
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

5-2003

Extensions to OpenGL for CAGD. Extensions to OpenGL for CAGD.

Chunyan Ye
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ye, Chunyan, "Extensions to OpenGL for CAGD." (2003). Electronic Theses and Dissertations. Paper 767.
https://dc.etsu.edu/etd/767

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fetd%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Extensions to OpenGL for CAGD

A thesis

presented to

the faculty of the Department of Computer Science

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Masters of Science in Computer Science

by

Chunyan Ye

May 2003

Martin Barrett, Chair

Phil Pfeiffer

Michaele Duncan

Keywords: OpenGL, Triangular patch, Coons patch, Box splines patch

 2

ABSTRACT

Extensions to OpenGL for CAGD

by

Chunyan Ye

Many computer graphic API�s, including OpenGL, emphasize modeling with rectangular patches, which

are especially useful in Computer Aided Geomeric Design (CAGD). However, not all shapes are

rectangular; some are triangular or more complex. This paper extends the OpenGL library to support the

modeling of triangular patches, Coons patches, and Box-splines patches. Compared with the triangular

patch created from degenerate rectangular Bezier patch with the existing functions provided by OpenGL,

the triangular Bezier patches can be used in certain design situations and allow designers to achieve high-

quality results that are less CPU intense and require less storage space. The addition of Coons patches and

Box splines to the OpenGL library also give it more functionality. Both patch types give CAGD users

more flexibility in designing surfaces. A library for all three patch types was developed as an addition to

OpenGL.

 3

 ACKNOWLEDGMENTS

I do really appreciate Dr. Martin Barrett, my adviser, for his helping with my thesis. Thanks to

him for his time, patience, and effort.

Thanks to my committee members for help all the way, especially Dr. Phil Pfeiffer�s patience and

Michaele�s support.

I do appreciate all teachers in Computer Science Department. Without their help, I could not

finish.

 4

CONTENTS

 Page

ABSTRACT ... 2

ACKNOWLEDMENTS .. 3

LIST OF FIGURES ... 7

Chapter

 1. INTRODUCTION .. 9

 2. LITERITURE REVIW .. 11

 Basics of Computer Aided Geometric Design (CAGD).. 12

 Mathematics of Image Representation ... 12

 Preliminaries.. 12

 Points and Vectors... 12

 Vector Space and Affine Space.. 13

 Barycentric Combination... 13

 Parametric Curves and Parametric Surfaces ... 14

 Homogeneous Coordinate System and Rational Curves .. 15

 Tangent.. 15

 Bernstein Polynomials.. 15

 Basics ... 15

 Definition of Bernstein Polynomials .. 16

 Bezier Curve ... 17

 Definition of Bezier Curves ... 17

 Bezier Curve: De Casteljau's Algorithm .. 18

 Bezier Surfaces .. 19

 B-spline ... 20

 B-spline Cuves and Basis .. 20

 B-spline Surfacess ... 21

 Tensor Product Surfaces ... 21

 Splines vs Bezier .. 22

 5

 Rectangular Patches vs Triangular Patches .. 22

 Rectangular Patches .. 22

 Triangular Patches ... 22

 Coons Patches .. 23

 Box Splines ... 27

 OpenGL Review .. 28

 History of OpenGL .. 28

 Advantages of OpenGL ... 29

 Basic Libraries of OpenGL ... 29

 How OpenGL Create Curves and Surfaces ... 29

 Conclusion ... 30

 3. TRIANGLE PATCHES .. 31

 Motivation ... 31

 Barycentric Coordinates in Triangles .. 31

 Bernstein Polynomials and The de Casteljau Algorithm .. 33

 Bernstein Polynomials ... 33

 The de Casteljau Algorithm ... 33

 Implementation of Triangular Patch in OpenGL ... 35

 Prototype of Evaluators of Triangular Patch in OpenGL ... 35

 Implementation of Evaluators of Triangular Patch in OpenGL ... 37

 Comparison of Triangular Patch and Degenerated Cubic Patch ... 39

 Conclusion ... 43

 4. COONS PATCHES .. 44

 Motivation ... 44

 Bilinearly Blended Coons Patches ... 44

 Implementation of Coons Patch in OpenGL .. 46

 Prototype of Evaluators of Coons Patch in OpenGL ... 46

 Implementation of Evaluators of Coons Patch in OpenGL .. 48

 Comparison of Coons Patch and Rectangular Patch with the Same Control Points 50

 Conclusion .. 52

 5. BOX SPLINES ... 53

 Motivation ... 53

 6

 Box Splines Definition .. 53

 Algorithm .. 54

 Implementation of Box Splines in OpenGL .. 56

 Prototype of Evalutors of Box Splines in OpenGL ... 56

 Implementation of Evaluators of Box Splines in OpenGL .. 57

 Conclusion ... 59

 6. CONCLUSION .. 60

 Summary of Work ... 60

 Conclusions ... 60

 Future Work ... 61

BIBLIOGRAPHY .. 63

APPENDICES ... 65

 Appendix A: myOpenGL.h .. 66

 Appendix B: myOpenGL.cpp ... 68

 Appendix C: A Example of Main Program ... 83

GROSSARY ... 89

VITA ... 95

 7

LIST OF FIGURES

FIGURE Page

 1. Cubic Bezier Curve Defined by Four Control Points .. 18

 2. The de Casteljau�s Algorithm: The point b0
n(t) is Obtained from Repeated Linear Interpolation 18

 3. B-cubic Bezier Surface with 16 Control Points .. 19

 4. B-spline Curve .. 21

 5. Cubic Bezier Triangular Patch with 10 Control Points ... 23

 6a. C1 and C2 Two Curves Built One Ruled Surface ... 24

 6b. D1 and D2 Two Curves Built One Ruled Surface .. 24

 6c. Coons Patch Built from C1, C2, D1, and D2 Four Curves .. 25

 7. Bicubic Hermite Patches: Points and Vectors ... 26

 8. The Box Spline B{(1, 0); (0,1)} .. 28

 9. The triangle and Plane T Defined by Points (a, b, and c) TITLE OF FIGURE 2 32

 10. The de Casteljau Algorithm in Triangular Patch ... 34

 11. The Triangular Patch and Control Points� Order .. 36

 12a. Triangular Patch in Point Mode ... 38

 12b. Triangular Patch in Frame Mode ... 38

 12c. Triangular Patch in Surface Mode .. 39

 13. Degenerated Rectangular Patch Control Points(a) vs Triangular Patch Control Points 40

 14a. The Right One is Degenerated Triangular, and the Left is Regular Triangular Patch in Surface Mode 41

 14b. The Right One is Degenerated Triangular, and the Left is Regular Triangular Patch in Frame Mode.. 41

 15a. New Designed Triangular Patch in Yellow .. 42

 15b. Degenerated Triangular Patch in Yellow .. 42

 16. Comparison of Triangular Patch with Degenerated Triangular Patch in a Designed Feature 43

 17. The Bilinear Interpolant for Rcd... 45

 18. Coons Patch: A Bilinearly Blended Coons Patch ... 46

 19. Data Input for 4x4x4x4 Coons Patch ... 47

 20. Coons Patch in Surface Mode .. 49

 21. Coons Patch in Frame Mode ... 49

 22. Coons Patch in Point Mode ... 50

 8

 23. Data Sets for (a) a Rectangular Patch and (b) a Coons Patch .. 50

 24. Rectangular Patch .. 51

 25. Comparison of Rectangular and Coons Patch in Surface Mode .. 51

 26. Comparison of Rectangular and Coons Patch in Frame Mode .. 52

 27.The Subdivision Algorithm for Box Splines ... 56

 28. Control Points Input with Dimension 4 and Dimension 3 ... 57

 29. Box Splines Surface in Point Mode ... 58

 30. Box Splines Surface in Frame Mode... 58

 31. Box Splines Surface in Surface Mode .. 59

 9

CHAPTER 1

INTRODUCTION

 The goal of computer graphics is to produce pictures or images by computer with the help of

mathematical computation. Computer graphics has developed quickly in recent years, with increased

capabilities and reduced cost. Applications of computer graphics include display, design, simulation, and

user interfaces. Successful applications of computer graphics in engineering are largely due to the progress

of computer aided geometric design (CAGD), which provides the mathematical basis for describing and

processing geometric shapes and data. CAGD as a field of computer-aided design (CAD) has developed

considerably since its inception in the late 1950s. CAGD is extensively used in a large number of areas,

including aerospace, automotive engineering, marine engineering, civil engineering, and electronic

engineering. The use of parametric curves and surfaces can be deemed the mathematical base of CAGD

(Farin 1993; Angel 2000).

 Parametric curves and parametric surface patches are popular and powerful ways of representing

curved objects. Several different but related methods exist for describing parametric curves and surfaces,

including Bézier and B-spline techniques. The Bézier curve technique is a method for describing a

polynomial curve in terms of Bernstein polynomials. A B-spline is another strategy for approximating

curves that uses a piecewise polynomial function. For example, four �control points� define a cubic Bézier

curve in two dimensions. Similarly, a grid of sixteen control points can define three-dimensional bi-cubic

Bézier rectangular surface patches. A three-dimensional Bézier triangular surface patch can be defined as

grid of ten control points. Similar methods are used for B-spline curves and surfaces (Farin 1993).

Because most of the early CAD work was developed for the car industry, the initial applications of

CAM were for roof, door, hood, and other components with rectangular geometry. This emphasis on

rectangles caused the theory of rectangle-based descriptive geometry to develop quickly. For example, he

well-known de Casteljau's algorithm, which was developed in 1959, makes rectangular patches easy to

compute. Therefore, rectangular patches are widely developed and used in many commercial CAD systems

to model all kinds of surfaces (Farin 1986, 1993).

There are, however, some disadvantages to using rectangular Bezier patches to model any

surfaces. Triangular surfaces can form among three rectangular Bezier patches in regions where natural

 10

flows come together awkwardly, such as aircraft wings, suitcase corners, or the bulbous bow on ships.

Triangular patches can be generated with rectangular patches, but the result is bad (Farin 1986).

Triangular patches generated with rectangular patches often cause problems in using standard

algorithms for applying other graphic operations, such as plane/surface intersection or ray tracing. Other

surfaces, such as Coons patches and box-splines, have been studied theoretically (Cohen 1984; Farin 1993;

de Boor 1994; Farin 1999). They may be useful primitives in rendering surfaces. Therefore, it is a worthy

goal to implement efficient tools to model non-rectangular surfaces.

CAGD is usually done with a graphic library or API. OpenGL is hardware independent and

widely accepted software for developing graphic applications. It contains two basic libraries, GL and

GLU. Some basic geometric primitives such as points, lines, and polygons are implemented in GL. The

OpenGL Utility Library (GLU) provides more complex features, such as quadric rectangular surfaces and

NURBS curves and surfaces. The algorithms used in GLU to render surfaces and NURBS curves and

surfaces are Bézier basis. The OpenGL Utility Toolkit (GLUT), written by Mark Kilgard, is a window-

system-independent toolkit. GLUT standardizes and simplifies window and event management. Its

functions include initializing and creating a window, handling window and input events, loading the color

map, initializing and drawing three-dimensional objects, managing a background process, and running the

program. OpenGL produces surfaces based on Bezier rectangular patches (Woo 1999; Angel 2000).

 OpenGL has only rectangular Bezier surface rendering functionality. This project proposes to

add Bezier triangle patches, Coons patches and box-splines primitive functions to the OpenGL library.

The balance of this proposal is organized as follows. Chapter 2 reviews the basic mathematical

theory of Bezier curves and surfaces used in computer graphics; discusses other surfaces, such as

rectangular patches and triangular patches used in CAGD; and describes basic libraries in OpenGL.

Chapter 3 discusses an implementation for Bezier triangular patch functions in OpenGL. Chapter 4

discusses coding for Coons� patches in OpenGL. Chapter 5 discusses coding for implementing box-splines

in OpenGL. Chapter 6 provides a conclusion and areas of future research.

 11

CHAPTER 2

LITERITURE REVIEW

Computer technology is widely used in daily activities, such as filmmaking, publishing, banking,

engineering, and education. Many computer applications use a graphical interface to display information.

Computer graphics is the study and realization of a complex process to produce pictures and images from a

physical or conceptual object. Computer graphics creates synthetic images by programming the geometry

and appearance of the contents of the images, and by displaying the results of that programming on

appropriate display devices that support graphical output. The programming can be done with the support

of a graphics Application Program Interface (API) that does most of the detailed work of rendering the

scene that the program defines (Angel 2000).

A picture or image is composed of one or more geometric entities. The creation of a geometric

entity has four major steps: modeling, geometric processing, rasterization, and display. In order to make a

computer image, programmers develop codes to model the geometric entities; assemble these entities into

an appropriate geometric space with proper relationships; define and present the appearance of the entities

with assigned shades or colors; specify how the scene is to be viewed; and make it display on the graphic

device appropriately (Angel 2000).

Advances in hardware and software and demands of the user community have led to

improvements in computer graphics. Engineers and architects use computers to design images or products

and computer-aided design (CAD) and computer-aided manufacture (CAM) are two important areas where

computer graphics plays a central role. Both computer-aided design (CAD) and computer-aided

manufacturing (CAM) are widely used in a large number of areas, including aerospace, automotive

engineering, marine engineering, civil engineering, and electronic engineering. The application of

computer graphics in engineering is the foundation of computer aided geometric design (CAGD), which

provides the mathematical basis to describe and process geometric shapes and data. CAGD as a field of

CAD has developed considerably since its inception in the late 1950�s (Farin 1993; Angel 2000; Farin

2001).

 12

Basics of Computer Aided Geometric Design (CAGD)

Computer-aided geometric design started in the late 1950s. Its actual application began with

automated machinery to shape blocks of wood or steel and car parts (Farin 1993).

The most used descriptive methods of geometric shape are parametric curves and surfaces. Early

developments in CAGD included the theory of Bézier surfaces and Coons patches, later combined with B-

spline methods. Bézier curves and surfaces were introduced by P. de Casteljau at Citroën in 1959, then by

P. Bézier at Rénault. De Casteljau�s work slightly earlier than Bézier�s, was never published. Citroën

needed to convert data from 2D blueprint information into coordinates to drive a three-dimensional milling

machine. De Castelijau invented �Courbes à Poles�, known as Bézier curves today. Pierre Bézier, a

mechanical engineer at Rénault, had learned about de Castelijau�s work. He created a system with the

same function, and Rénault let him publish it. Thus, the whole theory of polynomial curves and surfaces in

Bernstein form now has Bézier�s name and Bézier curves came to dominate CAGD (Farin 1993).

Besides Bezier curves and surfaces, two other techniques emerged from the automotive field:

Coons� patches from Ford and Gordon surfaces from General Motors. They differ from Bezier methods, in

that they �fill in� curve networks in order to create the surface instead of using control nets in Bézier or B-

spline form (Farin 1993).

Another development was the introduction of splines. Based on the theory of interpolating

piecewise cubic curves, or C2 cubic splines, Ferguson developed a package for Boeing in the late 1950�s.

Splines were first studied by Schoenberg in 1946. De Boor of General Motors advanced the theory of B-

spline curves and surfaces (Cohen 1984; Farin 2001).

Gordon and Reesenfeld, using de Boor�s work, found that B-splines could be used in the same

way that Bézier curves could. They showed that Bézier curves were just a special case of B-spline curves

and made possible a unification of systems based on splines and those on Bézier curves. Today, Bézier and

B-spline representations of curves and surfaces have become an industrial standard (Farin 1993, 2001).

Mathematics of Image Representation

Preliminaries

Points and Vectors. The fundamental 3-dimensional spatial entities that form the basis for all

operations in computer graphics are points and vectors. A point is a location in space, and a vector is a

 13

directed line segment in space. Points are elements in three-dimensional Euclidean space E3 and are

described in capitalized bold letters such as P and Q, and vectors are elements in the three-dimensional real

vector space R3 and are denoted as lower case letters with an arrow above such as vr and wr . For each pair

of points P and Q, there exists a unique vector vr such that vr = P � Q, where P, Q ∈ E3, vr ∈ R3 (Angel

2000; Farin 1993).

Vector Space and Affine Space. A vector space has two distinct entities, vectors and scalars. A

scalar is a real number and a unit of measurement. A vector vr ∈ R3 is an ordered triple as (x, y, z), where x,

y, z are scalars. The length of vr is calculated as |vr | = 222 zyx ++ . vr can be normalized into a unit

vector ur = vr /| vr | (Angel 2000; Watt 2000).

 A vector space has vector-vector addition and scalar-vector multiplication operations. For n

vectors, vector-vector addition can be defined as follows:

)...,...,...(... 21212121 nnnn zzzyyyxxxvvvvsum +++++++++=+++= rrrr
.

