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ABSTRACT 
Comparison of Inheritance Evaluation Algorithms for EXPRESS Edition 3 

 

by 

Judy Dawn Greer 

 

Information exchanged between computer applications is difficult, thus the need for data 

exchange standards.  The ISO STEP project defines data exchange standards using the 

EXPRESS language, which supports inheritance.  Currently there are two algorithms used to 

evaluate an inheritance hierarchy: the Test and Generate algorithms.  In this thesis, 

enhancements are made to both algorithms to support the Total Over Constraint, which is 

proposed for the third edition of EXPRESS.  A formal algorithm is derived for the Test 

algorithm.  The two enhanced algorithms are compared and shown to be result equivalent.  

However, it is shown that the Test algorithm is the more efficient of the two. 
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CHAPTER 1 

INTRODUCTION 
 

 Exchanging information between different types of computer applications is a significant 

problem faced today by all users.  Different organizations, each using its own applications, often 

find it difficult to share information electronically, and, as software has become more complex, 

the data to be exchanged has also become more complex.  In response to this problem, data 

exchange standards have been developed.  These are specifications of the information to be 

exchanged, how it is to be interpreted, and how it is organized.  One approach taken is (STEP) 

[6] the Standard for the Exchange of Product Data an ISO data exchange standard, which defines 

the EXPRESS Modeling Language [6]. 

 EXPRESS is an information requirements specification language that is both easily 

interpretable and complete enough to model complex data problems.  One of the key features of 

EXPRESS is inheritance among data types, which is used to simplify complex problems.  This 

work looks at the existing algorithms used to validate EXPRESS inheritance hierarchies, and 

also proposes updates to these algorithms to accommodate proposed changes to the EXPRESS 

language.  

To implement the EXPRESS Language, the original authors developed an algorithm to 

generate all possible legal combinations of data types based on the constraints in the inheritance 

hierarchy called the “Generate Algorithm.”  Knowing all of the legal generated instances of an 

inheritance hierarchy and its constraints is a necessity for automatic ERROR checking of 

EXPRESS schemas.   Shortly thereafter Gunter Staub, Frank Schonefeld, and Markus Maier [7] 

developed another algorithm that tests if a given data type is allowable in a specific inheritance 

hierarchy instance.  The “Test Algorithm” allows the developer to test one instance for 

membership in a set instead of creating the entire set and then searching the results.  There was 

never any work done to show the equivalence of these two algorithms. The proof of equivalence 

of enhanced versions of these algorithms will be one result of this thesis 
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 Since EXPRESS was first standardized in 1993, users of the language have been 

requesting extensions to the language.  The group that originally developed EXPRESS made 

some minor changes to the language (EXPRESS-2) [4] and have recently proposed more drastic 

changes and extensions to the EXPRESS Modeling Language to create another new edition of 

EXPRESS, which is referred to as EXPRESS-3 [4] in this paper.  The new edition of EXPRESS 

is fully described in the document EXPRESS Language Reference Manual ISO 10303 WG11-

N105 [4].  The changes include several enhancements to the inheritance hierarchy.  The Generate 

Algorithm has been extended rather inefficiently to support these changes, while the Test 

Algorithm has not been extended.  Enhanced versions of both of these algorithms will be 

presented, analyzed for their strengths and weaknesses, proved to be correct, and shown to be 

equivalent. 

Chapter 2 gives background information on data modeling and information models and 

presents the definitions of information models that are used in this work.  Chapter 3 is an 

overview of the concepts of STEP EXPRESS Edition 1 Modeling Language.  This forms the 

basis for the presentation of the inheritance algorithms and leads into Chapter 4, which focuses 

on the changes that were made to EXPRESS-3, the major change being addition of the Total 

Over constraint to the inheritance hierarchy.  Chapter 5 describes Algorithms and ways to 

analyze them.  This chapter explains the different approaches that will be used to analyze the two 

inheritance algorithms in this work.  At this point the background information has been 

presented, and the rest of the work is devoted to a detailed analysis of the existing algorithms, 

their extensions to handle the Total Over Constraint, and a proof of their equivalence.  

Specifically, Chapter 6 covers the Generate Algorithm and its extension to support the Total 

Over constraint.  It also presents multiple examples of applications of this algorithm.  Chapter 7 

covers the same topics for the Test Algorithm.  In addition a formal specification of the 

algorithm is given.  Chapter 8 examines the relative strengths and weaknesses of the Generate 

and Test Algorithms, comparing them over multiple factors.  Chapter 9 presents the testing done 

on the extensions to the Generate and Test Algorithms to show they support the Total Over 

constraints correctly.  It also proves that the Test and Generate Algorithms are equivalent.   The 

final chapter will give a summary of the work done and suggest directions for new research. 
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CHAPTER 2 
 

DATA MODELING 
 

 Understanding the EXPRESS Modeling Language requires knowledge of data modeling 

in general.  Data is considered to be isolated facts and real world objects, which can be anything 

from a company to a rubber ball, while information is considered to be processed data based on 

implicit or explicit interpretation rules.  Schenck [5] defines information to be the knowledge of 

ideas, facts, and/or processes that are placed in context.  The need to specify information for 

exchange has brought about the development of information models, which are formal 

descriptions of types of ideas, facts, and processes.  Information models are read and processed 

by computers and, as such, must be complete, precise, and unambiguous.  They contain both the 

data that represents the information and the rules that are used to interpret the information.  

Interpretation rules allow developers to decide on a common way to view the information.  The 

reliable exchange of data requires that developers use the same rules. An example of an 

information model could be the process of maintaining a library. 

 There are several ways to organize information: ordering, categorizing, and grouping [5].  

Ordering is putting the information in a sequence (example: chapters in a book or names in a 

telephone book).  Categorizing is the process of putting the information into subsets or grouping 

items into categories or classes [5].  In categorizing, the terms generalization and specialization 

are used to describe the categorization of information.  When giving just general facts about 

information, it is a generalized type; when more details are given about information, it is 

considered a specialized type.  An example of Categories is that the person category is a more 

general classification of male and female categories, while the male category is a specialization 

of the person category.  Grouping is the partitioning of items into sets based on a specific set of 

properties.  An example of grouping is dividing computers by their manufacturers.  Thus, a 

computer would be grouped by whether the computer is a Macintosh, Dell, or IBM. 

 Information can be represented in two basic ways, lexically (or text based) and 

graphically (or icon based).  A graphical representation uses symbols or icons to show 
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information.  It is easier to read and more of a model can be viewed on a single page. Graphical 

models, however, often do not show all of the constraints that can be specified in a lexical 

representation for a given model.  Thus, graphical representations of a model may not be 

considered complete.  Two popular graphical representations of information are Entity-

Relationship (ER) [5] and Shlaer-Mellor [5], while SQL [5] is a typical lexical representation 

used for information models.   

Peter Chen introduced the Entity-Relationship (ER) [5] graphical representation in 1976.  

The ER representation includes the entity, attribute, and relationship constructs, each denoted by 

a different symbol.  The ER format maps real world objects as entities, the specific 

characteristics and details of an object as attributes attached to the entity or relationship 

construct, and the interactions between objects as relationships. Graphically entities are 

represented as a rectangle attributes as an oval that is attached to an entity or relationship, and a 

relationship as a diamond with connecting ends at two or more entities.  Figure 2.1 is an example 

of an ER diagram.   

 
Figure 2-1 – ER Diagram 

The patron Entity has two Attributes, which are name and barcode.  The key of the patron Entity 

is the barcode Attribute; this is denoted by underling the attribute name.  The circulating_item 

Entity has status and loan_period Attributes.  The Entities participate in a Relationship called 

checks_out, which has two Attributes, daysleft and datedue.  The patron Entity participates in the 

checks_out relationship zero or many times.  The cardinality of the circulating_item Entity with 

respect to the checks_out Relationship depends on what information is being tracked.  If the 

number of loans over time for a certain circulating item were tracked, then the cardinality would 

be zero or many times.  This means that the model would be tracking how many times the 

circulating item was checked out for a certain amount of time.  However, if the circulating item 
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was just being tracked on whether it was loaned at the current time or not, then the cardinality 

would be zero or one.  This means that one person could only check out the circulating item at a 

time. 

Another example of graphical representation is the Shlaer-Mellor representation 

developed by S. Shlaer and S. J. Mellor [5].  The Shlaer-Mellor representation consists of 

objects, attributes, and relationships.  Real world objects are represented as objects, which are 

similar to ER’s entities.  As with the ER format, attributes describe an object and relationships 

are the interactions between objects.  Graphically, objects are shown as a rectangle, attributes are 

listed inside the object symbol, and relationships are shown as a connecting arrow between 

objects.  Figure 2-2 is an example of the Shlaer-Mellor representation. 

 
Figure 2-2 – Shlaer – Mellor Diagram 

In a lexical notation, words and mathematical symbols are used to denote the different 

constructs that represent the information being modeled.  The lexical notation has rules about the 

syntax and structure of the statements that are usually more detailed than those found in a 

graphical notation.  Using lexical notation, developers are able to define both models and 

algorithms that can check the validity of that model.  Lexical models can also be easily checked 

by parsers to make sure they conform to the rules of the specific lexical notation used.  Being 

able to have a computer program read and compile a model is useful in the development of 

systems.  However, Lexical notation is not always easy to read and understand by humans.    

 An example of lexical representation of information is the Structured Query Language 

(SQL) [5].  SQL is an ANSI and ISO standard that defines a set of statements used to define and 

manipulate data models.  The information being modeled is stored in data structures called 

“tables.”  The table’s columns are specific attributes of the object and one column called a key is 

used to identify one object data.  Duplicating keys in other tables, which are known as foreign 
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keys, represents relationships between objects.  Figure 2-3 shows the example using SQL 

statements. 

CREATE TABLE patron 
 (name  CHAR(20) NOT NULL, 
 barcode INTEGER NOT NULL, 
 PRIMARY KEY (barcode) ) 
 
CREATE TABLE circulating_item 
 (status  CHAR(10) NOT NULL, 
 loan_period  INTEGER NOT NULL, 
 checked_out_by INTEGER NOT NULL, 
 datedue  DATE NOT NULL, 
 daysleft  INTEGER NOT NULL, 
 FOREIGN KEY (checked_out_by) REFERENCES patron) 

Figure 2-3 – SQL Statements 

In this example, two tables are being created; one named patron and the other named 

circulating_item.  The patron table has two fields, name and barcode, while the circulating_item 

table has five fields, status, loan_period, checked_out_by, datedue, and daysleft.  Also, the 

example shows the relationship between the two tables by labeling which fields are primary keys 

and foreign keys.  The barcode field in the patron table is a unique key and is referenced by the 

checked_out_by field in the circulating_item table.  This allows the system to track which patron 

has checked out a circulating item. 

 This chapter introduced the concept of data or information modeling.  Data is described 

as being a real world object.  Expanding on the characteristics, how the objects relate to other 

objects, and what rules the object follows in the situation being modeled is a key element in 

designing a model using EXPRESS.  If the model consists of different objects or variations of 

the objects, then organizing the information is done by determining if it can be ordered, 

categorized, or grouped.  Representing information can be done by text or graphics.  There are 

already many representations available for developers to use.  Entity Relationship (ER) and 

Shlaer-Mellor are graphical representations of information models.  A common lexical 

representation is Standard Query Language (SQL).  The EXPRESS Modeling Language has both 

the graphical (EXPRESS-G) and the lexical (EXPRESS) representations.  The next chapter will 
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discuss the basic concepts of the EXPRESS Modeling Language that will be used in the 

algorithms that are analyzed later.
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CHAPTER 3 

EXPRESS MODELING LANGUAGE 
 

 The EXPRESS Modeling Language (ISO 10303) [6] is an information requirement 

specification language.  The language contains structured statements that specify what type of 

information is to be stored in the data model, such as numbers or strings, and the interactions 

between objects. 

 EXPRESS is used to create information models for manufacturing applications.  These 

models are often very large and cumbersome to evaluate or review manually.  One of the 

important features of EXPRESS is that it is a computer interpretable representation of an 

information model allowing developers to use programs to validate their models.   Another 

important feature is EXPRESS’s ability to build new information models from components of 

existing models.  As models become large and complex, developers are able to subdivide models 

to simplify them and make the components reusable.  This helps developers avoid having to “re-

invent the wheel” and keeps the results in simpler, more readable and more maintainable models.  

Appendix B contains an information model that describes items in a library.  This model is not 

complete but demonstrates the features of EXPRESS that are relevant to this project.  The rest of 

this chapter discusses these constructs in detail.  

 One of the most important constructs in EXPRESS is the Schema; “Schemas incorporate 

all the other constructs and define a collection of objects that are related by meaning or purpose” 

[5].  A schema contains entities, constants, functions, procedures, rules, and type declarations.  It 

often requires several schemas to model a real world situation.  Schemas may include other 

schemas or specific parts of other schemas.  An example of a Schema definition is  

SCHEMA Library; 
 (* Entity, Function, and Rules definitions *) 
END_SCHEMA; 
Example 3-1 
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The next important construct in EXPRESS is the Entity.  An Entity describes a real world 

or conceptual object by listing its properties.  These properties are characteristics of the objects 

and represent values that describe it, constraints on these values, and behavior of an object.  An 

Entity can also be used as the type of a property in another Entity.  An example Entity: 

ENTITY patron;  
 (* Characteristic definitions *) 
END ENTITY; 
Example 3-2 

  

The characteristics of entities are described by using a construct called the Attribute.  

Attributes are physical properties of entities and have values that are within a specified domain 

defined by the type of the Attribute.  Attributes can be Explicit, Derived, or an Inverse.  Explicit 

Attributes have values that are static and independent.  The optional keyword indicates that null 

values can be assigned to an Attribute.  The following example shows the attributes street, city, 

state, and zip as explicit Attributes of the Entity address.   

ENTITY address; 
 street : STRING; 
 city : STRING; 
 state : STRING; 
 zip : INTEGER; 
END_ENTITY; 
Example 3-3 
 

The Entity address is a type declaration.  A type declaration is information about what kinds of 

information is going to be stored in the Entity.  The actual values assigned to the Attributes are 

not necessary for a type declaration.  When the Attributes of an Entity have specific values filled 

in, the information is considered to be an instance.  The number of instances can vary depending 

on the number of values that can be assigned to the attributes.  For example, the following values 

are instances of the address Entity. 

  
101 Any Lane   111 Cowboy Rd 
San Jose    Dallas 
CA     TX 
55555     88888 
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A Derived Attribute holds information that is calculated from other Attribute values or on an 

expression.  The following is an example of Derived Attribute declarations: 

ENTITY circulating_item 
 status  : STRING; 
 loan_period : INTEGER; 
 checked_outby  : patron; 
DERIVE 
 datedue : date := current_date() + loan_period; 
 daysleft : INTEGER := datedue-current.date(); 
END_ENTITY; 
Example 3-4 

 

The Derived Attribute datedue is calculated from the current date supplied by the Function 

current_date() and the loan_period attribute.  Similarly, the daysleft Attribute is calculated by 

subtracting the current date from the datedue.  

A Relationship, which can be implied or explicit, is an association between two 

constructs in a model.  The Relationship idea does not have a construct in the EXPRESS 

Modeling Language.  It is shown by an Attribute construct in one Entity that matches to an 

Inverse Attribute in another Entity.  This is shown in Example 3-5 in the circulating_item Entity.  

The Attribute checked_outby has the patron Entity as its type. The patron Entity has an Inverse 

Attribute called checks_out, which points to the circulating_item Entity by the Attribute 

checked_outby. This links the two Entities to each other thus creating the Relationship between 

them.  The patron and circulating_item Entities are related when a Patron checks out an item. 
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ENTITY circulating_item 
 status  : STRING; 
 loan_period : INTEGER; 
 checked_outby  : patron; 
DERIVE 
 datedue : date := current_date() + loan_period; 
 daysleft : INTEGER := datedue-current.date(); 
END_ENTITY; 
 
ENTITY patron; 
 name  : STRING; 
 mail_address : address; 
 card_expired : date; 
 barcode  : INTEGER; 
UNIQUE 
 patron_single : barcode; 
INVERSE 

checks_out : BAG [1:?] OF UNIQUE circulating_item FOR checked_outby; 
END_ENTITY; 
Example 3-5 
 

The number of times an Entity participates in a Relationship with another Entity is called 

cardinality.  There are three cardinality ratios: One to One, One to Many, Many to Many.  One to 

One (1..1) is where every instance of one entity requires one instance of the second Entity, and 

vice versa.  When One to One is specified in a lexical notation, both the regular and the Inverse 

Attribute are of a single Entity.  Modifying the Library Schema slightly by changing the barcode 

Attribute to an Entity, the One to One relationship can be shown by requiring that only one item 

have a single barcode and that a single barcode can only be assigned to one item as show in the 

following example.   
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ENTITY item 
 title  : STRING; 
 callnum : STRING; 
 unique_number : barcode; 
INVERSE 
 contained_by : collection OF contains_item; 
 located_on : physical_shelf OF is_located; 
END_ENTITY; 
 
ENTITY barcode; 
 number : INTEGER; 
 assignedto : item; 
END_ENTITY; 
Example 3-6 

 

The Attribute unique_number in the item Entity has the Entity barcode as its type.  The Attribute 

assignedto in the barcode Entity barcode has the Entity item as its type.  

