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Abstract 
 

The Appalachian Mountains are home to some of the most culturally rich places in the 
United States, but also some of the most impoverished communities as well. Several 
recent events support climate change across the globe. It is expected that Appalachian 
communities may suffer more dire consequences, as many communities lack 
strategies to help relieve some of the worst effects of climate change. Heatwaves are 
predicted to increase in duration and frequency over time, and communities that are 
not well prepared for the damaging effects of heatwaves can suffer unduly. This study 
aims to quantify the likelihood that people living in economically distressed counties 
in the Central and Southern Central regions of Appalachia will face heatwave related 
mortality more intensely than those who live in more affluent counties in the same 
regions. Twelve counties from each socioeconomic group have been selected based on 
the county economic status to analyze climate and mortality data over thirty-eight 
years starting in 1981 and ending in 2018. Data was collected during the warm season 
for each county, May 1st to September 30th, and compared to the mortality data from 
the same county during the same warm season. This study used all-cause mortality 
numbers from each of the twenty-four counties for the mortality data. The relative risk 
for each county in both the distressed and affluent categories was calculated. The 
average relative risk for each socioeconomic status were then compared. The results 
of this study did not show statistical significance in the likelihood that being in a 
socioeconomically distressed county increases one's chances of succumbing to 
heatwave related mortality in the Central and Southern Central regions of Appalachia. 
More research with larger sample sizes and more attention paid to the factors driving 
socioeconomic status is needed to better assess the relationship of heatwave mortality 
to socioeconomic status. 	  
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Chapter 1 
 
INTRODUCTION 

     

The unique Appalachian culture is characteristic of hundreds of years of the strife and 

struggle on the backs of the hard-working people who call the Appalachian Mountains their 

home. The distinctive way of life is under threat from many different factors, but none are as 

duplicitous as the rising temperatures the region faces due to climate change. The systemically 

impoverished people who have inhabited the various regions of Appalachia have lived in poverty 

for generations. However, those people are now beginning to see the effects of climate change on 

the home front. Increased duration, frequency, and intensity of heatwaves are one of the many 

side effects of a rapidly changing climate, and the implications and changes the heatwaves can 

bring about could result in unchecked disaster for Appalachian residents.   

Climate change is regarded as the defining moral issue of the 21st century with the 

consequences of which will affect future generations for ages to come (Levy & Patz, 2015). The 

consensus amongst the scientific community is that the world is, in fact, warming, and this is due 

to a rapid increase of anthropogenic sources polluting the atmosphere. The mass industrialization 

of multiple countries throughout the world has led to an unprecedented spike in carbon dioxide 

production (amid other greenhouse gases) that coincides with recent warming trends in data. In 

the United States alone, average temperatures have increased by 1.3°F to 1.9°F since record-

keeping began in 1895 (Sarofim, et al., 2016). The Earth’s climate has warmed by 0.6 C over the 

past 100 years, and it is continuing to rise (Walther, et al., 2002). Although the numbers seem 

insignificant, the reality of the situation is that such minute changes can have a drastic effect on 

Earth’s biota. Evidence shows how recent climate change affects a broad range of organisms 

residing in diverse geological locations (Walther, et al., 2002).  
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 The effects of global warming are all-encompassing. Extreme droughts and extreme 

floods will be occurring simultaneously across the globe, affecting millions of people. One of the 

biggest concerns of the rapidly changing climate is heatwaves. Heatwaves are prolonged periods 

of hot weather, and their intensity and frequency are increasing as the climate continues to 

change. In the United States, heatwaves are responsible for more annual fatalities than any other 

extreme weather event (Habeeb, Vargo, & Stone Jr, 2015). The findings of one study have 

confirmed that the frequency, duration, timing, and intensity of heatwaves are increasing across 

the country over fifty years (Habeeb, Vargo, & Stone Jr, 2015). Heatwave related illness and 

injury were also seen to increase (Habeeb, Vargo, & Stone Jr, 2015). The intensity of heatwaves 

can have severe consequences that affect all components of an ecosystem and even the Earth. 

Recently, prolonged and severe heatwaves and droughts are causing large-scale losses in carbon 

uptake and productivity (Ph. Ciais, 2005), which will inevitably result in ecosystem stress, 

reduced biological activity, and a positive feedback loop involving carbon (Williams, 2014). 

Heatwaves even affect oceans, as heatwaves are causing drastically warmer temperatures under 

the waves affecting marine biodiversity (Gibbens, 2019). 

 Humans are also threatened by rising temperatures, especially in the summer months. 

Whether it is direct or indirect, heatwaves can have severe effects on human health. Heatwaves 

can directly impact human health by aggravating pre-existing conditions, the 

immunocompromised, and young children and the elderly. In July of 1995, the event of a 

heatwave killed 522 people in Chicago alone (Adams, n.d.), and the Center for Disease Control 

has found that 384 people were killed each year due to excessive heat annually during the years 

of 1979 – 1992 (NOAA, 1995). Those at the most considerable risk were urban-dwelling elderly 

without access to air-conditioned environments (Adams, n.d.).  
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     Humans can suffer direct consequences of extreme heat events due to the body’s 

response to high temperatures as the human body is a complicated arrangement of intermingling 

cells that have evolved from intermingling chemicals. Arguably, the most important structure 

found in the human body (and many other places) is the protein, which accounts for about 50% 

of the organic material in the body (Widmaier, Raff, & Strang, 2016). Proteins have a crucial 

function in almost every physiological and homeostatic process from the regulation of gene 

expression to providing structural support for tissues and organs (Widmaier, Raff, & Strang, 

2016). Despite the importance to the body, proteins are relatively fragile structures that can be 

denatured by high temperatures or variations in pH. High temperatures, especially like those 

found during the summer months, can be devastating to outside workers such as those who work 

on farms.  