For a scalar-vector multiplication, scalar r multiplied times vector vr is defined as r* vr = (r*x, r*y, r*z). If a

vector vr has the same scalar as ur but opposite direction, it is defined vr = - ur or ur = - vr and ur + vr = 0.

Therefore, vector-vector subtraction can be defined as result)(2121 vvvvv rrrrr −+=−= (Faux 1979; Angel

2000; Watt 2000).

An affine space extends a vector space by adding an additional object: the point. Affine addition is

defined as L = P + t vr , where t is a scalar. This defines a line from P in the direction vr . An equivalent

two-point form can be derived. For two points R and Q in a line, define the direction vector vr = R � Q.

Then any point P ∈ E3 on the line satisfies P = Q + α vr = Q + α(R-Q) = αR + (1-α)Q. This is called the

barycentric form of the line when rewritten as P =α1R + α2Q, where α1 + α2 = 1 (Farin 1993; Angel 2000).

In affine space, the operations of translation, scaling, and rotation are invariant (Farin 1993).

Barycentric Combination. Barycentric combinations are weighted sums of points, where all the

weights sum to 1. The general barycentric combination is

 14

 P ∑
=

=
n

i
i

0
α Pi where Pi ∈ E3 , iα is scalar, and 1...21 =+++ iααα .

(Farin 1993).

The convex combination is an important special case of barycentric combinations. The weights or

coefficients iα of points of a convex combination are nonnegative. The set of points so defined is called

the convex hull of the Pi. A convex hull is the smallest tight-fitting stretched surface containing the given

set of points. The concept of the convex hull is very important in computer graphic design. A convex

combination of points is always �inside� those points (Farin 1993; Angel 2000).

Barycentric coordinates are another method of introducing coordinates into an affine space.

Through barycentric combinations, a point can be checked if it is inside the convex hull. For example, a

given triangle with vertices A, B, C and a given point M, M = r1A + r2B +r3C, if r1 + r2 + r3 = 1, if 0 ≤ r1 ≤ 1

for - = 1..3, M is inside the triangle, otherwise M is not inside the triangle (Farin 1993).

Parametric Curves and Parametric Surfaces

In describing curves or surfaces, an auxiliary parameter is used to represent the position of a point.

This kind of curve or surface is parametric curve or surface. A parametric curve in space can be described

as the following:

 x = x(u), y = y(u), z = z(u)

where x(u), y(u), and z(u) are three functions (for example, polynomials) mapping a real value parameter

u to a point in the curve (Faux 1979).

A parametric surface in space can be described as the following:

 x = x(u, v), y = y(u, v), z = z(u, v)

where x(u, v), y(u, v), and z(u, v) are three functions mapping real value parameters u, v to a point in the

surface. The parameter can be any real value, but, for simplicity, are often restricted to [0,1] (Faux 1979).

The parametric form of curves and surfaces is extensively used in computer graphics, because

parametric curves and surfaces are easily manipulated (Faux 1979).

 15

Homogeneous Coordinate System and Rational Curves

Programmers treat points as vertices described as (x, y, z) that define geometric objects in a user-

given coordinate system. Every coordinate system has its origin. Usually the origin of a coordinate system

is (0,0,0) (Angel 2000).

Every object has its own properties such as lines, angles, and position in a defined coordinate

system. It is known that two points subtracted make a vector. The vector from (0,0,0) to (2,2,3) is the

same as that from (1,1,1) to (3,3,4) with the same magnitude and direction. To distinguish them, there is a

solution using homogeneous coordinates in describing a coordinate. Homogeneous coordinates use four-

dimensional vectors; for example, if 0332211 avavavaP +++= , then P may be represented as

(0321 ,,, aaaa). Homogeneous coordinates permit rotation, scaling, reflection, and shearing

transformations to be represented by matrix multiplication (Faux 1979; Angel 2000).

Tangent

For a fixed point A and a moving point B on a curve moving toward A, the vector from A to B

approaches the tangent vector at A, and the line that contains the tangent vector is the tangent line.

To compute the tangent line at a point P (1x , 1y), take

y = 1y + f�(1x)(x- 1x)

where f�(1x) =
dx
df

at x = 1x .

where
dx
df

at x = 1x and
dy
df

at y = 1y .

(Faux 1979).

Bernstein Polynomials

Basics. Most geometric objects have complex curves or surfaces that are not easily represented by

simple analytic functions. Complex curves are divided into small pieces and are designed in a piecewise

manner. Complex surfaces are divided into patches (Faux 1979).

 16

Polynomials allow curves and surfaces to be designed with ease, and manipulated in simple ways.

It is easy to differentiate and integrate polynomials and polynomials. For this reason, piecewise curves and

surface patches are usually represented with polynomial functions.

Any polynomial function that has degree less than or equal to, can be written as

 01
1

1 ...)(axaxaxaxP n
n

n
n ++++= −

−

which represents P in the power basis {1, x, x2, �, xn} (Faux 1979).

Definition of Bernstein Polynomials. A Bernstein polynomial of degree n is defined as:

1
,)1()(−−

= ni
ni tt

i
n

tB

for i = 0, 1, �, n, where

 ≤≤

−=

else

niif
ini

n

i
n

0

0
)!(!

!

For a given n, the set of Bernstein polynomials form a basis. The Bernstein Basis has four

properties: recursion, partition unity, non-negativity, and derivatives.

Recursion in Bernstein polynomials is given by

)()()1()(1
1

1 ttBtBttB n
i

n
i

t
i

−
−

− +−=

 with .1)(0
0 ≡tB

 and 0)(≡tB n
i for { }nj ,...,0∉ .

 The proof:

)()()1(

)1(
1
1

)1(
1

)1()(

1
1

1 ttBtBt

tt
i
n

tt
i
n

tt
i
n

tB

n
i

n
i

iniini

inin
i

−
−

−

−−

−

+−=

−

−
−

+−

 −
=

−

=

 17

 The partition of unity property means that, for all t,

 ∑
=

≡
n

j

n
j tB

0
1)(

 The proof:

 ∑ ∑
= =

− =−

=−+=

n

j

n

j

n
j

jnjn tBtt
j
n

tt
0 0

)()1()]1([1

 The non-negativity property means that for]1,0[∈t , the Bernstein polynomial is non-

negative:

 0)(≥tB n
i , for]1,0[∈t

 The proof:

100)1(
100

0

≤≤≥−
≤≤≥

≥

tfort
tfort

i
n

 The derivatives of a Bernstein polynomial are computed as

))()(()(11
1 tBtBntB

dt
d n

i
n
i

n
i

−−
− −=

(Farin 2002).

Bézier Curve

Bezier curves and patches are among the most fundamental tools in computer graphics and

computer aided modeling (Farin 1993).

Definition of Bézier Curves. A Bézier curve of degree n in Bernstein form is defined by the

formula

 ∑
=

=
n

i
i

n
i puBuP

0
)()(

where the ip are control points, the)(uB n
i are the Bernstein basis functions, and u]1,0[∈ .

 18

 A Bézier curve is an affine combination of its control points, and any affine transformation of a curve

is the curve of the transformed control points (Farin 1993).

 P(u) on a Bézier curve is the weighted average of all control points. Figure 1 shows a cubic Bézier

curve defined by four control points p1, p2, p3, and p4 (Farin 1993; Angel 2000).

Figure 1. Cubic Bezier Curve defined by Four Control Points (Angel 2000)

A Bézier curve has all the properties of the Bernstein functions. In addition, a Bézier curve of

degree n passes through P0 and Pn. The first and last control points are as shown in the above figure, where

the cubic curve passes through P1 and P4 respectively (Farin 1993).

Bézier Curve: De Casteljau's Algorithm. Finding a point p(u) on the curve with a particular u can

be easily done with de Casteljau's algorithm described next.

Given a set of control points b0, b1, �, bn ∈ E3 for a Bézier curve P(u), and a parameter t ∈ R,

set)()()1()(1
1

1 ttbtbttb r
i

r
i

r
i

−
+

− +−= , where r = 1, �, n; i = 0, �, n-r, and .
0)(ii btb = Then)(0 tbn is

P(t). The figure 2 shows a cubic Bezier curve with the de Casteljau's algorithm at t=0.5 (Farin 1993).

Figure 2. The de Casteljau's Algorithm: the point)(0 tbn is obtained from repeated linear

 interpolation. The cubic case n=3 is shown for t=1/2. (Farin 1993)

 19

Bézier Surfaces

A tensor product Bézier surface in Bernstein form is described by a two-dimensional set of control

points pi,j with two parameters u and v. Its equation is shown below:

∑∑
= =

=
m

i

n

j
ji

n
j

m
i PvBuBvuP

0 0
,)()(),(

Here,)(uB m
i and)(vB n

j are Bernstein functions in the u- and v- directions, respectively (Farin 1993).

Bezier surfaces have all properties of Bezier curves. De Casteljau's algorithm can be extended to

Bézier surfaces and can compute the corresponding point on a Bézier surface as it does in a Bézier curve

(Farin 1993).

Figure 3 is an example of Bezier rectangular patch, which is created with 16 control points.

Figure 3. Bi-cubic Bezier Surface with 16 Control Points (Farin 1993)

 20

B-spline

Bézier curves are a powerful tools in CAGD and widely used, but they have certain limitations: if

a curve has a complicated shape, it either requires a higher degree Bézier curve or several piecewise Bézier

curves together to model it. B-splines overcome these limitations (Angel 2000).

B-spline curves are polynomial curves and generalizations of Bézier curves and are developed to

use lower degree curve segments. B-spline curves have higher degrees of freedom for curve design (Angel

2000).

B-spline Curves and Basis. A B-spline curve of degree m can be defined with n + 1 control points

p0, p1, ..., pn and a knot vector U = { u0, u1, ..., um } in the following formula:

∑
=

=
n

i
imi PuNuP

0
,)()(

where Ni,m (u) are B-spline basis functions are polynomials of degree m (Angel 2000).

B-spline curves and Bezier curves are very similar. The set of m + 1 non-decreasing real numbers,

u0 <= u2 <= u3 <= ... <= um that subdivide the interval [u0, um] into knot spans are called knots. If the knots

are separated equally (ui+1 - ui is a constant for 0 <= i <= m - 1), it is called uniform; otherwise, it is non-

uniform. All B-spline basis functions have their domain on [u0, um]; the closed interval [0,1] is used for

simplicity (Angel 2000; Faux 1979; Farin 1993).

The i-th B-spline basis function of degree p (Ni,m(u)) is defined recursively as shown below:

 ≤≤

= +

otherwise
uuuif

uN ii
i 0

1
)(1

0,

)()()(1,1
11

1
1,, uN

uu
uu

uN
uu

uu
uN pi

ipi

pi
pi

ipi

i
pi −+

+++

++
−

+ −
−

+
−

−
=

 Figure 4 is an example of B-spline curve (Angel 2000).

 21

Figure 4. B-spline Curve (Angel 2000)

Non-Uniform Rational B-Splines (NURBS) are an extension of B-splines that can represent the

quadric curves, including circles, ellipses, and many other curves that cannot be represented by

polynomials. In NURBS weights wi are added with corresponding control points pi as the fourth

component. If all weights are equal to 1, the NURBS curve is just a regular B-spline curve (Angel 2000).

B-spline Surfaces. The B-spline surface is defined as follows:

where pi,j is the control points in surface, and Ni,p(u) and Nj,q(v) are B-spline basis functions of degree p and

q, respectively (Angel 2000).

Tensor Product Surfaces

The tensor product (or Cartesian product) technique constructs surfaces by "multiplying" two

curves together. Given two Bézier curves, the tensor product method constructs a surface by multiplying

the basis functions of the first curve with the basis functions of the second and uses the results as the basis

functions for a set of two-dimensional control points. Surfaces generated in this way are called tensor

product surfaces. Therefore, Bézier surfaces, B-spline surfaces, and NURBS surfaces are all tensor product

surfaces (Faux 1979; Farin 1993).

 22

Splines vs Bezier

Because the Bezier surface passes exactly through the control points and has the advantages of

local control, easy subdivision, and easy computation, it is widely used. However, in some applications,

higher continuity is required, and in that case, B-Splines are mandatory. The common part is that a Bezier

curve is a just special case of B-spline curve (Farin 1993).

Rectangular Patches vs Triangular Patches

Most of the early CAD work was done in the car industry, where the applications of CAM were

for roof, door, hood, and similar feature�all rectangular geometric objects. Accordingly, the theory of

rectangular patches is widely developed and used in many commercial CAD systems to model surfaces

(Farin 1993, 1986).

Rectangular Patches

Rectangular patches are simple applications of Benzier surfaces and B-spline surfaces (cf. § 2.2).

The formula for rectangular patch is as follow:

∑∑
= =

=
m

i

n

j
jijnim PvBuBvuP

0 0
,,,)()(),(

where m = n = 4, and Bi,n and Bj,m are the cubic Bernstein polynomials (Angel 2000).

Triangular Patches

Not all geometric objects have rectangular appearances. Some sharp triangular shapes, such as

wings of birds, are difficult to model with rectangular Bezier patches. Even though a degenerate

rectangular patch may be used to create a triangular patch, the result is more like a rectangular patch rather

than a triangular patch and can interfere with the operation of other algorithms in rendering, such as ray

tracing (Farin 1986).

The development of the triangular patch will solve these problems. In linear barycentric terms, for

a given triangle with vertices a, b, c, all in E3, any point p inside this triangle has form p = ua + vb +wc,

where u +v + w = 1.

 23

The form of a triangular Bezier patch, in Bernstein polynomials, is

 ∑
=Ι

=
n

n
ii tBptP

||
)()(

where nwvu
kji

nwvu
n

tB kj
i

kjin
i =Ι=

Ι

= ||;
!!!

!)(

Figure 5 is an example of a cubic Bezier triangle patch, created with 10 �control points� (Farin

2002).

Figure 5. Cubic Bezier Triangular Patch with 10 Control Points (Farin 2002)

Coons Patches

A Coons� patch solves the problem of defining a surface from a given network of parametric

curves. These curves do not have to be of the same type (Farin 1993). There are bilinearly blended Coons�

patches and bicubically blended Coons� patches. The bilinearly Coons� patch interpolates to two boundary

curves. It is defined as follows:

Given four curves C1(u), C2(u) and D1(v), D2(v), where u, v ∈ [0,1], a surface X is found to have

these four curves as boundary curves:

 X(u,0) = C1(u), X(u, 1) = C2(u), X(0,v) = D1(v), X(1, v) = D2(v).

There are two ruled surfaces from above: C1,C2 two curves form a curve and D1, D2 form

another one. They are denoted as Rc and Rd.

 24

)1,()0,()1(),(uuXuXvvuRc +−= and),1(),0()1(),(uuXvXuvuRd +−=

The bilinear interpolant makes Rcd to the four corners:

 −

−=

v
v

XX
XX

uuvuRcd
1

)1,1()0,1(
)1,0()0,0(

]1[),(

These two ruled surfaces built up a bilinearly Coons� patch governed by the bilinear interpolant,

described as: X = Rc + Rd � Rcd, and

 −

−−

 −
+

−=

v
v

XX
XX

uu
v

v
uXuX

vX
vX

uuvuX
1

)1,1()0,1(
)1,0()0,0(

]1[
1

)]1,()0,([
),1(
),0(

]1[),(

 see Figure 6a, 6b, and 6c.

Figure 6a. C1 and C2 Two Curves Built One Ruled Surface (Farin 1993)

Figure 6b. D1 and D2 Two Curves Built One Ruled Surface (Farin 1993)

 25

Figure 6c. Coons Patch Built from C1, C2, D1, and D2 Four Curves (Farin 1993)

The C1, C2, D1, and D2 four curves can be Bezier curves. If they have interpolants at four coners,

this Coons patch is called bicubically blended Coons� patch (Farin 1993, 1999).

The Bicubically blended Coons� patch is a cubic Hermite interpolation that needs more input.

Therefore, it is also called Bicubic Hermite Patch. The Bicubic Hermite Patch is described as

∑∑
= =

≤≤=
3

0

3

0

33
, ,1,0);()(),(

i j
jiji vuvHuHhvuX

where 3
iH and 3

jH are the cubic Hermite fuctions that are described in Bernstein form:

).()()(

),(
3
1)(

),(
3
1)(

),()()(

3
3

3
2

3
3

3
2

3
2

3
1

3
1

3
1

3
0

3
0

tBtBtH

tBtH

tBtH

tBtBtH

+=

−=

=

+=

The jih , is computed as

=

)1,1()1,1()0,1()0,1(
)1,1()1,1()0,1()0,1(

)1,0()1,0()0,0()0,0(
)1,0()1,0()0,0()0,0(

][,

XXXX
XXXX

XXXX
XXXX

h

vv

uuvuvu

uuvuvu

vv

ji

 26

 However, the Hermite form is sensitive to the −u and −v parameter intervals. If they are not in

[0,1], but bua ≤≤ , dvc ≤≤ , then the above definition of the Bicubic Hermite Patche becomes

 ∑∑
= =

≤≤=
3

0

3

0

33
, ,1,0);()(),(

i j
jiji tstHsHhvuX

where s and t are local coordinates of the intervals [ba,] and [dc,]. The jih , is given as:

where abu −=∆ and cdv −=∆ . Figure 7 shows the coefficients of the Hermite form (Farin 2002).