One to Many (1..?) relationships are where an instance in one Entity is related to one or 

more instances of another Entity. The following example shows an Entity declaration with an 

Inverse Attribute that shows the cardinality of One to Many.   

ENTITY circulating_item 
status  : STRING; 

 loan_period : INTEGER; 
 checked_outby  : patron; 
END_ENTITY; 
 
ENTITY patron; 
 name  : STRING; 
 mail_address : address; 
 card_expired : date; 
 barcode  : INTEGER; 
UNIQUE 
 patron_single : barcode; 
INVERSE 

checks_out : BAG [1:?] OF UNIQUE circulating_item FOR checked_outby; 
END_ENTITY; 
Example 3-7 
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In the circulating_item Entity the Attribute checked_outby has the patron Entity as its type.  This 

links one circulating_item Entity to one patron Entity.  In the patron Entity the Inverse Attribute 

checks_out has the link back to the circulating_item Entity.  The checks_out Attribute is a 

collection of circulating items.  These two Entities and Attributes together create a One to Many 

relationship with each other.  This means that a patron can checkout one or many circulating 

items, and each item is checked out by at most one patron.   

In a Many to Many (?..?) relationship, an instance of an Entity A is related to one or more 

instances of Entity B and each instance of B can be related to one or more instances of A.  If the 

Library Schema presented here tracked the author names of the books, then the Schema would 

have a Many to Many relationship where many authors can write a book and a book can be 

written by many authors. The following example shows an Entity declaration with a Many to 

Many relationship.   

ENTITY book_item; 
 size  : INTEGER;   -- size in square feet of an item 
 writers : BAG [1..?] OF author OF writes; 
END_ENTITY; 
 
ENTITY author; 
 name : STRING; 
INVERSE 
 writes  : BAG [1..?] OF book_item OF writers; 
END_ENTITY; 
Example 3-8 

 

The Attribute, writers in the book_item Entity, contains the list of authors for the book item.  The 

Inverse Attribute writes, in the author Entity, contains the list of book items that the authors have 

written.   

Developers usually want to include only those situations that are appropriate for a given 

model.  Therefore, there are rules that can be applied to the model that restrict or constrain the 

attribute values present in a model. The rule has three states: TRUE, FALSE, or unknown.  Local 

rules are specified in the Entity declaration and constraint attribute values in one Entity type.  

There are two types of rules: Uniqueness and Domain.  The Uniqueness Rules specify a single 
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Attribute or a list of Attributes and constrain them to be unique across all instance of the Entity.  

These Attributes follow the UNIQUE keyword in an Entity declaration as shown in this example: 

ENTITY item 
 title  : STRING; 
 callnum : STRING; 
 barcode : INTEGER; 
UNIQUE 
 item_single : barcode; 
INVERSE 
 contained_by : collection OF contains_item; 
 located_on : physical_shelf OF is_located; 
END_ENTITY; 
Example 3-9 
 

Domain Rules are constraints on values on one or more Attributes.  They specify a 

logical expression that evaluates to TRUE, FALSE or unknown.  A Domain Rule can’t depend 

on any other Entity declaration, but it can reference Functions and Constants as long they don’t 

have other entity declarations in them.  The SELF-keyword is used to reference attributes in the 

Entity that is being declared.  The Domain Rule follows the WHERE keyword in an Entity 

declaration, as shown in the example: 

ENTITY oversize_book_item; 
SUBTYPE OF (book_item); 

WHERE 
big : size >= 2 -- larger that 2 square feet is big 

END_ENTITY; 
Example 3-10 
 

A more advanced concept in the EXPRESS Modeling Language is the Inheritance 

hierarchy, which is a way to build specialized versions of Entities from other existing Entities.  

The Entities used in the Inheritance hierarchy are referred to as Supertypes if they are the more 

general Entity or Subtypes if they are the more specific.  The Subtype and Supertype hierarchy 

functions as a directed graph.  In the directed graph the nodes are considered the Entity types and 

the links move you from Supertypes to Subtypes. 
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In an Inheritance hierarchy a Supertype is an Entity that has a more general classification 

than that of a Subtype Entity.  An Entity is declared Supertype explicitly if the definition 



 

contains the SUPERTYPE OF clause, or implicitly, when other Entities list it in their SUBTYPE 

clauses. 

ENTITY circulating_item;    
  SUPERTYPE OF (loaned_circulating_item ANDOR available_circulating_item) 
END_ENTITY; 
Example 3-11 

 

The Entity circulating_item is the Supertype of Entities loaned_circulating_item and 

available_circulating_item.  A Subtype is an Entity that has a more specific classification than a 

Supertype Entity.  A Subtype instance is an instance of its Supertypes and inherits all of the 

characteristics of the Supertype.  The Supertype construct doesn’t need a SUPERTYPE OF 

clause in the Entity definition but is a Supertype when a Subtype specifies a SUBTYPE OF 

clause in the Entity declaration like in Example 3-12.  The example shows that the item Entity 

doesn’t have the SUPERTYPE OF clause but the noncirculating_item Entity specifies the item 

Entity in the SUBTYPE OF clause.  This makes item the Supertype of noncirculating_item. 

ENTITY noncirculating_item; 
SUBTYPE OF (item); 

END_ENTITY; 
 
ENTITY item; 
END_ENTITY; 
Example 3-12 

 

Supertypes and Subtypes can be classified into two categories, simple and complex 

Entity data types.  A simple Entity data type is an Entity declaration that defines all the 

significant properties.  A complex Entity data type is an Entity declaration that has the 

characteristics from the inheritance relationships and any additional characteristics that it may 

have.  An example complex Entity data type is the concept of a date. A date Entity can be 

constructed to have the properties month, day, and year.  Then the circulating_item Entity would 

contain a property called datedue, which is of the date type.  
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Constraints are used with Supertypes and Subtypes and are ways to show how Subtypes 

and Supertypes behave in relation to each other.  Constraints are restrictions on other properties 

of an Entity as a whole [5].  The legal combinations of Supertypes and Subtypes are based on the 



 

constraints of the Supertype and Subtypes.  The constraints are ABSTRACT, ONEOF, AND, 

and ANDOR. 

An Abstract Supertype constraint is an Entity declaration that needs more information to 

be complete.  The extra information is defined in the Subtypes of the Abstract Supertype.  

Abstract Supertypes can’t be instantiated, meaning there can’t be an instance of an Abstract 

Supertype.  An example of an Abstract Supertype is the items Entity in the example in Appendix 

B.  More information about items is needed to describe the item.  The items Entity, which is a 

Supertype, can be a book_item, journal_item, circulating_item, or noncirculating_item. 

The ONEOF constraint is when only one group of Subtypes can be considered in a 

Supertype/Subtype combination.  The Subtypes are considered to be mutually exclusive.  The 

AND constraint is when two or more Subtypes are mutually inclusive.  Subtype combinations 

must include all of the Subtypes.  The ANDOR constraint is the default constraint.  If the 

constraint is not specified then the ANDOR constraint is applied.  The Subtype combinations 

include all Subtypes, only one of the Subtypes, or one or more Subtypes.  The following example 

shows the above constraints on Supertypes and Subtypes. 

ENTITY item; 
ABSTRACT SUPERTYPE OF (ONEOF (book_item, journal_item) AND 

(ONEOF (circulating_item, noncirculating_item))); 
 title  : STRING; 
 callnum : STRING; 
 barcode : INTEGER; 
UNIQUE 
 items_single : barcode; 
INVERSE 
 contained_by : collection OF contains_items; 
 located_on : physical_shelf OF is_located; 
END_ENTITY; 
 
ENTITY book_item; 
SUPERTYPE OF (oversize_book_item ANDOR reference_book_item) 
 SUBTYPE OF item; 
END_ENTITY; 
Example 3-13 
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The Supertypes and Subtypes make up the Inheritance hierarchy.  In the Inheritance hierarchy, 

Subtypes have all the properties of its Supertypes.  The Subtypes can inherit all the Attributes, 

Labels, Local Rules, and Global Rules that pertain to its Supertype.  EXPRESS can handle 

several different types of inheritance including Normal Inheritance, Multiple Inheritance, 

Attribute Inheritance, and Rule Inheritance. 

When a Supertype has one or more Subtypes, it is called Normal Inheritance.  This is the 

basic Inheritance type and the default constraint, ANDOR, is used with the Subtypes in this type 

of Inheritance.  An example of Normal Inheritance is the Supertype/Subtype tree is shown in 

Example 3-14.  Here book_items is the Supertype and the oversize_book_items and 

reference_book_items are the Subtypes.    

ENTITY book_item; 
SUPERTYPE OF (oversize_book_item ANDOR reference_book_item) 

 SUBTYPE OF item; 
END_ENTITY; 
 
ENTITY oversize_book_item; 
 SUBTYPE OF (book_item); 
 size  : INTEGER; -- size in square feet 
WHERE 
 big : size >= 2 -- larger that 2 square feet is big 
END_ENTITY; 
 
ENTITY reference_book_item 
 SUBTYPE OF (book_item); 
END_ENTITY; 
Example 3-14 

 

Multiple Inheritance is when a Subtype inherits attributes and other properties from two 

or more Supertypes.  In Figure 3-1, Entity A is a Supertype of Entity C, and Entity B is also a 

Supertype of Entity C.  Entity C inherits all the Attributes and other properties from both Entity 

A and Entity B.    
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Figure 3-1 – Multiple Inheritance 

In Attribute Inheritance Subtypes can see the names of all their Supertypes’ attributes.  

The Subtypes inherits all of the Supertype attributes even if there are multiple Supertypes.  

Multiple Inheritance can produce multiple Attributes with the same name.  In this case Supertype 

prefixing is used to distinguish between Attributes.  Here the name of the attribute is composed 

of the name of the Supertype followed by a period is inserted and then the Attribute name.  A 

Subtype may inherit the same Attribute from different Supertypes who inherited from a common 

ancestor [5].  In this case, the Attribute is only inherited once.  In the Attributes re-declaration a 

Subtype re-declares an inherited Attribute to be of a different type.  Re-declaration of attributes 

is useful when more restrictions are required on the Attribute than were applied by the 

Supertype.  Optional values can be changed to mandatory but mandatory values cannot be 

changed to optional.  Using the example in Appendix A, the optional attribute barcode in the 

item Entity may be re-declared in the circulating_item Entity as a mandatory attribute. 

An EXPRESS Schema may re-use types that have been defined in another schema.  This 

is called Interfacing.  A schema model may reference some or all parts of another schema.  

Interfacing is useful to developers when they are able to break up large projects.  Dividing large 

projects cuts down on duplication of work.  There are two types of Interface, Use and Reference. 

The USE Interface treats the types being used from another schema as if they were local 

definitions in the current schema.  Schemas can use a whole schema or just selected types.  After 

the Schema name the keyword USE is used to import a Schema.  When the USE statement 
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specifies Entity names, only those Entities are being interfaced to the current Schema.  Instances 

of the interfaced Schema can be created when the USE statement is included.  An example of the 

USE statement is: 

SCHEMA schema_name; 
USE another_schema_name; 

END_SCHEMA; 
Example 3-15 

 

The REFERENCE mechanism also interfaces types from another schema.  These items 

are visible in the current Schema; however, instances of the interfaced types cannot be created, 

because the type is not considered a local declaration.  The Schema that has interfaced a type can 

declare an Attribute in an Entity of the interfaced item. The USE clause takes precedence when 

both the REFERENCE and USE statements interface the same object into one Schema.  It is not 

possible to chain items interfaced through the REFERENCE clause.  The use of the 

REFERENCE statement is as follows. 

SCHEMA library; 
REFERENCE FROM calendar; 

END_SCHEMA; 
Example 3-16 

 

 In addition to the lexical notation of EXPRESS, there is also a graphical notation called 

EXPRESS-G, which is used to display EXPRESS models symbolically.  These models can be 

viewed in a Schema level view or an Entity level view.  The Schema level view shows only the 

Schema and not the Entities.  The Schema diagram shows how multiple Schemas are related to 

each other.  The Entity level view shows all the Entities in a Schema and how they relate to each 

other.  Appendix A contains an EXPRESS-G example of the Library Schema using EXPRESS 

edition 1, and Appendix C is the same Schema only using EXPRESS edition 3 notation.  The 

calendar.date symbol shows how to reference another Schema.  Entity constructs are shown with 

a rectangle such as the patron Entity.  Types, such as STRING and INTEGER, are shown with a 

rectangle and the line connecting the type to an Entity indicates an Attribute.  An example would 

be the patron Entity’s name Attribute that is of type STRING. There isn’t a graphical way to 
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show local rules; however, in EXPRESS-G an asterisk is used to note a Uniqueness or Domain 

rule or constraint. 

 This chapter has presented an overview of the basic concepts of EXPRESS Edition 1.  

EXPRESS models can be as simple or as complex as needed to model the real world situation.  

One major construct from EXPRESS is the inheritance hierarchy defined Entity types.  Another 

construct is the constraints that show how each Supertype and Subtype Entity behaves with other 

Supertypes or Subtypes.  The understanding of these constructs is crucial in when looking at the 

algorithms that will be analyzed later.  
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CHAPTER 4  

EXPRESS EDITION 3 
 

With the popularity of EXPRESS growing, developers realized that EXPRESS could be 

used for more than manufacturing applications.  Developers started making new demands on the 

modeling language as well as uncovering some ambiguities and problems in the first edition of 

EXPRESS.  Users wanted to build EXPRESS definitions for things such as parts libraries, 

manufacturing management data, and interface specifications [3].  Some corrections, in the form 

of a point release, were made and these formed EXPRESS edition 2 [4]. More extensive 

corrections, clarifications, and significant changes to the inheritance mechanism are proposed for 

edition 3.  

The changes to the Inheritance Hierarchy include lexical changes to how Subtypes are 

defined, the addition of Connotational and Denotational Subtypes, and the addition of the Total 

Over constraint.  In edition 1 Subtypes had the Subtype Of clause in the Entity definition and that 

has been replaced with a clause called Subtype_Constraint.  This clause is not declared in the 

Entity definition but outside of the Entity declaration.  An example of the notation for an Entity 

and a SUBTYPE_CONSTRAINT declaration is given in Example 4-1; this is the same 

declaration as the Example 3-11 in Chapter 3. 

ENTITY circulating_item; 
 SUBTYPE OF item; 
END_ENTITY; 
 
SUBTYPE_CONSTRAINT circulating_type FOR circulating_item; 
 (loaned_circulating_item ANDOR available_circulating_item); 
END_SUBTYPE_CONSTRAINT; 
Example 4-1 

 

This enhancement is useful in that it allows different Subtype Constraints to be applied when 

Supertypes are “used” in different schemas. 

 Connotational Subtypes are Entity types that have the same data signatures as their 

Supertypes but contain constraints and rules for attribute values that are not present in their 
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Supertypes.  “An instance of a Supertype may be considered as an instance of the Subtype if it 

obeys all the constraints of the Subtype” [3].  During the lifetime of an instance, changes to its 

attribute values can cause it to move into and out of several Connotational Subtypes [3].  The 

following is an example of a Connotational Subtype. 

ENTITY oversize_book_item; 
CONNOTATIONAL SUBTYPE OF (book_item); 

WHERE 
big : size >= 2; -- larger that 2 square feet is big 

END_ENTITY; 
Example 4-2 

 

Connotational Subtypes are useful in allowing Entity instances that fit into a certain category 

based on their data values to behave as a member of that category. 

 Another feature added to edition 3 is the Total Over constraint.  When an instance of a 

Supertype is required to be an instance of at least one of its Subtypes, the Total Over constraint is 

specified in the SUBTYPE_CONSTRAINT clause.  A Total Over constraint lists a group of 

Subtypes T1...Tn of a Supertype S.  It constrains all instances that are Subtypes of S to also be 

one of these types T1…Tn.  A Subtype constraint can have more than one Total Over constraint.  

An example would be having book_item combined with circulating_item.  

SUBTYPE_CONSTRAINT item_types FOR item; 
ABSTRACT SUPERTYPE; 

ONEOF (book_item, journal_item) AND  
ONEOF (circulating_item, noncirculating_item); 
TOTAL_OVER (book_item, journal_item); 
TOTAL_OVER (circulating_item, noncirculating_item) 

END_SUBTYPE_CONSTRAINT; 
Example 4-3 

 
Here an instance of item_types must be either book_item or journal_item.  It also must be 

circulating_item or noncirculating_item. 

 This change to EXPRESS inheritance led to the need for major changes to the algorithms 

that check the validity of Subtype/Supertype combinations.  An analysis of these changes forms 

the core of this thesis.  To perform this analysis, the techniques presented in the next chapter will 

be used. 
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CHAPTER 5 

ALGORITHM INFORMATION 
 

 Developers using EXPRESS [6] wanted to determine if specific combinations are valid 

for the inheritance hierarchy in their EXPRESS Schema.  To do this, algorithms were developed 

to make the evaluation easier and manageable.  To completely understand how the Test and 

Generate algorithms work, a basic understanding of algorithms is needed.  This chapter gives 

background information on algorithms and how to analyze them. 

An Algorithm contains a sequence of clearly specified statements or instructions that are 

followed to solve a problem or compute a function [1].  Designers and programmers use them as 

a guide to follow when creating programs and systems.  Algorithms are important ways to 

organize a problem, give the user direction, and make a problem more manageable.  The 

statements can be executed any number of times if the repetition is specified in the algorithm.  

