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Abstract 

 Zinc dipyrrin complexes have the potential to act as cheap, effective photosensitizers. 

Synthesizing and studying different types could lead to more efficient solar energy harvesting 

processes, especially the production of solar fuel. Here, two attempts to synthesize 1,3,7,9-

tetraphenyl-5-mesityldipyrromethene are reported and discussed. According to 1H NMR, the first 

synthesis attempt was not successful. The second synthesis attempt was not purified effectively, 

so 1H NMR produced inconclusive results. Further purification strategies or alternate synthesis 

methods are required. 
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Background 

 In 2019, 80% of the energy consumed by the United States came from fossil fuels. 1 

Although the production of renewable energy reached an all-time high, the US still displayed a 

heavy reliance on coal, petroleum, and natural gas. In 2019, for example, the US burned 3.4 

billion barrels of finished gasoline (140 billion gallons or 540 billion liters). 1 2 The reliance on 

fossil fuels is destructive to the environment: extraction accidents wreck local ecosystems, 

refining processes produce toxic waste, and burning fuel contributes to more than 75% of the 

country’s total carbon emissions. 3 Negative impacts like these draw attention and value to green 

energy. Developing a cheap, clean, renewable source of fuel could effectively curtail some of the 

damaging effects of burning fossil fuels.  

 The development of renewable fuel sources can be inspired and informed by plants. 

Current solar panels produce electricity, but photosynthesis produces fuel, usually in the form of 

sugar. When the fuel is synthesized, it incorporates carbon dioxide that’s already in the 

atmosphere, and when the fuel is burned, the CO2 emissions reach a net zero. This fills many 

gaps in energy-related needs. Electricity, while useful, is not applicable in every circumstance. It 

cannot power an internal combustion engine, the dominant power supply for vehicles such as 

cars, boats, and airplanes. If photosynthesis could be copied and harnessed efficiently, more 

green fuel sources would be accessible to the general market and the applications of renewable 

energy would diversify. 

 The process of photocatalysis, the fundamental chemical reaction at the base of 

photosynthesis, has been extensively studied and has already been replicated in different ways. 

The easiest way to convert CO2 to a usable liquid fuel is to reduce the compound to carbon 

monoxide (CO). 4 Through Fischer-Tropsch synthesis, CO and H2 gas can be restructured into 
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liquid gasoline. This mechanism relies on chain reactions—it is a widely studied and applicable 

technology. 5 When approaching the process of solar-generated fuel, it is extremely sensible to 

incorporate established processes like Fischer-Tropsch to simplify the aims in our own 

experimental designs. 

 The reduction of CO2 relies on two primary components: a photosensitizer and a carbon 

dioxide reduction catalyst. A photosensitizer is a molecule which absorbs radiation (in this case, 

energy in the form of sunlight) and uses the energy to alter another molecule. 6 A carbon dioxide 

reduction catalyst is a compound that’s specifically designed to add electrons to CO2 and to 

instigate the transition to the more useful compound CO. 

 Some compounds, such as certain rhenium(I) diamine complexes (Re) can serve both 

functions. Re complexes are photochemically active and they can also selectively interact with 

carbon dioxide to form the desired CO. Although studying such rhenium complexes can provide 

great insight into the photocatalytic process as a whole, it’s highly implausible to use them in the 

large-scale production of solar fuel. First, rhenium is rare and expensive. Second, the studied 

rhenium complexes denature relatively quickly. Catalysts occasionally bind to the CO2 instead of 

reducing it, turning [fac-Re(bpy)(CO)3Cl], for example, into [fac-Re(bpy)(CO)3OC(O)H]. These 

resulting formate complexes no longer serve their purpose of reduction. Finally, rhenium 

complexes need to absorb lower wavelengths of light. They require ultraviolet light, rather than 

visible light, to operate efficiently, which increases their tendency to denature and requires more 

energy. 7 Sunlight only contains a small amount of ultraviolet light: only 5% of solar terrestrial 

