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ABSTRACT 

European Paper Wasps (Polistes dominula) are social insects that build round, 

symmetrical nests. Current models indicate that these wasps develop colonies by 

following simple heuristics based on nest stimuli. Computer simulations can model wasp 

behavior to imitate natural nest building. This research investigated various building 

heuristics through a novel Markov-based simulation. The simulation used a hexagonal 

grid to build cells based on the building rule supplied to the agent. Nest data was 

compared with natural data and through visual inspection. Larger nests were found to be 

less compact for the rules simulated. 
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 INTRODUCTION 

Social insects collaborate to create complex structures. Downing and Jeanne 

hypothesized that wasps used “blueprints” to create nests: i.e., that worker wasps 

construct nests based on a predetermined idea of how nests should look (1988). This idea 

is intuitive, since wasps’ nests are almost perfectly symmetrical, which is economically 

efficient due to their use of less building material. This theory implies that wasps 

collaborate based on advanced knowledge and communication networks.  

Indirect coordination and interaction have been proposed as driving mechanisms 

in wasp nest construction. (Karsai and Penzes, 1993) (Harrison, 2018) In this theory, 

wasps’ interactions with nests provide stimuli for heuristic decisions. This theory 

assumes that wasps lack the intelligence to understand how a nest should look upon 

completion but follow “rules of thumb” to create symmetrical nest shapes. (Karsai and 

Penzes, 1993) 

These observations lead to questions as to what heuristics wasps use to build nests 

and what stimuli affect these decisions. Computer simulations allow researchers to 

correlate abstract models of wasp behavior with naturally observed colonies. Other 

considerations, such as foraging activities that occur away from the nest, can be 

abstracted in these models (Karsai and Penzes, 2000). Investigating paper wasps with 

simulations has the potential to give insight into how “dumb” social insects create 

advanced colonies. 

 Computer simulations have been built in the past to investigate the heuristics that 

govern wasp behavior (Adoe, 2010) (Harrison, 2018); however, past simulations have 

been restricted to smaller nest colonies due to hardware constraints; the value of different 
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heuristics can be more thoroughly understood with larger nests. This experiment trained 

nest-building heuristics proposed in earlier work with larger upper limits; furthermore, 

Markov chains were used to investigate these heuristics.
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  BACKGROUND 

2.1: Stigmergy 

To understand how wasps build their nests, it’s important to understand what 

mechanisms influence their behavior. In (1993), Karsai and Penzes discuss their research 

into the factors that determine how members of the Polistes dominulus wasp species 

build combs during nest construction. Karsai and Penzes modeled nest-building using a 

self-organized (or stigmergic [sic]) model. Wasp behavior is guided through stigmergy, 

“a mechanism of indirect coordination, through the environment, between agents or 

actions.” (Marsh and Onof, 2007) Wasp behavior during nest construction is influenced 

by stimuli left by other wasps—a form of decentralized communication that lacks a 

central command or hierarchy. This model assumes that wasps determine where and how 

to build cells through interaction with the nest structure instead of interaction with other 

wasps.  

2.2: Rules of thumb 

In (2000), Karsai and Penzes explore “rules of thumb” that wasps use to 

approximate ideal behavior when constructing nests. Wasp behavior is guided through 

stigmergy. Wasp behavior during nest construction is influenced by stimuli left by other 

wasps—a form of decentralized communication that lacks a central command or 

hierarchy. The aim of this research “beyond examining the optimality of round one-comb 

nests in regard to material economy and structural compactness, was to explore the 

predictive power of simple stigmergic [sic] rules of thumb that may be used by builders 

in Polistes dominulus Christ colonies.” The research distinguished between “ideal” (or 

most symmetrical) and naturally observed nest shapes. Through the testing of different 
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building algorithms that use prospective rules of thumb, the authors sought to replicate 

naturally observed wasp behavior. 

For this research, the authors focused on modeling embryonic-stage (queen-wasp-

stage) nest building, which entailed one agent representing the queen wasp and a 

maximum of fifteen cells. The nest was modeled using a two-dimensional plane. The 

authors assumed that wasps place new cells next to at least two pre-existing walls to 

decrease costs in building material; that cell initiation is a local decision, meaning that 

wasps typically limit checks to one cell and its neighbors; and that choices among 

multiple cell initiation locations with two pre-existing walls were random. Finally, the 

model was limited to two considerations: the nest in its current configuration and the 

building algorithm that predicts the next move. 