Algorithms must terminate no matter what input values that they may have to process and are 

sometimes written with a combination of programming languages and English phrases. 

 Before algorithms are converted to a program, it is useful to evaluate the algorithm for 

correctness, completeness, and sometimes equivalence between similar algorithms.  This is 

called an analysis of the algorithm.  Additionally analysis consists of ways to determine the 

amount of work done by an algorithm and the amount of storage space it uses.  Algorithms can 

also be analyzed for simplicity, clarity, and optimality.  Developers use analysis of algorithms to 

improve and refine algorithms and to be assured that they produce expected results.  Analysis of 

an algorithm can help developers decide which algorithm to use in a specific situation.  

Developers can find the “strengths and weaknesses of different algorithms that do the same 

thing, and figure out which set of characteristics most closely matches the needs of the 

situation.” [2]   

 Algorithms can be proven correct by verifying that the results from it are correct.  The 

first step is to determine what correct means.  This requires a clear and precise statement about 

the legal inputs and the expected outputs for all input.  One method is to use mathematical 
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induction and loop invariants, which are conditions and relationships that are satisfied by the 

variables and data structures at the end of an iteration of a loop [1].  Induction on the number of 

iterations of a loop is a way to construct a loop invariant, which are used to show that an 

algorithm has produced the expected results.  Analysis on long and complex algorithms can be 

hard to do and time consuming but can show that the program being developed from the 

algorithm will work.   

 Another way to analyze algorithms is to determine the amount of work done by the 

algorithm.  The measure of work should be both precise and general enough to develop a theory 

that is useful for many algorithms and applications.  The number of passes through a loop or the 

number of executions of a certain type of operation can determine the work done by an 

algorithm.  Counting a basic operation in an algorithm is sometimes considered the complexity 

measure, which is how the complexity or the amount of work done by an algorithm is 

determined.  The amount of work done can be different for the same algorithm based on the 

amount, order, or type of the input.  The behavior of an algorithm can be described by finding 

the worst-case analysis and average-case analysis.  Worst-case analysis is the process of finding 

the maximum number of operations performed by an algorithm given any input size and usually 

gives the upper bound for the work done.  Baase [1] states the formula for computing the worst-

case complexity as the following; 

Let Dn be the set of inputs of size n for the problem under consideration, and let I 
be an element of Dn..  Let t(I) be the number of basic operations performed by the 
algorithm on input I.  Then the function is W(n)=max{t(I) | I ∈  Dn}. 
 
In some cases it might be useful to determine the average amount of work done by an 

algorithm, which is called average-case analysis.   This type of analysis computes number of 

operations performed for each input size and then takes the average.  Some input may occur 

more frequently than others may and so a weighted-average can be used to compute the average-

case.  Baase [1] states the formula for computing the average-case complexity as the following:  

Let p(I) be the probability that input I occurs.  Then the average behavior of the 
algorithm is defined as A(n)=   ∑  p(I) t(I). 

   
I∈  Dn 
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The function p is determined by information known about the inputs or by experience or by 

assuming that all inputs are equally likely to occur for the given problem.   

 Another way to analyze algorithms is to determine how much space is used by the 

algorithm for storing the data.  There may be times when the algorithm may need to have a area 

to store the information required to process and store the inputs.  Space usage depends on the 

implementation of the algorithm; however, there are some ways to examine an algorithm to 

decide how much storage space is needed.  Assignment statements, constants, variables, and the 

inputs to the algorithm are going to require storage space as well as space for doing computations 

while the algorithm is processing the inputs.  Space used by the variables and inputs can be 

different depending on the type of the data for example that arrays can take up more space than 

an integer value.  “If the amount of space used depends on the particular input, worst-case and 

average-case analysis can be done” [1]. 

 Another way to analyze algorithms is to determine if they are simple.  This may not mean 

that the algorithm is more efficient but may make it easier to verify for correctness.  

Additionally, simple algorithms are usually easier to understand, write, debug, or modify when it 

is developed into a program.  Simplicity makes the process of solving a problem more 

straightforward.   

 Algorithms may also be tested for optimality.  This classifies algorithms based on the 

number of operations performed to do some task.  When an algorithm has the least number of 

operations needed to solve a problem in its class of algorithms, the algorithm is considered to be 

optimal in its class in the worst-case.  A class of algorithms includes all algorithms that have 

been developed and those that have not been discovered yet that perform the same basic 

operations.  In order to prove an algorithm is optimal, theorems are used to prove a lower bound 

on the number of operations needed to solve a problem.  Baase [1] says there are two tasks that 

need to be done to find an optimal algorithm.  “The first step is to devise what seems to be an 

efficient algorithm and call it A.  Analyze A and find a function W such that, for inputs of size n, 

A does at most W(n) steps in the worst case.  The second step is for some function F, prove a 

theorem stating that, for any algorithm in the class under consideration, there is some input of 

size n for which the algorithm must perform at least F(n) steps.  If the functions W and F are 
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equal, then the algorithm A is optimal for the worst case.  If not, there may be a better algorithm 

or a better lower bound.”   

 Algorithm equivalence is another important criterion that is used when comparing 

algorithms.  Showing equivalence can be done by showing that the output from one algorithm 

produces a TRUE result from another algorithm and vice versa.  This paper evaluates the Test 

and Generate algorithms for equivalence using some of the techniques discussed in this chapter.  

The next two chapters will describe these two algorithms in detail with comparisons between the 

two in subsequent chapters.
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CHAPTER 6 

GENERATE ALGORITHM 
 
 This chapter presents the information on how the Generate Algorithm was developed and 

why.  It also discusses how the Generate Algorithm works and the proposed improvements made 

to the algorithm. 

Legal Supertype and Subtype combinations in EXPRESS Schemas are constructed based 

on the constraints of the inheritance hierarchy.  These combinations represent the legal Entity 

instance that may exist in a file defined by EXPRESS Schema.  For a Supertype/Subtype graph, 

there may be a large number of Entity data types that can be instantiated.  The two algorithms 

that deal with these types checking are called the Generate [6] and Test [7] Algorithms. 

 This chapter examines the Generate algorithm in depth.  First a set of simplification rules 

for inheritance expressions are given, then the Generate Algorithm from the EXPRESS manual is 

given, followed by a step-by-step example.  Then a detailed analysis of the step (G) in the 

algorithm that deals with the Total Over constraint is given with an example.  A new version of 

this step is then considered.  The chapter concludes with a discussion of the strengths and 

weaknesses of both approaches. 

The latest version of the Generate Algorithm is from the EXPRESS Language Reference 

Manual [4] version ISO TC184/SC4/WG11 N105.  The Generate Algorithm generates all legal 

possible combinations of Entity types in the Supertype and Subtype hierarchy.  The input to the 

algorithm is the EXPRESS inheritance hierarchy and the constraints defined in the EXPRESS 

Schema being evaluated.  The output from this algorithm is the set of all legal combinations of 

Entity types. These are called partial complex Entity data types and are denoted by the names of 

each of the component Entity data types separated by the ampersand (&) character.  An 

evaluated set is defined to be a mathematical set of the partial complex Entity data types that is 

denoted by the partial complex Entity data types separated by a comma ‘,’ enclosed in square 

brackets ‘[]’.  An example would be [circulating_item, book_item].  An empty evaluated set is 

denoted by [ ], which means that there are no partial complex Entity data types.  The partial 
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complex Entity data types may be combined to form other partial complex Entity data types.  

The ≡ symbol is used to show that two items are equivalent.  An example would be 

{circulating_item & book_item ≡ book_item& circulating_item}.  To support this algorithm 

many identities, operators, and constraints need to be defined as shown in the following tables.  

These identities, operators, and constraints are rules that can be used to reduce a partial complex 

Entity data type to a simpler canonical form. 

IDENTIES EXAMPLES 
1. An Entity type can occur only once in a 
partial complex Entity data type. 

{A&A≡A} 

2. The grouping of the partial complex Entity 
data types is commutative. 

{A&B≡B&A} 

3. The grouping of the partial complex Entity 
data types is associative; the parentheses 
indicate evaluation precedence, which in this 
case makes no difference to the evaluation.  

{A&(B&C)≡(A&B)&C≡(A&B&C)} 
 

Table 6-1 – Identities [4] 

 
 
WAYS TO FORM EVALUATED SETS 
(OPERATORS) 

EXAMPLES 

4. The ‘+’ operator adds the partial complex Entity 
data type to the evaluated set as a new member of 
the set.  

{A+[B1,B2] ≡ [B1,B2]+A≡[A,B1,B2]} 

5. The ‘&’ operator adds the partial complex Entity 
data type to all the partial complex Entity data types 
within the evaluated set.  It is therefore distributive 
over evaluated set.  

{A&[B1,B2] 
≡[B1,B2]&A≡[A&B1,A&B2]} 

6. An evaluated set can be formed to contain all of 
the elements of two combined sets.  This is the union 
of the two sets.  

{[A1,A2]&[B1,B2] ≡[A1&B1, A1&B2, 
A2&B1, A2&B2]} 

7. An evaluated set can be formed by repeated 
application of the distribution rule for & for each 
element of the first evaluated set over the second 
evaluated set.   

{[A1,A2]&[B1,B2] 
≡[A1&B1,A1&B2,A2&B1,A2&B2]} 

8. An evaluated set can be found by filtering by a 
complex type, the new evaluated set contains only 
those elements in the original evaluated set, which 
contain the given partial complex Entity data type. 

{[A,A&B,A&C,A&B&D,B&C,D]/A ≡ 
[A,A&B,A&C,A&B&D]} 

Table 6-2 - Operators [4] 
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WAYS TO FORM EVALUATED SETS EXAMPLES 
(OPERATORS) 
9. A new evaluated set can be formed by repeated 
filtering an evaluated set, ONE, by each partial 
complex Entity data type in the second evaluated set, 
TWO, and combining the results using the ‘+’ 
symbol.  The new set will contain only those partial 
complex Entity data types from ONE that contain at 
least one of the Entity types from TWO. 

ONE= 
{[A,A&B,A&C,A&B&D,B&C,D] 
TWO=[B,D]  
ONE/TWO ≡ [A&B,A&B&D,B&C,D]}  

10. An evaluated set can be formed, which contains 
all the elements in the first evaluated set except for 
those in the second evaluated set.  

{[A1,A2,B1,B2]-[A2,B1]≡[A1,B2]} 

11. An evaluated set may be reordered, the order 
does not matter.  

{[A,B] ≡[B,A]} 

12. An evaluated set can only have a particular 
complex Entity data type once.  The complex Entity 
data type appears only once in the set.  

{[A,A,B] ≡[A,B]} 

13. An evaluated set can be nested. {[A,[B,C]] ≡[A,B,C]} 
Table 6-2 - (continued) 

 

CONSTRAINTS  EXAMPLES 
14. The ONEOF constraint is converted to an 
evaluated set containing each individual entity 
type in the ONEOF as a partial complex Entity 
data type. 

{ONEOF (A,B) becomes [A,B]} 

15. The AND constraint is equivalent to the 
‘&’ operator in an evaluated set.  

{A AND B becomes [A&B]} 

16. The ANDOR constraint generates an 
evaluated set, which contains each of the 
operands separately as well as combined using 
the ‘&’ operator.  

{A ANDOR B becomes [A,B,A&B]} 
 

Table 6-3 - Constraints [4] 

 

To generate the evaluated set, the following algorithm is given in the EXPRESS manual [4].  The 

algorithm will be followed by a step-by-step example.  The steps for the Generate Algorithm [4] 

are as follows: 

The evaluated set R of complex entity datatypes is computed by the following process: 
a) Identify all entity declarations, which form the subtype/supertype graph. 
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NOTE 1 This may require multiple iterations in cases with complex subtype/supertype 
graphs. 
 

b) For each supertype i in the subtype/supertype graph, identify all types j1, j2, ... jk in the 
subtype/supertype graph that are defined as subtypes of i that either: Do not occur in any 
subtype_constraint defined for i or occur only in a TOTAL_OVER clause of a 
subtype_constraint defined for i. Construct a subtype_constraint of the form:Qi 

 
SUBTYPE_CONSTRAINT i_othersubtypes FOR i; 
   j1 ANDOR j2 ANDOR ... ANDOR jk; 
END_SUBTYPE_CONSTRAINT; 

 
Consider this constraint as part of the schema for the purposes of this algorithm. 

 
c) For each supertype i in the subtype/supertype graph identify all subtype constraints sc1 , sc2 , 

... sck , that have i in their FOR clause.  At this point, the parts of subtype constraints that 
contain TOTAL_OVER or ABSTRACT restrictions are ignored. Combine the subtype 
expressions sxi of these constraints into a single SUBTYPE_CONSTRAINT 

 
SUBTYPE_CONSTRAINT st_i FOR i; 
   sx_1 ANDOR sx_2 ANDOR ... ANDOR sx_k; 
END_SUBTYPE_CONSTRAINT; 

 
NOTE 2 A singleton constraint, which contains only the name of a subtype is a legal 
constraint. 

 
d) For each supertype i in the subtype/supertype graph, generate the evaluated set which 

represents the constraints between its immediate subtypes by applying the reductions in 
annex B.3.1.1 and the identities in annex B.2.1.1 to the SUBTYPE_CONSTRAINT st_i 
given by step c above. Combine i with the result using the & operator. If i is not defined as an 
ABSTRACT supertype in its entity declaration or in any SUBTYPE_CONSTRAINT of i 
then add i to the result using +. Call this set Ei . 

 
e) For each root supertype r in the subtype/supertype graph, expand Er as follows: 

1) For each subtype s of r, replace every occurrence of s (including those within partial 
complex entity datatypes) in Er with Es , if available, and apply reductions in annex 
B.3.1.1 and the identities in annex B.2.1.1. 

 
2) Recursively apply step 1 to each s, expanding subtypes of s until leaf entities are reached 

(for which no Es is available). 
 

NOTE 3 This recursion must terminate, since there are no cycles in the subtype/supertype 
graph. 
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f) Combine root sets. Create R = ∑r Er / Er1 +Er2 +..., i.e. R is the union of the sets produced in 

step e. 
 
g) For each supertype s in R, for each TOTAL_OVER SUBTYPE_CONSTRAINT T of the 

form t1 , t2 , ... tk defined for s 
1) Define t to be: (t1 ANDOR t2 ... ANDOR tk ) 

 
2) For all immediate subtypes si of s not in {t1 , t2 , ... tk } replace each occurrence of si in R 

by the expression derived from (si AND t) using the definitions in annex B.3.1.1 
 

3) Reduce R according to the reductions in annex B.3.1.1 and the identities in annex 
B.2.1.1. 

 
h) For each multiply inheriting subtype m, do the following: 

1) For each of its immediate supertypes s, generate the set R/m/s which contains exactly 
those complex datatypes in R which include both m and s. 

 
2) Generate the evaluated set of supertype combinations permitted by m, Pm = R/m/s1 & 

R/m/s2 &..., i.e., combine the evaluated sets produced in step 1 using &. 
 

3) Generate the evaluated set of supertype combinations which may not include all the 
supertypes of m, Xm = ∑s R/m/s, i.e., union together the evaluated sets produced in step 1. 

 
4) Put R = (R - Xm ) + Pm .  

 
i) For each subtype constraint expression k (including those generated in steps b and g of the 

form ONEOF (S1, S2, ...), do the following: 
1) For each pair of subexpressions Si, Sj controlled by k (i < j), compute the set of 

combinations disallowed by ONEOF (Si, Sj ): Dk
 i,j = [Si & Sj ].  Reduce Dk

 i,j according to 
the reductions in annex B.3.1.1 and the identities in annex B.2.1.1. 

 
2) Set Dk = ∑i,j Dk

 i,j , i.e. Dk is the union of the sets computed in step 1. 
 

3) Put R = R - (R / Dk ). 
 
j) For each subtype constraint expression (including those generated in steps b and g) k of the 

form S1 AND S2, do the following: 
1) Compute the set of required combinations dictated by k, Qk = [S1 & S2 ] . Reduce Qk 

according to the reductions in annex B.3.1.1 and the identities in annex B.2.1.1. 
 

2) For each entity datatype i named in k, compute the set of invalid entity combinations 
containing i which are disallowed by k, Dk

 i = R/i - R/(Qk /i). 
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3) Set Dk = ∑i Dk

 i, i.e., Dk is the union of the sets computed in step 2. 
 

4) Put R = R - Dk. 
 
k) The final evaluated set R is the evaluated set for the input subtype/supertype graph. 
 

Using the EXPRESS edition 3 example of the Library model, the Generate Algorithm 

starts off with step a by identifying all of the Entity declarations that form the Supertype/Subtype 

graph.  The root Supertype is the Abstract Entity item, which has book_item, journal_item, 

circulating_item, and noncirculating_item as Subtypes.  The Entity book_item is a Supertype of 

oversize_book_item and reference_book_item. The Entity circulating_item is a Supertype of 

loaned_circulating_item and overdue_circulating_item.  Steps b and c define 

SUBTYPE_CONSTRAINT clauses for each Supertype in the Supertype/Subtype graph and 

combining SUBTYPE_CONSTRAINT clauses that have the same Supertype in the FOR clause 

into a single SUBTYPE_CONSTRAINT clause using the ANDOR constraint.  For the Library 

example, step d generates an evaluated set for item of : 

{book_item,  
journal_item,  
book_item &journal_item,  
circulating_item,  
noncirculating_item,  
circulating_item&noncirculating_item}  

 

Applying the constraint rules, the set can be reduced to  

{book_item,  
journal_item,  
circulating_item,  
noncirculating_item}.   