As average temperatures rise in the United States, the chances increase for a heat 

overload to occur on the feedback system responsible for maintaining a stable temperature in the 

body. Should a worker be exposed to the heat for prolonged periods, the body could experience a 

heatstroke, the consequences of which could be devastating. During a heat stroke, thermal stress 

can cause apoptosis or programmed cell death, with protein denaturation being the leading cause 

of such an event. As temperatures increase, the rate of damage increases; while this process may 

be reversible, denatured proteins ultimately form aggregates which disrupt normal cellular 

function and prevent replication, and ultimately cell death (Walter & Carraretto, 2016). Without 

treatment, a heatstroke will lead to organ failures and, eventually, death. Those most at risk of 

heat-related illness and injury are those over the age of 75, infants and young children, the 

overweight and obese, those with chronic illness, the pregnant or breastfeeding, the homeless, 
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the socially isolated, those working in hot environments, and those exercising vigorously in the 

heat. 

     Indirect human health effects of heatwaves include transportation, agriculture, energy, 

and water resource impacts (Adams, n.d.). Extreme heat events cause aircraft to lose lift, which 

can result in airport closings or potentially downed aircraft (Adams, n.d.). The infrastructure of 

roads and highways are affected by extreme heat events; the events cause the asphalt to soften 

and concrete roads to “explode.” This can cause roads to physically lift from the ground three to 

four feet in the air, which can cause car accidents and severe traffic jams (Adams, n.d.). During a 

1980 heat event, hundreds of miles of roads across the country buckled due to an extreme heat 

event (NOAA, 1980). Motorized vehicles also face stress due to high temperatures as their 

cooling systems struggle to keep up, and train rails can develop kinks and distortions during 

extreme temperature events resulting in train backups and potentially de-railings.  

     Many agricultural practices are sensitive to high temperatures. Much like humans, 

livestock can be severely impacted by extreme heat events, especially birds and poultry. Millions 

of birds are lost during heatwaves resulting in a decrease in quantity and quality of food 

products. The effect of heatwaves on crops and crop yields is harder to enumerate due to the 

fluctuations in temperature day to day and week to week, so it is unclear to know if the reduction 

in crop yields is a result of a few days of high temperatures or just above average summer 

temperatures (Adams, n.d.). Although, certain key cash and nutrient crops are more susceptible 

to heat stress than others. The protein content of wheat grain has been shown to vary in response 

to changes in temperatures, especially with higher temperatures (Schubert, 2014). High 

temperatures during key stages of plant development in plants like rice, maize, potato, and 

soybean can result in crop yield reductions as well (Adams, n.d.).  
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     It is prevalent for an increase in power outages to be seen during the summer months due 

to an increase in air conditioning use. However, high temperatures can affect electricity 

transmission, storage, and distribution systems (U.S. Department of Energy, 2013). As climate 

change continues to worsen, the extreme events that weaken the electricity systems are 

increasing. Electricity grids cannot handle prolonged periods of hot weather, and it results in 

transformer burnouts and power line failures (U.S. Department of Energy, 2013). 

     The most important indirect consequence of extreme heat events is water scarcity as a 

result of increased evaporation. Water is a crucial necessity for all human life, and climate 

change is accelerating the loss of drinkable surface and groundwater reserves. Climate change is 

worsening droughts’ frequency, intensity, and duration, and heatwaves play a significant role in 

the evaporation of water (U.S. Department of Energy, 2013). The increasing temperatures will 

increase the rate of water evaporation, which will result in faster water loss. This will result in a 

reduction of water available for hydropower (U.S. Department of Energy, 2013).  The reduction 

in hydropower will indirectly affect those populations who rely on hydropower for electricity. 

This can lead to higher rates of heat-based mortality in the future as many individuals need that 

electricity to fuel mitigating heatwave strategies.   

There are more factors involved with the dangers of heat-related illness than just 

temperature. Humidity, wind speed, and fluctuations in solar activity all have the potential to 

influence trends in heat-related mortality. However, it is difficult to assess the severity of 

heatwaves nationwide due to the climate variations region to region. This means that the climate 

in the northwestern part of the country is different from the climate in the southeastern part of the 

country. These deviations will skew data on a national level, so it is best to perform this kind of 

study on a regional level in order to obtain more accurate data and draw conclusions from it. 
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     Many risk factors influence the likelihood of heatwave vulnerability. Age, gender, 

socioeconomic status, remoteness, and geographical locations are all factors considered in 

assessing the heatwave vulnerability of populations. This study aims to focus on determining the 

influence socioeconomic status has on heatwave mortality in the central and southern central 

regions of Appalachia. There is evidence from recent U.S. studies that conclude that the rise in 

temperatures can result in a higher incidence of premature deaths, and there is evidence that 

being of low socioeconomic status has a role in heatwave mortality. However, the connection is 

multifaceted and difficult to ascertain (Sarofim, et al., 2016). 
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GOALS & OBJECTIVES  

This study examines climate data and mortality data to ascertain the extent to which two 

regions of Appalachia are affected by the changing climate temperatures. The two regions of 

concern are central and southern central Appalachia which are shown in yellow and orange in 

Figure 1 below (Appalachian Regional Commission, 2009).  