radiation is between 100-400 nm. 8 

 The limitations of Re complexes can be partially evaded when photocatalyzed carbon 

dioxide reduction processes incorporate separate components. Recent developments in carbon 
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dioxide reduction catalysts have produced a sizeable collection of effective and inexpensive 

compounds that can act as co-catalysts for established photosensitizers. Iron porphyrin 

complexes are a good example of such CO2 reduction catalysts. These complexes have high 

turnover numbers of carbon dioxide to carbon monoxide in photochemical processes. 9 When the 

iron porphyrin complexes are paired with a photosensitizer, the speed and efficiency of carbon 

dioxide reduction significantly increases, changing turnover numbers of 30 to turnover numbers 

of up to 140. Photosensitizers absorb light in the visible region, rather than the ultraviolet region, 

which means that they can catalyze a reduction reaction using a lower energy. This reduces the 

photodegradation of the catalyst itself. The photosensitizer can also contribute the required 

electron for C-O bond cleavage. 10 The electron transfer and the full reaction mechanism are both 

pictured below in Figure 1.1, where 9-cyanoanthracene (9CNA) acts as a photosensitizer and 

triethylamine (TEA) acts as the photosensitizer’s electron donor. 
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 In Figure 1.1, the changing oxidation state of the catalyst’s central metal helps illustrate 

the path of electrons. The iron-carbon bond allows the reduction to take place, but the iron 

catalyst relies on the photosensitizer’s solar-induced electron transfers. 

 The structures of iron porphyrin complexes have been well studied and well designed. 

Unfortunately, the most effective accompanying photosensitizers include the element iridium, 

which is rare and inaccessible like the previously mentioned rhenium. The cheapest 

accompanying photosensitizers, such as the 9-cyanoanthracene referenced in Figure 1, have low 

CO yields. To apply renewable fuel systems on a large scale, CO2 reduction catalysts need 

photosensitizers that are both inexpensive and effective, unlike the options presented thus far. 

 In Figure 1.2, three examples of carbon dioxide reduction catalysts are pictured, 

including an iron porphyrin on the far left. All three of these complexes are built from 

inexpensive components and have successfully been paired with photosensitizers.  

 

 One of the aims of this research group is to develop novel photosensitizers which pair 

well with previously developed catalysts, specifically iron porphyrin complex catalysts. Zinc 

dipyrrin complexes have potential to serve such a purpose.  
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Why Zinc Dipyrrin complexes? 

 An ideal photosensitizer is cheap and easily made. It should absorb light and should 

effectively transfer an electron to a 

carbon dioxide reduction catalyst. In 

this context, this means the excited 

state of a photosensitizer must last 

long enough for electron transfer to 

occur. Zinc dipyrrin complexes fit all 

of the first requirements: they’re not 

expensive or difficult to synthesize and they usually appear dark blue or purple. In certain 

conditions, these dipyrrin complexes have been observed to achieve long-lived triplet states. 11 

 When valence electrons absorb energy, the electrons can be promoted to a higher orbital. 

“Spin up” and “spin down” describe the electrons’ angular momentum. In Figure 1.3, the ground 

state energy is depicted on the far left. The two pictured electrons are occupying the same orbital 

and have different spins. The singlet excited state and triplet excited state both have electrons in 

different orbitals, but the triplet excited state energy contains electrons which also have the same 

spin. A triplet state is difficult to achieve, but since the de-excitation state is spin-forbidden, it 

will last a long time. 