 
The Supertype needs to be combined with each element in the set using the & operator.  Now the 

set, Eitem, will be  

{item&book_item,  
item&journal_item,  
item&circulating_item,  
item&noncirculating_item}.   

  37



 

Because item is an Abstract Supertype, it is not added to the set.  The same is done for the other 

Supertypes, which are book_item and circulating_item.  The set, Ebook_item, for book_item is  

{book_item,  
book_item&oversize_book_item,  
book_item&reference_book_item,  
book_item&oversize_book_item&reference_book_item}.  

 

The set, Ecirculating_item, for circulating_item is  

{circulating_item,  
circulating_item&loaned_circulating_item,  
circulating_item&overdue_circulating_item,  
circulating_item&loaned_circulating_item &overdue_circulating_item}.    

 

Step e generates the following evaluated set, Eitem,  

{item&book_item,  
item&book_item&oversize_book_item,  
item&book_item&reference_book_item,  
item&book_item&oversize_book_item &reference_book_item,  
item&journal_item,  
item&circulating_item,  
item&circulating_item&loaned_circulating_item, 
item&circulating_item&overdue_circulating, 
item&circulating_item&loaned_circulating_item&overdue_circulating_item, 
item&noncirculating_item}.   

 

There is only one root Supertype in this graph; therefore, step f sets R equal to the Eitem set.  

Since all of the immediate Subtypes of item are the only Subtypes that are part of the 

TOTAL_OVER constraints, step g is not necessary.  The lack of Multiply inheriting Subtypes in 

the Library model obviates the need for step h.  Step i looks at each ONEOF Subtype constraint 

and creates a set that containing the combinations that are disallowed.  Ditem_types is the set  

{book_item&journal_item, circulating_item&noncirculating_item).   

The resulting set, R, from this step, i, is  

{item&book_item,  
item&book_item&oversize_book_item,  
item&book_item&reference_book_item,  
item&book_item&oversize_book_item&reference_book_item,  
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item&journal_item,  
item&circulating_item,  
item&circulating_item&loaned_circulating_item,  
item&circulating_item&overdue_circulating_item,  
item&circulating_item&loaned_circulating_item&overdue_circulating_item,  
item&noncirculating_item}.   

 
Because there are not any Subtypes that have the AND constraint, step j is not necessary.  The 

final set, R, is  

{item&book_item,  
item&book_item&oversize_book_item,  
item&book_item&reference_book_item,  
item&book_item&oversize_book_item &reference_book_item,  
item&journal_item,  
item&circulating_item,  
item&circulating_item&loaned_circulating_item,  
item&circulating_item&overdue_circulating_item,  
item&circulating_item&loaned_circulating_item&overdue_circulating_item,  
item&noncirculating_item}. 

 
The remainder of this chapter compares two versions of the Generate Algorithm for 

EXPRESS-3, the original version of the algorithm is described in the EXPRESS Language 

Reference Manual ISO TC184/SC4/WG11 N105 [4] and the new version was developed as part 

of this project.  Both versions will be explained using Example 6-1a below.   

SUBTYPE_CONSTRAINT item_types FOR item; 
TOTAL_OVER (book_item, journal_item); 

END_SUBTYPE_CONSTRAINT; 
Example 6-1a 

 

Suppose that book_item, journal_item, circulating_item, and noncirculating_item are Subtypes 

of item.  Both algorithms are the same through step F.  They differ in Step G that handles the 

Total Over constraint.  The result set, R, after step F for both versions of the algorithm is the 

same:  
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R={item, book_item&item, journal_item&item, circulating_item&item, 
noncirculating_item&item, book_item&journal_item&item, 
book_item&circulating_item&item, book_item&noncirculating_item&item, 
journal_item&circulating_item&item, journal_item&noncirculating_item&item, 
circulating_item&noncirculating_item&item, 
book_item&journal_item&circulating_item&item, 
book_item&journal_item&noncirculating_item&item, 
book_item&circulating_item&noncirculating_item&item, 
journal_item&circulating_item&noncirculating_item&item, 
book_item&journal_item&circulating_item&noncirculating_item&item} 
Example 6-1b 

 

In the original version of the Generate Algorithm, step G (as shown above) processes the 

Total Over constraints in the inheritance hierarchy.  Applying this step of the Generate 

Algorithm to Example 6-1a, we find that the set R has only one Supertype, the Entity named 

"item".  This Supertype has only one Total Over Subtype Constraint named "item_types".  In the 

first sub-step, t is defined to be {book_item ANDOR journal_item).  The second sub-step 

identifies the immediate Subtypes of item, which are not in the Total Over list.  In this example, 

these Subtypes are circulating_item and noncirculating_item.  Every occurrence of 

circulating_item in any complex entity datatype in the set R is replaced with the expression 

(circluating_item AND (book_item ANDOR journal_item)).  Similarly, each occurrence of 

noncirculating_item is replaced by (noncirculating_item AND (book_item ANDOR 

journal_item)).  In the third sub-step, R is simplified using the defined reductions and identities 

producing:  

R={book_item&item, journal_item&item, book_item&journal_item&item, 
book_item&circulating_item&item, journal_item&circulating_item&item, 
book_item&journal_item&circulating_item&item, 
book_item&noncirculating_item&item, journal_item&noncirculating_item&item, 
book_item&journal_item&noncirculating_item&item, 
book_item&circulating_item&noncirculating_item&item, 
journal_item&circulating_item&noncirculating_item&item, 
book_item&journal_item&circulating_item&noncirculating_item&item, 
book_item&item, journal_item&item, book_item&journal_item&item, 
book_item&circulating_item&item, book_item&noncirculating_item&item, 
journal_item&circulating_item&item, journal_item&noncirculating_item&item, 
book_item&journal_item&circulating_item&item, 
book_item&journal_item&noncirculating_item&item, 
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book_item&circulating_item&noncirculating_item&item, 
journal_item&circulating_item&noncirculating_item&item, 
book_item&journal_item&circulating_item&noncirculating_item&item} 

 

At this point, duplicate elements may be present in set R.  These are removed, giving the 

simplified set R below: 

R={book_item&item, journal_item&item, book_item&journal_item&item, 
book_item&circulating_item&item, book_item&noncirculating_item&item, 
journal_item&circulating_item&item, journal_item&noncirculating_item&item, 
book_item&journal_item&circulating_item&item, 
book_item&journal_item&noncirculating_item&item, 
book_item&circulating_item&noncirculating_item&item, 
journal_item&circulating_item&noncirculating_item&item, 
book_item&journal_item&circulating_item&noncirculating_item&item} 

  
The new version of step G of the Generate Algorithm given in Figure 6-1 looks at each 

Total Over constraint T of each Supertype S in the Schema.  It evaluates each partial complex 

entity datatype, r, in the set R.  If r contains a Subtype of S but does not contain one of the types 

specified in T then r is inserted into a discard set for the Supertype.  The elements of the discard 

set are removed from the result set R, which is then simplified using the identities, operators, and 

constraint rules [4] to further reduce and simplify the set. 
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Figure 6-1 – Improved Generate 

g) For each supertype s in R where s has Subtypes s1…sn,  
   For each TOTAL_OVER SUBTYPE_CONSTRAINT T of the form t1  ... tk defined for s 
1) For each Subtype si where i=1 to n of s, excluding those in the list t1…tk, Compute the set 

Dsi
T as follows:  

For each complex entity datatype r in set R 
If r contains si but does not contain at least one element of t1…tk 
Then r is inserted into Dsi

T 

 

Dsi
T thus contains the elements of R, which include type si but not any of the types in the 

list t1…tk. 
 

2) Let DT = ∑ 
i=1

n
  Dsi

T ≡ Ds1
T + Ds2

T + … + Dsn
T, i.e. the union of all the sets from part 1 

above. 
3) Let R = R – DT.  Simplify R using the reductions in annex B.3.1.1 and the identities in 

annex B.2.1.1. 

Using the same EXPRESS definition and result set from Example 6-1a and 6-1b, the new 

version of the Generate Algorithm handles the Total Over differently.  Applying the new Step G 

to Example 6-1a, there is only one Supertype named item with the four Subtypes, book_item, 

journal_item, circulating_item, and noncirculating_item, to consider.  This Supertype has only 

one Total Over Subtype Constraint named "item_types" with the elements of book_item and 

journal_item.   

 

Step 1, calculates the two discard sets for item.  
item_types 

D circulating_item ={circulating_item&item, circulating_item&noncirculating_item&item} 

 
item_types 

D noncirculating_item ={noncirculating_item&item, noncirculating_item&circulating_item&item} 

 
In step 2 these are combined to become 

 
Ditem_types = {circulating_item&item, noncirculating_item&item, 
circulating_item&noncirculating_item&item} 
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In step 3, the elements of set Ditem_types are then removed from the result set R giving: 

R={book_item&item, journal_item&item, book_item&journal_item&item, 
book_item&circulating_item&item, book_item&noncirculating_item&item, 
journal_item&circulating_item&item, journal_item&noncirculating_item&item, 
book_item&journal_item&circulating_item&item, 
book_item&journal_item&noncirculating_item&item, 
book_item&circulating_item&noncirculating_item&item, 
journal_item&circulating_item&noncirculating_item&item, 
book_item&journal_item&circulating_item&noncirculating_item&item}. 

   

It is clear by inspection that both versions of Step G of the Generate Algorithm give the same 

result set R in the example above.   

It can be shown that the algorithms are in fact equivalent.  In the original version the 

elements in the Total Over are combined together with an ANDOR constraint.  Then they are 

combined with other elements in the set R using an AND constraint.  This insures that all of the 

elements in the set R comply with the Total Over constraint.  However, this produces several 

duplicate and invalid elements that have to be discarded by applying the rest of the algorithm, 

which is where all the steps that remove invalid elements are applied.  When there are several 

elements in the Total Over constraint, this process will be time consuming and cumbersome.  In 

the new version of Step G, a set is created for each Subtype that is not an element in the Total 

Over constraint.  The elements in this set are elements of the set R that have the Subtype in 

question but don't have one of the elements in the Total Over list.  Once all of the Subtypes have 

been evaluated, the sets are unioned together into a subset.  The elements in this subset are then 

removed from the set R giving the final set R for Step G.  The new version of Step G identifies 

the elements of R that do not have an element from the Total Over constraint, which would mean 

the element was invalid, and removes it from the set R.  This is not as time consuming or 

complex as the original version of Step G because the sets are smaller than those generated by 

the original version.  A second advantage is that duplicate and invalid elements are not 

introduced into the set R, only to be discarded by later steps in the algorithm.   

Both versions of Step G of the Generate Algorithm have advantages and disadvantages.  

The key advantage of the original version of Step G of the algorithm was that it worked by 

reusing existing parts of the original Generate Algorithm.  It used the ANDOR constraint to 
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generate a set based on the Subtypes in the Total Over constraint.  This allowed the Total Over 

constraint to be evaluated without implementing any new methods.  This version of the 

algorithm step G is easy to implement because of the reuse of existing code.  The major 

disadvantage of the original version of Step G is the number of iterations needed to generate the 

large set of partial Entity data type combinations, and its introduction of extraneous elements to 

R which had to be removed in later steps. 

The advantage of the new version of the Generate Algorithm is that rather than adding 

partial complex Entity instances to the result set, and then simplifying, it generates the much 

smaller set of Entity types constrained by the Total Over constraint, and then identifies the 

elements in the evaluated set that must be removed.  The new version thus is much faster an 

conceptually simpler.  One disadvantage is that a new algorithm will need a new implementation, 

not just the re-use of existing code.  
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CHAPTER 7  

TEST ALGORITHM 
 

The second algorithm used to validate inheritance in EXPRESS is the Test Algorithm 

developed by Staub, Maier, and Schonefeld  [7].  This algorithm checks a partial complex entity 

type for membership in an inheritance hierarchy without generating the set.  In this chapter this 

algorithm will be explained with examples.  Then a formal version of the algorithm will be 

presented.  This algorithm had to be developed as no formal specification of the Test Algorithm 

has ever been published.  The algorithm is given in 2 phases and a proposed extension to the Test 

Algorithm is given to handle the Total Over constraint, and a revised algorithm is presented.   

The Test Algorithm has two phases; in the first phase an evaluation graph is generated 

based on the inheritance constraints in a given Schema.  Once this graph is generated, the second 

phase traverses this graph to determine if a given partial complex entity type is valid.  The graph 

represents the Supertype/Subtype graph including the Supertype constraints and contains two 

types of nodes.  One type of node is the constraint node that corresponds to the Supertype 

constraint expressions AND, ANDOR, and ONEOF.  A type node exists to represent each 

Supertype or Subtype Entity type.  Every type node is connected to exactly one constraint node.  

The algorithm checks each node using a pre-order traversal.  This traversal starts with the root 

Supertype node and follows the graph until the left most child at the lowest level is found, at 

which the algorithm starts evaluating the nodes in the graph.  The algorithm has two inputs, the 

evaluation graph and the partial complex entity type instance.  The output from the algorithm is 

TRUE, FALSE, or ERROR.  TRUE is obtained when the type is shown to be legal by satisfying 

the Supertype constraints, FALSE is obtained when type is not part of the current type but does 

not violate the Supertype constraints, and ERROR is obtained when the type violates at least one 

of the Supertype constraints.  There are four rules that the algorithm check while it is processing 

each node.  Let T be the set of the Entity types of the evaluation graph [7]. 

1. If n is a type node with n ∈  T, ensure that all its Supertypes are also elements of T; 
2. If n is an abstract type node with n ∈  T, ensure that there is at least one direct Subtype 

node m, with m ∈  T; 
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3. If n is an AND-node the following constraint must be satisfied for all direct Subtype 
nodes mI: mI ∈  T or mI ∉  T; 

4. If n is an ONEOF-node, ensure that there is at most one direct child type node m, with m 
∈  T. 
 

The following graph in Figure 7-1 is an evaluation graph for the Library model.   
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Figure 7-1 – Evaluation Graph with TRUE Result
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The graph in Figure 7-1 demonstrates how the Test Algorithm checks the partial Entity data type 

of [item, book_item, circulating_item].  The algorithm starts with item and finds the left most 

child, oversize_book_item, and then moves on to reference_book_item.  Because neither of these 

are part of the partial entity data type being tested and the node generates a FALSE.  The next 

check is at the book_item Subtype, which produces a TRUE while the check at the journal_item 

Subtype produces a FALSE.  The check at the ONE OF constraint produces a TRUE because 

neither book_item nor journal_item are listed in the partial Entity data type being tested.  The 

rest of the Subtypes are checked in a similar fashion.  The example in the graph is a valid type in 

this Supertype/Subtype graph. 

 A FALSE result is generated when the partial Entity data type doesn’t violate any of the 

Supertype/Subtype constraints but is not a valid data type.  If the partial Entity data is [patron], 

the evaluation graph would produce a FALSE result at each step because the patron Entity is not 

part of the Supertype/Subtype hierarchy.  The following graph in Figure 7-2 demonstrates how 

the Test Algorithm produces a FALSE result. 

 An ERROR result is generated when the partial Entity data type violates a 

Supertype/Subtype constraint.  For this example, lets assume that the Entity 

loaned_circulating_item is an ABSTRACT Supertype and the partial Entity data type that we 

need to check is [item, book_item, circulating_item, loaned_circulating_item].  The Test 

Algorithm would fail when the overdue_loaned_circulating_item Entity is checked because it is 

not included in the partial Entity data type, and the Abstract Entity can not exist without a 

Subtype.  Figure 7-3 demonstrates how the ERROR condition is obtained in this case.
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Figure 7-2 – Evaluation Graph with FALSE Result
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Figure 7-3 – Evaluation Graph with ERROR Result 
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For this thesis, the Test Algorithm was formalized based on the paper Multiple Class 

Membership and Supertype Constraint Handling - Concepts and Implementation Aspects by 

Staub, Maier, and Schonefeld [7].  The general description of the approach was converted to a 

step-by-step formal algorithm that specifies two phases.  Phase 1 describes how to create the 

Evaluation graph.  Phase 2 details how to evaluate a complex entity instance using the 

Evaluation graph.   

Phase 1 

I. Generate Subgraphs for all Supertypes: 
1. For every Entity type, S, which is a Supertype in the Schema 

Generate the parse tree for S's Entity declaration using the grammar rules 
in Annex A starting with the Subtype_declaration in the EXPRESS 
Language Reference Manual [4] 

 
Create a type node for the Entity declaration, which is the root of the tree. 

 

2. For each terminal node in the parse tree 
Case: AND 
 Create an AND constraint node with the same parent and children 
Case: ANDOR 

Create an ANDOR constraint node with the same parent and 
children 

Case: ONEOF  
Remove the node 

  Case: SUPERTYPE 
   Remove the node 
  Case: OF 
   Remove the node 
    

3. For each non-terminal node in the parse tree 
Case: Entity_Ref 

Create a type node for the type whose name is identified by the 
letters, which are the descendants of entity_ref 

  Case: Oneof 
Create an ONEOF constraint node with the same parent and 
children 

Case: default (all others) 
 Remove the node and connect its children to its parent. 
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4. If any two type nodes are directly connected, replace the edge with two edges 
and add an ANDOR constraint node connecting the two.   