Figure 1 Map and Regions of Appalachia. Reprinted from “County Economic Status in Appalachia”, 
Appalachian Regional Commission, (2018, August ). 
https://www.arc.gov/research/MapsofAppalachia.asp?MAP_ID=148 
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The main goal of this study is to investigate the trends of heatwaves over the last several 

decades and determine if socioeconomic status can be correlated to total mortality numbers 

during a heatwave in the specific regions of central and southern central Appalachia. It is 

hypothesized that the economically distressed counties will have a higher heatwave mortality 

relative risk than more affluent counties. This study aims to provide the foundations of research 

for Appalachian heatwave mortality rates, and it is meant to provide the basic structure and 

research design for future analyses.  

 

BACKGROUND & LITERATURE REVIEW 
 

The Appalachians  

The regions encompass Tennessee, Kentucky, North Carolina, Virginia, and West 

Virginia. These regions are rich with high-value resources like coal, natural gas, and timber that 

have provided jobs to the residents of the regions for two centuries. Regardless of the resources 

available, the regions have been experiencing economic distress and poverty for decades 

(Housing Assistance Council, 2009). The region is also experiencing a phenomenon termed the 

“brain drain,” as educated individuals are leaving the area in order to find more prosperous areas 

that have more opportunities (Housing Assistance Council, 2009). The “brain drain” effect 

leaves the regions without the new professional and leadership skills that have developed with 

the younger, educated people of the area. This leaves behind the older generations, and this also 

creates a unique set of problems as the older generations often need specialized healthcare and 

other related services.  

The most critical setback for central and southern central Appalachia is the startling 

poverty and economic distress rates in the region (Appalachian Regional Commission, 2018). 
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Each county within the regions is classified into one of five economic categories, as noted in 

Figure 2: distressed, at-risk, transitional, competitive, and attainment (Appalachian Regional 

Commission, 2018). Distressed is defined as the most economically depressed counties, and they 

are ranked in the worst ten percent of the nation’s counties (Appalachian Regional Commission, 

2018). At-risk is defined as the counties that are at risk of becoming distressed, and they rank in 

the worst ten to twenty-five percent of the nation’s counties (Appalachian Regional Commission, 

2018). Transitional is defined as the counties that are transitioning between strong and weak 

economies, and they rank between the worst twenty-five percent and the best twenty-five percent 

of the nation’s counties (Appalachian Regional Commission, 2018). Competitive is defined as 

the counties that are able to compete in the national economy, and they are ranked in the best ten 

to twenty-five percent of the nation’s counties (Appalachian Regional Commission, 2018). The 

final category is attainment, which is defined as the economically most robust counties, and they 

rank in the best ten percent of the nation’s counties (Appalachian Regional Commission, 2018). 

	

Figure 2 Index Value Rank Distribution Reprinted from “County Economic Status in Appalachia”, 
Appalachian Regional Commission, (2018, August ). 
https://www.arc.gov/research/MapsofAppalachia.asp?MAP_ID=148 

 

The counties colored in red are the counties that are defined as distressed. The counties 

colored in a peach color represent the at-risk counties. The counties colored white are 
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transitional. The counties colored light blue are competitive, and the counties colored dark blue 

are counties that are in the attainment category.  

 

 

 

Figure 3. County Economic Status Reprinted from “County Economic Status in Appalachia”, 
Appalachian Regional Commission, (2018, August ). 
https://www.arc.gov/research/MapsofAppalachia.asp?MAP_ID=148 
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Based on Figure 3 (Appalachian Regional Commission, 2018), central Appalachia suffers 

one of the worst economically distressed county concentrations out of all of Appalachia with a 

total of fifty-four categorically distressed counties. Southern central Appalachia has five 

categorically distressed counties. As a result of the high concentration of categorically distressed 

counties, the poverty rate in south-central and central Appalachia is also high compared to the 

rest of the nation. The nation's poverty rate average is 15.1 % as of 2016 data, and the poverty 

rate for all of Appalachia is 16.7 %, with the highest concentration of poverty being in central 

Appalachia. The high poverty rates in the Appalachian area can be attributed to the lack-luster 

mineral extraction industry that used to be the life-blood of the Appalachian region. Many of the 

central Appalachian residents used to be directly or indirectly involved with the booming coal 

industry. However, with advancing technology, the amount of labor needed to extract coal 

efficiently has decreased exponentially. Now, the industry employs around three percent of 

residents in the region, and the heavy reliance on the shrinking industry has left Appalachia 

without alternative employment options (Housing Assistance Council, 2009). Without the 

necessary funding, those who are impoverished face more severe consequences of exposure to 

heatwaves.  