Figure 7. Bicubic Hermite Patches: points and vectors (Farin, 2002)

Different continuity orders between patches can be done with a higher degree of Coons patches.

The Coons patch is actually a tensor-product patch. The advantage of a Coons� patch is that it is easy to

match derivatives and twist vectors across the boundary with adjacent patches. It may meet in

nonrectangular networks and is useful for combining irregular shapes. The Coons patch is easy to

implement but not able to control internal shape (Faux 1979).

∆∆
∆∆∆∆∆∆
∆∆∆∆∆∆

∆∆

=

)1,1()1,1()0,1()0,1(
)1,1()1,1()0,1()0,1(

)1,0()1,0()0,0()0,0(
)1,0()1,0()0,0()0,0(

][,

XXXX
XXXX

XXXX
XXXX

h

vvvv

uuuvuvuvuvuu

uuuvuvuvuvuu

vvvv

ji

 27

Box Splines

Box splines were introduced by de Boor and DeVore. They are multivariate splines derived as a

generalization of univariate cardinal splines. A particular example of box splines is the B-splines with

equidistant knots. In general, box splines consist of regularly arranged polynomial pieces. Box splines

have a useful geometric interpretation. They can be viewed as density functions of the shadows of higher

dimensional boxes and half-boxes. Of particular interest for CAGD are box spline surfaces that consist of

triangular polynomial pieces. These box spline surfaces have planar domains, but it is quite simple to

construct arbitrary two-dimensional surfaces�i.e., manifolds�with these box splines (Cohen 1984; de

Boor et al. 1994).

The Box spline B(x) : R ! R is defined as a �shadow � of a translucent box,

B(}{ 1 xPQvolx n
r

I
r −= , where Q is a convex polyhedron in Rn+2 , which is defined by the convex hull

of vectors in U. P : Rn+2 ! R2 is a operator for projection. When the convex hull of U is cubical, B(x), the

n-dimentional volume of a cross section of Q is called a box spline (de Boor et al. 1994).

The box spline Bv is defined as:

∫ ∑−
∈

∈=
V

Vv

d
v IRCfordtvtBV

#]2/1,2/1[0)()(:),(ϕϕϕ

where V is a collection of objects of vectors in IRd with integer components. #V is the number of vectors in

V. This definition can be written in the geometric way as:

∑
∈

=−∈=
Vv

v
V

n xvttvolxBV },:]2/1,2/1[{)(# and ∫= dxxxBVBV)()(),(ϕϕ (Höllig

1986).

The box spline has its own properties: positive, supp ∑ ≤≤−= },2/12/1:{ vvV tvtBV

a piecewise polynomial of degree ,||: dVn −=≤ and ϑ times continuously differentiable with

.2})/(:min{#: −≠= dIRWEVWϑ The derivative of a box spline is obtained by subtracting two

lower degree box splines, and the convolution of two box splines produces a higher degree box spline.

Averaging a box spline in a direction υ can obtain its identity box spline, and these two box splines form

box splines. It can be denoted as

 28

∫− +=∪
2/1

2/1
)()(dttvxBVxvBV

For example, the box spline B{{1.0),(0.1)} is the characteristic function of the square [-1/2,1/2]2. Applying the

above identity function with v = (1,1), three vectors (1,0), (0,1), and (1,1) are obtained and a linear box

spline is produced. Then similarly averaging the linear box spline with v = (-1,1) makes the quadratic box

spline. The box spline B{{1.0),(0.1)} and the corresponding mesh through computing is shown in Figure 8

(Höllig 1986).

Figure 8. The Box Spline)}1,0(),0,1{(B (Höllig 1986)

OpenGL Review

History of OpenGL

OpenGL provides an environment for developing portable, interactive 2D and 3D graphics

applications. OpenGL has become the most widely used and supported 2D and 3D graphics application

programming interface (API) since it was introduced in 1992. OpenGL integrates a broad set of rendering,

texture mapping, special effects, and other powerful visualization functions (Angel 2000).

 29

Advantages of OpenGL

OpenGL API-based applications can be done on systems ranging from consumer electronics such

as HBTV and WBTV to PCs, workstations, and supercomputers. OpenGL is an evolving, extensible, easy

to use, and well-documented software application. OpenGL has become a widely accepted industry

standard with broad industry support -- a vendor-neutral, multiplatform graphics standard. OpenGL is

stable, reliable, and portable, regardless of operating system or window system. All OpenGL applications

produce consistent visual display results on any OpenGL API-compliant machines (Woo 1999; Angel

2000).

Basic Libraries of OpenGL

OpenGL can render geometric objects ranging from a simple geometric point, line, or filled

polygon to complex lighted and texture-mapped NURBS curved surfaces. It uses high-level languages

such as C or C++ to do the applications. It contains two basic libraries, GL and GLU. Some basic

geometric primitives such as points, lines, and polygons are implemented in GL. The OpenGL Utility

Library (GLU) provides more complex features, such as quadric rectangular surfaces and NURBS curves

and surfaces. OpenGL mainly uses cubic patches to implement curves and surfaces in the GLU library

(Woo 1999; Angel 2000).

How OpenGL Create Curve and Surfaces

The algorithms used in GLU to create curves and surfaces are based on the Bezier basis. The

mechanisms used in OpenGL to create Bézier curves and surfaces are evaluators. It is not necessary to use

uniform spacing of control points because it is easy to use Bézier curves and surfaces to generate other

types of polynomial curves and surfaces by making new control points. Using evaluators in OpenGL can

generate one-, two-, three-, and four-dimensional curves and surfaces. OpenGL supports tensor product

surfaces, making surfaces created in OpenGL rectangular based. The OpenGL evaluator functions also

provide color, normal, and texture mapping (Woo 1999).

 30

Conclusion

As noted earlier, rectangular surfaces are dominant in commercial CAGD applications. Thus,

many graphic APIs including OpenGL emphasize modeling with rectangular patches. Some graphics

rendering such as ray tracing are well developed for rectangular patches. However, not all shapes are

rectangular; some are triangular or more complex, such as the wings of bird or a sharp corner. These

complex shapes can be rendered using degenerated rectangular patches, but the outputs are not good. Also,

degenerate rectangular patches cause problems in the other algorithms such as finding intersections or ray

tracing. Extending OpenGL library is important to support other strategies for modeling, including some

primitives like triangular patches, Coons patches, and box-splines (Farin 1986).

Compared with rectangular patches, Bezier triangular patches are higher CPU-intensive.

Therefore, creating other surfaces may raise the cost of computing. However, new alternative primitives

will reduce the time needed by the designer to design complex surfaces and improve output. Saving design

time and getting better result versus requiring higher CPU-intensity is a significant trade-off (Farin 1986).

 31

CHAPTER 3

TRIANGULAR PATCHES

There are certain situations in 3D modeling where rectangular Bezier patches are inappropriate.

Triangular Bezier patches are defined in a way that is similar to rectangular patches, yet offer certain

advantages over rectangular patches when applied correctly. This chapter describes the motivation behind

triangular Bezier patches and the additions to the OpenGL library that provide an implementation of

triangular patches that follows the existing rectangular patches� functionality and form. Four new functions

for triangular patches are described.

Motivation

Many CAGD applications, such as automobile design, require the use of rectangular patches. For

example, automobile parts (car doors, hoods, and body panels) are well suited to design with rectangular

patches. The theory of, and software for, rectangular surfaces are well documented; this was described in

Chapter 2. However, even designs that primarily use rectangular patches may still require triangular

components. For example, if three rectangular patches come together at a corner, the remaining space is

triangular. A triangular patch can be obtained from a degenerated cubic patch; however, for better output

and to alleviate a designer�s effort, a triangular patch is desirable (Farin 1986).

OpenGL is industry-standard software. It has only rectangular patches, both Bezier and NURBS,

and the ability to render such surfaces. OpenGL lacks a triangular patch rendering functionality. This

chapter discusses an addition to the OpenGL library for such a patch.

Barycentric Coordinates in Triangles

Three non-collinear points (a, b, and c) in the space define a non-degenerate triangular plane T.

Any point P in the plane T can be expressed sum of these three points (a, b and c) with their weighted

coefficients (u, v, and w), called the barycentric coordinates of P in plane T. The barycentric coordinates

provide affine invariance for this triangular plane. The point P is expressed as below:

P = ua + vb + wc, where and u + v + w = 1.

 32

Note that the first equation is under-constrained; it has many solutions because only two points (actually,

linearly independent vectors) are needed to define a point in a plane (here, the plane defined by the triangle

(a, b, c)). The condition that the coefficients sum to one guarantees a unique solution. If, in addition, the

following holds

0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1,

then P is within the triangle defined by (u, v, w).

Figure 9 shows the relationship between point P and three points (a, b and c) and their coefficients (u, v,

and w), which can be expressed as below:

),,(
),,(

),,(
),,(

),,(
),,(

cbaarea
Pbaareaw

cbaarea
cPaareav

cbaarea
cbPareau ===

Figure 9. The Triangle and Plane T Defined by Points (a, b, and c).

From the above theory, for any point in the plane, the barycentric coordinates can be found by

solving the equations for (u, v, and w). (Farin 1986).

 33

Bernstein Polynomials and The de Casteljau Algorithm

 Bernstein Polynomials

 A triangular patch is defined in terms of Bernstein polynomials, using a form similar to that of

rectangular patches. The general formula is

 ∑
=Ι

=
n

n
II BbP

||

where kjinwvu
kji

nwvu
n

B kjikjin
I ++==Ι=

Ι

= ||;
!!!

!
.

In Figure 3.2 below, the point P on a cubic triangular patch is obtained as

3300
2

210
2

201
2

120

111
2

102
3

030
2

021
2

012
3

003

;3.3.3.

6.3..3.3..),,(

uPvuPwuPuvP

uvwPuwPvPwvPvwPwPwvuP

++++

+++++=

(calculated from Farin 2002). Note that the total degree of triangular patches is n, unlike bivariate

rectangular patches, whose total degree is 2n.

The de Casteljau Algorithm

The de Casteljau Algorithm for curves uses repeated linear interpolation to find a point on that

curve, given a single parameter value. The de Casteljau Algorithm for triangular patches is similar to that

for curves. Three parameters are used � those of the Barycentric coordinates of a point (u, v, w) inside the

standard triangle (0,0), (1,0), (0,1) in parameter space. Since u + v + w = 1, and 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤

1, these coefficients are not independent each other, as discussed in the previous section (Farin 2002).

As with rectangular patches, the triangular patch has its own set of control points. The number of

control points is related to the degree of the triangular patch. If the degree of a triangular patch is n, the

number of the control points is ½(n+1)(n+2). Any control point can be defined as bijk, where |i| = i + j + k,

i , j , k ≥ 0, |i| = n and i + j + k = n. The abbreviations e1 = (1,0,0), e2 = (0,1,0), and e3 = (0,0,1) are used

(Farin 2002).

 34

The de Casteljiau Algorithm for triangular patches is defined below:

For a triangular patch of degree n with control points bi 3E∈ and |i| = n, use repeated interpolation:

1
3

1
2

1
1

−
+

−
+

−
+ ++= r

ei
r

ei
r

ei
r
i wbvbubb ,

where r = 1, �, n, and |i| = n-r and ii bb =0 . The point P will be nb .

Figure 10 illustrates finding a point P on a cubic Bezier triangular patch using the de Casteljiau

algorithm (Farin 2002).

Figure 10. The Triangular de Casteljau Algorithm: a point P can be obtained by repeated linear

interpolation (Farin 2002).

 35

Implementation of Triangular Patch in OpenGL

Because OpenGL lacks any functions for implementing triangular patches, a set of functions is

described here that allow an OpenGL application program to define and render triangular patches. The

proposed functions follow the format of the existing Bezier rectangular patch functions in OpenGL.

Prototype of Evaluators of Triangular Patch in OpenGL

The first function for defining triangular patches, myTriangleMap2f(), lets an application

define an evaluator for a set of control points for a triangular patch. This function only needs to be called

once, usually in an initialization function. These control points must be specified in a certain order, as

described below.

myTriangleMap2f(GLenum target, TYPE u1, TYPE u2, GLint stride,

GLint order, TYPE v1, TYPE v2, TYPE *points);

The Glenum target parameter tells what the control points represent from the choices vertices,

RGBA color data, normal vectors, or texture coordinates. For example, the choice for vertices is the

constant GL_MAP2_VERTEX_3. Parameters 1u and 2u indicate the range of the variable u . Parameters

1v and 2v indicate the range of the variable v . For u and v , 0 ≤ vu + ≤ 1, which guarantees that the

convex hull property holds. The formula for a triangular patch is ∑
=Ι

=
n

n
ii tBptP

||

)()(, where, as

discussed earlier,)1,0,0()0,1,0()0,0,1(wvut ++= and 1=++ wvu . The stride and order have the

same meaning as in one-dimensional evaluators: the stride tells the distance between consecutive control

points, and the order is the polynomial�s total degree plus one. The number of control points is

½(degree+1)(degree+2); for example, for a cubic triangular patch, degree = 3, and 10 control points are

required. There is only one polynomial)(tB n
i in trivariate form of total degree n = i + j + k, and i, j, k ≥

0, where kjin
i wvu

kji
ntB

!!!
!)(= . This is the reason why there is only one order, unlike rectangular

patches that have two orders, one for each bivariate polynomial The order is the degree plus one, and it

should agree with the number of control points. The *points parameter is pointer to the first coordinate of

 36

the first control point. Here, it points to the one-dimensional array of the control points (instead of two-

dimensional array of the control points in two-dimensional evaluators). Parameter *points is an array of

points input row-wise � that is, the application must be careful to order the control points as shown in

Figure 11. This is the reason why there is only one parameter stride.

Figure 11. The Triangular Patch and Its Control Points� Order

The second function, myTriangleEvalCoord2f(), evaluates the triangular patch

previously defined by myTriangleMap2f() and renders the patch.

myTriangleEvalCoord2f(TYPE u, TYPE v);

The variables u and v are the values (or a pointer to the *values) of the domain, and 0 ≤ vu + ≤

1. The example code fragment in Figure 3.x shows the use of this function. Note that because each call to

myTriangleEvalCoord2f() resolves to a single point on the triangular patch, the application

program must decide how to use these points. In the example, the points are used to draw line segment

approximations to curves on the surface.

The next function, myTriangleMapGrid1f(), renders the triangular patch as a set of

(planar) triangles, using the equidistant steps in the three parameter directions.

MyTriangleMapGrid2f(GLint nu, TYPE u1, TYPE u2, GLint nv, TYPE

v1, TYPE v2)

 37

A triangle grid will be drawn from computing with two pairs of boundary curves 1u to 2u in nu

steps and from 1v to 2v in nv steps, both with even spacing, 0 ≤ vu, ≤ 1 and 0 ≤ vu + ≤ 1.

The function myTriangleEvalMesh2f() evaluates a previously defined triangular mesh.

MyTriangleEvalMesh2(Glenum mode, Glint 1i , Glint 2i , Glint 1j ,

Glint 2j)

The parameter mode can be GL_POINT, GL_FILL, or GL_LINE, and nuii ≤≤≤ 210 ,

nvjj ≤≤≤ 210 . The mesh function applies the currently defined two-dimensional map grid.

Functions myTriangleMapGrid2f() and myTriangleEvalMesh2() are used together to

efficiently generate and evaluate a series of evenly-spaced map domain values. They play the same role as

myTriangleEvalCoord2() but take the place of the loops that generate the patch approximation. The

triangular patch is formed by use of myTriangleEvalMesh2() to step through the integer domain of a

triangle grid, whose range is the domain of the evaluation maps specified glTriangleMap2().

Implementation of Evaluators of Triangular Patch in OpenGL

 The algorithm used to implement an evaluator of a triangular patch is de Casteljau Algorithm.

According to this algorithm, every point in this patch is calculated from the given control points, as

described earlier. The normal of each point is calculated by is original three points, which decides a plate,

and this point is in this plate, so the normal of plate is the normal of this point also.

