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Determinants for
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Neurotransmitter binding to Cys-loop receptors promotes a
prodigious transmembrane flux of several million ions/s, but to
date, structural determinants of ion flux have been identified
flanking the membrane-spanning region. Using x-ray crystal-
lography, sequence analysis, and single-channel recording, we
identified a novel determinant of ion conductance near the
point of entry of permeant ions. Co-crystallization of acetylcho-
line-binding protein with sulfate anions revealed coordination
of SO4

2� with a ring of lysines at a position equivalent to 24 Å
above the lipid membrane in homologous Cys-loop receptors.
Analysis ofmultiple sequence alignments revealed that residues
equivalent to the ring of lysines are negatively charged in cation-
selective receptors but are positively charged in anion-selective
receptors. Charge reversal of side chains at homologous posi-
tions in the nicotinic receptor from the motor end plate
decreases unitary conductance up to 80%. Selectivity filters
stemming from transmembrane �-helices have similar pore
diameters and compositions of amino acids. These findings
establish that when the channel opens under a physiological
electrochemical gradient, permeant ions are initially stabilized
within the extracellular vestibule of Cys-loop receptors, and this
stabilization is a major determinant of ion conductance.

Ion selectivity defines two major classes of Cys-loop recep-
tors. Receptors that selectively translocate cations are excita-
tory and include vertebrate nAChRs3 and 5-HT3 receptors,
whereas receptors that selectively translocate anions are inhib-

itory and include �-aminobutyric acid and glycine receptors. A
molecular basis for ion selectivity was first proposed based on
conserved rings of charged residues and the observation that
mutations of these residues in the nAChR influence conduct-
ance and selectivity (supplemental Fig. S1) (1). Subsequent
studies have focused on reversing selectivity (2, 3) and compar-
ing determinants of ion conductance in nicotinic receptors
with those in other Cys-loop receptors (4). These studies
described ion selectivity filters in transmembrane-spanning
domains using mutagenesis and electrophysiological tech-
niques. More recently, mutations of residues in a channel cyto-
plasmic region altered conductance in 5-HT3A receptors (5),
suggesting that other domains form vestibules leading into the
channel that may influence ion conductance and selectivity. In
Cys-loop receptors, a large N-terminal domain encloses a ves-
tibule that extends from the constricted ion pore extracellularly
by 60 Å. Structural and computational studies have suggested
that regions within the N-terminal domain contribute to ion
conductance and selectivity (6, 7), but direct experimental evi-
dence is lacking.
Also lacking is a chemical description of ion selectivity and

conductance in Cys-loop receptors at the atomic level. Cryo-
electron microscopy applied to the nAChR from Torpedo pro-
vided structural information at a resolution of 4 Å (6, 8), but
single ions and most amino acid side chains could not be
resolved. Currently, our understanding of ion translocation
through channels comes from studies on voltage-gated ion
channels (9–11), where non-hydrated ions are coordinated in a
pore linedwith partial charges of carbonyl groups of the protein
backbone, and single ions pass processionally in a linear chain
through the channel. Functional studies suggest a fundamen-
tally different mechanism of ion translocation in Cys-loop
receptors. First, hydrophobic �-helices line the pore, and ions
remain hydrated as they pass. Second, ions are coordinated by
fully charged amino acid side chains inmultiple locations along
the ion translocation pathway. Third, the diameter of the chan-
nel pore is larger in theCys-loop family of receptors. Herein, we
describe a novel ion selectivity filter stemming from the
�-sheets of the extracellular ligand-binding domain of nAChRs
and provide a high resolution atomic structure of ion coordina-
tion in the water-soluble AChBP. Using the low resolution
structure of the nAChR transmembrane domain (8), we show
spatial and charge similarities between the �-sheet filter and
�-helical filters of the transmembrane domain.

EXPERIMENTAL PROCEDURES

A gene chemically synthesized from oligonucleotides encod-
ing the soluble Ac_AChBP was expressed in HEK293S cells
lacking the N-acetylglucosaminyltransferase I gene (GnTI�
cells) (12).Ac_AChBPwas purified from themedia as described
previously (13, 14).
Sulfate complexes were formed in 1.26 M (NH4)2SO4

2� and
0.1 M cacodylate (pH 6.5) with 10–15 mg/ml protein at room
temperature. Crystallization was achieved by vapor diffusion
at 18 °C using a protein-to-well ratio of 1:1 in 0.2-�l sitting
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drops using a Douglas Oryx8 robot. 20% glycerol was added
to the drop, and the crystals were flash-cooled in liquid
nitrogen. Data were processed with HKL2000 (15), and all
further computing was carried out with the CCP4 Program
Suite (16).
A solution was obtained by molecular replacement with