Temperatures were recorded in the central Appalachian region from the year 1901 to the 

year 2011, and it was found that the minimum temperatures of the region had increased by 1.1F 

(Butler, 2015). It was also found that both minimum and maximum temperatures were rising in 

the months of April and November, and across the region, the rainfall had increased by 2.3 

inches (Butler, 2015). Appalachia is dealing with the repercussions of climate change now, and 

many of the inhabitants are not prepared for the threats of the changing climate. Those who are 

impoverished and isolated are the ones who suffer most in prolonged heat. A combination of 
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climate change and a lack of funding for intense heat mitigating essentials has resulted in a new 

inequality issue, and those who cannot afford the essentials are more likely to suffer from 

heatwaves than those who are more economically advantaged. The energy industry that has 

rooted itself in the Appalachian Mountains has depleted many of the natural resources that would 

have helped mitigate the oncoming onslaught of heatwave effects (Karfakis, Lipper, & Smulders, 

2012). The adverse reaction of unchecked industry and poverty with climate change has left 

Appalachian natives in a dangerous situation concerning heatwaves and heat mortality. This 

study aims to quantify how much more the counties that are categorically distressed are 

compared to those that are not by comparing climate data and mortality data. 

Socioeconomic Status and Heatwaves 
 

Heatwaves, which are among the most impactful naturally occurring events to society, 

are increasing in their frequency, duration, and magnitude across the globe (World Health 

Organization, 2018). The most significant burden of heatwave morbidity and mortality are felt 

most poignantly with those who are physiologically impaired, those who are socially isolated, 

those who are of low socioeconomic status, and those who are older, typically 75+ years of age 

(Schifano, et al., 2009). Despite being commonly described as a contributing factor to one's 

increased morbidity and mortality risk in a heatwave, there is not an abundance of studies 

showing significant evidence contributing to the theory. This could be due to poor study design, 

various biases, and confounding factors impeding the effectiveness of the research. There is also 

no set definition of socioeconomic status because it is a broad concept that can include many 

factors like education, attainment, occupation, income, wealth, and deprivation (Andrew, 2010). 

For the scope of this study, socioeconomic status is a result of where the county falls on the 

federal poverty line.  
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     A study performed in Europe showed that socioeconomic status was a vulnerability to 

morbidity and mortality during heatwaves (Michelozzi P, 2005). A study measuring the 

differences of heatwave mortality by sociodemographic and urban landscape characteristics 

found both of those characteristics to be associated with mortality risk during heatwaves (Xu Y, 

2013). A study performed in Seoul suggested that residents with no education were particularly 

vulnerable to heatwave mortality, and education might be an indicator of low socioeconomic 

status (Son, Lee, Anderson, & Bell, 2012). However, a follow-up study conducted in Rome 

found that there was not enough evidence to support the rejection of the null hypothesis that 

socioeconomic status was a factor in heatwave morbidity and mortality (Schifano, et al., 2009), 

and a study performed in São Paulo, Brazil found little evidence that heatwave stress on 

mortality was different according to the socioeconomic status (Gouveia, Hajat, & Armstrong, 

2003). 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 
 
 

 



	 21	

Chapter 2 
 
MATERIALS & METHODS 	

	

 
Figure 4. Map of Affluent and Impoverished Counties. Note: Impoverished is interchangeable with Distressed 
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Purpose 
 

The purpose of this study was to determine if socioeconomic status has any effect on the 

likelihood of an individual dying during a heatwave due to complications as a direct or indirect 

result of the heatwave in the central and southern central Appalachian Regions. The first task 

was to determine the twelve most distressed and twelve most Affluent counties in the selected 

Appalachian region. The second task was to ascertain the quantity and frequency of heatwaves 

within those twenty-four counties and then to select a definition that is the most suitable for the 

study area. The third task was then to compare the months with confirmed heatwaves to the 

matching month’s total mortality numbers for all twenty-four counties. The final task was to 

compare the twelve distressed counties’ data to the twelve affluent counties’ data and test for 

statistical significance. 

 
1.  Collection 
 
Region Selection 
 

There are five sub-regions in Appalachia as determined by the Appalachian Regional 

Commission: Northern, North Central, Central, Southern Central, and Southern (Figure 1). The 

two regions chosen for this study were Central and Southern Central. Central Appalachia  has the 

highest density of distressed counties in the Appalachia region (Figure 3). Southern Central 

region was also included because it has climate similar to the Central region, but has more of the 

counties at higher levels of economic status, and thus allows the investigation of county 

economic status as a possible modifying effect..   	

County Selection 

The twenty-four counties were systematically chosen based on economic criteria and the 

counties' index value rank. The index value rank is the county's ranking amongst all the counties 
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in the country. The counties were chosen if they frequently ranked in the top twelve highest-

ranked counties and the top twelve lowest-ranked counties within the central and southern 

central region. The ranking was determined by counting the regularity of the counties being 

within the top twelve lowest and highest indexed counties over ten years from 2012 through 

2020. The distressed and affluent counties are displayed in Table 1 and Table 2 below, and 

Figure 1 displays the map with the location of the counties.  