 
The parse trees have now been converted into subgraphs of the evaluation graph. 

 
II. Union all of the subgraphs with respect to the Entity nodes 
 
III. For each Entity, E, which is a Subtype of a Supertype, S, 

1. If Entity E is not represented in the graph by a type node, T, create one. 
2. Create an ANDOR constraint node as the parent of T  
3. Set the child of the node representing, S, to be the other child of this ANDOR 

node. 
4. Make the node representing the Supertype, S, the parent of this ANDOR node. 

 
IV. For each Entity, which is neither a Subtype/Supertype 
 Create a type node. 
V. For each Abstract Supertype node  

Convert all type nodes in the graph, which represent Abstract Supertypes to be 
Abstract type nodes. 

 

Using the Entity declaration in Example 7-1, the step I.1 of the first phase of the algorithm 

generates the parse tree in Figure 7-4a. 

ENTITY item; 
     SUPERTYPE OF ONEOF (book_item, journal_item)  
END_ENTITY; 
Example 7-1 
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Figure 7-4a – Parse Tree 

Applying the cases in step I.2, the algorithm modifies the parse tree as shown in Figure 7-4b.  

The SUPERTYPE_OF, and ONEOF nodes are removed from the tree. 
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Figure 7-4b – Parse Tree Modified 

Applying the cases in step I.3, the algorithm generates the subgraph shown in Figure 7-4c.  The 

supertype_rule, subtype_constraint, supertype_expression, supertype_factor, and 

supertype_term, nodes are removed from the tree.  The entity_ref nodes are converted to type 

nodes labeled with the names of their direct children.  The one_of node is converted to a ONEOF 

constraint node. 
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Figure 7-4c – Evaluation Graph 

Steps I.4 through V don't apply to this example, so the result of the first phase of the Test 

Algorithm is Figure 7-4c making the graph the Evaluation graph for this example. 

The second phase is to evaluate a complex entity type.  The input to the second phase is the 

Evaluation graph generated in phase 1 and the complex entity instance, T, to be tested.  The 

output is the result of the evaluation, which could be TRUE, FALSE, or ERROR.  TRUE is 

obtained when the type satisfies the Supertype constraints, FALSE is obtained when the type is 

not part of the current type but does not violate any of the Supertype constraints, and ERROR is 

obtained when the type violates at least one of the Supertype constraints.  The specific evaluation 

algorithm is:  

 
Phase 2 
For each disjoint subgraph, evaluate recursively starting at the root node 
 
To evaluate a node, n 
 Evaluate all of its children from left to right 
 
Case 1: the node, n, is a leaf type node 
 If n ∉  T then  
       Evaluate to FALSE 
 Else 
    If all Supertypes of n ∈  T 
       If n is not an ABSTRACT type node 
          Evaluate to TRUE 
       Else 
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    Else 
       Evaluate to ERROR 
 
Case 2: the node is a non-leaf type node 
 If n ∉  T 
    If the child node evaluates to TRUE 
       Evaluate to ERROR 
    Else if the child node evaluates to FALSE 
       Evaluate to FALSE 
    Else 
       Evaluate to ERROR 
 Else /* n ∈  T */ 
    If all Supertypes of n ∈  T 
       If n is not an ABSTRACT type node 
          If the child node evaluates to TRUE 
             Evaluate to TRUE 
          Else if child evaluates to FALSE 
             Evaluate to TRUE 
          Else  
             Evaluate to ERROR 
       Else /* n is ABSTRACT */ 
          If the child node evaluates to TRUE 
             Evaluate to TRUE 
          Else if the child node evaluates to FALSE 
             Evaluate to ERROR 
          Else 
             Evaluate to ERROR 
 Else /* all Supertypes of n∉  T */ 
    Evaluate to ERROR 
 
Case 3: the AND Constraint node 
 If all the child nodes evaluate to TRUE 
    Evaluate to TRUE 
 Else if any child node evaluates to ERROR 
    Evaluate to ERROR 
 Else 
    Evaluate to FALSE 
 
Case 4: the ONEOF constraint node 
 If all the child nodes are FALSE 
    Evaluate to FALSE 
 Else if only one child is TRUE and there are no ERROR evaluations 
    Evaluate to TRUE 
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 Else /* if more than one TRUE or ERRORs */ 
    Evaluate to ERROR 

 

Using the result of phase 1 in Figure 7-4c and evaluating complex entity instance type, 

T={book_item&item}, the following is the result of phase 2 of the Test Algorithm.  Evaluating 

all of the children of the root node, in this case item, we start with the leaf node represented by 

book_item.  Case 1 evaluates this node as TRUE because the node is part of the T complex entity 

instance typeT.  The next node evaluated is journal_item, which is evaluated to FALSE in case 1 

because journal_item is not part of the complex entity instance type T.  The next node evaluated 

is the ONEOF constraint node, which will be evaluated by using Case 4 of the algorithm.  This 

node is evaluated to TRUE because only one of its children has evaluated to TRUE.  The final 

node to be evaluated is the item type node, which will be evaluated by using Case 2.  The child 

node of item evaluated to TRUE so this node will evaluate to TRUE.  Therefore, the complex 

entity instance type T tested using the evaluation graph in Figure 7-4c is a valid instance. 

In its present form, the Test Algorithm does not support the Total Over constraint.  This 

project extends the evaluation graph and algorithm to include Total Over constraint nodes and a 

symbol for a collection point called ANDCP.  The collection point is where the constraints are 

combined to perform a final evaluation of several constraints.  The ANDCP collection point 

node evaluates the same way as the AND constraint node but is used to combine two constraints 

together.  This behaviour is needed because the Total Over definition says that the Entity 

combination has to contain at least one of the elements in the Total Over list.  If there are more 

than one Total Over constraints then all Total Over constraints need to be satisfied before the 

Entity combination is considered valid.  All Total Over constraints that are defined for the same 

Supertype are combined into an ANDCP collection point node which is then combined using 

another ANDCP collection point node with the other constraints for the same Supertype.  In the 

evaluation graph, the ANDCP collection point node is an oval shape to show that it is a 

constraint node.  The formal definition of this revised algorithm is:  

 
Phase 1 - Revised 
I.  For each Supertype, S, in the Schema 
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1. Build a Subtype Constraint for Entity, S, for all Subtypes E1..Ej not in any 
other Subtype Constraint of S of the form 

 
SUBTYPE_CONSTRAINT name FOR S; 
 E1 ANDOR E1 ANDOR… ANDOR Ej; 
END_SUBTYPE_CONSTRAINT; 

 
2. For each Subtype Constraint, SCi ..SCn of S 

2.1 Generate the parse tree using the grammar rules in Annex A starting with 
the Subtype_declaration in the EXPRESS-3 Language Reference Manual 
[4] 

 
Replace the Subtype_Constraint_declaration non-terminal node with a 
type node representing S. 

  
2.2 For each terminal node in the parse tree 

Case: AND 
 Create an AND constraint node with the same parent and children 

 
Case: ANDOR 

Create an ANDOR constraint node with the same parent and 
children 

 
Case: ONEOF  

Remove the node 
 
  Case: SUPERTYPE 
   Remove the node 
 
  Case: OF 
   Remove the node 
 

Case: TOTAL_OVER 
Remove the node 

   
 Case: END_SUBTYPE_CONSTRAINT 
  Remove the node 

 
2.3 For each non-terminal node in the parse tree 

Case: Entity_Ref 
Create a type node for the type whose name is identified by the 
letters, which are the descendants of entity_ref 
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  Case: Oneof 
Create an ONEOF constraint node with the same parent and 
children 

   
Case: Total_Over 

Create a TOTAL_OVER constraint node with the same parent and 
children 

   
 Case: Abstract 
  Remove the node and it's children 
 

Case: Subtype_Constraint_Head 
 Remove the node and it's children 
 
Case: default (all others) 
 Remove the node and connect its children to its parent. 
 

2.4 If any two type nodes are directly connected, replace the edge with two 
edges and add an ANDOR constraint node connecting the two.   

 
3.  For each Subtype Constraint, SC, for Supertype S 

/* Union Subgraphs together in two phases */ 
3.1 For each Subtype Constraint, SCi ..SCn-1 of S {  

/* Merge the branch of the graphs that have Total Over Constraints */ 
Check for Total Over Constraints in the subgraph for SCi and SCi+1 

 
Case: Neither graph has a Total Over Constraint 
 Result is null 

 
Case: Only SCi has a Total Over Constraint 

The result is SCi from which we have removed the subtree that is 
rooted at the ANDOR, ONEOF, or AND constraint node, which is 
a direct child of the type node S. 

 
Case: Only SCi+1 has a Total Over Constraint 

The result is SCi+1 from which we have removed the subtree that 
is rooted at the ANDOR, ONEOF, or AND constraint node, which 
is a direct child of the type node S. 

 
Case: Both SCi and SCi+1 have Total Over Constraints 

The result is a tree with a root node of S.  The only child of S is an 
ANDCP constraint node whose first child is the subtree of SCi, 
which is rooted at the TOTAL_OVER constraint node.  The 
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ANDCP node's second child is the subtree of SCi+1, which is 
rooted at the TOTAL_OVER constraint node. 

 
Consider Result as SCi+1 graph for the next iteration 

} /* End For*/ 
 

3.2 For each Subtype Constraint, SCi ..SCn-1 of S { 
/* Merge the branch of the graphs that have Subtype Expression Constraints */ 

Check for Subtype Expression constraints in the subgraph for SCi and 
SCi+1 

 
Case: Neither graph has a Subtype Expression Constraint 

   Result is null 
 

Case: Only SCi has a Subtype Expression Constraint 
The result is SCi from which we have removed the subtree that is 
rooted at the TOTAL_OVER constraint node, which is a direct 
child of the type node S. 

 
Case: Only SCi+1 has a Subtype Expression Constraint 

The result is SCi+1 from which we have removed the subtree that 
is rooted at the TOTAL_OVER constraint node, which is a direct 
child of the type node S. 

 
Case: Both SCi and SCi+1 have Subtype Expression Constraints 

The result is a tree with a root node of S.  The only child of S is an 
ANDCP constraint node whose first child is the subtree of SCi, 
which is rooted at the ANDOR, ONEOF, or AND constraint node.  
The ANDCP node's second child is the subtree of SCi+1, which is 
rooted at the ANDOR, ONEOF, or AND constraint node. 

 
Consider Result as SCi+1 graph for the next iteration 

 } /* End For*/ 
3.3 For each Supertype, S, 

/* Merge the subgraphs from steps 3.1 and 3.2 adding an ANDCP constraint node 
if necessary. */ 

 
If both steps 3.1 and 3.2, generate graphs, then do the following:  

Create an ANDCP node whose parent is the type node for S. 
The first child of the ANDCP node is the subtree generated from step 3.1 
and the second child is the subtree generated from step 3.2 when the root 
nodes are removed. 

 

  60



 

The parse tree has now been converted into a subgraph of the evaluation graph. 
 
II. Union all of the subgraphs with respect to the Entity nodes 
  
IV. For each Entity which is neither a Subtype/Supertype 
 Create a type node. 
 
V. For each Abstract Supertype node  

Convert all type nodes in the graph, which represent Abstract Supertypes 
to be Abstract type node. 

 

Given the revised algorithm above, an example of its use is now given using the 

EXPRESS in Example 7-2.  Step I.1.1 of the first phase of the algorithm generates the parse trees 

shown in Figure 7-5a 

SUBTYPE_CONSTRAINT item_types_1 FOR item; 
ONE OF (book_item, journal_item); 
TOTAL_OVER (book_item, journal_item); 

END_SUBTYPE_CONSTRAINT; 
 
SUBTYPE_CONSTRAINT item_types_2 FOR item; 

TOTAL_OVER (circulating_item, noncirculating_item); 
END_SUBTYPE_CONSTRAINT; 
Example 7-2 
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Figure 7-5a – Example 7-2 – Parse Tree 
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Applying the cases in step I.1.2, the algorithm modifies the parse trees to those shown in Figure 

7-5b.  The ONE OF, TOTAL_OVER, and END_SUBTYPE_CONSTRAINT nodes are removed 

from the tree. 
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Figure 7-5b – Example 7-2 – Parse Tree After Step 1.2 
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Applying the cases in step I.1.3, the algorithm generates the subgraph shown in Figure 7-5c.  The 

subtype_constraint_head subtree is removed completely from the parse tree.  Also the 

subtype_constraint_body, subtype_expression, subtype_factor, subtype_term, nodes are removed 

from the tree each time making its children the children of its parent.  The entity_ref nodes are 

converted to type nodes labeled with the name of their direct child.  The one_of node is 

converted to a ONEOF constraint node and the total_over node is converted to a TOTAL_OVER 

constraint node. 

 
Figure 7-5c – Example 7-2 – Parse Tree After Step 1.3 
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Applying the cases in step I.2.1, the algorithm generates the subgraph as in Figure 7-5d.  The 

Total Over constraints from the two parse trees are merged together with an ANDCP constraint 

node.  

 
Figure 7-5d – Example 7-2 – Parse Tree After Step 2.1 

Applying the cases in step I.2.2, the algorithm generates the subgraph as in Figure 7-5e.  The 

subtype expression constraints from the two parse trees are merged together with an ANDCP 

constraint node.  In this example only one of the trees has a subtype expression constraint. 

 
Figure 7-5e – Example 7-2 – Parse Tree After Step 2.2 
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Applying the cases in step I.2.3, the algorithm merges the subgraph in Figure 7-5d and the 

subgraph in Figure 7-5e into one subgraph creating an ANCP node to combine the Total Over 

constraints with the subtype express constraints.  Figure 7-5f shows these two subgraphs merged 

together. 

 
Figure 7-5f – Example 7-2 – Parse Tree After Step 2.3 

Applying step II, the algorithm merges the subgraphs with respect to the Entity nodes.  This step 

will remove the multiple type nodes that may be present in a subgraph.  Figure 7-5g shows the 

result of this step. 
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Figure 7-5g – Example 7-2 – Evaluation Graph 

Steps III through V don't apply to this example, so the result of the first phase of the Test 

Algorithm is Figure 7-5g making the graph the evaluation graph for this example. 

The second phase is to evaluate a complex entity instance type.  The input to the second 

phase is the Evaluation graph generated in phase 1 and the complex entity instance type T to be 

tested.  The output is the result of the evaluation, which could be TRUE, FALSE, or ERROR.  

TRUE is obtained when the constructed combination satisfies the Supertype constraints, FALSE 

is obtained when the combination is not part of the current type but does not violate the 

Supertype constraints, and ERROR is obtained when the combination violates at least one of the 

Supertype constraints.  Phase 2 has been revised to include the handling of Total Over 

constraints.  The specific evaluation algorithm is:  
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Phase 2 - Revised 
For each disjoint subgraph, evaluate recursively starting at the root node 

 
To evaluate a node, n 

  Evaluate all of the children from left to right 
 

Case 1: the node, n, is a leaf type node 
  If n ∉  T then  

   Evaluate to FALSE 
 Else 

     If all Supertypes of n ∈  T 
       If n is not an ABSTRACT type node 

           Evaluate to TRUE 
      Else 

          Evaluate to ERROR 
        Else 
              Evaluate to ERROR 
 

Case 2: the node is a non-leaf type node 
  If n ∉  T 

    If the child node evaluates to TRUE 
        Evaluate to ERROR 
        Else if the child node evaluates to FALSE 

       Evaluate to FALSE 
        Else 
              Evaluate to ERROR 
  Else /* n ∈  T */ 

    If all Supertypes of n ∈  T 
        If n is not an ABSTRACT type node 
                    If the child node evaluates to TRUE 
                        Evaluate to TRUE 

         Else if child evaluates to FALSE 
            Evaluate to TRUE 

                     Else  
                        Evaluate to ERROR 
                  Else /* n is ABSTRACT */ 
                     If the child node evaluates to TRUE 
                        Evaluate to TRUE 
                     Else if the child node evaluates to FALSE 
                        Evaluate to ERROR 
                     Else 
                        Evaluate to ERROR 
             Else /* all Supertypes of n∉  T */ 
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                Evaluate to ERROR 
 

Case 3: the AND Constraint node 
  If all the children nodes evaluate to TRUE 
                Evaluate to TRUE 
             Else if any child node evaluates to ERROR 
                Evaluate to ERROR 
             Else 
                Evaluate to FALSE 
 

Case 4: the ONEOF constraint node 
  If all the children nodes are FALSE 

   Evaluate to FALSE 
  Else if only one child is TRUE and there are no ERROR evaluations 
        Evaluate to TRUE 
  Else /* if more than one TRUE or ERRORs */ 
        Evaluate to ERROR 
 

Case 5: the TOTAL OVER constraint node 
  If at least one of the children nodes is TRUE 

    Evaluate to TRUE 
 Else /* none of the children are TRUE */ 

     Evaluate to FALSE 
 

Case 6: the ANDCP constraint node 
  If all the children nodes evaluate to TRUE 

    Evaluate to TRUE 
  Else if any child node evaluates to ERROR 

    Evaluate to ERROR 
 Else 

     Evaluate to FALSE 
 

Using the result of phase 1 in Figure 7-5g and evaluating complex entity instance, 

T={book_item&item}, the following is the result of phase 2 of the Test Algorithm.  Evaluating 

all of the children of the root node, in this case item, we start with the leaf node represented by 

circulating_item.  Case 1 evaluates this node as FASLE because the node is not part of the 

complex entity instance type T.  The next node evaluated is noncirculating_item, which is 

evaluated to FALSE in case 1 because circulating_item is not part of the complex entity instance 

type T.  The next node evaluated is the TOTAL_OVER constraint node, which will be evaluated 
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by using Case 5 of the algorithm.  This node is evaluated to FALSE because none of its children 

has evaluated to TRUE.  The next node to be evaluated is the book_item node, which is a leaf 

node and is evaluated to TRUE using Case 1 because it is part of the complex entity instance 

type T.  The journal_item node is evaluated to FALSE because it is not part of the complex 

entity instance type T.  The TOTAL_OVER constraint node is evaluated next and is evaluated to 

TRUE using Case 5 because at least one of its children evaluated to TRUE.  The next node to be 

evaluated is the ANDCP node, which is the parent of the Total Over nodes.  Using Case 6, this 

node evaluates to FALSE because not all of its children evaluated to TRUE.  This means that the 

Total Over constraints was not satisfied.  The next node to be evaluated is the child node of the 

ONEOF constraint node.  The book_item node is evaluated to TRUE using Case 1 because it is 

part of the T complex entity instance.  The next node is the journal_item, which evaluates to 

FALSE because it is not part of complex entity instance type T.  The ONEOF node evaluates to 

TRUE using Case 4.  The ANDCP node, which is a direct child of the item node evaluates to 

FALSE using Case 6.  One child of the ANCP node evaluated to FALSE and one evaluated to 

TRUE thus making the ANDCP node FALSE.  The final node to be evaluated is the item type 

node, which will be evaluated by using Case 2.  The child node of item evaluated to FALSE so 

this node will evaluate to FALSE.  Therefore, the complex entity instance tested using the 

evaluation graph in Figure 7-5g is an invalid instance. 