Karsai and Penzes (2000) observed that naturally occurring wasp nests do not 

fully optimize the use of building materials. An optimal nest form maximizes nest 

compactness, or geometric compression and symmetry. With three exceptions, all nest 

configurations observed in nature were the most compact. According to the authors, these 

naturally occurring imperfections are due to wasps’ use of heuristics, which yield good 

but not necessarily ideal nest forms. 

Several rules were proposed as models for choosing where to construct new cells. 

One, MaxW, puts each new cell at a site with the highest number of pre-existing walls. 

This rule generated many forms not observed in nature and was discarded as a prediction 

algorithm. A second, MaxAo, placed each new cell next to the nest’s oldest cell. This rule 

failed to generate the nonoptimal forms observed in nature. The most successful, 

SumAMax, placed new cells at locations that maximized the combined age of 
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neighboring cells SumAMax differed from MaxAo in that it “integrates (sums) the 

stimuli for a given position rather than seek a mere maximum irrespective of the current 

configuration.” This algorithm predicted the most natural and compact forms with only 

one additional form. 

Karsai and Penzes (2000) also observed that the stimuli that govern how wasps 

build nests are not properly understood. At one time, it was assumed that the stimuli were 

obtained primarily through wall rules and cell age. These additional stimuli could be a 

chemical that is more prominent in older cells than younger cells. While the SumAMax 

rule was the best fit for observed behavior, other rules may be needed to model how nests 

grows beyond the embryonic stage. Larger nests exhibit more nonoptimal forms, possibly 

because wasps do not check every position as the nest passes a certain threshold in size. 

2.3: Nest metrics 

Karsai and Penzes (1996) quantified a nest’s structure in terms of its compactness, 

potentially buildable cells, diameter ratio, height, and eccentricity. Compactness was 

defined as a nest’s degree of symmetry. Potentially buildable cells were defined as 

potential positions for cell initiation that met the authors’ postulated constraints for 

building cells. For example, one constraint observed in nature is that wasps place new 

cells in positions with three or more pre-existing walls. This rule decreases the number of 

possible cell initiation locations. Diameter ratio measures a nest’s elongatedness [sic], or 

ratio of width to height. Height is the length of the structure’s longest cell; it appears to 

be independent of nest length and size. Eccentricity is the degree to which cells are 

distributed unevenly around the nest’s topological center.  



 

6 

Compactness as a metric to distinguish unique nests has evolved over time since 

its inception in Karsai and Penzes’ research (1996). In this study, the metric was derived 

through finding the square root of the sum of squared distances of the coordinates of each 

cell and the nest’s geometric center. (Equation 1) This equation calculates nest location 

through rectangular coordinates that require a square root of three calculation due to the 

triangle-based geometry of the nest’s hexagonal grid. 

Equation 1: Original compactness equation with rectangular coordinates. 

 

Equation 2: Variable formulas for rectangular coordinates. 

 

 In (2018), Harrison reduced the computational resources needed to calculate nest 

compactness. He used three coordinates to represent the hexagonal grid, adding an extra 

dimension to the grid. This new equation removes the irrational coefficient without a loss 

in accuracy. Unlike the rectangular grid, the equation adds a third variable that represents 

the z-axis (Equation 2).  

Equation 3: Modified compactness equation for hexagonal coordinates. 

 

Equation 4: Variable formulas for hexagonal coordinates. 

 

2.4: Markovian model 
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 In computer science, a Markov chain is a “stochastic model describing a sequence 

of possible events in which the probability of each event depends only on the state 

attained in the previous event.” (Gagniuc, 2017) The Markov chain model enables an 

exploration of all branches of a decision tree. A practical example of Markov chains is 

Google’s PageRank which allocates search rankings for pages based on the frequency of 

their visits. Markov chains are versatile for traversing between states in a decision space 

in which the desired behavior is unknown or unpredictable. The transitions between 

states are determined based on tunable parameters.  

It so happens that Markov chains are ideal to test nest-building heuristics and 

capture all unique nests they predict. The algorithm is assigned a heuristic and the 

heuristics will narrow the decision space to those which meet the conditions of the 

heuristic in use. In this framework, it is possible to capture the nest permutations of 

different heuristics. 
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 METHODS 

3.1: Reviewing the code of previous models 

In Harrison (2018), a three-dimensional simulation was built in Microsoft Visual 

Studio and C++. The simulation was built with three-dimensional visualization in mind; 

however, the architecture required for a Markovian and modular heuristics-based 

simulation would necessitate a large refactor. The decision was made to create a new 

simulation in C#. Before beginning on a simulation, a thorough review of the 2018 

simulation was conducted. This review comprised reviewing the code, model 

assumptions, and design decisions. Some areas were identified that could be modified 

and reconsidered for the sake of this simulation. More specifically, the relationship 

between certain model elements such as the nest, nest cells, and cell walls were 

reconsidered to be more modular. With this review completed and our goals defined, the 

experiment was ready for the first phase of development.  