 A zinc dipyrrin complex’s properties change based on the structures of its ligands. Such 

structures are easily manipulated. When symmetrical ligands include a central mesityl group (as 

opposed to phenyl) the lifetimes of singlet excited states in zinc dipyrrin complexes significantly 

increase. Most bis(dipyrrinato)-metal complexes are not able to retain their excited states for 

long periods of time, which makes this aspect of zinc complexes stand out. 12  
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 A visualization of such mesityl groups are pictured in pink 

in Figure 1.4. Mesityl groups contribute more steric hinderance, 

reducing the likelihood that a complex can spend its energy on 

conformational changes. The symmetry in zinc dipyrrin 

complexes is illustrated as well in Figure 1.4. Two identical 

ligands are attached orthogonally to a central zinc ion. In polar 

solvents, symmetrical complexes (such as these) lose their 

symmetry when an electron on one ligand is transferred to the 

other. The ligand accepting the electron becomes negatively 

charged, and the other ligand becomes positively charged. 

Theoretically, this symmetry-breaking charge-transfer 

encourages intersystem crossing, or quick transitions between 

electronic states with different spin multiplicities (such as the transition from a singlet state to a 

triplet state). Efficient formations of charge-separated states do not necessarily increase the 

formations of triplet states, but the long-lasting triplet states have been quantified and observed 

in zinc complexes which display these tendencies. 11 13 

 The effects of mesityl groups are already established, but the effects of different 

functional groups at the R1, R2, and R3 positions in Fig 1.3 have not been studied in detail. If 

photosensitizers are to be developed from zinc dipyrrin complexes, it is important to understand 

how these R groups contribute to the complex’s properties. The groups may affect how the 

complex interacts with light, how well it can form and maintain triplet excited states, and how 

effectively it interacts with carbon dioxide reduction catalysts. For a photosensitizer to react well 

with an accompanying catalyst, the photosensitizer’s reduction potential must be higher than the 
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reduction potential of the catalyst itself. 14 Zinc dipyrrin complexes do have higher reduction 

potentials than the iron porphyrin complex 5,10,15,20-tetrakis(pentafluorophenyl)-

21H,23Hporphyriniron(III) chloride, and have been successfully paired with that catalyst to 

reduce carbon dioxide. 15 

 A previous study by this lab group compared the formation of triplet excited states 

between two zinc dipyrrin complexes. Both complexes produced triplet state yields were 

significantly higher than the triplet state yields of photosensitizers like 9-cyanoanthracene. The 

functional groups of the two complexes were very similar: both had methyl groups on R1 and 

R3. The first compound, which had a hydrogen at R2, did not form triplet states as efficiently as 

the complex with an iodine at R2. 13 The effects of other functional groups, such as aromatic 

functional groups, are still unknown, but such knowledge could be highly useful in the 

optimization of a zinc dipyrrin photosensitizer. The goal of this experiment was to substitute a 

phenyl ring at the R1 and R3 positions (with a hydrogen at R2). Since aromatic groups are 

extremely bulky, the resulting zinc dipyrrin complex would be much more rigid. The absorption 

from phenol rings may increase the amount of sunlight that the complex is able to absorb or 

change the complex’s absorption maximum wavelength.  
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Experimental Methods 

General Procedure 

 All solvent and reagents were used as received, unless otherwise specified. NMR data 

was collected using a 400 MHz JEOL AS400 FT-NMR spectrometer and processed using 

SpinWorks 4.2.10 software. The starting compound 2,4-diphenyl-1H-pyrrole was synthesized 

according to published procedures. 16 The two attempted syntheses of 1,3,7,9-tetraphenyl-5-

mesityldipyrromethene were performed according to modified literature procedures. 11, 17  The 

two procedures are described below. 

 

Synthesis A 11 

 2,4-dipheynl-1H-pyrrole (0.5 g, 2.28 mmols) and mesitaldehyde (0.46 mL, 10.40 mmols) 

was added to 20 mL dichloromethane under nitrogen. When pyrrole had dissolved, 2 drops 

trifluoroacetic acid was added to the solution and the reaction was stirred under nitrogen for 6 

hours. The reaction was quenched with 3 drops triethylamine, washed three times with 10 mL DI 

water, and washed once with 15 mL brine (a saturated solution of NaCl in water). The product 

was dried with anhydrous Na2SO4 and the solvent was removed under reduced pressure.  

