by ALP. The numbered Gremlin-Mucin-2 chimeras are indicated as shown in B. *, p � 0.05
as compared with the inhibitory activity of GRE-HA. E, addition of a synthetic peptide (0.5 �M) corresponding to the mapped 30-amino acid sequence (145–174)
of the Gremlin DAN domain significantly inhibited BMP4 (100 ng/ml)-stimulated osteoblast cell differentiation of C2C12 cell line. Another synthetic peptide
with the amino acid sequence from the N-terminal fragment (37–52) of Gremlin was used as a negative control, and the CM of Gremlin-transfected COS-1 cells
was used as a positive control. *, p � 0.05 as compared with BMP4 ligand only.
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expression at the mRNA level remained similar in all samples
with different levels of GRE-HA expression (Fig. 3C), as verified
by quantitative real-time PCR using a Myc-tag specific primer
and a protocol published previously (19). This excludes the pos-
sibility that changes inmatureMyc-BMP4 in the CMare due to
differences in BMP4 gene expression.
Gremlin DAN Domain Is Essential to Mediate Gremlin-

BMP4 Interaction—The activity of BMP4 is thought to be pre-
cisely regulated extracellularly by many molecules defined as
BMP antagonists (9), which have a cystine-knot structure sim-
ilar to BMPs themselves. DAN family proteins are one sub-
group of BMP antagonists with a conserved eight-cystinemem-
bered knot structure on their carboxyl terminus, which
distinguish them from other BMP antagonists with a nine or
10-membered cystine ring (20). The DAN family includes
Gremlin (14, 12), PRDC (21), coco (22), Cer1 (homologue of
XenopusCerberus (10), DAN (23), USAG-1 (24), and sclerostin
(25, 26), which are able to directly interact with BMPs and pre-
vent BMPs from binding to their receptors. However, the
molecular mechanisms of their protein interaction have never
been explored. To further determine the specificity of BMP4-
Gremlin binding and the molecular motif in Gremlin that is
responsible for this intermolecular interaction, two Gremlin
mutantmolecules, GRE-DAN-HAandGRE-NF-HA,were gen-
erated with truncation of the NH2-terminal fragment or the
carboxyl-terminal DAN domain, respectively (Fig. 4). Removal
of the DAN domain from the Gremlinmolecule (GRE-NF-HA)
fully abolished its BMP4 binding ability and resulted in rapid
and increased secretion of this truncated Gremlin molecule
into theCM. In contrast, deletion of theN-terminal fragment of
Gremlin did not have any impact on its BMP4 binding ability.
Most of the GRE-HA and GRE-DAN-HA proteins with BMP
binding activity were retained in the cell lysates. This suggests
that the DAN domain in Gremlin is essential for BMP4 binding
and that intracellular BMP4 precursor-Gremlin protein com-
plex is not secreted outside the cell.
Mapping the BMP4 Binding Motif of Gremlin DAN Domain—

Not all the proteins with a highly conserved eight-membered
Cys-knot DAN domain homology are able to bind to BMP4 or
other BMPs. One of these proteins is Mucin-2 (Fig. 5A).
Replacement of the Gremlin DAN domain with the corre-
sponding Mucin-2 DAN domain sequence fully eliminated
both its BMP4 binding activity and its BMP4 inhibitory func-
tion (GRE-Muc-HA in Figs. 3 & 5, B–D). To further determine

the protein sequence motif of Gremlin DAN domain that is
responsible for BMP4 interaction, we made a variety of Grem-
lin-Mucin-2 chimeras within the DAN domain region without
changing its Cys-knot structure (Fig. 5B). These Gremlin-Mu-
cin-2 chimeric proteins were coexpressed with Myc-BMP4 in
COS-1 cells by transient transfection. The relatedBMP4binding
and inhibitory activities were evaluated by co-immunoprecipita-
tion andBMP4-stimulatedC2C12 cell differentiation assay. Thus,
a 30-amino acid region corresponding to Gremlin amino acid
sequence 145–174 (PKKFTTMMVTLNCPELQPPTKKKRVTR-
VKQ)appears essential tomediate the interactionbetweenGrem-
lin and BMP4 and its BMP4 inhibitory effect (Fig. 5, B–D). Next,
the function of this molecular motif in mediating the interaction
between Gremlin and mature BMP4, which is the mechanism of
Gremlin antagonistic effect on active BMP4, was tested in the
BMP4-induced C2C12 cell differentiation assay. Interestingly,
preincubation of active BMP4 (100 ng/ml) with a synthesized
linear peptide corresponding to the mapped amino acid
sequences (145–174, 0.5 �M) significantly inhibited BMP4
activity by 56 � 10% (p � 0.05, Fig. 5E), similar to the BMP4
inhibitory effect obtained by preincubation with full-length
Gremlin in the CM (35 � 3% inhibition in Fig. 5E). Meanwhile,
a control peptide with the amino acid sequence of Gremlin
NH2-terminal fragment (37–52) at the same concentration (0.5
�M) did not display any inhibitory effect on BMP4 signaling
activity.
An approximate structure of mouse Gremlin DAN domain

(amino acid 94–184; CKTQP . . . SIDLD) was then determined
with respect to the published structure of human chorionic
gonadotropin chain B by homology modeling using the pro-
gramModeler version 8.1 (Fig. 6; Refs. 27 and 28). As previously
delineated by Avsian-Kretchmer and Hsueh (20), human cho-
rionic gonadotropin chain B is a good homologymodeling tem-
plate for Gremlin because they both share cystine knots that
form eight-membered rings and have “fingers” of similar size.
The mapped 30-amino acid region (145–174) spans across a
whole finger structure (finger 2), which provides a surface that
is independent of the rest of themolecule. In addition, themost
dominant feature of finger 2 in Gremlin DAN domain appears
to be the positively charged lysine and arginine residue side
chains spread across the surface, suggesting that this positively
charged surface might bind to the negatively charged patch
(residues of aspartic acid and glutamic acid) that has been
observed on carboxyl-terminal BMP2/4.