3.2: Nest permutations generation  

The first iteration of the simulation was a brute force simulation to test if the basic 

features were implemented as planned. This program consisted of nest, cell, and wall 

classes to model the nest, and a main class to generate all possible configurations of the 

nest up to a variable upper limit. This experiment, furthermore, tested compactness as the 

mechanism for distinguishing between unique nests. This unique nest data was compared 

with Harrison (2018), Karsai and Penzes (2000), and Adoe (2011) data to ensure that our 

results are consistent with theirs and reflect prior studies on the efficacy of compactness. 

This first iteration can print these nests to a CSV file for visual inspection. The CSV tool 

used was CSVHelper, which is a C# tool with built-in CSV libraries.  
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3.3: Agent  

The second phase of simulation development involved the development of an 

agent class which could traverse the nest with the assigned nest-building heuristic. The 

agent is placed on a random location on the nest structure and will decide the best 

candidate building site based on “local” or “global” knowledge. In local scope, the agent 

walks on the nest and looks for local stimuli. In global knowledge, the agent assesses all 

nest locations without the need for traversal. The agent will make decisions based on the 

rule it has been provided. Other features of our agent model are that it can “build” or 

“lengthen” a cell based on whether we have enabled the three-dimensional option. The 

agent model is needed for the Markov chain of development. 

3.4: Heuristics 

After the modeling of the wasp agent, nest-building heuristics were developed 

with initial considerations focusing on rules proposed in Karsai and Penzes (2000). The 

first set of rules was comprised of the following: TwoWall, MaxW, SumAMax, Random, 

MinAy, MinAo, MaxAy and MaxAo (Figure 1). The random rule is equivalent to picking 

a cell initiation site at random. The TwoWall rule picks sites with two or more adjacent 

walls, while the MaxW rule picks sites with the maximum number of walls. SumAMax 

picks the candidate with the highest summed age of neighboring cells. The “min” and 

“max” rules are designed to select a site that neighbors the oldest or youngest cell and the 

oldest or youngest neighbor of that cell.   

Upon the completion of a rule, the wasp agent was assigned to start building 

based on the rule, and results were stored in a CSV file. The CSV information was 

reviewed to ensure that as the nest was built up by the agent the results were consistent 
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with the rule parameters. Since all rules were inherited from a single rule class, the 

process of implementation became developing the rule algorithms. The needed access 

and manipulation of nests and cells were provided in the first phase of model 

development. 

Heuristic Description 

MaxW Initiate cell at site with highest number of 

adjacent walls  

SumAMax Initiate cell at site with highest summed 

age of adjacent cells 

SumAMin Initiate cell at site with lowest summed 

age of adjacent cells 

MaxAyRule Initiate cell at site next to oldest cell and 

its youngest neighbor 

MinAyRule Initiate cell at site next to youngest cell 

next to its youngest neighbor  

MaxAoRule Initiate cell at site next to oldest cell and 

its oldest neighbor 

MinAoRule Initiate cell at site next to youngest cell 

next to its oldest neighbor 

Figure 1: Rules description based on Karsai and Penzes (2000) 

3.4: Markov chain 

To collect the information needed for this experiment, it was necessary that all 

nest permutations were captured that could occur for a given rule up to a predefined 

upper limit. This was achieved through a Markov model that was configurable for nest-

building rules and the nest size upper limit. Once these settings had been applied, the 

model could be executed, and it recursively generated all nest permutations and stored 

them in a collection, and in a set that is filtered for compactness; the nest set is stored in a 

CSV file with other pertinent data, such as the number of unique nests for each size 

iteration N of the nest.  
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3.5: Data collection 

The data collection was split into several different tasks. The first of these 

involved the use of our nest brute force algorithm; this algorithm saved the total number 

of nest forms at each nest size N to a CSV file. This data was captured up to an N size of 

seven and compared the data to that of prior studies on compactness, Karsai and Penzes 

(2000) and Harrison (2018). The second task involved the Markov chain to gather rule 

data. For each rule, the Markov chain generated all the forms up to a maximum size of 

fifteen. This selected upper limit is consistent in the scope collected for Karsai and 