This chapter has presented a formal algorithm for the Test Algorithm and extended it to 

include support for the Total Over constraint.  This gives two algorithms, both of which process 

all the inheritance constraints in EXPRESS edition 3.  What remains to do is to test these 

algorithms for correctness, analyze their strengths and weaknesses, and prove their equivalence, 

which is addressed in the following chapters.  
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CHAPTER 8 

COMPARISON OF ALGORITHMS  
 

Both the Generate [4] and Test [7] Algorithms have similarities, advantages, and 

disadvantages, which will be considered in this chapter.  One similarity between the two 

algorithms is that they both have two phases.  The Generate Algorithm’s first phase generates a 

set of complex entity instances and the second phase searches for a specific instance in that set.  

The first phase of the Test Algorithm builds an evaluation graph and the second phase traverses 

the graph for each instance to be tested.  Another similarity between the two algorithms is that 

the first phase is performed only once for each inheritance hierarchy while the second phase for 

each algorithm is done for every instance being checked or tested.  The first phase of the 

Generate Algorithm is more complex than the first phase of the Test Algorithm.  The second 

phase of the Test Algorithm is more complex than the second phase of the Generate Algorithm.  

The main and more complex processing for the Generate Algorithm takes place in the first phase 

when the result set is generated.  The main and more complex processing for the Test Algorithm 

takes place in the second phase when the nodes in the evaluation graph are being tested. 

A major advantage of the Generate Algorithm is that the set of all legal combinations is available 

to the developer for a given inheritance hierarchy.  It only takes one-iteration of the first phase of 

the algorithm to generate this set.  After the first phase is complete, each comparison of complex 

entity datatypes with those in the set is done quickly by searching just the result set for the 

presence of the datatype.  This is very helpful when there is a large subset of complex entity 

datatypes that need to be evaluated. 

An advantage of the Test Algorithm over the Generate Algorithm is the ability to check 

only one instance instead of generating all possible combinations.  This allows developers to 

quickly check the relatively small set of combinations that are important to the model they are 

working on and not worry about the much larger set of legal, but probably meaningless 

combinations.  Also, the algorithm provides a quick result because only one iteration is needed to 

test a combination.  A disadvantage of the Test Algorithm is the time it takes to test several 
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combinations in the same hierarchy because the relatively complex second phase of the 

algorithm must be executed for each combination. 

However, the main disadvantage to using the Generate Algorithm is the time required to 

generate all of the combinations.  The Generate Algorithm requires many operations to evaluate 

each Entity type in the hierarchy thus making it very time consuming, and also results in a large 

complexity measure.  Several operations in the algorithm require the creation of sub-sets, which 

are used to evaluate the resulting set, thus greatly increasing the space required for the algorithm.  

In addition, maintaining multiple sets requires more time to verify that each set is correct as well 

as the time needed to add or remove them from the resulting set as required.  This is exacerbated 

by the fact that only a few of the legal combinations are of any practical value, and that a 

developer is usually only concerned with a small subset of these practical combinations.  This 

drawback is further complicated if the inheritance hierarchy is large thus making the generated 

set large.  The time required in computing the result set increases with both the number of levels 

and number of Entities in an inheritance hierarchy.  Consider example 8.1a below:  

 
SUBTYPE_CONSTRAINT item_types FOR item; 
 book_item ANDOR journal_item; 
END_SUBTYPE_CONSTRAINT; 
Example 8-1a 
 

The output from the Generate Algorithm for this example is: 

 {item, book_item&item, journal_item&item, book_item&journal_item&item} 

 Here three Entities (one Supertype and two Subtypes) have resulted in four elements in the 

resulting set.  Suppose that the Entity, circulating_item is added as another Subtype of item using 

the ANDOR constraint as seen in Example 8-1b.   

SUBTYPE_CONSTRAINT item_types FOR item; 
 book_item ANDOR journal_item ANDOR circulating_item; 
END_SUBTYPE_CONSTRAINT; 
Example 8-1b 

 

The output from the Generate Algorithm would be: 
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R={item, book_item&item, journal_item&item, circulating_item&item, 
book_item&journal_item&item, book_item&circulating_item&item, 
journal_item&circulating_item&item, 
book_item&journal_item&circulating_item&item} 
 

By adding one more Subtype, the size of the result set doubled to 8.  Compare this to the 

performance of the Test Algorithm, using Example 8-1a and testing the combination 

book_item&journal_item&item.   The evaluation graph in Figure 8-1a shows the instance 

combination is valid and it takes 4 steps to evaluate the Entity instance.   

 
Figure 8-1a – 3 Entity Evaluation Graph 

Further if Example 8-1b is used and the test combination is book_item&journal_item&item.  The 

evaluation graph in Figure 8-1b shows that the instance combination is valid and it only takes 6 

steps to evaluate the Entity instance.   
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Figure 8-1b – 4 Entity Evaluation Graph 

Furthermore, the seven other elements in the set created by the Generate Algorithm are not 

needed to evaluate this one complex entity instance.  Taking this a step farther, adding another 

Entity to the inheritance hierarchy would cause the Generate Algorithm to generate a set of 16 

items, while it would add only two more steps to the Test Algorithm.  By adding more Entities to 

the inheritance hierarchy, the Generate Algorithm will require more work to use than the Test 

Algorithm. 

Determining which algorithm a developer should use depends on the situation.  If the 

developer needs to check several instances at once, the Generate Algorithm would be the 

preferred algorithm.  Once the set is generated during the first phase of the algorithm, the 

developer can use a search method as many times as needed to look for each instance in the set.  

If only a few instances are to be checked, then the efficiency of the second phase is more than 

offset by the complexity of the first phase.  Thus if the developer only wants to check a few 

instances, the Test Algorithm would be the preferred algorithm.  This algorithm generates the 
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evaluation graph in the first phase, which is performed only once for each inheritance hierarchy.  

The second phase of the algorithm is repeated for each instance to be tested.  This can be very 

time consuming if the number of instances to be tested is large and the evaluation graph is large 

and complex.  To further analyze and compare the algorithms, the next chapter will show that the 

Generate and Test algorithms are truly comparable by proving that they both produce the same 

results for any tested partial complex entity instance type.
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CHAPTER 9  

ALGORITHM TESTING 
 

Testing is required to ensure that algorithms give correct results in a timely fashion and 

are equivalent.  It will be shown in this thesis that if the Test and Generate algorithms were 

equivalent for EXPRESS Edition 1, then they are equivalent for EXPRESS Edition 3.  The 

equivalence of the algorithms for Edition 1 has not been formally proven, but there is a large 

body of empirical evidence that demonstrates this.  The proof method will be based on the 

structure of the Test Algorithm.  Because the only new type introduced was the Total Over (the 

ANDCP being a specialized use of the existing AND node), only the Total Over needs be 

considered.  The structure of the evaluation graph also simplifies the proof.  Because a node is 

evaluated to TRUE, FALSE, or ERROR before its parent is evaluated the performance of a node 

is unaffected by the types of nodes that are its children.  Thus all that needs to be evaluated for 

the proof is the different ways in which a Total Over constraint can be built, and the possibility 

of the algorithms 'colliding' on multiple Total Over constraints.  To show that the modifications 

to the Generate Algorithm and additions to the Test Algorithm are correct they will be compared 

using the following test cases: 

1. An inheritance hierarchy with One Total Over 
2. An inheritance hierarchy with More than one Total Over on the same level 
3. An inheritance hierarchy with Multiple Total Overs on multiple levels 
4. An inheritance hierarchy with Total Overs with elements on multiple levels 
5. An inheritance hierarchy with Total Over that contains a Multiple Inheritance 

Subtype 
 
For each test case the original Generate Algorithm will be used to build the set of legal entity 

combinations, L.  To show the correctness of the modified Generate Algorithm, it will be used to 

build the set of legal combinations, R.  Then R and L will be compared, if they are identical the 

modified Generate Algorithm will be considered correct.  To test the Test Algorithm, the 

Evaluation graph will be built for the test case.  Then the power set, P, of all possible 

combinations of Entity types in the test case will be generated.  Each instance p in P will be 

tested using the Evaluation graph.  If all instances p that are in L evaluate to TRUE, and all 
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instances p that are not in L evaluate to FALSE or unknown then the Test Algorithm will be 

considered correct. 

 The five tests will be sufficient to test the correctness and equivalence of these 

algorithms.  The first test case (One Total Over) is the basis case that proves the algorithm will 

work with one set of Subtypes in a Total Over constraint.  The second test case (More than one 

Total Over on the same level) shows that multiple (because any group of N Total Overs can be 

operated on pair wise as N-1 Total Over pairs) declarations can exist on the same level in a 

schema without interfering with each other.  The third test case (Multiple Total Overs on 

multiple levels) proves that a developer can constrain multiple Subtypes on several levels.  These 

tests show that the Total Over constraints will evaluate correctly although they are on different 

levels.  Again, because any N Total Over, constraints can be considered as N-1 pairs of 

constraints this proves that multiple constraints on different levels will be correctly evaluated.   

The fourth test case (Total Overs with elements on multiple levels) is similar to the third 

case.  They show that the Entity types constrained by the Total Over need not be on the same 

level of the Inheritance Hierarchy.  The fifth test case (Total Overs that contain a Multiple 

Inheritance Subtype) demonstrates that a Total Over constraint containing an Entity type that 

inherits from multiple Supertypes is handled correctly. 

Taken together the first test shows the correct handling of a single Total Over with all 

constrained types on one level.  The next two cases show support for multiple Total Overs in the 

schema either on the same or different levels of the Inheritance Hierarchy.  The fourth case 

demonstrates the correct handling of Total Over constraints regardless of where its constituents 

appear in the hierarchy, and the final case shows that multiple inheritance in a Total Over 

constraint is also treated correctly.  Because all cases have been considered, if they are proved 

correct then the algorithms can be considered correct.  In the sections below, examples of the 

proof for each test case will be shown. 

The first test case is illustrated by the EXPRESS code in Example 9-1, which contains 

one Total Over case.  This example also shows the short-form names that will be used 

throughout the text. 
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SUBTYPE_CONSTRAINT item_types FOR item; 
book_item ANDOR journal_item ANDOR circulating_item; 
TOTAL_OVER (book_item, circulating_item); 

END_SUBTYPE_CONSTRAINT; 
 
I=item 
B=book_item 
C=circulating_item 
J=journal_item 
Example 9-1 
 

The original Generate Algorithm generates the set L = {I, I&B, I&C, I&B&C, I&B&J, I&C&J, 

I&B&C&J}.  The steps taken by the new Generate Algorithm are shown in Figure 9-1a.   

 
Figure 9-1a – First Test Case – Generate Algorithm 
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The final result set R shown in step k in Figure 9-1a is identical to set L above showing the 

correctness of the Generate Algorithm in this case. 

Using the Test Algorithm and Example 9-1, the set of Entity instances to be considered 

are: P = {I, B, J, C, I&B, I&J, I&C, B&J, B&C, J&C, I&B&J, I&B&C, I&J&C, B&J&C, 

I&B&J&C}.  It was found that the items {I, I&B, I&C, I&B&C, I&B&J, I&C&J, I&B&C&J} 

gave a result of TRUE, while the items {B, J, C, I&J, B&J, B&C, J&C, B&J&C} gave a result of 

FALSE or Unknown.  This behavior proves the correctness of this algorithm in this case.  Figure 

9-1b is annotated to show the steps taken in checking the item {I&B&C}.  Note that I&B&C is 

found in both sets L and R.   

 
Figure 9-1b – First Test Case – Test Algorithm 
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The second test case is illustrated by the EXPRESS code in Example 9-2 that contains 

more than one (specifically two) Total Over constraints on the same level. 

SUBTYPE_CONSTRAINT item_types_1 FOR item; 
book_item ANDOR journal_item ANDOR circulating_item ANDOR 
media_item ANDOR noncirculating_item; 
TOTAL_OVER (book_item, circulating_item); 

END_SUBTYPE_CONSTRAINT; 
 
SUBTYPE_CONSTRAINT item_types_2 FOR item; 
 TOTAL_OVER (media_item, noncirculating_item); 
END_SUBTYPE_CONSTRAINT; 
 
I=item 
B=book_item 
C=circulating_item 
J=journal_item 
M=media_item 
N=noncirculating_item 
Example 9-2 

 

The original Generate Algorithm generates the set L = {I, I&B&M, I&B&N, I&C&M, I&C&N, 

I&B&C&M, I&B&C&N, I&C&J&M, I&C&J&N, I&B&C&J&M, I&B&C&J&N, 

I&C&J&M&N, I&B&C&J&M&N}.  Figure 9-2a shows the outcomes for each step of the new 

Generate Algorithm. 
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Figure 9-2a – Second Test Case – Generate Algorithm 
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The final result set R shown in step k in Figure 9-2a is identical to set L above showing the 

correctness of the Generate Algorithm in this case.   

Using the Test Algorithm and Example 9-2, the set of Entity instances to be considered 

are: P = {I, B, C, J, M, N, I&B, I&C, I&J, I&M, I&N, B&C, B&J, B&M, B&N, C&J, C&M, 

C&N, J&M, J&N, M&N, I&B&C, I&B&J, I&B&M, I&B&N, I&C&J, I&C&M, I&C&N, 

I&J&M, I&J&N, I&M&N, B&C&J, B&C&M, B&C&N, B&J&M, B&J&N, B&M&N, 

C&J&M, C&J&N, C&M&N, J&M&N, I&B&C&J, I&B&C&M, I&B&C&N, I&B&J&M, 

I&B&J&N, I&B&M&N, I&C&J&M, I&C&J&N, I&C&M&N, I&J&M&N, B&C&J&M, 

B&C&J&N, B&C&M&N, B&J&M&N, C&J&M&N, I&B&C&J&M, I&B&C&J&N, 

I&B&C&M&N, I&B&J&M&N, I&C&J&M&N, B&C&J&M&N, I&B&C&J&M&N}.   

It was found that the items {I, I&B&M, I&B&N, I&C&M, I&C&N, I&B&C&M, 

I&B&C&N, I&B&J&M, I&B&J&N, I&B&M&N, I&C&J&M, I&C&J&N, I&C&M&N, 

I&B&C&J&M, I&B&C&J&N, I&B&C&M&N, I&B&J&M&N, I&C&J&M&N, 

I&B&C&J&M&N} gave a result of TRUE, while the items {B, C, J, M, N, I&B, I&C, I&J, 

I&M, I&N, B&C, B&J, B&M, B&N, C&J, C&M, C&N, J&M, J&N, M&N, I&B&C, I&B&J, 

I&C&J, I&J&M, I&J&N, I&M&N, B&C&J, B&C&M, B&C&N, B&J&M, B&J&N, B&M&N, 

C&J&M, C&J&N, C&M&N, J&M&N, I&B&C&J, I&J&M&N, B&C&J&M, B&C&J&N, 

B&C&M&N, B&J&M&N, C&J&M&N, B&C&J&M&N} gave a result of FALSE or Unknown.  

This behavior proves the correctness of this algorithm in this case.   

Figure 9-2b is annotated to show the steps taken in checking the item {I&B&C} using the 

Test Algorithm and Example 9-2.  Note that I&B&C is absent in both sets L and R.  
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Figure 9-2b – Second Test Case – Test Algorithm 

The third test case (Multiple Total Overs on multiple levels) proves that a developer can 

constrain multiple Subtypes on several levels.  This test shows that the developer can add more 

complexity to the Total Over constraints.  These tests show that the Total Over constraints will 
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evaluate correctly although they are on different levels.  The third test case is illustrated by the 

EXPRESS code in Example 9-3, which contains multiple Total Overs on multiple levels.    