 A small extension library of OpenGL named myOpenGL (myOpenGL.h, myOpenGL.cpp) was

created with the above functions� implementations. The code was implemented in standard C; it is shown in

Appendix A. The picture of triangular patch rendered with above new functions is shown in Figure 12.

Figure 12a is triangular patch in point mode, 12b is in frame mode, and 12c is in surface mode.

 38

Figure 12a. Triangular Patch in Point Mode

Figure 12b. Triangular Patch in Frame Mode

 39

Figure 12c. Triangular Patch in Surface Mode

Comparisons of Triangular Patch and Degenerated Cubic Patch

To compare triangular patches with rectangular patches whose control points are set to make the

patch degenerate into a three-sided patch, two sets of control points were created from the same data set.

One is 16 control points and is used to define a degenerate triangular patch using a rectangular cubic Bezier

patch. The other is 10 control points, used to define a triangular Bezier patch. Figure 13a shows

degenerated rectangular patch control point data set. Note that point 0 is repeated four times across the

bottom row, point 5 is repeated three times across the next row, and point 10 is repeated twice in the next

row. This data set gives the normally rectangular patch a triangular shape. Figure 13b shows the triangular

patch control point data set. The repeated points were taken from the Figure 13a data set to get 10 control

points data set for triangular patch in Figure 13b.

 40

Figure 13. Degenerated Rectangular Patch Control Points (a) vs Triangular Patch Control Points (b)

The results were showed in Figure 14a, 14b, 15a, and 15b. In Figure 14a and 14b the right

triangular patch is the degenerate rectangular patch and the left one is the triangular patch in surface mode

and frame mode respectively. Figure 15a shows three rectangular patches that come together in a

triangular corner; the corner is filled with a triangular patch. Figure 15b shows a degenerate rectangular

patch covering the corner instead. Comparison of the two related patches shows that the degenerate

rectangular patch has some shortcomings (Figure 16). First, the edges of the patch were not smooth;

obvious jagged edges appeared. This will influence the smooth connection with other patches to form an

ideal designed feature; it was showed in Figure 15a and 15b. Second, it is difficult to determine the control

points. Continuity across patch boundaries must be calculated. Third, it takes more calculations to display

a degenerate triangular patch, since there are more points, and thus more work in each deCastlejau step; this

will incur more CPU time. Finally, storage for 16 points obviously takes more room than 10 points. If a

scene requires thousands of patches, the degenerate rectangular patches will result in a large amount of

extra storage space.

 41

Figure 14a. The Right One is Degenerated Triangular, and the Left One is Regular

Triangular Patch in Surface Mode

Figure 14b. The Right One is Degenerated Triangular, and the Left One is Regular

Triangular Patch in Frame Mode

 42

Figure 15a. New Designed Triangular Patch in Yellow.

Figure 15b. Degenerated Triangular Patch in Yellow

 43

Figure 16. Comparison of Triangular Patch with Degenerated Triangular Patch in a Designed Feature.

Conclusion

Triangular Bezier patches can be useful to designers in certain situations. Some modeling requires

that triangular holes be filled in between rectangular patches, for example. The triangular patch created

from a degenerate rectangular Bezier patch and rendered with the existing functions provided by OpenGL

was shown to have several deficiencies. Triangular Bezier patches, and the new functions developed here

that are compatible with OpenGL, allow designers to achieve high-quality results in applications suited to

their usage.

 44

CHAPTER 4

COONS PATCHES

Rectangular patches are often used in design problems as solutions to interpolation problems.

Usually, the rectangular patch interpolates the given data points at the four patch corners. In some

situations, though, space curves, rather than individual points, must be interpolated. If the curves are laid

out on a rectangular grid, then a Coons patch can be used for this purpose. A Coons patch�s four edges are

derived from the given curves at each boundary of the grid. This chapter describes the motivation to add

Coons patches to the OpenGL library. Four new prototype functions for rendering Coons patches are

described.

Motivation

In CAGD, data points typically need to be organized in some way before patches can be fit to the

data. Data can be (or already may be, based on the type of modeling techniques used) organized as points

over a two-dimensional grid, though the grid may not be regular. The rectangular shapes based on Bezier

patches or B-spline patches are used to interpolate four data points in one grid area. Alternatively, the data

points can be used to design control nets, where the points on a grid line are first fit with space curves.

However, inside the control nets, data are missing, so a method to naturally �fill in� control nets is needed

to get a �natural� feature patch. This leads to the creation of the Coons patch, which was invented by S.

Coons (Farin 2002).

Bilinearly Blended Coons Patches

The bilinearly Coons� patch interpolates two boundary curves at a time. It is defined as follows

(Farin 2002): given four curves C1(u), C2(u) on one pair of opposite sides of a grid segment and D1(v),

D2(v) on the other pair, where u, v ∈ [0,1], a surface X must be determined with these four curves as

boundary curves:

 X(u,0) = C1(u), X(u, 1) = C2(u), X(0,v) = D1(v), X(1, v) = D2(v).

 45

A ruled surface (also known as a lofted surface) uses a linear connection between two boundary

curves. Such a surface has the effect of connecting the curves with line segments between corresponding

points (in parameter space) on each curve. A ruled surface, by definition, interpolates the boundary curves.

For four curves in a grid area, two ruled surfaces can be derived from the above: surface Rc, the linear

combination of curves C1 and C2, and surface Rd, the linear combination of curves D1 and D2:

)1,()0,()1(),(uvXuXvvuRc +−= and),1(),0()1(),(vuXvXuvuRd +−=

Adding the curves, Rc + Rd, does not give the desired patch because each boundary curve,

correctly interpolated by one of the surfaces, is spoiled by the addition of the linear interpolant component

of the other surface. To solve this problem, consider the bilinear interpolant Rcd to the four corners (see

Figure 17):

 −

−=

v
v

XX
XX

uuvuRcd
1

)1,1()0,1(
)1,0()0,0(

]1[),(

Surface Rcd contains the linear component along each boundary, that is, it contains the linear combination

of a pair of corner points. This is exactly the excess contained in the sum Rc + Rd, so subtracting out Rcd

provides the desired answer.

The bilinear interpolant makes Rcd to the four corners, see Figure 4.1:

 −

−=

v
v

XX
XX

uuvuRcd
1

)1,1()0,1(
)1,0()0,0(

]1[),(

Figure 17. The Bilinear Interpolant for Rcd

 46

Figure 18. Coons Patches: A Bilinearly Blended Coons Patch (Farin 2002)

These two ruled surfaces built up a bilinearly Coons� patch governed by the bilinear interpolant,

described as: X = Rc + Rd � Rcd (Figure 18), and

 −

−−

 −
+

−=

v
v

XX
XX

uu
v

v
uXuX

vX
vX

uuvuX
1

)1,1()0,1(
)1,0()0,0(

]1[
1

)]1,()0,([
),1(
),0(

]1[),(

Above is the algorithm to calculate a coons patch from a set of given points.

Implementation of Coons Patch in OpenGL

Prototype of Evaluators of Coons Patch in OpenGL

An OpenGL function to implement a Coons patch, myCoonsMap2f(), is given below. The

boundary curves are defined as four Bezier curves, using a similar format as the Bezier patch functions in

OpenGL.

myCoonsMap2f(GLenum target, TYPE u1, TYPE u2, GLint stride, GLint

order1, GLint order2, TYPE v1, TYPE v2, GLint order3,

GLint order4,TYPE *points);

 47

The Glenum target parameter tells what the control points represent among the choices

vertices, RGBA color data, normal vectors, or texture coordinates. Parameters 1u , 2u indicate the range

of the variable u . Parameters 1v , 2v indicate the range of the variable v . For u and v , 0 ≤ vu, ≤ 1,

which guarantees that the convex hull property holds. The order parameters define the degree +1 of each

curve but can be different for each boundary curve. The order must agree with the number of control

points. The stride is the number of floating-point values to advance in the data between one control

point and the next one, which is same for every boundary curve. The *points parameter is pointer to

the first coordinate of the first control point, a one-dimensional array of control points. The data input is

described in Figure 19, which shows a 4x4x4x4 Coons patch data set. The set contains 12, not 16, data

points, because the corner points are shared.

Figure 19. Data Input for 4x4x4x4 Coons Patch

myCoonsEvalCoord2f(TYPE u, TYPE v);

This function evaluates the previously-defined Coons patch at a domain point The variables

u and v are the values (or a pointer to *values) of the domain point, where 0 ≤ vu, ≤ 1.

MyCoonsMapGrid2f(GLint nu, TYPE u1, TYPE u2, GLint nv, TYPE v1,

TYPE v2)

 48

This function computes a two-dimensional grid of surface points on the previously-defined Coons

patch. The parameters 1u and 2u are the endpoints in u space, subdivided into nu steps; the parameters

1v and 2v are the endpoints in v space, subdivided into nv steps, both with even spacing, and 0 ≤ vu, ≤ 1.

MyCoonsEvalMesh2(Glenum mode, Glint 1i , Glint 2i , Glint 1j , Glint

2j)

 This function draws a Coons patch in a form that depends on mode. The parameter mode can be

GL_POINT, GL_FILL, or GL_LINE, and nuii ≤≤≤ 210 , nvjj ≤≤≤ 210 . The mesh function

applies the currently defined two-dimensional map grid.

Functions MyCoonsMapGrid2 and MyCoonsEvalMesh2 are used to efficiently generate and

evaluate a series of evenly-spaced map domain values. They play the same role as a double loop using

MyCoonsEvalCoord2 to evaluate the patch and using drawing commands �by hand�.

Implementation of Evaluators of Coons Patch in OpenGL

 The algorithm used here is the bilinearly blended patch algorithm described above. There are 12

control points for this patch, and each adjacent edge shares a common point. The normal of the Coons

patch will be obtained by calculating the normal of the triangle formed by the adjacent three points in this

patch. For example, if values of parameters u and v are given, then u + 0.1 and v + 0.1 will be calculated to

get the normal of point obtained from u and v. If u or v is 1.0, then u-0.1 and v-0.1 will be applied.

 All of the above prototype functions� implementations have been added to a small extension

library of OpenGL named myOpenGL, which is comprised of myOpenGL.h and myOpenGL.cpp.

 Figure 20, 21, and 22 show examples of Coons patches designed with the above functions in

myOpenGL library in surface, frame, and point mode.

 49

Figure 20. Coons Patch in Surface Mode.

Figure 21. Coons Patch in Frame Mode.

 50

Figure 22. Coons Patch in Points Mode.

Comparisons of Coons Patch and Rectangular Patch with Same Control Points

 The 12 control points for a Coons patch were obtained from the 16 rectangular patch control

points set. Figure 23 shows the two data sets. In Figure 23a, a rectangular data set is shown using one

ordering method, and in Figure 23b, the reordering of the data to fit the Coons patch data set is shown.

Figure 23. Data Sets for (a) a Rectangular Patch and (b) a Coons Patch.

The results were showed in Figure 24, Figure 25, and Figure 26.

 51

Figure 24. Rectangular Patch

Figure 25. Comparison of Rectangular and Coons Patch in Surface Mode.

 52

Figure 26. Comparison of Rectangular and Coons Patch in Frame Mode

The results show that the Coons patch handles the interior of the grid area differently from the

rectangular patch. Recall that the Coons patch was obtained by interpolating the four edge curves. Both

patches interpolate the four corner points. Both patches are similar in shape. There is no reasonable way to

compare the patches, other than on general aesthetics, because they are derived by different algorithms and

give different results. Problems associated with Coons patches and their variants (such as bicubically

blended curves and the more general Gordon patches) are discussed in (Farin 2002).

Conclusion

Coons patches will be needed in some situations. In some real life modeling, four edges� data sets

are found and used to design suitable patches, or sometimes the inside data is difficult to determine or

approximate. The Coons patch will give a satisfactory answer for these situations.

The advantages of Coons patch are more freedom to design features, fewer points to store in

memory, and potentially a different degree for each boundary edge. The addition of Coons patch functions

to the OpenGL library allow for more flexibility in modeling and visualization.

 53

CHAPTER 5

BOX SPLINES

Box splines are an extension of B-splines. This chapter describes the motivation to add box spline

functions to the OpenGL library. Prototype of evaluators of box splines will be given. Implementation of

these functions for rendering box splines surface is described.

Motivation

Box splines are multivariate splines introduced by de Boor and DeVore as a generalization of B-

splines with equidistant knots. Box splines have desirable approximation properties, and they typically

require a lower degree polynomial for results equivalent to higher degree tensor product splines

(rectangular spline patches) for a given continuity. Thus, they can reduce the amount of CPU usage

compared with B spline patches (Asahi et al. 2001). Also, a simple subdivision algorithm is available for

displaying surfaces defined by box splines, as described below (Höllig 1986).

The addition of box splines as a new tool to OpenGL for rendering surfaces gives application

programmers another tool for surface modeling.

Box Spline Definition

The basis function BV is formally defined as an integral that describes the volume of a solid over

some area. An informal definition is that BV is the �shadow� of a translucent solid box, where the shadow

is computed over a given area on a 2-dimensional plane using a defined direction for the light rays. Using a

set of vectors V that contains, at minimum, the subset {(1,0), (0,1)} (the area over which the shadow is

computed), the basis functions BV are piecewise polynomials defined over the grid defined by V. This

definition is similar to those used to derive univariate B splines and was, in fact, the inspiration for the

multivariate box splines. The set V is typically larger than the minimum � it usually additionally contains

(1,1) � and may contain multiple copies of vectors; that is, V is a multiset of integer-coordinate vectors.

 54

For example, using the minimum V above, the BV�s are constant functions over the square defined

by V � the shadow of a cube over a square. Adding (1,1) to V generates piecewise linear �hat� functions

(i.e., six-sided pyramids) over the hexagon defined by V, since the shadow must be stretched over the

hexagonal target defined by V. Adding one more vector, (-1,1) generates piecewise quadratic functions

over an octagon, and so on.

Translates of the BV�s are used to define surfaces, using a set of control points ∈ja R3, that,

when connected, form a control polygon for the surface p:

∑ ∈−=→
j

Vj xjxBaxpx),()(R 2,

where the j�s form a grid in 2-D space, thus evaluating translations of the basis functions BV. Recall that

the set V contains at least the vectors (1,0) and (0,1); we will assume it also contains (1,1), so that the basis

functions are at least piecewise linear.

Using the subdivision algorithm described below, a continuous surface can be approximated by

the above discrete version � the equivalent of the B spline control polygon � using some �reasonable�

number of steps, i.e., until the resulting object meets some visual criterion of goodness.

Algorithm

A subdivision algorithm, described in (Höllig 1986), was implemented to render box spline

surfaces. This algorithm, which is similar to subdivision algorithms used to render one-dimensional B

spline curves, repeatedly refines the control polygon until a fine-enough mesh is created.

At each stage, a refined polygon (a piecewise linear surface) {p�} with vertices ja is computed

according to the following two steps. Step 1 computes the averages of neighboring control points using

neighbors in each axis-aligned direction and the upper-right diagonal direction, and also copying the

original points. Step 2 uses the vector set U to create, by looping over the members of U to define the

direction in which to average, a new set of control points. The initial set

(1).);1,1(),1,0(),0,1(),0,0(,2/)(:2, =+= ++ vaab vjjvjU

 55

This is done for each control point. Note: using v = (0,0) simply means that the original a�s are copied into

b�s.

(2). Set W = U := {(1,0), (1,1), (0,1)}; V is the vector multiset that contains U as a subset.

 for each ∈v V\U do: ;2/)(: ,,, vjWjWjvW bbb +∪ +=

 W := W ∪ v; stop when W = = V

 .,
'
, : jUba = .

The vectors),(2, µvjUb + ≠ (0, 0), defined in step (1) of the algorithm, are the midpoints of the edges

of the triangles that form the surface {p}; see Figure 27. Thus, the number of control points increases from

n2 to (n+2)2, where n is the number of points on one side of the mesh. Each substep of step 2 typically

decreases the number of control points from n2 to (n-1)2. This is because control points on two of the

edges of the mesh do not have neighbors in the indicated direction. For example, for v = (-1,1), which

indicates �left one, up one� as the nearest neighbor, the leftmost column of the mesh (no points to its left)

and the topmost row of the mesh (no points above it) have no neighbors � although these are used as

neighbors for the next-to-leftmost column and next-to-topmost row � decreasing the size of the new mesh

by one column and one row. For this reason, the larger the set V\U, fewer control points are left to use for

triangulation, although, because of convergence of the mesh, the closer the points are to the actual surface.

It is up to the modeler to define a large enough grid of control points, which can be easily done by adding

extra, redundant points at the edges or by using a grid that wraps back on itself (useful for closed surfaces,

for example).