 
Table 1. Relevant Information about the Selected Distressed Counties in Central and Southern Central 
Appalachia 

County  State  Population   
(as of 2010)  

Per Capita Income  
(2017)  

Poverty 
Rate  
(2013-
2017)  

Ranking in 
United 
States  
(2017)  

Geo-coordinate 
of the highest 
temperature 

point  
Bell  Kentucky  28,691  $28,395  38.0%  3,076  (Y) Lat. 36.65  

(X) Lon. -83.72  
Breathitt  Kentucky  13,878  $32,512  36.0%  3,085  (Y) Lat. 37.60  

(X) Lon. -83.43  
Cocke  Tennessee  35,662  $31,362  25.0%  2,847  (Y) Lat. 35.996  

(X) Lon. -
83.246  

Clay   Kentucky  21,730  $29,924  39.5%  3,105  (Y) Lat. 37.330  
(X) Lon. -
83.671  

Hancock  Tennessee  6,819  $26,422  25.7%  3,038  (Y) Lat. 36.432  
(X) Lon. 83.368  

Harlan  Kentucky  29,278  $29,428  35.6%  3,096  (Y) Lat. 36.751  
(X) Lon. -
83.253  

Lee  Kentucky  7,887  $31,422  32.7%  3,098  (Y) Lat. 37.628  
(X) Lon. -
83.555  

Magoffin  Kentucky  13,333  $29,243  28.6%  3,104  (Y) Lat. 37.77  
(X) Lon. -83.17  

McCreary  Kentucky  18,306  $24,937  41.0%  3,112  (Y) Lat. 36.945  
(X) Lon. -
84.383  

McDowell  West Virginia   22,113  $29,939  34.9%  3,089  (Y) Lat. 37.47  
(X) Lon. -81.89  

Owsley  Kentucky  4,755  $30,453  33.0%  3,108  (Y) Lat. 37.457  
(X) Lon. -
83.663  

Wolfe  Kentucky   7,355  $30,392  36.9%  3,113  (Y) Lat. 37.669  
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(X) Lon. -
83.543  

 
 
 

Table 2. . Relevant Information about the Selected Affluent Counties in Central and Southern Central 
Appalachia 

County  State  Population   
(as of 2010)  

Per Capita Income   
(2017)  

Poverty Rate  
(2013-2017)  

Ranking in 
United States  
(2017)  

Geo-coordinate of 
the highest 
temperature 
point  

Bath   Virginia   4,731  $58,876  9.3%  280  (Y) Lat. 37.957  
(X) Lon. -79.709  

Botetourt   Virginia   33,148  $48,152  7.7%  386  (Y) Lon. 37.585  
(X) Lat. -79.749  

Buncombe   North Carolina   238,318  $46,102  13.2%  852  (Y) Lat. 35.71  
(X) Lon. -82.63  

Blount   Tennessee  123,010  $41,224  13.0%  1,136  (Y) Lat. 35.785  
(X) Lon. -84.162  

Davie   North Carolina  41,240   $45,625  14.0%  1101  (Y) Lat. 35.866  
(X) Lon. -80.415   

Hamilton   Tennessee  336,463  $50,196  14.5%  964  (Y) Lat. 35.041  
(X) Lon. -85.207  

Henderson   North Carolina   106,740  $41,179  11.8%  1115  (Y) Lat. 35.249  
(X) Lon. -82.377  

Highland   Virginia   2,321  $42,873  10.6%  756  (Y) Lat. 38.212  
(X) Lon. -79.534  

Knox   Tennessee  432,226  $48,160  15.8%  953  (Y) Lat. 35.885  
(X) Lon. -83.958  

Loudon   Tennessee   48,556  $46,183  13.7%  1123  (Y) Lat. 35.748  
(X) Lon. -84.337  

Polk   North Carolina  20,510  $43,278  10.9%  1072  (Y) Lat. 35.286  
(X) Lon. -82.044  

Washington   Tennessee  122,979  $42,002  16.8%  1,464  (Y) Lat. 36.213  
(X) Lon. -82.629  

	
 
Climate Data Retrieval  
 

Daily weather data over thirty-eight years (1981-2018) for each of the twenty-four 

counties, including daily mean, maximum, and minimum temperature, were downloaded from 

gridded data on a 4-km resolution across the U.S. from PRISM 

(http://www.prism.oregonstate.edu/), which is the USDA’s official climatological data source. 
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The current PRISM normals, covering the period 1981-2010, were used to determine the point of 

the highest temperature within each county (Tables 1 & 2). The coordinates retrieved from the 

hottest point of each county were plugged into the PRISM Climate Group’s time series data 

analysis tool (http://www.prism.oregonstate.edu/explorer/). This online and publicly available 

tool provides analysis for time-series data of a single location, and it has the capability of 

managing multiple measurements for various periods. The daily temperature data from the geo-

coordinates was downloaded into an excel sheet for further investigation.	

A thirty-eight-year range was chosen because it allowed for sufficient time to show long-

term change or a trend in the daily temperature data. Consistent with earlier studies of the 

impacts of heatwaves on human health, only data in the warm season, May through September, 

were analyzed to examine the frequency and intensity of heatwaves over the 38-year study 

period. 	

 
Heatwave Definition 
 

This study applied four distinct heatwaves (HW) definitions adopted from Li et al. 

(2019), as listed in Table 1. These definitions use different temperature metrics, including mean, 

maximum, and minimum air temperature, and they are all based on a 95% percentile threshold. 

A fourth heatwave definition from Li et al. (2019), which uses 35◦C (95◦F) as the threshold to 

define a heatwave, was also tested but not used, due to the fact daily maximum temperature in 

the study region rarely exceed 35◦C.  

Calculating the 95th percentile temperature for each the minimum, mean, and maximum 

daily temperature sets from every county formed the basis for the individual definitions of a 

heatwave listed in Table 3. The 95th percentile temperatures from the three temperature 

definition data sets were calculated using the excel formula (=percentile(array, k)) below. The 
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intent of having three temperature sets for analysis was to determine which matching heatwave 

definition most showed an increasing trend of heatwave frequency and quantity over the thirty-

eight-year testing period. 