SUBTYPE_CONSTRAINT item_types_1 FOR item; 
book_item ANDOR circulating_item ANDOR journal_item; 
TOTAL_OVER (circulating_item, journal_item); 

END_SUBTYPE_CONSTRAINT; 
 
SUBTYPE_CONSTRAINT book_item_types_1 FOR book_item; 
 reserve_item ANDOR fiction_item ANDOR noncirculating_item; 
 TOTAL_OVER (fiction_item, noncirculating_item); 
END_SUBTYPE_CONSTRAINT; 
 
I=item 
B=book_item 
C=circulating_item 
J=journal_item 
R=reserve_item 
F=fiction_item 
N=noncirculating_item 
Example 9-3 
 

The original Generate Algorithm generates the set L={I, I&C, I&J, I&B&C, I&B&C&F, 

I&B&C&N, I&B&C&R&F, I&B&C&F&N, I&B&C&R&F&N, I&C&J, I&B&C&J, 

I&B&C&J&F, I&B&C&J&N, I&B&C&J&R&F, I&B&C&J&R&N, I&B&C&J&F&N, 

I&B&C&J&R&F&N}.  Using Example 9-3, Figure 9-3a shows the results of each step in the 

new Generate Algorithm. 
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Figure 9-3a – Third Test Case – Generate Algorithm 
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The final result set R shown in step k in Figure 9-3a is identical to set L above showing the 

correctness of the Generate Algorithm in this case. 

Using Example 9-3, the Test Algorithm evaluates the multiple Total Overs on multiple 

levels correctly.  The set of Entity instances to be considered are: P={I, B, C, J, R, F, N, I&B, 

I&C, I&J, I&R, I&F, I&N, B&C, B&J, B&R, B&F, B&N, C&J, C&R, C&F, C&N, J&R, J&F, 

J&N, R&F, R&N, F&N, I&B&C, I&B&J, I&B&R, I&B&F, I&B&N, I&C&J, I&C&R, I&C&F, 

I&C&N, I&J&R, I&J&F, I&J&N, I&R&F, I&R&N, I&F&N, B&C&J, B&C&R, B&C&F, 

B&C&N, B&J&R, B&J&F, B&J&N, B&R&F, B&R&N, B&F&N, C&J&R, C&J&F, C&J&N, 

C&R&F, C&R&N, C&F&N, J&R&F, J&R&N, J&F&N, R&F&N, I&B&C&J, I&B&C&R, 

I&B&C&F, I&B&C&N, I&B&J&R, I&B&J&F, I&B&J&N, I&B&R&F, I&B&R&N, 

I&B&F&N, I&C&J&R, I&C&J&F, I&C&J&N, I&C&R&F, I&C&R&N, I&C&F&N, 

I&J&R&F, I&J&R&N, I&J&F&N, I&R&F&N, B&C&J&R, B&C&J&F, B&C&J&N, 

B&C&R&F, B&C&R&N, B&C&F&N, B&J&R&F, B&J&R&N, B&J&F&N, B&R&F&N, 

C&J&R&F, C&J&R&N, C&J&F&N, C&R&F&N, J&R&F&N, I&B&C&J&R, I&B&C&J&F, 

I&B&C&J&N, I&B&C&R&F, I&B&C&R&N, I&B&C&F&N, I&B&J&R&F, I&B&J&R&N, 

I&B&J&F&N, I&B&R&F&N, I&C&J&R&F, I&C&J&R&N, I&C&J&F&N, I&C&R&F&N, 

I&J&R&F&N, B&C&J&R&F, B&C&J&R&N, B&C&J&F&N, B&C&R&F&N, 

B&J&R&F&N, C&J&R&F&N, I&B&C&J&R&F, I&B&C&J&R&N, I&B&C&J&F&N, 

I&B&C&R&F&N, I&B&J&R&F&N, I&C&J&R&F&N, B&C&J&R&F&N, 

I&B&C&J&R&F&N}.   

It was found that items {I, I&C, I&J, I&B&C, I&B&C&F, I&B&C&N, I&B&C&R&F, 

I&B&C&F&N, I&B&C&R&F&N, I&C&J, I&B&C&J, I&B&C&J&F, I&B&C&J&N, 

I&B&C&J&R&F, I&B&C&J&R&N, I&B&C&J&F&N, I&B&C&J&R&F&N} gave a result of 

TRUE, while the items {B, C, J, R, F, N, I&B, I&R, I&F, I&N, B&C, B&J, B&R, B&F, B&N, 

C&J, C&R, C&F, C&N, J&R, J&F, J&N, R&F, R&N, F&N, I&B&J, I&B&R, I&B&F, 

I&B&N, I&C&R, I&C&F, I&C&N, I&J&R, I&J&F, I&J&N, I&R&F, I&R&N, I&F&N, 

B&C&J, B&C&R, B&C&F, B&C&N, B&J&R, B&J&F, B&J&N, B&R&F, B&R&N, B&F&N, 

C&J&R, C&J&F, C&J&N, C&R&F, C&R&N, C&F&N, J&R&F, J&R&N, J&F&N, R&F&N, 

I&B&C&R, I&B&J&R, I&B&J&F, I&B&J&N, I&B&R&F, I&B&R&N, I&B&F&N, 
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I&C&J&R, I&C&J&F, I&C&J&N, I&C&R&F, I&C&R&N, I&C&F&N, I&J&R&F, 

I&J&R&N, I&J&F&N, I&R&F&N, B&C&J&R, B&C&J&F, B&C&J&N, B&C&R&F, 

B&C&R&N, B&C&F&N, B&J&R&F, B&J&R&N, B&J&F&N, B&R&F&N, C&J&R&F, 

C&J&R&N, C&J&F&N, C&R&F&N, J&R&F&N, I&B&C&J&R, I&B&C&R&N, 

I&B&J&R&F, I&B&J&R&N, I&B&J&F&N, I&B&R&F&N, I&C&J&R&F, I&C&J&R&N, 

I&C&J&F&N, I&C&R&F&N, I&J&R&F&N, B&C&J&R&F, B&C&J&R&N, B&C&J&F&N, 

B&C&R&F&N, B&J&R&F&N, C&J&R&F&N, I&B&J&R&F&N, I&C&J&R&F&N, 

B&C&J&R&F&N} gave a result of FALSE or Unknown.  This behavior proves the correctness 

of this algorithm in this case.  Figure 9-3b shows the steps taken in checking the item {I&B&C}, 

using the Test Algorithm and Example 9-3.  Note that doing a scan of the result set R and L, the 

test case of {I&B&C} is found both sets. 
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Figure 9-3b – Third Test Case – Test Algorithm 
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The fourth test case (Total Overs with elements on multiple levels) is useful if there is a 

need to constrain Subtypes that are on different levels.  Because inheritance hierarchies can be 

multiple levels depending on their complexity, showing that a Total Over constraint can have 

elements on different levels and have the Total Over evaluate correctly is an important test.  

SUBTYPE_CONSTRAINT item_types_1 FOR item; 
book_item ANDOR journal_item ANDOR circulating_item  

END_SUBTYPE_CONSTRAINT; 
 
SUBTYPE_CONSTRAINT book_item_types_1 FOR book_item; 
 reserve_item ANDOR fiction_item ANDOR noncirculating_item; 
END_SUBTYPE_CONSTRAINT; 
 
SUBTYPE_CONSTRAINT item_types_2 FOR item; 

TOTAL_OVER (circulating_item, journal_item, reserve_item); 
END_SUBTYPE_CONSTRAINT; 
 
I=item     
B=book_item 
C=circulating_item 
J=journal_item    
R=reserve_item    
F=fiction_item    
N=noncirculating_item 
Example 9-4 

 

The original Generate Algorithm generates the set L={I, IBN, IBFN, IBRFN, IC, IJ, IBC, 

IBCR, IBCF, IBCN, IBCRF, IBCFN, IBCRFN, ICJ, IBCJ, IBCJR, IBCJF, IBCJN, IBCJRF, 

IBCJFN, IBCJRFN}.  Using Example 9-4, Figure 9-4a shows the results of each step in the 

Generate Algorithm. 
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Figure 9-4a – Fourth Test Case – Generate Algorithm 

The final result set R shown in step k in Figure 9-4a is identical to set L above showing the 

correctness of the Generate Algorithm in this case.   
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Using Example 9-4, the Test Algorithm evaluates the Total Over with elements on 

multiple levels correctly.  The set of Entity instances to be considered are: P={I, B, C, J, R, F, N, 



 

I&B, I&C, I&J, I&R, I&F, I&N, B&C, B&J, B&R, B&F, B&N, C&J, C&R, C&F, C&N, J&R, 

J&F, J&N, R&F, R&N, F&N, I&B&C, I&B&J, I&B&R, I&B&F, I&B&N, I&C&J, I&C&R, 

I&C&F, I&C&N, I&J&R, I&J&F, I&J&N, I&R&F, I&R&N, I&F&N, B&C&J, B&C&R, 

B&C&F, B&C&N, B&J&R, B&J&F, B&J&N, B&R&F, B&R&N, B&F&N, C&J&R, C&J&F, 

C&J&N, C&R&F, C&R&N, C&F&N, J&R&F, J&R&N, J&F&N, R&F&N, I&B&C&J, 

I&B&C&R, I&B&C&F, I&B&C&N, I&B&J&R, I&B&J&F, I&B&J&N, I&B&R&F, 

I&B&R&N, I&B&F&N, I&C&J&R, I&C&J&F, I&C&J&N, I&C&R&F, I&C&R&N, 

I&C&F&N, I&J&R&F, I&J&R&N, I&J&F&N, I&R&F&N, B&C&J&R, B&C&J&F, 

B&C&J&N, B&C&R&F, B&C&R&N, B&C&F&N, B&J&R&F, B&J&R&N, B&J&F&N, 

B&R&F&N, C&J&R&F, C&J&R&N, C&J&F&N, C&R&F&N, J&R&F&N, I&B&C&J&R, 

I&B&C&J&F, I&B&C&J&N, I&B&C&R&F, I&B&C&R&N, I&B&C&F&N, I&B&J&R&F, 

I&B&J&R&N, I&B&J&F&N, I&B&R&F&N, I&C&J&R&F, I&C&J&R&N, I&C&J&F&N, 

I&C&R&F&N, I&J&R&F&N, B&C&J&R&F, B&C&J&R&N, B&C&J&F&N, 

B&C&R&F&N, B&J&R&F&N, C&J&R&F&N, I&B&C&J&R&F, I&B&C&J&R&N, 

I&B&C&J&F&N, I&B&C&R&F&N, I&B&J&R&F&N, I&C&J&R&F&N, B&C&J&R&F&N, 

I&B&C&J&R&F&N}.   

It was found that items {I, I&B&N, I&B&F&N, I&B&R&F&N, I&C, I&J, I&B&C, 

I&B&C&R, I&B&C&F, I&B&C&N, I&B&C&R&F, I&B&C&F&N, I&B&C&R&F&N, 

I&C&J, I&B&C&J, I&B&C&J&R, I&B&C&J&F, I&B&C&J&N, I&B&C&J&R&F, 

I&B&C&J&F&N, I&B&C&J&R&F&N} gave a result of TRUE, while the items {B, C, J, R, F, 

N, I&B, I&R, I&F, I&N, B&C, B&J, B&R, B&F, B&N, C&J, C&R, C&F, C&N, J&R, J&F, 

J&N, R&F, R&N, F&N, I&B&J, I&B&R, I&B&F, I&C&R, I&C&F, I&C&N, I&J&R, I&J&F, 

I&J&N, I&R&F, I&R&N, I&F&N, B&C&J, B&C&R, B&C&F, B&C&N, B&J&R, B&J&F, 

B&J&N, B&R&F, B&R&N, B&F&N, C&J&R, C&J&F, C&J&N, C&R&F, C&R&N, C&F&N, 

J&R&F, J&R&N, J&F&N, R&F&N, I&B&J&R, I&B&J&F, I&B&J&N, I&B&R&F, 

I&B&R&N, I&B&F&N, I&C&J&R, I&C&J&F, I&C&J&N, I&C&R&F, I&C&R&N, 

I&C&F&N, I&J&R&F, I&J&R&N, I&J&F&N, I&R&F&N, B&C&J&R, B&C&J&F, 

B&C&J&N, B&C&R&F, B&C&R&N, B&C&F&N, B&J&R&F, B&J&R&N, B&J&F&N, 

B&R&F&N, C&J&R&F, C&J&R&N, C&J&F&N, C&R&F&N, J&R&F&N, I&B&C&R&N, 
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I&B&J&R&F, I&B&J&R&N, I&B&J&F&N, I&C&J&R&F, I&C&J&R&N, I&C&J&F&N, 

I&C&R&F&N, I&J&R&F&N, B&C&J&R&F, B&C&J&R&N, B&C&J&F&N, 

B&C&R&F&N, B&J&R&F&N, C&J&R&F&N, I&B&C&J&R&N, I&B&J&R&F&N, 

I&C&J&R&F&N, B&C&J&R&F&N} gave a result of FALSE or Unknown.  This behavior 

proves the correctness of this algorithm in this case.   

By doing a scan of the result set R, the test case of {I&B&C} is found in the set.  Figure 

9-4b shows the steps taken in checking the item {I&B&C} using the Test Algorithm and 

Example 9-4. 
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Figure 9-4b – Fourth Test Case – Test Algorithm 
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The fifth test case Total Overs that contain a Multiple Inheritance Subtype is useful 

because multiple inheritance is a possibility.  Proving that a developer can use a Total Over 

constraint, which includes a multiply inherited Subtype, is important.  These tests will show a 

developer that a model can be made as complex as needed for the real world situation. 

SUBTYPE_CONSTRAINT item_types_1 FOR item; 
book_item ANDOR circulating_item ANDOR journal_item ; 

END_SUBTYPE_CONSTRAINT; 
 
SUBTYPE_CONSTRAINT circulating_types_1 FOR circulating_item; 
 reserve_item; 
END_SUBTYPE_CONSTRAINT; 
 
SUBTYPE_CONSTRAINT journal_types_1 FOR journal_item; 
 reserve_item; 
END_SUBTYPE_CONSTRAINT; 
 
SUBTYPE_CONSTRAINT item_types_2 FOR item; 

TOTAL_OVER (book_item, jreserve_item); 
END_SUBTYPE_CONSTRAINT; 
 
I=item 
B=book_item 
C=circulating_item 
J=journal_item 
R=reserve_item 
Example 9-5 

 

 The original Generate Algorithm generates the set L={I, I&B, I&B&C, I&B&J, 

I&C&J&R, I&B&C&J&R}.  Using Example 9-5, Figure 9-5a shows the results of each step in 

the new Generate Algorithm. 
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Figure 9-5a – Fifth Test Case – Generate Algorithm 
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The final result set R shown in step k in Figure 9-5a is identical to set L above showing the 

correctness of the Generate Algorithm in this case. 

Using Example 9-5, the Test Algorithm evaluates the Total Over that contains a multiple 

inheritance subtype correctly.  The set of Entity instances to be considered are: P={I, B, C, J, R, 

I&B, I&C, I&J, I&R, B&C, B&J, B&R, C&J, C&R, J&R, I&B&C, I&B&J, I&B&R, I&C&J, 

I&C&R, I&J&R, B&C&J, B&C&R, B&J&R, C&J&R, I&B&C&J, I&B&C&R, I&B&J&R, 

I&C&J&R, B&C&J&R, I&B&C&J&R}.   

It was found that items {I, I&B, I&B&C, I&B&J, I&C&J&R, I&B&C&J&R} gave a 

result of TRUE, while the items {B, C, J, R, I&C, I&J, I&R, B&C, B&J, B&R, C&J, C&R, 

J&R, I&B&J, I&B&R, I&C&J, I&C&R, I&J&R, B&C&J, B&C&R, B&J&R, C&J&R, 

I&B&C&J, I&B&C&R, I&B&J&R, B&C&J&R} gave a result of FALSE or Unknown.  This 

behavior proves the correctness of this algorithm in this case. By doing a scan of the result set R, 

the test case of {I&B&C} is found in the set.  Figure 9-5b shows the steps taken in checking the 

item {I&B&C} using the Test Algorithm and Example 9-5.  
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Figure 9-5b – Fifth Test Case – Test Algorithm 

Testing an algorithm for correctness is an important step in determining if the algorithm 

is useful to the developer.  The test cases used in this chapter show that the output from the 

Generate Algorithm produces a TRUE result from the Test Algorithm.  Furthermore, an instance 

combination that results as a FALSE or ERROR from the Test Algorithm will not be in the set 

generated from the Generate Algorithm.  This proves that the Generate Algorithm is equivalent 

to the Test Algorithm.  Also, the test cases showed that the output from the modified Generate 
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Algorithm produced the same results as the original Generate algorithm.  This proves that the 

modified Generate Algorithm is equivalent to the original Generate algorithm.  The modified 

Generate Algorithm produces the results in a more efficient manner and is, therefore, the better 

version for the developers to use.  Developers can be assured the results will be correct by using 

either of these algorithms to test an instance combination. 
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CHAPTER 10 

CONCLUSION 
 
 The main focus of this paper was to compare the Generate and Test inheritance hierarchy 

algorithms for the EXPRESS language.  Due to the updating of EXPRESS planned for the third 

edition, both of the algorithms lacked efficient support for the new Total Over constraint.  This 

work demonstrated efficient extensions for both algorithms.  In the case of the Generate 

Algorithm the ISO proposed extension while correct was inefficient, a much more efficient 

extension has been proposed here and demonstrated to be equivalent to the ISO extension.   In 

the case of the Test Algorithm no extension had yet been proposed.  In the process of defining 

the extension it was found that the Test Algorithm only existed as a general description. A full 

formal algorithm was reverse engineered from this.  The strengths and weaknesses of both 

algorithms were analyzed and presented.  In addition both of these enhanced algorithms were 

compared for correctness and equivalence by using test cases based on how the new Total Over 

type was used in the inheritance hierarchy.  Each of these accomplishments will be reviewed 

below, and some proposed extensions to the work will be discussed. 