The combination of the triangles with vertices ja ,)0,1(+ja ,)1,1(+ja and the triangles with

vertices ja ,)1,0(+ja ,)1,1(+ja forms the surface {p}. Repeating this algorithm yields a sequence of

piecewise linear surfaces {p}, {p�}, {p�}, � that converge to the box spline surface {s} (Höllig 1986).

 56

Figure 27. The Subdivision Algorithm for Box Splines (Höllig 1986)

Implementation of Box Splines in OpenGL

Two functions are described below that add box spline functionality to OpenGL. They allow an

application program to render a box spline surface with a set of control points.

Prototype of Evaluators of Box Splines in OpenGL

The first function for box spline surface rendering is myBoxMap2f(), which initializes the box

spline data for a surface. This function will be called only once, at the start of an application.

myBoxMap2f(GLenum target, GLint stride, GLint order1, GLint

order2, TYPE *points);

The Glenum target parameter defines the usage for the control points, which is the same meaning

as in the other surface evaluator in OpenGL. Choices are vertices, RGBA color data, normal vectors, or

texture coordinates. The stride parameter represents the distance between consecutive control points. The

parameters order1 and order2 stand for the two sides of arbitrary size of input control points, and is each

side degree plus 1. Order1 follows the x axis and order2 follows the y axis, see Figure 28. The *points

parameter is the pointer that points to the first element of the control points. Here, it points the two-

dimensional array of the control points.

 57

Figure 28. Control Points Input with Dimension 4 and Dimension 3

The second function myBoxEvalMesh2(), evaluates the Box splines surface according to the

above function myBoxMap2f().

myBoxEvalMesh2(GLenum mode, GLint *v, GLint vCount);

The Glemum mode represents GL_POINT, GL_FILL, or GL_LINE for Box splines surface. The

parameter *v is int vector, which represents (1, 0), (0,1), (1,1) and (1,-1). The vCount parameter the

subdivision times applied to get this Box splines surface.

Implementation of Evaluators of Box Splines in OpenGL

The algorithm used to implement evaluators of Box splines surface is recursion algorithm.

According to this algorithm, subdivision was applied to obtain the Box splines surface with a set of given

control points.

These two functions were added to the small extension library of OpenGL created before. The

name of the library is myOpenGL (myOpenGL.h, myOpenGL.cpp).

The results were shown in Figure 28, 29, and 30. The coding part is in standard C; it is shown in

Appendix C.

 58

Figure 29. Box spline surface in point mode

Figure 30. Box spline surface in frame mode

 59

Figure 31. Box spline surface in surface mode

Conclusion

Box spline surfaces use fewer points and less storage to create a rich patch, which is more flexible.

The Box splines surface rendering will bring OpenGL another powerful design tool in CAGD. The

problem here is the ray tracing is not as good as the other modeling.

 60

CHAPTER 6

CONCLUSION

This paper described three features added to the OpenGL library: triangular patches, Coons

patches, and box spline surfaces. These additions make OpenGL more attractive, competitive, and

practical in CAGD applications. This chapter describes the contributions of this study and potential future

work.

Summary of Work

Three new types of surface types were added in a library auxiliary to OpenGl. These were

triangular patches, Coons patches, and box spline surfaces. Functions were developed to support

computing and rendering these surface types, implemented in C++ and tested with application programs

using the industry standard OpenGL graphics library.

Each new surface type was evaluated for strengths and weaknesses compared to the standard

rectangular patches that are already part of OpenGL.

Conclusions

The theory of triangular patches has been successfully applied as a development tool for general

surface rendering with OpenGL applications. Compared with degenerate rectangular patches, using the

rectangular patches provided by OpenGL, the new triangular patch functionality achieves better output�

more smooth edges, potentially easier to design in continuity with neighboring patches, fewer points to

compute with and thus reduced CPU time, and less storage space needed to keep the data. The addition of

triangular patches makes it easier for designers to fit a triangular feature.

 Coons patch rendering allows a surface designer to fit a surface between existing curves.

Boundary edge curves, possibly with different degrees, forming a four-sided grid space, are used to define a

linearly-blended surface to fill in that grid space. This situation can occur, for example, when a model is

designed using surface curves � such as curves on a clay model. Knowing what interior control points to

use for a fill-in patch can be difficult to asses; Coons patches simplify this process and yield a reasonable

 61

fit. A Coons patch needs less storage space for data because it has fewer control points compared with a

rectangular patch.

 Box splines are an extension of B splines. The theory of box splines is more complicated than, for

example, for the tensor product Bezier patches which define OpenGL�s rectangular patches. Rendering of

box splines was done using a subdivision algorithm, simplifying the control point mesh, rather than

generating explicit points on the box spline surface. This reduces CPU time yet yields good results. Box

splines can create complicated surfaces with fewer control points and, again, reduced storage space.

Future work

 The continuity of triangular and Coons patches across patch boundaries was not considered in this

thesis. OpenGL does not address this issue, either. However, in the modeling of complicated surfaces,

continuity is a vital aspect that should be addressed. OpenGL�s avoidance of continuity is based on its

intended usage � as a rendering library, not as a modeling library. Still, building in automatic generation of

cross-boundary control points for assured continuity would be a useful feature to add, both for OpenGL�s

built-in patch types and for the ones discussed here.

 The application of texture to the new patches should be studied. Texture mapping is a built-in

feature of OpenGL. Because the triangular and Coons patch implementations discussed here generate

surface normals and compute points on the patch surfaces, applying textures to these surfaces should be

trivial. However, this was not tested. Adding texture mapping to box spline surfaces, as implemented by

the subdivision algorithm discussed in Chapter 5, would be more problematic. No points are generated on

the surface itself because the control point mesh is used to approximate the surface. Additionally, texture

mapping onto rectangular, triangular, or Coons patches is done over a relatively small area � one patch �

then repeated across patches. For a box spline surface, the whole surface would be used, thus negating

some of the usual effects possible with texture maps, such as checkerboarding or wood grains.

Only cubic triangular patches were tested. The functions for triangular patches, however, do allow

for other degree polynomials. Cubics were used because they are widely used in the modeling world.

 Only bilinearly blended Coons patches were implemented. Other kinds of Coons patches, such as

bicubically blended, would be a useful addition to OpenGL.

 62

 Box spline theory is, for the non-mathematician, somewhat opaque. While modeling with box

splines is relatively straightforward, there are currently few, if any, tools for modeling with them � unlike

the situation for triangular and Coons patches, for which tools do exist. A modeling tool that supported box

splines would provide a test bed for usage of this surface type.

 63

BIBLIOGRAPHY

 64

BIBLIOGRAPHY

Angel, Edward. Interactive Computer Graphics, A Top-Down Approach with OpenGL. 2nd edition.

Addison-Wesley Press, 2000.

Asahi, Takeshi, Koichi Ichige, and Rokuya Ishii. �A New Formulation for Discrete Box Splines Reducing

Computational Cost and Its Evaluation.� IEICE Trans. Fundamentals E84-A (March 2001): 884-

892.

Cohen, Elaine. �Discrete box splines and refinement algorithms.� Computer Aided Geometric Design 1

(November 1984): 131-148

de Boor. C, K. Hollig, and A. Riemmenschneider. Box Splines. New York: Springer-Verlag, 1994.

Farin, Gerald. Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide. 3rd edition.

London: Academic Press, 1993.

Farin, Gerald. Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide. 5th edition.

San Francisco : Mogan Kaufmann Publishers, 2002.

Farin, Gerald. �Shape.� In Mathematics Unlimited-2001 and Beyond, ed. B.Engquist and W.Schmid, 463-

466. Springer-Verlag., 2001.

Farin, Gerals. �Triangular Bernstern-Bezier Patches.� Computer Aided Geometric Design 3 (August

1986): 83-127.

Farin, G and Dianne Hansford. �Discrete Coons Patches.� Computer Aided Geometric Design 16 (August

1999): 691-700.

Faux, I.D and M.J.Pratt. Computational Geometry for Design and Manufacture. John Willey & Sons

Press, 1979.

Höllig, Klaus. Box Splines. Computer Science Technical Report #640. Computer Science Department

University of Wisconsin-Madison. 1986.

Lai, Ming-Jun. �Geometric interpretation of smoothness conditions of triangular polynomial patches.�

Computer Aided Geometric Design 14 (February 1997): 191-199.

Watt, Alan. 3D Computer Graphics. 3rd edition. Addison-Wesley Press, 2000.

Woo, Mason Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming Guide. The Official

Guide to learning OpenGL, Version 1.2. 3rd edition. Addison-Wesley Press, 1999.

 65

APPENDICES

 66

APPENDIX A

MYOPENGL.H

/******************************myOpenGL.h ***************************************

/* Purpose : This is a small library to extend OpenGL for Computer Aided
/* Geometric Design (CAGD). This is a research activity, and
/* OpenGL has no knowlege about it.
/*Copy Right: All the code contained in this library is protected by copy
/* right. Permission to use, copy, modify, and distribution for
/* free. This software has no implied warranty, and no respossible
/* for any misuseof it, or any damage arising out of its use. The
/* entire risk of using this software lies with the party doing so.
/*Author: Chunyan Ye
/*Date : 03/31/2003
/**/

#include <GL/glut.h>
#include <stdlib.h>

#ifndef __myopengl_h_
#ifndef __myOpenGL_h_
#ifndef __MYOPENGL_H__

typedef GLfloat TYPE;

/* data structure for triagnular patch */
typedef struct{
 GLenum m_target;
 TYPE m_u1;
 TYPE m_u2;
 GLint m_stride;
 GLint m_order;
 GLint m_nu;
 GLint m_nv;
 TYPE m_v1;
 TYPE m_v2;} triangleData;

/* data structure for coons patch */
typedef struct{
 GLenum m_target;
 TYPE m_u1;
 TYPE m_u2;
 GLint m_stride;
 GLint m_order1;
 GLint m_order2;
 GLint m_nu;
 GLint m_nv;
 TYPE m_v1;
 TYPE m_v2;
 GLint m_order3;
 GLint m_order4;} coonData;

/* data structure for box spline patch */
typedef struct{
 GLenum m_target;
 GLint m_stride;
 GLint m_order1;
 GLint m_order2;
 GLenum m_mode;} boxData;

/* functions for triangular patch */
extern void myTriangleMap2f(GLenum target, TYPE u1, TYPE u2,
 GLint stride, GLint order, TYPE v1, TYPE v2, TYPE
*points);

 67

extern void myTriangleEvalCoord2f(TYPE u, TYPE v);

extern void myTriangleMapGrid2f(GLint nu, TYPE u1, TYPE u2, GLint nv, TYPE v1, TYPE v2);

extern void myTriangleEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2);

/* functions for coons patch */
extern void myCoonsMap2f(GLenum target, TYPE u1, TYPE u2, GLint stride, GLint order1,
 GLint order2, TYPE v1, TYPE v2, GLint
order3, GLint order4, TYPE *points);
extern void myCoonsEvalCoord2f(TYPE u, TYPE v);
extern void myCoonsMapGrid2f(GLint nu, TYPE u1, TYPE u2, GLint nv, TYPE v1, TYPE v2);
extern void myCoonsEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2);

/* functions for box splines patch */
extern void myBoxMap2f(GLenum target, GLint stride, GLint order1, GLint order2, TYPE
*points);

extern void myBoxEvalMesh2(GLenum mode, GLint *v, GLint vCount);

/* other functions */

extern void normal(TYPE *p);

extern void crossproduct(TYPE *p1, TYPE *p2, TYPE *n);

extern void myEnable(GLenum nor);

extern void getPoint(GLint aOrder, GLint aStride, TYPE *ps, TYPE m);

#endif
#endif
#endif

 68

APPENDIX B

MYOPENGL.CPP

/******************************myOpenGL.cpp ***************************************

/* Purpose : This is a small library to extend OpenGL for Computer Aided
/* Geometric Design (CAGD). This is a research activity, and
/* OpenGL has no knowlege about it.
/*Copy Right: All the code contained in this library is protected by copy
/* right. Permission to use, copy, modify, and distribution for
/* free. This software has no implied warranty, and no respossible
/* for any misuseof it, or any damage arising out of its use. The
/* entire risk of using this software lies with the party doing so.
/*Author: Chunyan Ye
/*Date : 03/31/2003
/**/

#include "myOpenGL.h"
#include <iostream.h>
#include <math.h>

TYPE *ctrlpoints;
TYPE *rpoints;
TYPE *cpoints;
triangleData myData;
coonData rData, cData;

boxdata bData;
bool isNormal = false;

/***************** myEnable *************************
* Purpose : Define a condition
* Argument: GLenum
* Return : None.
* Note : First edition
**/
void myEnable(GLenum nor)
{
 if(nor == GL_AUTO_NORMAL)
 isNormal = true;
}

/***************** myTriangleMap2f*********************
* Purpose : Define a object, get it registered.
* Argument: GLenum, TYPE, TYPE, GLint, GLint, TYPE, TYPE, TYPE
* Return : None.
* Note : First edition
**/
void myTriangleMap2f(GLenum target, TYPE u1, TYPE u2,
 GLint stride, GLint order, TYPE v1, TYPE v2, TYPE
*points)
{
 myData.m_order = order;
 myData.m_stride = stride;
 ctrlpoints = points;
}

/***************** myTriangleEvalCoord2f*********************
* Purpose : Define a point in the object.
* Argument: TYPE, TYPE
* Return : None.
* Note : First edition
**/
void myTriangleEvalCoord2f(TYPE u, TYPE v)
{

 69

 int i, j,k, h, numPoints, numTriangle, newOrder;
 TYPE w; /* define the third parameter */

 /* Calculate number of control points */
 numPoints = (myData.m_order)*(myData.m_order + 1)/2;

 /* Get number of triangles for degration */
 numTriangle = numPoints - myData.m_order;

 /* Get new order of Bezier thriangle */
 newOrder = myData.m_order;

 /* Set stride to a simple letter */
 int s = myData.m_stride;

 /* Three parameters */
 w = 1 - u - v; /* u+v+w=1*/

 /* New number of control points after degration */
 int newPoints = numTriangle*3;

 /* Allocate memory for all pointers */
 TYPE *temp = (TYPE *)malloc(newPoints * sizeof(TYPE));
 TYPE *point, *p1[3], *p2, *p3;
 point = (TYPE *)malloc(s * sizeof(TYPE));
 for(i = 0; i < 3; i++)
 p1[i] = (TYPE *)malloc(s * sizeof(TYPE));

 p2 = (TYPE *)malloc(s * sizeof(TYPE));
 p3 = (TYPE *)malloc(s * sizeof(TYPE));

 /* First iteration */
 h=0;
 for (k=1; k<newOrder; k++)
 {
 for(j=0; j<k*s; j++)
 {
 temp[h]= u * ctrlpoints[h] + v * ctrlpoints[h+k*s] + w *
ctrlpoints[h+(1+k)*s];
 h++;
 }
 }
 numPoints = numPoints - newOrder;
 newOrder--;
 numTriangle = numPoints - newOrder;
 newPoints = numTriangle*3;

 /* Continue iteration */
 while(numTriangle>1)
 {
 h=0;
 for (k=1; k<newOrder; k++)
 {
 for(j=0; j<k*s; j++)
 {
 temp[h]= u * temp[h] + v * temp[h+k*s] + w *
temp[h+(1+k)*s];
 h++;
 }
 }
 numPoints = numPoints - newOrder;
 newOrder--;
 numTriangle = numPoints - newOrder;
 newPoints = numTriangle*3;
 }

 /* Get normal for each point */
 if(isNormal)
 {
 for (i=0; i<3; i++)
 {

 70

 for (j=0; j<s; j++)
 p1[i][j]=temp[i*s+j];
 }
 for(j=0; j<s; j++) p2[j]=p1[2][j]-p1[1][j];
 for(j=0; j<s; j++) p3[j]=p1[0][j]-p1[1][j];
 crossproduct(p2, p3, point);
 normal(point);
 glNormal3fv(point);
 }

 /* Get the point */
 for(j=0; j<s; j++)
 temp[j]= u * temp[j] + v * temp[j+s] + w * temp[j+2*s];
 glVertex3fv(temp);

 /* Return memory to system */
 free (temp);
 free (point);
 for(i = 0; i < 3; i++)
 free(p1[i]);
 free (p2);
 free (p3);

}

/***************** myTriangleMapGrid2f*********************
* Purpose : Design a object.
* Argument: GLint, TYPE, TYPE, GLint, TYPE, TYPE
* Return : None.
* Note : First edition
**/
void myTriangleMapGrid2f(GLint nu, TYPE u1, TYPE u2, GLint nv, TYPE v1, TYPE v2)
{
 myData.m_nu = nu;
 myData.m_nv = nv;
 myData.m_u1 = u1;
 myData.m_u2 = u2;
 myData.m_v1 = v1;
 myData.m_v2 = v2;
}