Table 3. Heatwave definitions tested and used in this study 

 
Heatwaves 
Definition One 

Minimum daily temperature > 95th 
percentile for ³ 2 days 

Used 

 
Heatwaves 
Definition Two 

Mean daily temperature > 95th 
percentile for ³ 2 days 

Used 

 
Heatwaves 
Definition Three 

Maximum daily temperature > 95th 
percentile for ³ 2 days 

Used 

 
Heatwaves 
Definition Four 

Maximum daily temperature>35◦C 
(95◦F) for≥1 day 

Not used 

	
 

An excel logic code (=if(cell value > 0.95 value,1,0) was used to determine if the daily 

temperatures met the criteria of each the definitions the particular data set applied to, i.e., 

minimum daily temperatures apply to heatwave definition one, etc., etc. The data was then 

arranged and manually sorted through to determine if the temperatures were over the set 95th 

percentile temperature for at least two days to ensure it met the definition criteria. Those that did 

were marked and enumerated into a master list. This was repeated for each of the three heatwave 

definitions and accompanying daily temperature data sets for all twenty-four counties. 

 
The numbers of heatwave events and heatwave days per year were added up for the 

distressed and affluent counties into an aggregate data chart, which included the three heatwave 

definitions from Table 3. Heatwave definition one (based on minimum daily temperature 

threshold) showed the best-growing trend for the climate data for both the quantity and 
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frequency of heatwaves, so that definition was selected for the comparison of the all counties’ 

mortality data to the counties’ climate data. 

 
Mortality Data Retrieval 
 
 Monthly all-cause mortality for the 24 counties were obtained from the Center for 

Disease Control and Prevention’s Wonder database (https://wonder.cdc.gov/ucd-icd10.html). 

Monthly mortality data were only available for the years between 1999 and 2018.  

 
2. Analysis 
 
Comparison of Climate Data to Mortality Data 
 

Once the mortality data was compiled into an excel sheet, the months with heatwaves 

were compared with the corresponding month of the mortality data over the twenty years for the 

impoverished and affluent counties. The months that had heatwaves were gathered into the 

experimental group, and the months without heatwaves were gathered into the control group. 

The data was appropriately separated into the experiment or control groups, and the average total 

death count for each county was calculated. The experimental county average was divided by the 

same control county average to get the relative risk for the county. Relative risk was used to 

allow for different population sizes across the counties, where using just the mortality averages 

would not account for variations population. Owsley County, KY, was eliminated from the 

impoverished county group because the county had zero deaths during the months with 

heatwaves resulting in relative risk of zero. Highland County, VA, was eliminated as the 

population size was so small, the WONDER database did not record any monthly mortality data. 

The average of the relative risks for the remaining distressed and affluent counties was 

calculated. They are shown in Tables 4 & 5 in the Results section. An independent t-test (two-
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sample t-test assuming unequal variances in EXCEL) was performed to measure the statistical 

significance of the averages of the relative risks. 

 
Chapter 3 

 
RESULTS  
  

Heatwave Definition One  
 

Minimum Daily Temperature > 95th Percentile for ³ 2 days 
 

The heatwave definition that best fits the increasing heatwave events and frequency trend 

the study calls for is Heatwave Definition One (HWD1). As seen in Figure 5, the orange trend 

line has a positive slope indicating the increasing amount of heatwave days over the years for the 

cumulative number of heatwave days in the distressed counties. The coefficient of determination, 

R2, is 0.2352, which is indicative of data that is not best fitted to the trend line but compared to 

the two other heatwave definitions, the R2 is stronger.  

Figure 8 shows the increasing occurrence of heatwave events with the positive slope of 

the trend line for HWD1 for all twelve distressed counties. The R2 is 0.3063, which is indicative 

of data that is not the best fit for the trend line. Figure 11 shows a comparatively strong 

increasing frequency of heatwave days in the twelve affluent counties with a comparatively high 

positive slope. The R2 is 0.2582, which is indicative of a poor fit of the data to the trend line. 

Figure 14 shows an increasing occurrence of heatwave events for the twelve affluent counties 

with a positive slope for the trend line. The R2 is 0.3656, which is not indicative of the best fit of 

the data to the trend line.  

Heatwave Definition Two 

Mean Daily Temperature > 95th Percentile for ³ 2 days 
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Heatwave Definition Two (HWD2) Figures 6, 9, 12, & 15 display almost no increasing 

trend for both the cumulative heatwave days and the cumulative heatwave events in the affluent 

and distressed counties. The R2 values for all four charts are under 4 %, with the R2 value for 

Figure 6 being 0.000064, an incredibly low percentage showing incredibly low fit to the trend 

line.  

Heatwave Definition Three 

Maximum Daily Temperature > 95th Percentile for ³ 2 days 

Interestingly, Heatwave Definition Three (HWD3) Figures 7, 10, 13, & 16 display a 

slight decreasing trend of both cumulative heatwave days and cumulative heatwave events in 

affluent and distressed counties. The R2 values for all four figures are all under 3 %, which 

indicative that the data is not a good fit for the trend lines of each figure.  