 The ligand product was added to 25 mL freshly distilled THF under nitrogen. When the 

ligand had dissolved, 2,3-dichloro-5,6-dicyano-p-benzoquinone (0.703 g, 3.10 mmols) in 4 mL 

THF was added and the reaction was stirred under nitrogen for 1 hour. The reaction was 

quenched with 1 mL triethylamine, washed five times with 10 mL of saturated sodium 

bicarbonate, and washed once with 15 mL brine. The product was dried with anhydrous Na2SO4 
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and the solvent was removed under reduced pressure. The final product was purified through 

column chromatography. Alumina, 4”, was used with a dichloromethane solvent.  

 

Synthesis B 17 

 2,4-diphenyl-1H-pyrrole (0.30 g, 1.37 mmols) and trimethylbenzoic acid (0.13g, 0.79 

mmols) was dissolved in 5 mL phosphorous oxychloride. The solution was kept over steam for 

one hour, cooled to room temperature, then poured over ice (~100-50 mL). Phosphorous 

oxychloride reacts vigorously with water and can cause a solution to boil if not chilled to the 

appropriate extent. When the phosphorous oxychloride had finished reacting with water, the 

solution was heated to boiling. The solvent was cooled and poured off of the tar-like product, 

then the tar was rinsed once with ~20 mL water. Methanol was added dropwise to the tar until 

the product had fully dissolved, then the methanol and product was poured into 100 mL of 0.1M 

NaOH. The resulting precipitate was filtered and dried in a desiccator. The final product was 

purified through column chromatography. 6” of alumina was used with a 40/60 

dichloromethane/hexanes solvent mixture. 
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Results and Discussion 

 Two different synthesis procedures were used, with the aim of creating the ligand 1,3,7,9-

tetraphenyl-5-mesityldipyrromethene. The first attempt was based on the procedure detailed in 

“Symmetry-Breaking Charge Transfer of Visible Light Absorbing Systems: Zinc Dipyrrins” by 

Trinh et al. 11 The procedure was followed with one adaptation to the starting compounds: 

instead of the 2-methylpyrrole, the 2,4-diphenyl-1H-pyrrole was used. The two reactions are 

compared in Figure 3.1 to highlight the differences in pyrrole structure. 

 

 To identify whether or not the target ligand had been synthesized, the product was 

measured through proton nuclear magnetic resonance spectroscopy (1H NMR). 1H NMR is a 

useful tool for the identification of organic complexes because it is able to provide detailed 

information on a molecule’s structure. An 1H NMR’s magnetic field will affect each proton in a 

slightly different way, based on that proton’s local chemical environment. 18 

 To determine the success or failure of the synthesis, an expected set of 1H NMR peaks 

were compiled. They were pulled from two sources: previous literature of the 1H NMR spectra of 
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the two starting compounds, and the chemical structure of the final ligand product. The 1H NMR 

spectrum of 2,4-diphenyl-1H-pyrrole is depicted below in Figure 3.2.  

 

 The hydrogens here are colored and labeled to ensure clarity. This spectrum was acquired 

from the 2,4-diphenyl-1H-pyrrole which had been synthesized in lab. All shifts present here are 

in accordance with recorded NMR values 16 which are printed below 

in Table 3.1. 

 When the pyrrole in Figure 3.2 is converted to the target 

ligand, which is illustrated in Figure 3.3, hydrogen 1 (marked in red) 

is no longer part of the structure. The peak at 6.8 ppm should not be 

present in the 1H NMR of  1,3,7,9-tetraphenyl-5-

mesityldipyrromethene. 