/***************** myTriangleEvalMesh2*********************
* Purpose : Make a mesh object.
* Argument: GLenum, GLint, GLint, GLint, GLint
* Return : None.
* Note : First edition
**/
void myTriangleEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2)
{
 int i, j, h;
 TYPE u0, v0;
 switch (mode)
 {
 case GL_POINT:
 // Execute these statements if expression is equal to GL_POINT
 glBegin(GL_POINTS);
 for (i = i1; i <= (i2 + j2); i++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 for (j = j1; j <= (i2+j2)-i; j++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 u0 = myData.m_u1 + i*(myData.m_u2-
myData.m_u1)/(myData.m_nu+myData.m_nv);
 v0 = myData.m_v1 + j*(myData.m_v2-
myData.m_v1)/(myData.m_nu+myData.m_nv);
 myTriangleEvalCoord2f((GLfloat)u0, v0);
 }

 }

 71

 glEnd();

 break;

 case GL_LINE:
 // Execute these statements if expression is equal to GL_LINE

 for(i=i1; i<(i2+j2); i++)
 {

 for(h=j1; h<(i2+j2)-i; h++)
 {
 glBegin(GL_LINE_STRIP);
 for (j = 0; j <= (i2+j2)-i-h; j++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 u0 = myData.m_u1 + i*(myData.m_u2-
myData.m_u1)/(myData.m_nu+myData.m_nv);
 v0 = myData.m_v1 + j*(myData.m_v2-
myData.m_v1)/(myData.m_nu+myData.m_nv);
 myTriangleEvalCoord2f((GLfloat)u0, v0);
 }
 glEnd();
 glBegin(GL_LINE_STRIP);
 for (j = 0; j <= (i2+j2)-i-h; j++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 u0 = myData.m_u1 + j*(myData.m_u2-
myData.m_u1)/(myData.m_nu+myData.m_nv);
 v0 = myData.m_v1 + i*(myData.m_v2-
myData.m_v1)/(myData.m_nu+myData.m_nv);
 myTriangleEvalCoord2f((GLfloat)u0, v0);
 }
 glEnd();
 glBegin(GL_LINE_STRIP);
 for (j = 0; j <= (i2+j2)-i-h; j++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 u0 = myData.m_u1 + j*(myData.m_u2-
myData.m_u1)/(myData.m_nu+myData.m_nv);
 v0 = myData.m_v1 + (i2+j2-j-h)*(myData.m_v2-
myData.m_v1)/(myData.m_nu+myData.m_nv);
 myTriangleEvalCoord2f((GLfloat)u0, v0);
 }
 glEnd();

 }

 }

 break;

 case GL_FILL:
 // Execute these statements if expression is equal to GL_FILL
 for (i = i1; i <=(i2+j2); i++)
 {
 glBegin(GL_TRIANGLE_STRIP);
 for (j = j1; j <(i2+j2)-i; j++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 u0 = myData.m_u1 + i*(myData.m_u2-myData.m_u1)/(myData.m_nu +
myData.m_nv);
 v0 = myData.m_v1 + j*(myData.m_v2-myData.m_v1)/(myData.m_nu +
myData.m_nv);
 myTriangleEvalCoord2f(u0, v0);

 // myTriangleEvalCoord2f((GLfloat)i/nLines,
(GLfloat)j/nLines);
 u0 = myData.m_u1 + (i+1)*(myData.m_u2-myData.m_u1)/(myData.m_nu
+ myData.m_nv);

 72

 v0 = myData.m_v1 + j*(myData.m_v2-myData.m_v1)/(myData.m_nu +
myData.m_nv);
 myTriangleEvalCoord2f(u0, v0);
 // myTriangleEvalCoord2f((GLfloat)i/nLines,
(GLfloat)j/nLines);
 u0 = myData.m_u1 + (i)*(myData.m_u2-myData.m_u1)/(myData.m_nu +
myData.m_nv);
 v0 = myData.m_v1 + (j+1)*(myData.m_v2-myData.m_v1)/(myData.m_nu
+ myData.m_nv);
 myTriangleEvalCoord2f(u0, v0);
 u0 = myData.m_u1 + (i+1)*(myData.m_u2-myData.m_u1)/(myData.m_nu
+ myData.m_nv);
 v0 = myData.m_v1 + (j)*(myData.m_v2-myData.m_v1)/(myData.m_nu +
myData.m_nv);
 myTriangleEvalCoord2f(u0, v0);
 }
 glEnd();
 }
 // ...
 default:
 // These statements executed if none of the others are
 break;
 }
}

/***************** normal ****************************
* Purpose : Make a normal vector for that plate.
* Argument: Point p
* Return : None.
* Note : From Dr. Barrettm note.
**/
void normal(TYPE *p)
{

/* normalize a vector */

 float d =0.0;
 int i;
 for(i=0; i<3; i++) d+=p[i]*p[i];
 d=sqrt(d);
 if(d>0.0) for(i=0; i<3; i++) p[i]/=d;
}
/***************** crossproduct ****************************
* Purpose : Multiple two vectors get cross product.
* Argument: Point p1, point p2, point p3, point product
* Return : None.
**/
void crossproduct(TYPE *p1, TYPE *p2, TYPE *n)
{
 /* two vector multiple */
 n[0]=p1[1]*p2[2]-p1[2]*p2[1];
 n[1]=p1[2]*p2[0]-p1[0]*p2[2];
 n[2]=p1[0]*p2[1]-p1[1]*p2[0];
}
void myRuleMap2f(GLenum target, TYPE u1, TYPE u2,
 GLint stride, GLint order, TYPE v1, TYPE v2, TYPE
*points)
{
 rData.m_order1 = order;
 rData.m_stride = stride;
 rpoints = points;
}

void myRuleEvalCoord2f(TYPE u, TYPE v)
{

 int i;
 TYPE w = 1-u;
 TYPE temp[3], temp1[3], temp2[3];
 for (i=0; i<rData.m_stride; i++)
 {

 73

 temp1[i] =
w*w*w*rpoints[i]+3*u*w*w*rpoints[i+3]+3*u*u*w*rpoints[i+6]+u*u*u*rpoints[i+9];
 temp2[i] =
w*w*w*rpoints[i+12]+3*u*w*w*rpoints[i+15]+3*u*u*w*rpoints[i+18]+u*u*u*rpoints[i+21];
 temp[i] = (1-v)*temp1[i] + v*temp2[i];
 }
 glVertex3fv(temp);
}
/***************** myCoonsMap2f ****************************
* Purpose : Define a Coons patch (evaluator)
* Argument: GLenum target, TYPE u1, TYPE u2, GLint stride, GLint order1,
 GLint order2,TYPE v1, TYPE v2, GLint order3, GLint order4, TYPE
*points
* Return : None.
* Notice : First edition
**/
void myCoonsMap2f(GLenum target, TYPE u1, TYPE u2, GLint stride, GLint order1,
 GLint order2,TYPE v1, TYPE v2, GLint
order3, GLint order4, TYPE *points)
{
 cData.m_order1 = order1;
 cData.m_stride = stride;
 cData.m_order2 = order2;
 cData.m_order3 = order3;
 cData.m_order4 = order4;

 cpoints = points;
}

/***************** getPoint ****************************
* Purpose : Calculate a point
* Argument: Lint aOrder, GLint aStride, TYPE *ps, TYPE m
* Return : None.
**/
void getPoint(GLint aOrder, GLint aStride, TYPE *ps, TYPE m)
{
 int i;
 while(aOrder > 1)
 {
 for (i=0; i<aStride*aOrder; i++)
 {
 ps[i] = (1-m)*ps[i] + m*ps[i+aStride];
 }
 aOrder--;
 }

}
/***************** myCoonsEvalCoord2f*********************
* Purpose : Define a point in a Coons patch
* Argument: TYPE u, TYPE v
* Return : None.
* Note : First edition
**/
void myCoonsEvalCoord2f(TYPE u, TYPE v)
{
 /* declare local variables */
 int i, j;
 int numP1, numP2, numP3, numP4;
 int numC1, numC2, numC3;
 TYPE w, h;
 w = (1.0-u);
 h = (1.0-v);
 /* get number of points in one vector */
 numP1 = cData.m_order1*cData.m_stride;
 numP2 = cData.m_order2*cData.m_stride;
 numP3 = cData.m_order3*cData.m_stride;
 numP4 = cData.m_order4*cData.m_stride;

 /* Allocate memory for all pointers */
 TYPE *p1 = (TYPE *)malloc(numP1 * sizeof(TYPE));
 TYPE *p2 = (TYPE *)malloc(numP2 * sizeof(TYPE));

 74

 TYPE *p3 = (TYPE *)malloc(numP3 * sizeof(TYPE));
 TYPE *p4 = (TYPE *)malloc(numP4 * sizeof(TYPE));
 TYPE *p5 = (TYPE *)malloc(cData.m_stride * sizeof(TYPE));
 TYPE *p6 = (TYPE *)malloc(cData.m_stride * sizeof(TYPE));
 TYPE *p7 = (TYPE *)malloc(cData.m_stride * sizeof(TYPE));
 TYPE *p8 = (TYPE *)malloc(cData.m_stride * sizeof(TYPE));
 TYPE *n1 = (TYPE *)malloc(cData.m_stride * sizeof(TYPE));
 TYPE *n2 = (TYPE *)malloc(cData.m_stride * sizeof(TYPE));
 TYPE *n3 = (TYPE *)malloc(cData.m_stride * sizeof(TYPE));
 TYPE *n4 = (TYPE *)malloc(cData.m_stride * sizeof(TYPE));
 TYPE *n = (TYPE *)malloc(cData.m_stride * sizeof(TYPE));

 numC1 = numP1+numP2+numP3-(3*cData.m_stride);
 numC2 = numP1+numP2-(2*cData.m_stride);
 numC3 = numP1+numP2+numP3+numP4-(5*cData.m_stride);
 /* get each vector points */
 for(i=0; i<numP1; i++)
 p1[i]=cpoints[i];
 for(i=0; i<numP2; i++)
 p2[i]=cpoints[i+(numP1-cData.m_stride)];
 j =0;
 while(j<numP3)
 {
 for(i=0; i<cData.m_stride; i++)
 {
 p3[j]=cpoints[numC1+i];
 j++;
 }
 numC1 = numC1-cData.m_stride;
 }
 for(i=0; i<cData.m_stride;i++)
 p4[i]=cpoints[i];

 j=cData.m_stride;
 while (j<numP4)
 {
 for(i=0; i<cData.m_stride; i++)
 {
 p4[j]=cpoints[numC3+i];
 j++;
 }
 numC3 = numC3-cData.m_stride;
 }
 /* get plot point from each vector */
 getPoint(cData.m_order1, cData.m_stride, p1, u);
 getPoint(cData.m_order2, cData.m_stride, p2, v);
 getPoint(cData.m_order3, cData.m_stride, p3, u);
 getPoint(cData.m_order4, cData.m_stride, p4, v);

 numC1 = numP1+numP2+numP3-(3*cData.m_stride);
 for (j=0; j<cData.m_stride; j++)
 {
 p5[j]=h*p1[j] + v*p3[j];
 p6[j]= w*p2[j] + u*p4[j];
 p7[j]=h*w*cpoints[j]+h*u*cpoints[numP1+j-
cData.m_stride]+v*w*cpoints[numC1+j]+u*v*cpoints[numC2+j];

// p7[j]=h*w*cpoints[j]+h*u*cpoints[27+j]+v*w*cpoints[9+j]+u*v*cpoints[18+j];
 p8[j]=p5[j]+p6[j]-p7[j];
 // p8[j]=p7[j];
 }
 if((isNormal)&&(cData.m_stride>2))
 {
 if(u==1.0)
 u = u-0.1;
 else
 u = u+0.1;
 if(v==1.0)
 v=v-0.1;
 else
 v = v+0.1;

 75

 getPoint(cData.m_order1, cData.m_stride, p1, u);
 getPoint(cData.m_order2, cData.m_stride, p2, v);
 getPoint(cData.m_order3, cData.m_stride, p3, u);
 getPoint(cData.m_order4, cData.m_stride, p4, v);
 for (j=0; j<cData.m_stride; j++)
 {
 n1[j]=h*p1[j] + v*p3[j] + p6[j] - p7[j];
 n2[j]= w*p2[j] + u*p4[j] + p5[j] - p7[j];
 }
 for(j=0; j<cData.m_stride; j++) n3[j]=n2[j]-n1[j];
 for(j=0; j<cData.m_stride; j++) n4[j]=p8[j]-n1[j];
 crossproduct(n3, n4, n);
 normal(n);
 glNormal3fv(n);
 }

 glVertex3fv(p8);
 /* get back memory */
 free(p1);
 free(p2);
 free(p3);
 free(p4);
 free(p5);
 free(p6);
 free(p7);
 free(p8);
 free(n1);
 free(n2);
 free(n3);
 free(n4);
 free(n);

}

/***************** myCoonsMapGrid2f*********************
* Purpose : Define a Coons patch grid.
* Argument: GLint nu, TYPE u1, TYPE u2, GLint nv, TYPE v1, TYPE v2
* Return : None.
* Note : First edition
**/
void myCoonsMapGrid2f(GLint nu, TYPE u1, TYPE u2, GLint nv, TYPE v1, TYPE v2)
{
 cData.m_nu = nu;
 cData.m_nv = nv;
 cData.m_u1 = u1;
 cData.m_u2 = u2;
 cData.m_v1 = v1;
 cData.m_v2 = v2;
}
/***************** myCoonsEvalMesh2 *********************
* Purpose : Draw Coons patch mesh
* Argument: GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2
* Return : None.
* Note : First edition
**/
void myCoonsEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2)
{
 int i, j;
 TYPE u0, v0;
 switch (mode)
 {
 case GL_POINT:
 // Execute these statements if expression is equal to GL_POINT
 glBegin(GL_POINTS);
 for (i = i1; i <= i2; i++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 for (j = j1; j <= j2; j++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 u0 = cData.m_u1 + i*(cData.m_u2-cData.m_u1)/cData.m_nu;

 76

 v0 = cData.m_v1 + j*(cData.m_v2-cData.m_v1)/cData.m_nv;
 myCoonsEvalCoord2f((GLfloat)u0, v0);
 }

 }
 glEnd();

 break;

 case GL_LINE:
 // Execute these statements if expression is equal to GL_LINE

 for(i=i1; i<=i2; i++)
 {

 glBegin(GL_LINE_STRIP);
 for (j = j1; j <= j2; j++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 u0 = cData.m_u1 + i*(cData.m_u2-cData.m_u1)/cData.m_nu;
 v0 = cData.m_v1 + j*(cData.m_v2-cData.m_v1)/cData.m_nv;
 myCoonsEvalCoord2f((GLfloat)u0, v0);
 }
 glEnd();
 glBegin(GL_LINE_STRIP);
 for (j = j1; j <= j2; j++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 u0 = cData.m_u1 + j*(cData.m_u2-rData.m_u1)/cData.m_nu;
 v0 = cData.m_v1 + i*(cData.m_v2-rData.m_v1)/cData.m_nv;
 myCoonsEvalCoord2f((GLfloat)u0, v0);
 }
 glEnd();

 }

 break;

 case GL_FILL:
 // Execute these statements if expression is equal to GL_FILL
 for (i = i1; i <= i2; i++)
 {
 glBegin(GL_QUAD_STRIP);
 for (j = j1; j <=j2; j++)
 {
 // myTriangleEvalCoord2f((GLfloat)i/nLines, (GLfloat)j/nLines);
 u0 = cData.m_u1 + i*(cData.m_u2-cData.m_u1)/cData.m_nu;
 v0 = cData.m_v1 + j*(cData.m_v2-cData.m_v1)/cData.m_nv;
 myCoonsEvalCoord2f(u0, v0);

 // myTriangleEvalCoord2f((GLfloat)i/nLines,
(GLfloat)j/nLines);
 u0 = cData.m_u1 + (i+1)*(cData.m_u2-cData.m_u1)/cData.m_nu;
 v0 = cData.m_v1 + j*(cData.m_v2-cData.m_v1)/ cData.m_nv;
 myCoonsEvalCoord2f(u0, v0);
 // myTriangleEvalCoord2f((GLfloat)i/nLines,
(GLfloat)j/nLines);
 }
 glEnd();
 }
 // ...
 default:
 // These statements executed if none of the others are
 break;
 }
}

/******************************* myBoxMap2f ***
* Purpose : Box Splines evaluator
* Argument: GLenum target, GLint stride, GLint order1, GLint order2, TYPE *points
* Return : None.