AMoRe (17) using the structure of apo-Ac_AChBP (Protein
Data Bank code 2BYN) (13) as a search model. The initial
electron density maps were improved considerably by man-
ual adjustment with the graphics program Xtalview Version
4.1 (18). All structures were refined with REFMAC (19) using
the maximum likelihood approach and incorporating bulk
solvent corrections, anisotropic Fo versus Fc scaling, and TLS
refinement with each subunit defining a TLS group.
Electrophysiological studies were performed in BOSC

cells (20) using the cell-attached patch-clampmethod essen-

tially as described previously (21).
For electrophysiological studies,
BOSC cells (20), a variant of the
HEK293 cell line, were transfected
with human wild-type or mutant
nAChR subunit cDNAs using cal-
cium phosphate precipitation. A
plasmid encoding green fluores-
cent protein was included in all
transfections to allow identifica-
tion of transfected cells under flu-
orescence optics. Cells were used
for single-channel current meas-
urements 1 or 2 days after trans-

fection. Mutant cDNAs were constructed using the
QuikChange site-directed mutagenesis kit (Stratagene) and
were confirmed by sequencing the entire coding region.
Coexpression of four or five nAChR subunits with Lys sub-
stituted for Asp97 greatly reduced the number of nAChRs on
the cell surface, as indicated by decreased binding of 125I-�-
bungarotoxin and low frequency of acetylcholine-elicited
single-channel openings detected by patch clamp. Thus, for
receptors with four or five Lys substitutions, we incorpo-
rated a Leu-to-Ser mutation at position 9� of transmembrane
domain M2 in the �-subunit (�L9�S) and found that it en-
hanced the frequency of channel opening but did not alter
the unitary conductance of receptors without D97K
mutations.
Single-channel recordings were obtained in the cell-attached

patch configuration at 22 °C. The bath and pipette solutions
contained 142 mM KCl, 5.4 mM NaCl, 1.8 mM CaCl2, 1.7 mM
MgCl2, and 10mMHEPES (pH 7.4). Acetylcholine (Sigma) was
kept as a 100 mM stock solution at �80 °C and added to the
pipette solution before recording. Patch pipettes were pulled
from 7052 capillary tubes (Garner Glass) and coated with Syl-
gard (Dow Corning). Single-channel currents were recorded
using an Axopatch 200B patch-clamp amplifier (Molecular
Devices) and digitized at 2-�s intervals with the PCI-6111E fast
data acquisition board (National Instruments) using Acquire
software (Bruxton Corp.). Single-channel currents were
detected using TAC software (Bruxton Corp.) at a final band-
width of 10 kHz. Single-channel current amplitudeswere deter-
mined by fitting a Gaussian function to all-point histograms
generated from the digitized current traces. In most cases, two
Gaussian functions were needed to describe the all-point histo-
gram from each recording; one Gaussian function corre-
sponded to the closed current level, and the other corresponded
to the open current level. The difference between the mean
values of the two distributions yielded the single-channel cur-
rent amplitude.

RESULTS AND DISCUSSION

The soluble AChBP from mollusks is an established struc-
tural and functional surrogate of the N-terminal ligand-
binding domain of Cys-loop receptors amenable to high res-
olution crystallographic studies (22, 23). We co-crystallized
Ac_AChBP in the presence of the anions sulfate and cacody-
late. Crystals diffracted to 3.1-Å resolution, and the data

FIGURE 1. X-ray structure of the ion selectivity filter in Ac_AChBP. A and B, sulfate bound to Ac_AChBP. A
shows a side view with one subunit removed. Arg97 is shown in blue; a ring of five sulfates is located in a plane
15 Å above the membrane region (sulfur, orange; and oxygen, red). B shows a view down the 5-fold axis.
C, sulfate coordinated between Arg97 and Lys42.

FIGURE 2. Sequence alignment of ion selectivity filters: extracellular (EC),
transmembrane (TM), and cytoplasmic (CP). Basic residues presumably
involved in anion selectivity are shaded blue, and acidic residues involved
with cation selectivity are shaded red. Residues implicated in channel gating
are shaded gray. Sequences are human except Torpedo californica (Tca),
Erwinia chrysanthemi (for ELIC), and A. californica (for AChBP). GABA, �-ami-
nobutyric acid.