 The conversion of 2,4-diphenyl-1H-pyrrole and mesitaldehyde to the target ligand can 

change the 1H NMR peaks in other ways as well. First, they could change by location. Peaks that 

were originally found around 7.6 ppm could shift upfield or downfield due to their new local 
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chemical environment. Second, the peaks could change in size and group. Hydrogens 3, 7, 8, and 

12 are grouped together in Figure 3.2, but a ligand could reduce the symmetry between them and 

increase the number of distinct 1H NMR signals. When the synthesis procedure had been 

completed, the product was separated through column chromatography and consolidated into 

three fractions. The recorded 1H NMR peaks of mesitaldehyde in CDCl3 were combined with the 

1H NMR peaks of the pyrrole to produce a set of expected peaks for the ligand. These are printed 

in Table 3.1 

Table 3.1 1H NMR signals of reagents and projected products in CDCl3 

2,4-diphenyl-1H-pyrrole mesitaldehyde ligand (projected) 

8.45 (bs, 1H) 10.515 (s, 2H) 8.45 (bs, 1H) 

7.5-7.58 (m, 4H) 7.1 (d, 2H) 7.5-7.58 (m, 4H) 

7.34-7.42 (m, 4H) 2.36 (s, 6H) 7.34-7.42 (m, 4H) 

7.17-7.27 (m, 2H) 2.31 (s, 3H) 7.17-7.27 (m, 2H) 

7.15 (d, 1H) 
 

7.15 (d, 1H) 

6.83 (d, 1H) 
 

7.1 (d, 2H) 
  

2.36 (s, 6H) 
  

2.31 (s, 3H) 

 

 Unfortunately, the three collected fractions did not show signals indicative of formed 

ligands. The observed peaks are listed below in Table 3.2.  
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Table 3.2 1H NMR signals of first synthesis attempt 

Fraction 1 Fraction 2 Fraction 3 
 

10.56 (s) 
 

7.92 (s) 7.93 (s) 7.93 (s) 

7.51 (s) 7.219 (d) 7.51 (s) 

6.99 (d) 6.903 (s) 6.99 (s) 

5.3 (s) 
 

5.3 (s) 

3.74 (m) 3.746 (m) 3.74 (m) 
 

2.583 (s) 
 

 

 Fraction 3 is presented below in Figure 3.4 as an example 1H NMR. Several peaks are 

present here, including two peaks near 2.4 ppm which are expected from the mesityl group. 

Unfortunately, the aromatic region is fairly empty. The characteristic peak clusters produced by 

the phenyl groups are not evident, so the final ligand is definitely not present. 

 An interesting observation here is that several of the signals are present in all 3 fractions, 

such as the signal at 6.9 ppm. These 1H NMR measurements were taken alongside a 

measurement of the plain CDCl3 solvent, so the peaks recorded in Table 3.2 do not include any 

impurities from the solvent. 
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 Ultimately, this was not a successful synthesis. None of the collected fractions showed 

peaks congruent with expectations. Because of this, the second synthesis procedure, based on a 

paper by Rogers (1943), 17 was attempted on a large enough scale for similar purification. This 

procedure was different because the chosen synthesis procedure included pyrroles with phenyl 

groups. Modifications were made to the second reagent instead: methylbenzoic acid was 

substituted for benzoic acid. The two reactions are compared below in Figure 3.5.  
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 The products were separated through column 

chromatography. The separation produced seven distinct 

visual layers, but when the layers were compared via thin 

layer chromatography, the initial distinct colors were 

consolidated into three. All three final fractions appeared 

in various shades of pink and magenta.  

 The column itself is pictured in Figure 3.6. Here, 

five layers are visible: yellow, peach, purple, green, and 

light blue. 