 77

* Note : New design function
***/
void myBoxMap2f(GLenum target, GLint stride, GLint order1, GLint order2, TYPE *points)
{
 bData.m_order1 = order1;
 bData.m_order2 = order2;
 bData.m_stride = stride;
 bpoints = points;
}

/******************************* myBoxEvalMesh2***************************************
* Purpose : Box Splines evaluator
* Argument: GLenum mode, GLint *v, GLint vCount
* Return : None.
* Note : New design function
***/
void myBoxEvalMesh2(GLenum mode, GLint *v, GLint vCount)
{
 /* declare variables */
 int i, j, h, ii, pos, lev;
 int newPoints, numPoints, numPoint;
 int newOrder1, newOrder2;
 int temp1, temp2, temp3;
 TYPE *p[12];
 TYPE *bpoints2, *bpoints3;
 GLint *vec[2];

 /* Calculate number of input control points */
 numPoint = (bData.m_order1-1)*(bData.m_order2-1);

 /* get new contol points after subdivision */
 temp1 = (bData.m_order1*2) -2;
 temp2 = (bData.m_order2*2) -2;
 temp3 = temp1+1;
 newPoints = temp1*temp2;
 bData.m_mode = mode;
 numPoints = (temp1+2)*(temp2+2);

 /* allocate memory */
 bpoints2 = (TYPE *)malloc((bData.m_stride*numPoints) * sizeof(TYPE));
 bpoints3 = (TYPE *)malloc((bData.m_stride*numPoints) * sizeof(TYPE));

 for(i=0; i<2; i++)
 vec[i] = (GLint*)malloc(vCount*sizeof(GLint));

 for(i = 0; i < 12; i++)
 p[i] = (TYPE *)malloc(bData.m_stride * sizeof(TYPE));

 /* get vector from user */
 h=0;
 for(i=0; i<vCount; i++)
 {
 for(j=0; j<2; j++)
 {
 vec[i][j]=v[h];
 h++;
 }
 h++;
 }

 /* Basic subdivision from vector{(1,0), (0,1), (1,1)} */
 pos=0; lev=0;
 for (i=0; i<bData.m_order2-1; i++) /* row data */
 {
 lev=i*bData.m_order1*bData.m_stride;
 for(j=0; j<bData.m_order1-1; j++) /* column data */
 {
 /* average neighbors */
 for(h=0; h<bData.m_stride; h++)
 {
 bpoints2[h+pos]=bpoints[lev+h+j*bData.m_stride];

 78

 bpoints2[h+pos+bData.m_stride]=(bpoints[lev+h+j*bData.m_stride]+bpoints[lev+h+(j+1
)*bData.m_stride])/2;

 bpoints2[h+pos+2*bData.m_stride]=bpoints[lev+h+(j+1)*bData.m_stride];

 bpoints2[h+pos+(temp3)*bData.m_stride]=(bpoints[lev+h+j*bData.m_stride]+bpoints[le
v+h+(j+bData.m_order1)*bData.m_stride])/2;

 bpoints2[h+pos+(temp3+1)*bData.m_stride]=(bpoints[lev+h+j*bData.m_stride]+bpoints[
lev+h+(j+bData.m_order1+1)*bData.m_stride])/2;

 bpoints2[h+pos+(temp3+2)*bData.m_stride]=(bpoints[lev+h+(j+1)*bData.m_stride]+bpoi
nts[lev+h+(j+bData.m_order1+1)*bData.m_stride])/2;

 }
 pos=pos+2*bData.m_stride;
 }
 pos = (i+1)*temp3*2*bData.m_stride;
 }
 /* last row process */
 for(j=0; j<bData.m_order1-1; j++)
 {
 for(h=0; h<bData.m_stride; h++)
 {
 lev=(bData.m_order2-1)*bData.m_order1*bData.m_stride;
 bpoints2[h+pos]=bpoints[lev+h+j*bData.m_stride];

 bpoints2[h+pos+bData.m_stride]=(bpoints[lev+h+j*bData.m_stride]+bpoints[lev+h+(j+1
)*bData.m_stride])/2;

 bpoints2[h+pos+2*bData.m_stride]=bpoints[lev+h+(j+1)*bData.m_stride];
 }
 pos=pos+2*bData.m_stride;
 }

 /* get new set of control points */

 newOrder1 = bData.m_order1*2 -1;
 newOrder2 = bData.m_order2*2 -1;

 /* process vector from user */
 for(i=0; i<vCount; i++)
 {
 int x, y;
 x=vec[i][0];
 y=vec[i][1];
 if(x==0)
 {
 if(y>0) /* (0, +y) */
 {
 pos=0;
 for(j=0; j<newOrder2-y; j++)
 {
 lev=j*newOrder1*bData.m_stride;
 for(h=0; h<newOrder1; h++)
 {
 for(ii=0; ii<bData.m_stride; ii++)
 {

 bpoints3[pos+ii]=(bpoints2[lev+ii+(h*bData.m_stride)]+bpoints2[ii+lev+(h+y*newOrde
r1)*bData.m_stride])/2;
 }
 pos=pos+bData.m_stride;
 }
 }
 newOrder2=newOrder2-y;
 }
 else if(y <0) /* (0, -y) */
 {
 pos=0;

 79

 for(j=0-y; j<newOrder2; j++)
 {
 lev=j*newOrder1*bData.m_stride;
 for(h=0; h<newOrder1; h++)
 {
 for(ii=0; ii<bData.m_stride; ii++)
 {

 bpoints3[pos+ii]=(bpoints2[lev+ii+(h*bData.m_stride)]+bpoints2[ii+lev+(h+y*newOrde
r1)*bData.m_stride])/2;
 }
 pos=pos+bData.m_stride;
 }
 }
 newOrder2=newOrder2+y;
 }
 }
 else if(x >0)
 {
 if(y >0) /* (+x, +y) */
 {
 pos=0;
 for(j=0; j<newOrder2-y; j++)
 {
 lev=j*newOrder1*bData.m_stride;
 for(h=0; h<newOrder1-x; h++)
 {
 for(ii=0; ii<bData.m_stride; ii++)
 {

 bpoints3[pos+ii]=(bpoints2[lev+ii+(h*bData.m_stride)]+bpoints2[ii+lev+(h+x+y*newOr
der1)*bData.m_stride])/2;
 }
 pos=pos+bData.m_stride;
 }
 }
 newOrder1=newOrder1-x;
 newOrder2=newOrder2-y;
 }
 else if(y<0) /* (+x, -y) */
 {
 pos=0;
 for(j=0-y; j<newOrder2; j++)
 {
 lev=j*newOrder1*bData.m_stride;
 for(h=0; h<newOrder1-x; h++)
 {
 for(ii=0; ii<bData.m_stride; ii++)
 {

 bpoints3[pos+ii]=(bpoints2[lev+ii+(h*bData.m_stride)]+bpoints2[ii+lev+(h+x+y*newOr
der1)*bData.m_stride])/2;
 }
 pos=pos+bData.m_stride;
 }
 }
 newOrder2=newOrder2+y;
 newOrder1=newOrder1-x;
 }
 else /* (+x, 0) */
 {
 pos=0;
 for(j=0; j<newOrder2; j++)
 {
 lev=j*newOrder1*bData.m_stride;
 for(h=0; h<newOrder1-x; h++)
 {
 for(ii=0; ii<bData.m_stride; ii++)
 {

 80

 bpoints3[pos+ii]=(bpoints2[lev+ii+(h*bData.m_stride)]+bpoints2[ii+lev+(h+x)*bData.
m_stride])/2;
 }
 pos=pos+bData.m_stride;
 }
 }
 newOrder1=newOrder1-x;
 }
 }
 else
 {
 if (y>0) /* (-x, y) */
 {
 pos=0;
 for(j=0; j<newOrder2-y; j++)
 {
 lev=j*newOrder1*bData.m_stride;
 for(h=0-x; h<newOrder1; h++)
 {
 for(ii=0; ii<bData.m_stride; ii++)
 {

 bpoints3[pos+ii]=(bpoints2[lev+ii+(h*bData.m_stride)]+bpoints2[ii+lev+(h+x+y*newOr
der1)*bData.m_stride])/2;
 }
 pos=pos+bData.m_stride;
 }
 }
 newOrder1=newOrder1+x;
 newOrder2=newOrder2-y;
 }
 else if(y <0) /* (-x, -y) */
 {
 pos=0;
 for(j=0-y; j<newOrder2; j++)
 {
 lev=j*newOrder1*bData.m_stride;
 for(h=0-x; h<newOrder1; h++)
 {
 for(ii=0; ii<bData.m_stride; ii++)
 {

 bpoints3[pos+ii]=(bpoints2[lev+ii+(h*bData.m_stride)]+bpoints2[ii+lev+(h+x+y*newOr
der1)*bData.m_stride])/2;
 }
 pos=pos+bData.m_stride;
 }
 }
 newOrder1=newOrder2+x;
 newOrder2=newOrder2+y;
 }
 else /* (-x, 0) */
 {
 pos=0;
 for(j=0; j<newOrder2; j++)
 {
 lev=j*newOrder1*bData.m_stride;
 for(h=0-x; h<newOrder1; h++)
 {
 for(ii=0; ii<bData.m_stride; ii++)
 {

 bpoints3[pos+ii]=(bpoints2[lev+ii+(h*bData.m_stride)]+bpoints2[ii+lev+(h+x)*bData.
m_stride])/2;
 }
 pos=pos+bData.m_stride;
 }
 }
 newOrder1=newOrder1+x;
 }

 81

 }
 }

 /* if no vector input by user */
 if(vCount==0)
 {
 for(i=0; i<bData.m_order2*2-2; i++)
 {
 for(j=0; j<bData.m_order1*2-2; j++)
 {
 temp3=(bData.m_order1*2-1);
 lev=i*temp3*bData.m_stride;
 for(h=0; h<bData.m_stride; h++)
 {
 p[0][h]=bpoints2[lev+h+j*bData.m_stride];
 p[1][h]=bpoints2[lev+h+(1+j)*bData.m_stride];
 p[2][h]=bpoints2[lev+h+(j+temp3)*bData.m_stride];
 p[3][h]=bpoints2[lev+h+(j+1+temp3)*bData.m_stride];
 }
 draw(p[0], p[1], p[3],p[2]);
 }
 }
 }
 else
 {
 if((newOrder1>1)&&(newOrder2>1))
 {
 for(i=0; i<newOrder2-1; i++)
 {
 for(j=0;j<newOrder1-1; j++)
 {
 lev=i*newOrder1*bData.m_stride;
 for(h=0; h<bData.m_stride; h++)
 {
 p[0][h]=bpoints3[lev+h+j*bData.m_stride];

 p[1][h]=bpoints3[lev+h+(1+j)*bData.m_stride];

 p[2][h]=bpoints3[lev+h+(j+temp3)*bData.m_stride];

 p[3][h]=bpoints3[lev+h+(j+1+temp3)*bData.m_stride];
 }
 draw(p[0], p[1], p[3],p[2]);
 }
 }
 }
 }

 /* return memeory to system */
 for(i = 0; i < 12; i++)
 free(p[i]);
 for(i=0; i<2; i++)
 free(vec[i]);
 free(bpoints2);
}

/***************** draw ****************************
* Purpose : Draw grid from given four points
* Argument: TYPE *p1, TYPE *p2, TYPE *p3, TYPE *p4
* Return : None.
**/
void draw(TYPE *p1, TYPE *p2, TYPE *p3, TYPE *p4)
{
 TYPE *pp[6];
 int i, j;

 /* allocate memory */
 for(i = 0; i < 6; i++)
 pp[i] = (TYPE *)malloc(bData.m_stride * sizeof(TYPE));

 /* get normal */

 82

 if((isNormal)&&(bData.m_stride>2))
 {
 for(i=0; i<bData.m_stride; i++)
 {
 pp[0][i]=p2[i]-p1[i];
 pp[1][i]=p4[i]-p1[i];
 pp[2][i]=p3[i]-p2[i];
 pp[3][i]=p4[i]-p3[i];
 }
 crossproduct(pp[0], pp[1], pp[4]);
 crossproduct(pp[2], pp[3], pp[5]);
 normal(pp[4]);
 normal(pp[5]);
 }

 /* draw feature in a given mode */
 switch (bData.m_mode)
 {
 case GL_POINT:
 glBegin(GL_POINTS);
 break;
 case GL_LINE:
 glBegin(GL_LINE_STRIP);
 break;
 case GL_FILL:
 glBegin(GL_TRIANGLE_STRIP);
 break;
 default:
 break;
 }
 glNormal3fv(pp[4]);
 glVertex3fv(p1);
 glVertex3fv(p2);
 glNormal3fv(pp[4]);
 glVertex3fv(p3);
 glNormal3fv(pp[4]);
 glVertex3fv(p4);
 glNormal3fv(pp[4]);
 glVertex3fv(p1);
 glEnd();

 /* return memory to system */
 for(i = 0; i < 6; i++)
 free(pp[i]);
}

 83

APPENDIX C

A EXAMPLE OF MAIN PROGRAM

/****************** Triangular patch main**********************

/* Purpose: A main program to test tiangular fuctions in myOpenGL
/* library.
/* Functionalities: ESC for exit, x for eyex++, c for eyex--
/* y fo reyey++, t for eyey--, z for eyez++, a for eyez--
/* l for increasing x value of a point
/* r for decresing x value of a point
/* u for increasing y value of a point
/* d for decresing y value of a point
/* m for more defined point
/* p for less defined point
/* h for rotate ++
/* g for rotate --
/* Right mouse have a list of menu options
/* Reference: A programmer Guide for OpenGL
/* Author : Chunyan Ye
/* Date for last revision : 3/31/2003
/***/

#include <GL/glut.h>
#include <stdlib.h>
#include "myOpenGL.h"
#include <math.h>
/* Set up the initial control points.*/

typedef GLfloat TYPE;

TYPE ctrlpoints[10][3] = {{-1.5, -1.5, 4.0},
 {-1.5, -0.5, 1.0}, {-0.5, -0.5, 3.0},
 {-1.5, 0.5, 4.0}, {-0.5, 0.5, 0.0}, {0.5, 0.5, 3.0},
 {-1.5, 1.5, -2.0}, {-0.5, 1.5, -2.0},
 {0.5, 1.5, 0.0}, {1.5, 1.5, -1.0}};

GLint whichPoint = 0; /* which control point */
GLint nLines = 10; /* number of points generated */

/* declare variables */
static GLfloat theta[] = {0.0,0.0,0.0}; /* for rotate */
static GLint axis = 2; /* for rotate axis id */

GLfloat xvalue = 2.0; /* default eye x */
GLfloat yvalue = 12.0; /* default eye y */
GLfloat zvalue = 5.0; /* default eye z */
GLfloat lightx = 4.0; /* default lightx */
GLfloat lighty = 0.0; /* default lighty */
GLfloat lightz = -0.5; /* default lightz */

int isColor = 0; /* default for non colorful*/
GLfloat r = 1.0, g = 1.0, b = 1.0; /* drawing color */
int color = 0; /* for color */
int FuncMode = GL_FILL; /* default first function */
typedef float point[4]; /* define point */

/***************** key ****************************
* Purpose : keyboard input to change eye, light position
* Argument: unsigned char key, int x, int y
* Return : None.
**/

 84

void key(unsigned char k, int x, int y)
{
 GLfloat delta = 0.2;
 switch (k) {
 case 27: /* ESC for exit */
 exit(0);
 break;
 case 'y': /* y for ++eye y v */
 yvalue += 0.2;
 break;
 case 't': /* t for --eye y v */
 yvalue -= 0.2;
 case 'x': /* x for ++eye x v */
 xvalue += 0.2;
 break;
 case 'c': /* c for --eye x v */
 xvalue -= 0.2;
 break;
 case 'z': /* z for ++eye z v */
 zvalue += 0.2;
 break;
 case 'a': /* a for --eye z v */
 zvalue -= 0.2;
 break;
 case 'l': /* increase point x value */
 ctrlpoints[whichPoint][0] = ctrlpoints[whichPoint][0] + delta;
 break;
 case 'r': /* decrease point x value */
 ctrlpoints[whichPoint][0] = ctrlpoints[whichPoint][0] - delta;
 break;
 case 'u': /* increase point y value */
 ctrlpoints[whichPoint][1] = ctrlpoints[whichPoint][1] + delta;
 break;
 case 'd': /* decrease point y value */
 ctrlpoints[whichPoint][1] = ctrlpoints[whichPoint][1] - delta;
 break;
 case 'p': /* decrease points */
 nLines = nLines + 1;
 break;
 case 'm': /* increase points */
 nLines = nLines - 1;
 break;
 case 32: /* choose control point */
 whichPoint = whichPoint + 1;
 if (whichPoint > 10)
 whichPoint = 0;
 break;
 case 'h': /* ++rotate points */
 theta[axis] += 2.0;
 if(theta[axis] > 360.0) theta[axis] -= 360.0;
 break;
 case 'g': /* __rotate points */
 theta[axis] -= 2.0;
 if(theta[axis] < 0.0) theta[axis] += 360.0;
 break;
 } /* end switch*/
 glutPostRedisplay(); /* recall display() */
}
/*void key1(unsigned char k, int x, int y)
{
 if(k==38)
ctrlpoints[whichPoint][0] = ctrlpoints[whichPoint][0] + 0.2;
}*/
/***************** display ****************************
* Purpose : Display responsed call back
* Argument: None.
* Return : None.
**/
void display(void)
{
 int i;