FIGURE 6. Structure modeling of Gremlin DAN domain. a, the ribbon structure of Gremlin DAN domain (amino acids 94 –184) is predicted by homology
modeling using the program Modeler version 8.1 (28), based on the published structure of human chorionic gonadotropin chain B (27). �-Strand is represented
as yellow-colored arrow. b and c, filled structure of the finger 2 in Gremlin DAN domain is viewed from the side (b) and the top (c) for the protein interface. Atoms
are colored as white for carbon, red for oxygen, and blue for nitrogen. The side chains of lysine and arginine contribute to the positively charged surface by their
nitrogen-containing amino groups.
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DISCUSSION

Our studies indicate that inhibition of BMP4 activity can be
achieved either by intracellular interaction with Gremlin when
coexpressed in the same cells or by an extracellular antagonistic
mechanism if Gremlin is expressed in different cells. The intra-
cellular interaction and subsequent inhibition of BMP4 secre-
tion by Gremlin may provide an efficient and fine regulatory
mechanism to direct different cellular fates by changing auto-
crine/paracrine activity in neighboring cells within a small
microenvironment or may provide a negative feed back mech-
anism for certain cells. The intracellular interaction between
Gremlin and BMP4 appeared to be tissue-specific, as detected
in embryonic lung, but not in embryonic kidney. Thus, Gremlin
and BMP4may not coexpress in the same cells in kidney at this
specific stage. Alternatively, BMP family members other than
BMP4 may bind to Gremlin in kidney, or BMP antagonists
other than DAN family proteins, such as CRIM1 (29), may be
themajor players in regulating BMP signaling activity in kidney
and other tissues.
As reported previously, cleavage of BMP4 precursor into the

mature form of BMP4 occurs in the trans-Golgi network (7).
Co-immunoprecipitation of Gremlin with the precursor form
of BMP4 in cells co-transfected with Gremlin and BMP4 sug-
gests that the intracellular protein interaction between BMP4
and Gremlin occurs in the subcellular compartments before
these proteins enter the trans-Golgi network during the secre-
tion process (co-translational or endoplasmic reticulum sites).
Binding of Gremlin appears to affect the processing of precur-
sor to mature BMP4 in cells and subsequently inhibit BMP4
secretion. This could be amost efficient and rapidway to down-
regulate BMP4-mediated signal activity in cells. However, the
exact physiological roles of this intracellular Gremlin regula-
tory function versus extracellular antagonistic function in vivo
needs to be further investigated.
The intracellular inhibition of BMP4 by Gremlin interaction

also implies that measurement of BMP4 ligand mRNA expres-
sion level alone by RT-PCR and/or in situ hybridization, which
are commonly used to evaluate BMP4 activity in developmental
biology studies, may not reflect the actual BMP4 activity, since
that approach neglects the important posttranslational proc-
essing of the BMP4 precursor protein regulated by Gremlin.
Whether this intracellular inhibitory effect ofGremlin is a com-
mon mechanism to all DAN family proteins remains to be
determined. van Bezooijen et al. (30) reported that sclerosteosis
resulting from a defective sclerostin did not occur via a classical
BMP antagonistic mechanism, since addition of exogenous
sclerostin into mouse C2C12 cell culture medium did not
antagonize BMP-stimulated ALP activity. Based upon our data,
an intracellular BMP inhibitory effect may well mediate the
biological effect of sclerostin. This novel intracellular Gremlin-
BMP4precursor interactionmay therefore help us tomore pre-
cisely understand the regulation of BMP signaling mechanisms
in physiological as well as pathological situations.
By replacing Gremlin DAN domain with the corresponding

Mucin-2 DAN domain protein sequences, the BMP4 binding
and inhibitory activity of Gremlin is fully abolished, confirming
the specificity of intracellular Gremlin-BMP4 interaction. Fur-

thermore, a 30-amino acid peptide motif in Gremlin DAN
domain was mapped by introducing a variety of mutations in
the protein sequences of Gremlin DAN domain without dis-
ruption of the overall Cys-knot structure. From molecular
modeling, we speculate that these 30-amino acid residues con-
stitute an independent surface finger structure with multiple
positively charged lysine and arginine residues, providing a
docking site for negatively charged patch on BMP ligands.
Thus, BMP4 inhibition by Gremlin-BMP4 interaction may be
mediated by a mechanism that is different from other non-
DAN family antagonist-mediatedBMP inhibition, such asNog-
gin (31). Noggin-BMP7 binding is mediated by hydrophobic
interaction that masks the hydrophobic interface required for
BMP receptor I and II binding (31, 32). Alternatively, Gremlin-
BMP4 interaction could result in BMP4 conformational
changes, which prevents BMP4 precursor cleavage and matu-
ration within the cell, and reduces BMP4-receptor binding
activity outside the cell.
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