 The Generate Algorithm from the EXPRESS Language Reference Manual 4] generated 

all legal possible combinations of Entity types in the inheritance hierarchy.  The Generate 

Algorithm had been extended in edition three with a step to handle the Total Over constraint, but 

this was not an efficient method.  The original version of the Generate Algorithm generated a 

subset of partial complex entity data types by combining all of the Entity types in the Total Over 

set with all of the combinations in the result set.  This required that duplicates and invalid 

combinations be discarded from the result set in later steps, which makes this algorithm 

inefficient.  The new version proposed here generates a subset of partial complex entity data 

types that are invalid based on the Total Over constraint.  This subset is then removed from the 

result set that doesn’t allow for invalid combinations to be introduced.  This makes it easier for 

the user to generate a legal set of instances that they need and makes the algorithm more 

efficient. 
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Gunter Staub, Frank Schonefeld, and Markus Maier [7] developed the Test Algorithm.  This 

algorithm tests one instance for membership in an inheritance hierarchy without generating the 

entire set of legal combinations.  There are two phases to this algorithm: creating the evaluation 

graph and testing the instance.  The input to the first phase is the inheritance hierarchy and the 

output is the evaluation graph.  The input to the second phase is the evaluation graph and the 

partial complex entity instance to be tested and the output is a result of TRUE, FALSE, or 

ERROR.  The TRUE result means it is valid based on the inheritance hierarchy, while FALSE 

and ERROR means that it did not conform to one or more constraints in the hierarchy.  This 

algorithm has been published as a general description, but no formal algorithm of the steps 

needed to evaluate a partial complex entity data type was ever disclosed.  This formal model was 

created as part of this work.   The first step was to document the steps needed to generate the 

evaluation graph, followed by those needed to traverse that graph to evaluate the validity of a 

type combination.  The Test Algorithm did not support the proposed Total Over constraint, this 

paper has presented such an extension to the algorithm.   

 The revised Test and Generate Algorithms were compared on their similarities, 

advantages, and disadvantages and tested to for correctness and equivalence.  The Generate 

Algorithm takes a long time to generate all possible legal combinations but is very efficient at 

testing if a specific combination is valid or not, as all that is required is a lookup in the set.  The 

Test Algorithm exhibits the opposite behavior.  It can generate the evaluation graph quickly, but 

it takes a fair amount of time to evaluate the graph for the validity of a specific combination.   

This makes the Generate Algorithm very efficient when a large number of type combinations 

need to be tested, and the Test Algorithm is more efficient when just a few number of 

combinations need to be tested.  Because developers usually have just a few instance 

combinations to test, the Test Algorithm is usually the more efficient.  Also, as the number of 

Entity types increases by one for the Generate Algorithm, the number of partial complex entity 

data type in the set is doubled.  While increasing the number of Entity types for the Test 

Algorithm by one only required two more steps in the evaluation of the partial complex entity 

data type.  This makes the Test Algorithm more efficient as the inheritance hierarchy becomes 

more complex. 
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 The tests performed in this paper show that both the algorithms produced correct results 

and that the results from both are in fact equivalent.  The tests cases covered all possible ways 

the new Total Over constraint could be added into an existing inheritance hierarchy.  The proof 

showed that all combinations generated by the Generate Algorithm were accepted by the Test 

Algorithm, and that no combination of types not present in the generated set were accepted by 

the Test Algorithm.  It also showed that all combinations accepted by the Test Algorithm were 

present in the generated set, and that no item rejected by the test algorithm was present in the 

generated set.  These tests were performed over several cases each of which demonstrated one of 

the possible ways a Total Over constraint could be added into an existing inheritance hierarchy.  

With all possible cases evaluated the proof was considered complete. 

 This work has compared and extended the Generate and Test Algorithms, further work in 

this field is possible.  Specifically, the author has considered:  An induction proof of the 

equivalence of the Test and Generate Algorithms based on the number of nodes present in the 

evaluation graph and a comparison of the Test and Generate algorithms in terms of space 

efficiency.  An empirical study to confirm this theoretical one, timing runs of implementations of 

both the Test and Generate algorithms over a group of schemas used for STEP AIP’s. 
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APPENDIX A  

EXPRESS EDITION 1 – LIBRARY SCHEMA 

 

collection

(ABS)item

book_item journal_item

oversize_book_item reference_book_item

circulating_item
noncirculating item

patron

1 1

physical_shelf

subject_shelf

subject B[?..?]

is_located L[1:?]

checked_outby [1:1]

name

STRING

(DER)datedue

STRING
name

contains_items L[1:?]

INTEGER

*collection_id

title
callnum

*barcode

(INV) contained_by [1:1]

(INV) located_on [1:1]

BOOLEAN

at_bindery

status

INTEGER
loan_period

(INV) checks_out S[1:?]

size

*barcode

calendar.date
card_expired

address

mail_address

STRINGstreet

city

state

INTEGER

zip

STRING

(INV) classified_by B[1:?]

subject_shelf_label

physical_shelf_label

calendar.date

loaned_circulating_item

overdue_loaned_circulating_item

(DER)daysleft

*big

STRING

*loaned

*overdue

available_circulating_item
*not_loaned
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APPENDIX B  

EXPRESS EDITION 1 – LIBRARY SCHEMA 

SCHEMA library; 
 (* EXPRESS Edition 1 model of a library by J. Dawn Greer *) 
 REFERENCE FROM calendar; 
 
ENTITY collection;    -- library collection 
 name  : STRING; 
 contains_item :  LIST [1..?] OF item; 
 collection_id  : STRING; 
UNIQUE 
 collect  : collection_id; 
END_ENTITY; 
 
ENTITY item     -- item in the library 
ABSTRACT SUPERTYPE OF (ONEOF (book_item, journal_item) AND  
(ONEOF (circulating_item, noncirculating_item))); 
 title  : STRING; 
 callnum : STRING; 
 barcode : OPTIONAL INTEGER;  -- uniquely identifies the item 
INVERSE 
 contained_by : collection OF contains_item; 
 located_on : physical_shelf OF is_located; 
UNIQUE 
 item_single : barcode; 
END_ENTITY; 
 
ENTITY book_item 
 SUPERTYPE OF (oversize_book_item ANDOR reference_book_item) 
 SUBTYPE OF (item); 
 size  : INTEGER;   -- size in square feet of an item 
END_ENTITY; 
 
ENTITY journal_item   -- an item that is a journal 
 SUBTYPE OF (item); 
 at_bindery : BOOLEAN;  -- an item is being bound 
END_ENTITY; 
 
ENTITY circulating_item   -- an item that can be checked out by a person 
 SUPERTYPE OF (loaned_circulating_item ANDOR available_circulating_item) 
 SUBTYPE OF (item); 
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 status : STRING;   -- status of the item checked out or on the shelf 
 loan_period : INTEGER;  -- length of time the item can be checked out 
 checked_outby  : patron;  -- link to a person who checks out the item 
DERIVE 
 datedue : date := current_date() + loan_period; -- date the item is due 
 daysleft : INTEGER := datedue-current.date(); -- datedue minus current date 
END_ENTITY; 
 
ENTITY loaned_circulating_item  -- item is checked out to a person 
 SUPERTYPE OF (overdue_loaned_circulating_item); 
 SUBTYPE OF (circulating_item); 
WHERE 
 loaned : status = "Checked out"; 
END_ENTITY; 
 
ENTITY overdue_loaned_circulating_item -- item is overdue 
 SUBTYPE OF (loaned_circulating_item); 
WHERE 
 overdue : daysleft < 0; -- daysleft is negative (datedue is before the current date) 
END_ENTITY; 
 
ENTITY available_circulating_item - an item is available for check out 
 SUBTYPE OF (circulating_item); 
WHERE 
 not_loaned : status = “Not Checked out”; 
END_ENTITY; 
 
ENTITY noncirculating_item  -- an item that does not get checked out 
 SUBTYPE OF (item); 
END_ENTITY; 
 
ENTITY oversize_book_item 
 SUBTYPE OF (book_item); 
WHERE 
 big : size >= 2; -- an item larger that 2 square feet is considered big 
END_ENTITY; 
 
ENTITY reference_book_item 
 SUBTYPE OF (book_item); 
END_ENTITY; 
 
ENTITY patron;    -- person who uses the library 
 name  : STRING; 

 106 



 

 mail_address : address; 
 card_expired : date;  -- expiration date of the person's library card 
 barcode : INTEGER; -- barcode number that uniquely identifies a person 
INVERSE    -- patron is allowed to check out circulating items 
 checks_out  : SET [1:?] OF circulating_item FOR checked_outby; 
UNIQUE 
 parton_single : barcode; 
END_ENTITY; 
 
ENTITY physical_shelf;   -- physical shelf where items are stored 
 physical_shelf_label : STRING; 
 subject : BAG [1..?] OF subject_shelf; 
 is_located : LIST [1..?] OF item; 
END_ENTITY; 
 
ENTITY subject_shelf;   -- items are arranged by subject 
 subject_shelf_label : STRING; 
INVERSE 
 classified_by : BAG [1..?] OF physical_shelf FOR subject; 
END_ENTITY; 
 
ENTITY address;   -- address which holds street, city, state, and zip 
 street : STRING; 
 city : STRING; 
 state : STRING; 
 zip : INTEGER; 
END_ENTITY; 
 
END_SCHEMA; 
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SCHEMA calendar;   
(* Taken from Information Modeling: The EXPRESS Way by Douglas Schenck and 
Peter Wilson [5] *) 
 
TYPE months = ENUMERATION OF 
(January, February, March, April, May, June, July, August, September, October, 
November, December); 
 
ENTITY date; 

day : INTEGER; 
 month : months; 
 year : INTEGER; 
WHERE 
 days_ok : {1 <= day <= 31}; 
 years_ok : year > 0; 
END_ENTITY; 
 
FUNCTION current_date() : date; 
(* This function returns the date when it is called.  Typically, it will be implemented via a 
system provided procedure within the information base *) 
END_FUNCTION; 
 
END_SCHEMA; -- calendar 
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APPENDIX C  

EXPRESS EDITION 3 – LIBRARY SCHEMA 

collection

item

book_item journal_item

oversize_book_item reference_book_item

circulating_item
noncirculating item

patron

1 1

physical_shelf

subject_shelf

subject B[?..?]

is_located L[1:?]

checked_outby [1:1]

name

STRING

(DER)datedue

STRING
name

contains_items L[1:?]

INTEGER
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title
callnum

*barcode

(INV) contained_by [1:1]

(INV) located_on [1:1]

BOOLEAN
at_bindery

status

INTEGER
loan_period

(INV) checks_out S[1:?]

size

*barcode

calendar.date

card_expired

address

mail_address

STRINGstreet

city

state

INTEGER

zip

STRING

(INV) classified_by B[1:?]

subject_shelf_label

physical_shelf_label

calendar.date

loaned_circulating_item

overdue_loaned_circulating_item

(DER)daysleft

ABS

*big

String

*loaned

*overdue

available_circulating_item
*not_loaned
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APPENDIX D  

EXPRESS EDITION 3 – LIBRARY SCHEMA 

SCHEMA library version 3; 
 (* EXPRESS Edition 3 model of a Library by J. Dawn Greer *) 
 REFERENCE FROM calendar; 
 
ENTITY collection;    -- library collection 
 name  : STRING; 
 contains_items :  LIST [1:?] OF item; 
 collection_id  : STRING; 
UNIQUE 
 collect  : collection_id; 
END_ENTITY; 
 
ENTITY item;   -- item in the library 
 title  : STRING;   
 callnum : STRING;   
 barcode : OPTIONAL INTEGER;  -- uniquely identifies the item 
UNIQUE 
 items_single : barcode; 
INVERSE 
 contained_by : collection OF contains_items; 
 located_on : physical_shelf OF is_located; 
END_ENTITY; 
 
SUBTYPE_CONSTRAINT item_type FOR item; 
ABSTRACT SUPERTYPE; 
ONEOF (book_item, journal_item) AND  
ONEOF (circulating_item, noncirculating_item); 
TOTAL_OVER (book_item, journal_item); 
TOTAL_OVER (circulating_item, noncirculating_item); 
END_SUBTYPE_CONSTRAINT; 
 
ENTITY book_item; 
 SUBTYPE OF (item); 
 size  : INTEGER;   -- size in square feet of an item 
END_ENTITY; 
 
SUBTYPE_CONSTRAINT book_type FOR book_item; 
 (oversize_book_item ANDOR reference_book_item); 
END_SUBTYPE_CONSTRAINT; 
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ENTITY journal_item;   -- an item that is a journal 
 SUBTYPE OF (item); 
 at_bindery : BOOLEAN;  -- an item is being bound 
END_ENTITY; 
 
ENTITY circulating_item;   -- an item that can be checked out by a person 
 SUBTYPE OF (item); 
 status  : STRING;  -- status of the item checked out or on the shelf 
 loan_period : INTEGER;  -- length of time the item can be checked out 
 checked_outby  : patron;  -- link to a person who checks out the item 
DERIVE 
 datedue : date := current_date() + loan_period; -- date the item is due 
 daysleft : INTEGER := datedue – current_date();  -- datedue minus current date 
END_ENTITY; 
 
SUBTYPE_CONSTRAINT circulating_type FOR circulating_item; 
 (loaned_circulating_item ANDOR available_circulating_item); 
 TOTAL_OVER (loaned_circulating_item, available_circulating_item); 
END_SUBTYPE_CONSTRAINT; 
 
ENTITY loaned_circulating_item;  -- item is checked out to a person 
 CONNOTATIONAL SUBTYPE OF (circulating_item); 
WHERE 
 loaned : status = “Checked out”;  
END_ENTITY; 
 
ENTITY overdue_loaned_circulating_item;  -- item is overdue 
 CONNOTATIONAL SUBTYPE OF (loaned_circulating_item); 
WHERE 
 overdue : daysleft < 0;  -- daysleft is negative (datedue is before the current date) 
END_ENTITY; 
 
ENTITY available_circulating_item -item is available for check out 
 CONNOTATIONAL SUBTYPE OF (circulating_item); 
WHERE 
 not_loaned : status =”Not Checked out”; 
END_ENTITY; 
 
ENTITY noncirculating_item; -- an item that does not get checked out 
 SUBTYPE OF (item); 
END_ENTITY; 
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ENTITY oversize_book_item;  
 SUBTYPE OF (book_item); 
WHERE 
 big : size >=2; -- an item larger than 2 square feet is considered big 
END_ENTITY; 
 
ENTITY reference_book_item;  
 SUBTYPE OF (book_item); 
END_ENTITY; 
 
ENTITY patron;   -- person who uses the library 
 name  : STRING;  
 mail_address : address;  
 card_expired : date;  -- expiration date of the person's library card 
 barcode : INTEGER; -- barcode number that uniquely identifies a person 
UNIQUE 
 parton_single : barcode; 
INVERSE    -- patron is allowed to check out circulating items 
 checks_out  : BAG [1:?] OF UNIQUE circulating_item FOR checked_outby; 
END_ENTITY; 
 
ENTITY physical_shelf;   -- physical shelf where items are stored 
 physical_shelf_label : STRING;  
 subject : BAG [1:?] OF subject_shelf; 
 is_located : LIST [1:?] OF item; 
END_ENTITY; 
  
ENTITY subject_shelf;   -- items are arranged by subject 
 subject_shelf_label : STRING;  
INVERSE 
 classified_by : BAG [1:?] OF physical_shelf OF subject; 
END_ENTITY; 
 
ENTITY address;   -- address which holds street, city, state, and zip 
 street : STRING; 
 city : STRING; 
 state : STRING; 
 zip : INTEGER; 
END_ENTITY; 
 
END_SCHEMA; 
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SCHEMA calendar;   
(* Taken from Information Modeling: The EXPRESS Way by Douglas Schenck and 
Peter Wilson [5] *) 
 
TYPE months = ENUMERATION OF 
(January, February, March, April, May, June, July, August, September, October, 
November, December); 
 
ENTITY date; 

day : INTEGER; 
 month : months; 
 year : INTEGER; 
WHERE 
 days_ok : {1 <= day <= 31}; 
 years_ok : year > 0; 
END_ENTITY; 
 
FUNCTION current_date() : date; 
(* This function returns the date when it is called.  Typically, it will be implemented via a 
system provided procedure within the information base *) 
END_FUNCTION; 
 
END_SCHEMA; -- calendar 
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