 85

 point light; /* point variable to hold light*/
 light[0]=lightx; /* light x value */
 light[1]=lighty; /* light y value */
 light[2]=lightz; /* light z value */

/* Displays all grid and 3d-draw */

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();
 gluLookAt(xvalue,yvalue,zvalue,2.0,0.0,2.0,0.0,1.0,0.0);
 glLightfv(GL_LIGHT0,GL_POSITION, light);
 glRotatef(theta[0], 1.0, 0.0, 0.0);
 glRotatef(theta[1], 0.0, 1.0, 0.0);
 glRotatef(theta[2], 0.0, 0.0, 1.0);
 /* set color for 3D draw from menu option*/
 if(color == 1) {glColor3f(1.0, 0.0, 0.0);}
 else if(color == 2) {glColor3f(0.0, 1.0, 0.0);}
 else if(color == 3) {glColor3f(0.0, 0.0, 1.0);}
 else if(color == 4) {glColor3f(0.0, 1.0, 1.0);}
 else if(color == 5) {glColor3f(1.0, 0.0, 1.0);}
 else if(color == 6) {glColor3f(1.0, 1.0, 0.0);}
 else if(color == 7) {glColor3f(1.0, 1.0, 1.0);}

 myTriangleMapGrid2f(nLines, 0.0, 1.0, nLines, 0.0, 1.0);
 myTriangleEvalMesh2(FuncMode, 0, nLines, 0, nLines);

 /* Draw the points definng the line. */

 glColor3f(1.0, 0.0, 0.0);
 glPointSize(3.0);
 myTriangleEvalMesh2(GL_POINT, 0, nLines, 0, nLines);

 /* Display the control points as dots, the selected one in blue.*/
 glPointSize(5.0);
 glColor3f(1.0, 1.0, 0.0);
 glBegin(GL_POINTS);
 for (i = 0; i < 10; i++)
 {
 if (i == whichPoint)
 {
 glColor3f(0.0, 0.0, 1.0);
 glVertex3fv(&ctrlpoints[i][0]);
 glColor3f(1.0, 1.0, 0.0);
 }
 else
 glVertex3fv(&ctrlpoints[i][0]);
 }
 glEnd();
 glFlush();
 glutSwapBuffers();
}
/***************** myReshape ************************
 * Purpose : Reshape the window if resize the window
 ***/
void myReshape(int w, int h)
{
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(60.0, 1.0,1.0,30.0);
 glMatrixMode(GL_MODELVIEW);
 display();
}

/***************** color_menu ****************************
* Purpose : Display color menu
* Argument: Int id.
* Return : None.
**/
void color_menu(int id)
{

 86

 if(id == 1) {color = 1; isColor=0;} /* Red */
 else if(id == 2) {color = 2; isColor=0;} /* Green */
 else if(id == 3) {color = 3; isColor=0;} /* Blue */
 else if(id == 4) {color = 4; isColor=0;} /* Cyan */
 else if(id == 5) {color = 5; isColor=0;} /* Magenta */
 else if(id == 6) {color = 6; isColor=0;} /* Yellow */
 else if(id == 7) {color = 7; isColor=0;} /* White */

 glutPostRedisplay();
}

/***************** func_menu ****************************
* Purpose : Display function menu *
* Argument: Int id. *
* Return : None. *
**/
void func_menu(int id)
{
 if(id == 1) { FuncMode = GL_POINT; }
 else if(id == 2) { FuncMode = GL_LINE; }
 else if(id == 3) { FuncMode = GL_FILL; }
 else if(id == 4) { exit(0); }
 glutPostRedisplay(); /* Calls display function */
}
/***************** point_menu ****************************
* Purpose : Display point increase or decrease menu
* Argument: Int id.
* Return : None.
**/
void point_menu(int id)
{
 if(id == 1) /* increase point */
 {
 nLines++;
 }
 else if(id == 2) /* decrease point */
 nLines--;

 glutPostRedisplay();
}

/***************** whichp_menu ****************************
* Purpose : Choose a control point
* Argument: Int id.
* Return : None.
**/
void whichp_menu(int id)
{
 whichPoint = id -1;
 glutPostRedisplay();
}

/***************** idle ****************************
* Purpose : Non-stop moving around
* Argument: None.
* Return : None.
**/
void myidle()
{
/* Idle callback, spin toy 2 degrees about selected axis */

 theta[axis] += 2.0;
 if(theta[axis] > 360.0) theta[axis] -= 360.0;
 /* display(); */
 glutPostRedisplay();
}

/***************** rotate_menu **************************
* Purpose : Display Rotate direction *
* Argument: Int id. *
* Return : None. *

 87

**/
void rotate_menu(int id)
{
 if(id == 1) { axis = 0; }
 else if(id == 2) { axis = 1; }
 else if(id == 3) { axis = 2; }
// glutIdleFunc(myidle);
 glutPostRedisplay(); /* Calls display function */
}
/***
* Function Name: mouse *
* Purpose: If user click on left mouse button, they will stop *
* the motion. And click on right mouse will stop motion*
* Parameters: btn, state, x, y *
* Returns: none *
***/
void mouse(int btn, int state, int x, int y)
{
 if(btn==GLUT_LEFT_BUTTON && state==GLUT_DOWN) glutIdleFunc(NULL);
}

/***************** myinit ****************************
* Purpose : Initialize window, set up view, atributs
* Argument: None.
* Return : NOne.
**/
void myinit()
{
 GLfloat mat_specular[]={1.0, 1.0, 1.0, 1.0};
 GLfloat mat_diffuse[]={1.0, 1.0, 1.0, 1.0};
 GLfloat mat_ambient[]={1.0, 1.0, 1.0, 1.0};
 GLfloat mat_shininess={1.0};
 GLfloat light_ambient[]={0.2, 0.2, 0.2, 1.0};
 GLfloat light_diffuse[]={1.0, 1.0, 1.0, 1.0};
 GLfloat light_specular[]={1.0, 1.0, 1.0, 1.0};

/* set up ambient, diffuse, and specular components for light 0 */

 glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
 glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);

/* define material proerties for front face of all polygons */

 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
 glMaterialf(GL_FRONT, GL_SHININESS, mat_shininess);

 glShadeModel(GL_SMOOTH); /*enable smooth shading */
 glEnable(GL_LIGHTING); /* enable lighting */
 glEnable(GL_LIGHT0); /* enable light 0 */
 glEnable(GL_DEPTH_TEST); /* enable z buffer */
 glEnable(GL_COLOR_MATERIAL);/*enable color material mode*/

 glClearColor (0.0, 0.0, 0.0, 1.0);
 glColor3f (1.0, 1.0, 0.0);

 myTriangleMap2f(GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4,
 0.0, 1.0, &ctrlpoints[0][0]);
 /* enable above evaluator */
 glEnable(GL_MAP2_VERTEX_3);
 myEnable(GL_AUTO_NORMAL);
}

/***************** Main Loop ************************
 * Purpose :Open window with initial window size,
 * title bar, RGBA display mode,
 * and handle input events.
 ***/

 88

void main(int argc, char **argv)
{
 int c_menu, o_menu, p_menu, r_menu, n_menu; /* to hold two submenu */

 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(700, 700);/* sets window size */
 glutInitWindowPosition(0,0); /* sets window position */
 glutCreateWindow(" TriangleP -- Chunyan Ye "); /* create window name */
 glutDisplayFunc(display); /* sets the call back */

 /* make function submenu */
 c_menu = glutCreateMenu(func_menu);
 glutAddMenuEntry("Point",1);
 glutAddMenuEntry("Frame",2);
 glutAddMenuEntry("Surface",3);
 glutAddMenuEntry("Exit",4);

 /* make choose point submenu */
 n_menu = glutCreateMenu(whichp_menu);
 glutAddMenuEntry("Point1",1);
 glutAddMenuEntry("Point2",2);
 glutAddMenuEntry("Point3",3);
 glutAddMenuEntry("Point4",4);
 glutAddMenuEntry("Point5",5);
 glutAddMenuEntry("Point6",6);
 glutAddMenuEntry("Point7",7);
 glutAddMenuEntry("Point8",8);
 glutAddMenuEntry("Point9",9);
 glutAddMenuEntry("Point10",10);

 /* make color submenu */
 o_menu = glutCreateMenu(color_menu);
 glutAddMenuEntry("Red",1);
 glutAddMenuEntry("Green",2);
 glutAddMenuEntry("Blue",3);
 glutAddMenuEntry("Cyan",4);
 glutAddMenuEntry("Magenta",5);
 glutAddMenuEntry("Yellow",6);
 glutAddMenuEntry("White",7);

 /* make grid submenu */
 p_menu = glutCreateMenu(point_menu);
 glutAddMenuEntry("increase points", 1);
 glutAddMenuEntry("decrease points", 2);

 /* make function submenu */
 r_menu = glutCreateMenu(rotate_menu);
 glutAddMenuEntry("X axis",1);
 glutAddMenuEntry("Y axis",2);
 glutAddMenuEntry("Z axix",3);

 /* make right button */
 glutCreateMenu(color_menu);
 glutAddSubMenu("Change_Design", c_menu);
 glutAddSubMenu("ChangeColor", o_menu);
 glutAddSubMenu("ChangePoints", p_menu);
 glutAddSubMenu("ChoosePoint", n_menu);
 glutAddSubMenu("RotateAxis", r_menu);
 glutAttachMenu(GLUT_RIGHT_BUTTON);

 myinit(); /* call initial func */
 glutReshapeFunc(myReshape); /* resize window */
// glutMouseFunc (mouse); /* Enable mouse function */
 glutKeyboardFunc(key); /* call back on key call */
// glutIdleFunc(myidle); /* call idle function */
// glutSpecialFunc(key1);
 glutMainLoop();
}

 89

GLOSSARY

 90

Affine map

Any map that is composed of translations, rotations, scalings, and shears is an affine map.

Affine space

A vector space that adds a third element: the point.

API

Application programming interface

Approximation

Fitting a curve or surface to given data. As opposed to interpolation, the curve or surface approximation

only has to be close to data.

Barycentric combination

A weighted average where the sum if the weights equals one.

Barycentric coordinates

A point in E3 may be written as a unique barycentric combination of three points. The coefficients in this

combination are its barycentric coordinates.

Bernstein Functions

The Bernstein functions were originally devised by Bernstein to prove the Weierstrass theorem in 1912.

They are formally given by inn
i tt

ini
ntB 1)1(

)!(!
!)(−−
−

=

Bernstein polynomial

Bernstein function.

Beta-spline curve

B-spline curve. A G2 piecewise cubic curve is defined over uniform knot sequence.

Bézier Patches

A Bézier patch is a three-dimensional extension of a Bézier curve.

Bézier curve

A polynomial curve that is expressed in terms of Bernstein polynomials

Bézier polygon

Connecting the control points in the correct order, from which a Bezier curve is made.

 91

Blossom

A multivariate polynomial that is associated with a given polynomial.

Blossoming

The process of applying de Casteljau algorithm steps or n de Boor steps to a polynomial.

B-Spline

A piecewise polynomial function

B-Spline Curve

A B-spline curve is a set of piecewise (usually cubic) polynomial segments that pass close to a set of

control points.

C2 Continuity

Recall C2 continuity: This means that the second derivatives of the curves are continuous.

CAD

Computer Aided Design.

CAGD

Computer Aided Geometric Design

CAM

Computer Aided Manufacture

Collinear

Points being on a straight line

Continuity

Continuity implies a notion of smoothness: that is, curves are not jagged and do not break.

Control Points

Control points are points in two or more dimensions that define the behavior of the resulting curve.

Control Polygon

A Bézier polygon

 Convex

A polygon is convex if no straight line in the plane of the polygon intersects the polygon more than twice.

Convex hull

 92

The smallest convex region encloses a specified group of points. In two dimensions, the convex hull is

found conceptually by stretching a rubber band around the points so that all of the points lie within the

band.

Coons patch

A patch is fitted between four arbitrary boundary curves.

Euclidean space

An affine space that adds the concept of distance.

Explicit Equation

A planar curve is given by y = f(x), where f(x) is a prescribed function of x.

GAGD

Graphic Aided Geometry Design

Geometric continuity

Smoothness of a curve or a surface formed by several segments of curves or patches.

Hermite interpolation

Generating a curve or surface from derivatives.

Homogeneous coordinates

A coordinate system with the fourth parameter added to the three-dimensional coordinate that is used to

represent rational curves and surfaces.

Implicit Equation

A curve is given by function f(x, y) = 0.

Interpolation

Calculation for values at the boundaries such as at the vertices for a polygon or a line.

Knot

A spine curve is defined over a partition of an interval of the real line. The points that define the partition

are called knots.

Non-parametric

Curves Explicitly and implicitly defined curves.

Nonuniform Curves

 93

A curve whose knots are unevenly spaced.

NURBS Non-uniform rational B-spline curves.

 Parameterization

Parameterization uses an independent parameter or variable to compute points on a curve. It gives the

"motion" of a point on the curve.

Parametric Form

In describing curves, using an auxiliary parameter to represent the position of a point.

Patch

Complicated surfaces are usually broken into smaller units, called patches.

Point

An exact location in space, donated as a finite-diameter dot.

Polygon

A near-planar surface bounded by edges specified by vertices.

Polynomials

A polynomial is a function of the form P(t) = a0 + a1t + a2t2 + � + antn, where the ai are scalars or vectors.

Polynomial Curve

A parametric curve is a curve that has a polynomial parameterization.

Primitive

A point, a line, a polygon

Rational curve and surface

The curve and surface are ones that are represented in homogeneous coordinates.

Ruled surface

A surface obtained by linear interpolation between two given curves.

Segment

A polynomial (or rational polynomial) curve pieces can form a big curve.

Space

A three-dimension

Spline curve

 94

A continuous curve made from several polynomial segments.

Surface

A continuous map in which there is the locus of all points of a moving and deforming curve.

Surface Patches

Surface patches are three-dimensional surface sections that may be combined to form solid objects.

Tangent Line

The tangent line to a curve is the straight line that gives the curve's slope at a point. This is

deduced from the derivative of the curve at the point.

Tensor product

Rectangular surfaces are generated by curve methods.

Texture mapping

The process of applying and image (the texture) to a primitive is called texture mapping.

Triangular patch

The shape of the patch is triangle

Twist vector

The mixed second partial of a parametrization dependent surface

Vector

It is a direction from the difference of two points.

Vertex

A point in three-dimensional space

Weight

The component of the homogeneous coordinate

Weight point

The weights of the control points

 95

VITA

CHUNYAN YE

Personal Data: Place of Birth: Heilongjiang, China
Marital Status: Married, Daughter: Kelly Liu, Husband: Zhiping Liu

Education Heilongjiang 'August 1st' Land Reclamation University, Mishan, China;

Animal Science, B.S., 1985
Nanjing Agricultural University, Nanjing, China and Northeast Forestry University,
Harbin, China;

Animal Physiology and Biochemistry, M.S., 1989

Professional
Expenrience: Assistant Professor,
 Northeast Forestry University
 Harbin, China 1987-1995
 Graduate Assistant, East Tennessee State University
 Computer Science Department 2000-2003
Selected
Publications: Effects of panax ginseng, panax pseudoginseng , eleutercoceus senticosus and schizadra

chinesis on protein biosynthsis in mouse brain. Chinese Traditional Patent Medicine.
1993,15(6):30-31

Investigation on the histology of digestive tract in yellow-throated buntings Wildlife,
1994, 1:34

Study on the influence of panax ginseng, panax pseudoginseng , eleutercoceus senticosus
and schizadra chinesis on mouse memory. China Forestry By-products, 1994, 3:10-13

Influence of panax ginseng, panax pseudoginseng , eleutercoceus senticosus and
schizadra chinesis on the weight of mouse testes. Special Wild Economic Animal and
Plants Research , 1995, 3:14-16

A study on the amount of inosinic acid in the muscle of songhuajiang river carps and
their meat keeping time. Aqatic Science, 1995, 14(5):15-17

	Extensions to OpenGL for CAGD.
	Recommended Citation

	Microsoft Word - 3EA711EE-4901-18156B.doc