ACCELERATED PUBLICATION: Ion Filter in Cys-loop Receptors

DECEMBER 26, 2008 • VOLUME 283 • NUMBER 52 JOURNAL OF BIOLOGICAL CHEMISTRY 36067



were refined to an R/Rfree of 21/25 (supplemental Table S1).
The asymmetric subunit contains two pentamers each
enclosing a symmetric ring of sulfate ions 13 Å in diameter
and orthogonal to the 5-fold symmetry axis located in the
vestibule. Arg97 and Lys42 occupy a single conformation in
each subunit and coordinate one of five total sulfate ions per
pentamer (Fig. 1, A–C). When viewed perpendicular to the
central vestibule, the ring of sulfates is located �15 Å apical
to what would be the outer membrane interface in a full-
length receptor (Fig. 1A).
Sequence alignment of human Cys-loop receptors shows

that residues at a position equivalent to Arg97 inAc_AChBP are
conserved as Asp in cation-selective receptors, whereas they
are conserved as Lys or adjacent Lys residues in anion-selective
receptors (Fig. 2); Lys42 is not conserved in the family. In the
Torpedo nAChR, Asp97 extends from a loop that forms the nar-
rowest region of the central vestibule of the N-terminal ligand-
binding domain. We reasoned that residue 97 may be posi-
tioned to filter ions analogous to the selectivity filters that flank
the�-helical transmembrane domain orwithin the cytoplasmic
domain.
To determine whether the ring of charged residues contrib-

utes to ion translocation, we examined Asp97 of the �-subunit
and residues at equivalent positions of the�-, �-, and �-subunits
in the nicotinic receptor from themotor end plate.We reversed
the charges of residues in all five subunits, coexpressed the sub-

units to form heteropentameric
receptors, and recorded single-
channel currents elicited by acetyl-
choline (Fig. 3). Compared with the
wild-type receptor, the mutant
receptor exhibited decreased uni-
tary current amplitude at each test
potential (Fig. 3, A and B); a plot of
unitary current against transmem-
brane potential reveals a straight
line, the slope of which yields the
unitary conductance and shows a
decrease of 70% compared with the
wild-type nAChR (Fig. 3F). Channel
openings of receptors containing
five Lys substitutions also appear
prolonged; this is likely a conse-
quence of the mutation in the sec-
ond transmembrane domain
needed to enhance expression (see
“Experimental Procedures”), which
also increases mean channel open
time (24). The conductance
decrease depends nonlinearly on
the number of charge-reversal
mutations in the pentamer, showing
no change following reversal of the
two �-subunits and only a slight
decrease with reversal of three sub-
units (Fig. 3,D and E). However, the
net charge of the ring is less impor-
tant than the side chain substitu-

tions and the locations of themutant subunits. Introducing four
Lys residues and maintaining one Asp residue (net charge of
�3) decreased unitary conductance by 55%, whereas introduc-
ing three Lys and twoAla residues (net charge of�3) decreased
unitary conductance by 80%. The observation that the ring of
charge aligned at�-Asp97 affects unitary conductance agrees with
predictions from all atommolecular dynamics simulations, which
showed that cations pause for extended periods at this location in
the course of passing through the channel (7). Thus positioned
close to the point where permeant ions enter the channel, this
vestibular ring of charge acts to concentrate and select cations
for translocation.
The spacing of the �-carbon atoms that form the selectivity

filter in Ac_AChBP is 19.3 Å, whereas the equivalent �-carbon
atoms in the Torpedo nAChR at 4-Å resolution (6) show an
average spacing of 30.3 � 1.5 Å, a distance that appears incon-
sistent with a selectivity filter. However, we overlaid a recent
1.94-Å crystallographic structure of the extracellular domain of
the�1-subunit (25) onto the two�-subunits of the 4-ÅTorpedo
nAChR pentamer and found a ring diameter of 21 Å. The
decrease in spacing is due to a distinct conformation in the�4/5
loop, where the tip, containing Asp97, protrudes toward the
central vestibule.
Next, we compared the �-sheet filter in the vestibule of

Ac_AChBPwith the transmembrane �-helical filters in the 4-Å
resolution structure of theTorpedo nAChR (8) transmembrane

FIGURE 3. Electrostatic contribution of Asp97 in the muscle acetylcholine receptor. A, B, D, and E, single-
channel currents are shown at a bandwidth of 10 kHz for the indicated wild-type and mutant receptors.
Channel openings are upward deflections. All-point histograms of current amplitude are shown for each test
membrane potential and fitted by the sum of two Gaussian functions. C, shown is the current-voltage relation-
ship for receptors with increasing numbers of Lys mutations per pentamer. F, wild-type (WT); E, �L9�S; �,
���D97K � �L9�S; �, ����D97K � �L9�S; f, ��D97K. F, shown is a graph of single-channel conductance
derived from the slope of the current-voltage relationship in C. In E, for the receptor with three Lys and two Ala
substitutions, the current-voltage relationship yields a single-channel conductance of 18 picosiemens (pS).
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domain (Fig. 4). The ring diameters for the�-helical filters aver-
age 19.6 � 0.2 Å, very close to that of the �-sheet filter (Fig. 5).
At the cytosolic entrance in the Torpedo nAChR, the pore-

forming �-helices narrow to �11 Å. The well conserved selec-
tivity filter containingGlu241 is located in this region; the�-car-
bons of the cytosolic filter show a filter diameter of 18.4 Å, even
though they are situated behind the �-helix on the M1–M2
linker (Fig. 4). Thus, regardless ofwhether the selectivity filter is
formed by �-helices or the tips of a �-sheet loop, the diameter
of the filter defined by the corresponding �-carbon atoms is
determined to be �19 Å (6).
Finally, we compared the SO4