 
Distressed and Affluent Counties Heatwave Mortality Relative Risk 

 Relative risk was the selected parameter of comparison between the two sets of data as it 

accounts for the varying population sizes across each county. Table 4 shows the relative risks for 

each distressed county. Table 5 shows the relative risk for each affluent county. The average 

relative risk for the distressed counties is 1.0029. The average relative risk for the affluent 

counties is 1.0275. At face value, the analyzed data shows that the average relative risk for the 

affluent counties is higher than that of the distressed counties. This finding suggests that the 

residents of the affluent counties are more likely to have more mortalities during heatwaves than 

the distressed counties. A two-sample t-test assuming unequal variances, Table 6, was used to 

determine the statistical significance of the findings. The results from the averaging of the 

relative risks for each data set are similar enough that for the statistical comparison, the study 

wants to know if there is a difference between the two findings, meaning a two-tailed analysis.  
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As a result of the statistical comparison, this study fails to reject the null hypothesis, and 

in doing so, rejects the alternate hypothesis that there was enough statistical evidence to support 

difference between the two relative risk averages. This finding is a result of the two-tailed           

p = 0. 503 found in Table 6. 

 

Table 4. Distressed Counties Relative Risks and Average Relative Risk. Relative risk for each county was 
found by dividing the experiment group mortality average by that of the control group. 

County name Average Monthly 
Mortality in 

Experiment Group 

Average Monthly 
Mortality in Control 

Group 

Relative Risk 

Bell County 30.0625 30.0147 1.0016 
Breathitt County 14.8571 14.5797 1.0190 
Clay County 20.3030 19.6418 1.0337 
Harlan County 32.7879 34.3134 0.9555 
Lee County 2.7931 3.2639 0.8558 
McCreary 
County  

15.3548 14.4478 1.0628 

Magoffin County 9.2778 8.3125 1.1161 
Wolfe County 3.4643 3.0870 1.1222 
Cocke County 36.8148 36.3014 1.0141 
Hancock County 2.3571 2.7083 0.8703 
McDowell 
County 

28.0690 28.6338 0.9803 

      
Average Relative Risk 

      1.0029 
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Table 5.  Affluent Counties Relative Risks and Average Relative Risk. Relative risk for each county was found 
by dividing the experiment group mortality average by that of the control group. 

County name Average Monthly 
Mortality in 

Experiment Group 

Average Monthly 
Mortality in the Control 

Group 

Relative Risk 

Buncombe 
County 

188.6286 183.1846 1.0297 

Davie County 29.7931 30.9296 0.9633 
Henderson 
County 

98.4074 97.7945 1.0063 

Polk County 22.1875 22.2500 0.9972 
Blount County 97.9615 98.2027 0.9975 
Hamilton County 267.6071 261.8611 1.0219 
Knox County 318.1429 308.3611 1.0317 
Washington 
County 

99.2593 99.4521 0.9981 

Botetourt County 23.4286 22.9167 1.0223 
Bath County 0.6061 0.4776 1.2689 
Loudon County 40.5000 41.9583 0.9652 
		 		 		 Average Relative Risk 
		 		 		 1.0275 
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Table 6. Comparison of Distressed Counties' Relative Risk to Affluent Counties' Relative Risk 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Test: Two-Sample Assuming Equal Variances   
   

  
Distressed 
Counties  

Affluent 
Counties  

Mean 1.002861238 1.027474851 
Variance 0.007396091 0.006950988 
Observations 11 11 
Pooled Variance 0.007173539  
Hypothesized Mean Difference 0  
df 20  
t Stat -0.681537834  
P(T<=t) one-tail 0.251673768  
t Critical one-tail 1.724718243  
P(T<=t) two-tail 0.503347537  
t Critical two-tail 2.085963447   
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Figure 5. Minimum Daily Temperature Cumulative Number of Heatwave Days 
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Figure 6. Mean Daily Temperature Cumulative Number of Heatwave Days 
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Figure 7. Maximum Daily Temperature Cumulative Number of Heatwave Days 
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Figure 8.  Minimum Daily Temperature Cumulative Number of Heatwave Events 
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Figure 9. Mean Daily Temperature Cumulative Number of Heatwave Events 
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Figure 10. Maximum Daily Temperature Cumulative Number of Heatwave Events 
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Figure 11. Minimum Daily Temperature Cumulative Number of Heatwave Days 
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Figure 12. Mean Daily Temperature Cumulative Number of Heatwave Days 
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Figure 13. Maximum Daily Temperature Cumulative Number of Heatwave Days 
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Figure 14. Minimum Daily Temperature Cumulative Number of Heatwave Events 
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Figure 15. Mean Daily Temperature Cumulative Number of Heatwave Events 
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Figure 16. Maximum Daily Temperature Cumulative Number of Heatwave Events 
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Chapter 5 

DISCUSSION 

 This study aimed to examine the trends of heatwaves in the central and southern central 

regions of Appalachia over the last several decades, and investigate the hypothesis that 

economically distressed counties are more likely to a have higher mortality risk during 

heatwaves than economically affluent counties in the same regions. It was found that both the 

total number of heatwave events and heatwave days per year have been considerably increased in 

the years after 2000, when heatwaves are defined as those with minimum daily temperature>95th 

percentile for more than two consecutive days. The results suggest that minimum temperature 

may be the most effective measure for predicting heatwaves in the study region. In order to 

achieve the purpose of this study, the first analysis that had to be completed was the evaluation 

of the cumulative quantity and the frequency of heatwaves days and events occurring in central 

and southern central Appalachia over thirty-eight years. This was ascertained by aggregating the 

daily temperature data across the chosen twenty-four counties that corresponded to their correct 

heatwave definition. As shown by Figures 5, 8, 11, and 14 in the Results, heatwave definition 

one, which is defined as the minimum daily temperature > 95th percentile for at least two days, 

had the best trend line showing a growing quantity and frequency of heatwaves over the years. 