Penzes (2000). Table 1 in Karsai and Penzes (2000) included the nest sizes expected for 

each rule, allowing for this comparison. The third task involved the novel approach of 

surpassing fifteen cells to learn more about these rules and their efficacy at larger nest 

sizes. To do this required a simple change in the model configuration to halt the 

construction of the nest at a larger nest size upper limit.  
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 RESULTS 

4.1: Compactness review 

The brute force algorithm was executed up to a size of seven cells. The number of 

unique forms for each size of N was compared to prior data. Seven extra forms were 

discovered at an N value of seven (331 forms compared to 324 forms); however, upon 

subsequent visual analysis these forms were due to a rounding error and could be safely 

discarded. These extraneous forms are shown in Figure 1. 

 

Figure 2: Seven additional forms were found in the simulation at a nest size of seven 

cells. These forms were discarded due to being duplicates. 

4.2: Comparing algorithms with natural data 

            The Markov chain produced all bifurcations for the nest up to a size of fifteen and 

compared to Karsai and Penzes (2000). The proposed heuristics (Figure 1) were 

configured as the building algorithm in the Markov chain. The results have been entered 

into a two-dimensional visualization tool to show the kinds of rules the nest produces at 

fifteen cell and one-hundred cell nests. 
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The Markov simulation generated nests for MaxAo, MaxAy, MinAo, and MinAy. 

MaxAo (Figure 4). MaxAy and MinAo had no bifurcations up to fifteen cells and 

generated a roughly symmetric nest. (Appendix A) MinAy, however, produced an 

elongated nest with no resemblance to natural forms for the species of study, Polistes 

dominulus; however, there is at one least species that has exhibited this behavior. These 

results are consistent with prior work (Karsai and Penzes 2000).  

 

Figure 3: The fifteen cell nests produced by the following rules: MaxAo, MaxAy, MinAo, 

and MinAy. 

In the building rule SumAMax, the expected bifurcations were found at F6, F7, 

F9 and F10. The simulation discovered a bifurcation at F14 that is not reflected in Karsai 

and Penzes (2000). F14a and F14b were compared for their shape and compactness score 

and were found to be unique nests (Figure 2). The side-by-side comparison shows that 

form F14b is a less optimally compact shape.  
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Figure 4: An additional bifurcation was discovered in the simulation at F14 for the 

SumAMax rule. 

 

4.3: Markov simulation at larger numbers 

The simulation ran the nests at size of one-hundred cells on select rules that could 

compute on modern hardware with such large sizes. MaxAo, MaxAy, and MinAo 

produced highly symmetrical shapes even at larger numbers, while MinAy produced an 

elongated shape. (Figure 3) There were no bifurcations found in these rules even at this 

larger nest size. (Appendix 2) The rules MaxAo, MaxAy, and MinAo follow a spiral 

pattern that rotates around the edge of the nest. 
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Figure 5: The one-hundred cell nests produced by the following rules: MaxAo, MaxAy, 

MinAo, MinAy, and SumAmax. 

SumAmax produced a nest that was highly symmetrical. It produced seven 

bifurcations at a nest size of one-hundred cells, with the number of bifurcations 

alternating between one and two until the nest reached the thirty-cell milestone, after 
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which the bifurcations started to increase at larger numbers. The simulation produced a 

total of 473 bifurcations for SumAMax at one-hundred cells. (Appendix 2) 
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 DISCUSSION 

5.1: Compactness  

 The findings raise questions about compactness’ efficacy. Compactness as a 

metric has limitations, especially at larger nest sizes, in distinguishing between unique 

nests. The precision of compactness is limited due to the floating-point arithmetic that 

must occur before the final value is derived. Due to rounding error, false positives can 

occur that result in duplicate nests.  

 There are various solutions for resolving compactness imprecision. One solution 

is that compactness is measured along with one or more other metrics such as number of 

cells, number of walls, or eccentricity. Two nests that have different compactness scores 

might be the same nest rotated in space, and these metrics could help verify they are non-

unique. Alternatively, new research could be done to find a compactness equation that 

does not require floating-point operations; however, there has been no proven method to 

remain in integer representation.   

5.2: Heuristics  

 The larger nest simulation shows that MaxAo, MaxAy, and MinAo rules never 

bifurcate even at larger numbers and tend to produce roughly symmetrical nests. As 

Karsai and Penzes (2000) showed, the MinAy rule produces an elongated shape that is 

unrealistic for this species of wasp and can be discarded as a realistic building heuristic. 