2�-bound complex with an
Ac_AChBP structure crystallized in the absence of large anions.
The highest resolution structure available is a 1.8-Å resolution
structure of Ac_AChBP complexed with cocaine in the ligand-
binding pocket (26). The central vestibule is water-filled, and
the narrowest region encloses the extracellular selectivity filter,
�24 Å from the “membrane”; two pentameric rings of ordered
water stack vertically near the vestibule wall (supplemental Fig.
S1). The vertical position of the water rings is 9 Å apical to that
of the rings that coordinate SO4

2�. The lower position of SO4
2�

in the vestibule allows it to occupy a segment with a wider
diameter, perhaps reducing electrostatic repulsion between the
internal anions.
The extracellular �-sheet filter appears late in prokaryote

development and is maintained in all eukaryotes (27).
Ac_AChBP contains an Arg at position 97 (Fig. 1) (14), and
anion-conducting nAChRs are found for Aplysia (28), suggest-
ing that Ac_AChBP evolved from an anion channel. Recently,
the first high resolution structure of a nicotinic receptor hom-
olog called ELIC was solved from a bacterial species (29). Asp86
from ELIC occupies a position near Asp97 in the nAChR, and
the diameter defined by �-carbon atoms is 19.1 Å. ELIC may
also have an even more apical selectivity filter at Glu64, where

FIGURE 4. Comparisons of �-sheet and �-helical ion filter dimension. Fil-
ter diameters were determined from averaging the distances between �-car-
bons across the pore. A, side view of the relative filter positions shown on the
Torpedo nAChR (with one subunit removed). Additional transmembrane fil-
ters (not shown) are located just above the membrane on the extracellular
side. B, extracellular �-sheet filter from Ac_AChBP. Arg97 is shown (in blue)
looking down the 5-fold axis. C, Torpedo cytosolic transmembrane filter (6)
�-Glu241 (Glu�1 transmembrane position) shown in red and viewed from the
cytoplasmic side of the 5-fold axis.

FIGURE 5. The transmembrane (TM) and extracellular (EC) filters are compared in the table on the left. Protein Data Bank codes are in parentheses. Distances are
�-carbon distances across the ion permeation pathway. S.D. values were based on five measurements. The asterisks indicate predicted filters based on location
and spacing of charge. The bacterial homolog of nAChR from E. chrysanthemi (ELIC) (Protein Data Bank 2VL0) (29) is shown in A–C. A, side view of ELIC with one
subunit removed. Side chains of the canonical Glu229 selectivity filter are shown in red. Potential selectivity filters in the extracellular domain are highlighted at
Asp86 and Glu64. B, top view looking down the ion channel of ELIC. C, homopentamer of ELIC with five binding sites depicted in green.
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an �-helix narrows the extracellular vestibule to a diameter of
20Å, and the aspartate carboxylates are tilted inward for hydro-
gen bonding (Fig. 5).
Themolecular basis of ion selectivity correlates well with the

charge-selective nature of Cys-loop receptors. Filters are
located at relatively wide regions of the extracellular domain,
where a flexible side chain points into the channel lumen. The
channel is selective for charge but limited in its selectivity for
size or valence. Ions are thought to be hydrated at the level of
the filter (30), and bound SO4

2� coordinates several waters.
Coincidently, a pentameric ring forms angles of 108°, an angle
amenable to water and ion coordination. Potentially, these geo-
metrical constraints and the need to translocate hydrated ions
may have contributed to the rise of pentameric ion channels
with an elongated vestibule for ion entry.
Characterization of ion selectivity filters in the N-terminal

domain and a structural description of ion translocation are
fundamental to understanding how Cys-loop receptors func-
tion.We have shown for the first time that pentameric�-sheets
form a vestibular structure capable of filtering ions as they flow
through the open channel. These data demonstrate that the
structure of the extracellular domain plays a function role
beyond that of ligand binding and its linkage to allosteric gating.
The location of the filter is also significant; when nicotinic
receptor channels open, sodium ions flow from outside the cell
to the cytoplasm and are thus first exposed to the most extra-
cellular selectivity filter. As a region of conserved structure and
critical sequence positions, the vestibule could serve as a site for
non-competitive modulators.
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