This finding is consistent with literature, which suggested that the minimum daily temperatures 

for 70-75% of the world’s land area has seen statistically significant increases (Alexander, 2006). 

Interestingly, Figure 7 in the Results section had a negative trend line indicating a 

decline in the total amount heatwaves matching the maximum daily temperature heatwave 

definition. This could be a result of a “warming hole,” or a local minimum of warming usually 

found in the central U.S. during the summer months of June, July, and August (Pan, et al., 2004). 
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This phenomenon is thought to be a result of an altered hydrologic feedback system that results 

in a local minimum due to an unusual replenishment of seasonally depleted soil moisture (Pan, et 

al., 2004). The epicenter of this phenomenon is found in the Kansas-Nebraska region. However, 

central and southern central Appalachia could be experiencing a lesser but still noticeable degree 

of this effect due to the nearby proximity of the regions.  

Furthermore, the results of the study shown in Tables 4 and 5, show that both the 

distressed and affluent county groups had increased mortality risk in the months with heatwaves 

(The economically distressed counties had a combined average relative risk of 1.0029, and the 

economically affluent counties had a combined average relative risk of 1.0275). The risk was 

higher among the affluent counties than the distressed counties, but the difference was not 

statistically significant (the two-tailed p-value .503 in Table 6). The difference is minimal, but at 

face value, the results suggest that residents of economically affluent counties of the central and 

southern central Appalachian regions are 2.39 % more likely to die during a heatwave than the 

residents of economically distressed counties in the same region, which is the opposite of the 

hypothesis. 

Despite the high temporal and spatial resolution climate data used, this study used best 

publicly available vital statistics (month mortality data at the county level), which makes it 

different to control possible confounding effects. The monthly mortality data at the county level 

did not allow the matching of heatwave events with the accurate date of deaths and controlling 

some critical health-related factors, such as temporal trends and socioeconomic factors at the 

individual level.  
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Observational studies often suffer from several biases, and this study is not an exception. 

By the study’s very nature of having to select the counties based on their rank out of the counties 

of the United States means the sampling method was not randomized, meaning the study is not 

representative of the true population. Even though a county can be categorized as distressed, that 

does not mean all of that county’s residents are economically distressed. This study also has the 

potential of suffering from measurement errors as it heavily relies on the accuracy of measuring 

instruments for retrospective data. Should a temperature be misread or a death misreported 

means inherent problems that are hard to negate, and it is believed that measurement errors can 

bias outcomes towards a null result (Hammer, du Prel, & Blettner, 2009). The sample size of this 

study is small enough to decrease the power of the study, and that increases the likelihood of a 

Type II error occurring. A Type II error suggests that a failure to reject the null hypothesis is 

false, and the alternative hypothesis is actually true.   

Despite these limitations, this study provides evidence that heatwave frequency and 

intensity to be rising noticeably in the Central and South Central Appalachia regions when 

measured over a four-decade period. Although daily maximum or daily mean temperature are 

commonly used for heatwave warning systems, daily minimum temperature may be the most 

effective measure for the study regions. This study also suggests heatwaves may have increased 

mortality in Central Appalachia communities. Further studies are needed to investigate the 

association and socioeconomic risk factors for heat-related health outcomes in the Central 

Appalachia region.  
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Chapter 6 
 
 
CONCLUSION 
 
 The primary goal of this study was to determine if socioeconomically distressed counties 

in the central and southern central Appalachian regions will have a higher number of mortalities 

during a heatwave than that of socioeconomically affluent counties. It was found that the affluent 

counties had a higher relative risk of heatwave mortality than that of the distressed counties. 

However, the results were determined not to have enough significant statistical evidence to 

conclude with reasonable confidence that there is a difference between the two findings. Many 

factors could be pushing the findings towards supporting the null hypothesis, but there is a 

decent probability that the findings of this study are due to random noise. 

 In the analysis of the total number of heatwave events and the total number of heatwave 

days, the exploration of three separate heatwave definitions concluded that the minimum daily 

temperature heatwave frequency and quantity are gradually increasing over time, that the mean 

daily temperature heatwave frequency and quantity showed little to no increase over time, and 

interestingly, that the maximum daily temperature heatwave frequency and quantity have shown 

a slight decrease over time. It is hypothesized that the maximum daily temperatures are 

decreasing in localized areas of the United States due to a “warming hole” phenomenon. 

 

RECOMMENDATIONS & FUTURE RESEARCH 

 This research has principally provided a baseline of results that inspire more research into 

the topic. There are many more factors that can be considered in the designing of follow-up 

studies, namely a more in-depth investigation into what determines socioeconomic status. A 

larger sample size of both the distressed and affluent counties would give more accurate results, 
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as the small sample size is limiting in the statistical information it can provide. Further research 

could be put into an investigation into the “warming hole” phenomena, as a negative trend in the 

maximum daily temperatures for both cumulative heatwave events and heatwave days in all 

twenty-four counties was arguably the most surprising find from this study.  
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