 The three condensed fractions were measured via 

1H NMR. The shift values of each fraction are recorded 

below in Table 3.3.  
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Table 3.3 1H NMR signals of second synthesis attempt 

Fraction 1 Fraction 2 Fraction 3 

8.45 (d) 8.18 (bs, 2H) 8.45 (d) 

7.98 (d, 2H) 7.91 (d, 2H) 7.97 (d) 

7.645 (d, 3H) 7.45 (m, 6H) 7.65 (d) 

7.527 (m, 6H) 7.38 (m, 10H) 7.54 (m, 4H) 

7.467 (m, 10H)   7.45 (m, 4H) 

7.366 (m, 7H) 7.11 (s, 2H) 7.37 (m, 3H) 

7.242 (m, 1H) 7.06 (s, 1H) 7.24 (m, 2H) 

7.043 (m, 1H) 7.01 (m, 1H) 7.03 (s, 1H) 

6.96 (s, 3H) 6.99 (t, 5H) 6.99 (d, 1H) 

6.824 (s) 6.8 (d, 3H) 6.743 (m) 

6.76 (d) 6.5 (s, 2H) 6.703 (m) 

6.703 (s)   6.588 (d, 1H) 

6.588 (bs, 2H)   6.494 (bs, 1H) 

6.5 (bs, 3H)     

  2.343 (s, 4H)   

  2.296 (s, 9H)   

2.117 (bs, 1H) 2.177 (s, 7H) 2.124 (s) 

2.072 (bs, 2H) 2.099 (s, 4H) 2.078 (s) 

1.694 (bs, 7H) 1.764 (bs, 7H) 1.970 (s) 

1.415 (s) 1.252 (m) 1.676 (bs) 

1.273 (m, 10H) 0.882 (m) 1.248 (s) 

0.964 (d, 1H)   0.879 (m) 

0.839 (m, 10H)     

 

 As evident by the table alone, the 1H NMR samples were very impure even after the 

sample was separated into fractions. This suggests that the stationary and mobile phase that were 
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used in the column could not effectively separate the primary product from the rest of the 

compounds in the mixture. 

 When Table 3.3 is compared to the projected ligand values in Table 3.1, there are 

certainly clear overlaps. Fraction 2 has two peaks near 2.3 ppm, which match the expected peaks 

from the mesityl group. All three fractions showed strong signals in the aromatic region, and 

shared many peaks with the starting pyrrole. Unfortunately, the sheer quantity of peaks in each 

layer prevents definite conclusions from being drawn. Nevertheless, Figures 3.7 and 3.8 are 

presented below of the 1H NMR spectrum of Fraction 2, to discuss speculations with more ease. 

 

 In Figure 3.7, the aromatic region is presented alone to increase the visibility of 

individual peaks. There are clear similarities here to the peaks in Figure 3.2, but it is easy to 

visualize how much noise and interference is caused by the presence of impurities. The final 
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ligand could certainly have been formed, since no major peaks here are found to be missing. The 

second chromatography layer is most likely to contain it, since this layer includes the peaks at 

2.3 ppm which can be seen in Figure 3.8. 

 Figure 3.8 should contain only contain two peaks when measuring the ligand alone. Here, 

seven are visible. Some of the peaks might come from solvents which were used in the synthesis 

or used in the chromatography purification process. The broad peak at 1.7 ppm, for example, 

might come from atmospheric water, which usually appears around 1.56 ppm. 19 
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Conclusions 

 Because the final fractions were full of impurities, no definite conclusions could be 

drawn about the synthesis’s success. There were peaks in expected regions, but there were also 

several other peaks. 

 The difficulties in purification might be attributed to the nitrogens present in the finished 

ligand. These nitrogens would ensure rapid bonding when the ligand is introduced to zinc ions, 

but their reactivity could hinder their movement in a column. Their reactivity could also cause 

interactions with impurities and complicate other attempts at purification. 

 One way to combat this would be to introduce the speculated ligand to a solution of zinc 

ions, similar to the procedure detailed in Trinh et al (2014) for the formation of zinc dipyrrin 

complexes. If the ligand is able to form a complex with zinc, even in the presence of impurities, 

the final zinc product might be separated and characterized more easily than the individual 

ligand. 11 Another beneficial approach could be the further optimization of ligand purification 

techniques. Column chromatography fractions might become more distinct with a different 

combination of solvents. 
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