The SumAMax rule, which produced mostly optimal shapes at lower nest sizes, has 

proven to be less accurate than anticipated. The additional form discovered in this 

research, F14b, is an unnatural form and reduces the rule’s accuracy; however, it cannot 

be ruled that the form could occur in nature but has never been observed. When 
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SumAMax produces a nest at one hundred cells, the nests it produces are non-optimal but 

still similar in compactness to the other rules besides MinAy. It can be derived from this 

data, therefore, that these heuristics are limited in their compactness.  

 Another insight from these larger nests is the unrealistic assumption that the wasp 

has global knowledge of the nest. These large nests have too many cells for the wasp to 

know which  

5.3: Further research 

 More research is needed in developing a fast and reliable method to determine 

unique nests. Compactness has been the preferred method to distinguish nests and has 

evolved with subsequent research (Harrison, 2018), but limitations remain in accuracy 

with nests that exceed six cells based on this research. A combination of metrics could 

distinguish between nests that compactness determines are separate.  

 Wasp heuristics have similar limitations in their ability to predict natural nest 

forms, especially as the nest grows. New rules should be proposed and developed with 

higher predictive power. Other considerations, such as wall height and nest geometry, 

have been abstracted for this simulation but should be included to investigate these rules 

further.  
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 NEST BIFURCATION COUNT AT FIFTEEN CELLS 

The rules MaxAo, MaxAy, MinAo, and MinAy produced no bifurcations in the 

Markov simulation when simulated up to fifteen cells. 

MaxAo: 

Cells Total nests 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 10 

11 11 

12 12 

13 13 

14 14 

15 15 

MaxAy: 

Cells Total nests 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 10 

11 11 

12 12 

13 13 

14 14 

15 15 

MinAo: 

Cells Total nests 

2 2 
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3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 10 

11 11 

12 12 

13 13 

14 14 

15 15 

MinAy: 

Cells Total nests 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 10 

11 11 

12 12 

13 13 

14 14 

15 15 

 The SumAMax rule produced nineteen bifurcations in the Markov simulation 

when simulated up to fifteen cells. 

SumAMax: 

Cells Total nests 

2 2 

3 3 

4 4 

5 5 

6 7 

7 9 

8 10 
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9 11 

10 13 

11 14 

12 15 

13 16 

14 18 

15 19 
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 NEST BIFURCATION COUNT AT ONE-HUNDRED CELLS 

The rules MaxAo, MaxAy, MinAo, and MinAy produced no bifurcations in the 

Markov simulation when simulated up to one-hundred cells. 

MaxAo: 

Cells Total nests 

2 2 

3 3 

4 4 

… … 

98 98 

99 99 

100 100 

MaxAy: 

Cells Total nests 

2 2 

3 3 

4 4 

… … 

98 98 

99 99 

100 100 

MinAo: 

Cells Total nests 

2 2 

3 3 

4 4 

… … 

98 98 

99 99 

100 100 

MinAy: 

Cells Total nests 

2 2 

3 3 

4 4 

… … 

98 98 
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99 99 

100 100 

The SumAMax rule produced 473 bifurcations in the Markov simulation when 

simulated up to fifteen cells. 

Cells Total nests 

2 2 

3 3 

4 4 

5 5 

6 7 

7 9 

8 10 

9 11 

10 13 

11 14 

12 15 

13 16 

14 18 

15 19 

16 21 

17 22 

18 24 

19 27 

20 29 

21 31 

22 32 

23 34 

24 35 

25 37 

25 39 

27 40 

28 42 

29 44 

30 45 

31 48 

32 51 

33 53 

34 57 

35 60 

36 62 

37 64 

38 69 



 

24 

39 73 

40 77 

41 79 

42 82 

43 84 

44 87 

45 88 

46 92 

47 97 

48 101 

49 103 

50 107 

51 112 

52 114 

53 115 

54 120 

55 126 

56 132 

57 137 

58 141 

59 145 

60 148 

61 150 

62 153 

63 160 

64 165 

65 170 

66 178 

67 186 

68 193 

69 198 

70 201 

71 206 

72 211 

73 214 

74 219 

75 226 

76 239 

77 246 

78 251 

79 255 

80 262 

81 273 

82 281 
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83 288 

84 293 

85 305 

86 323 

87 344 

88 357 

89 363 

90 368 

91 377 

92 386 

93 395 

94 401 

95 408 

96 418 

97 429 

98 446 

99 458 

100 473 
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