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RESEARCH ARTICLE

Effect of Formulation Variables on
Preparation of Celecoxib Loaded
Polylactide-Co-Glycolide Nanoparticles
Dustin L. Cooper, Sam Harirforoosh*

Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University,
Johnson City, Tennessee, United States of America

*harirfor@etsu.edu

Abstract

Polymer based nanoparticle formulations have been shown to increase drug

bioavailability and/or reduce drug adverse effects. Nonsteroidal anti-inflammatory

drugs (e.g. celecoxib) reduce prostaglandin synthesis and cause side effects such

as gastrointestinal and renal complications. The aim of this study was to formulate

celecoxib entrapped poly lactide-co-glycolide based nanoparticles through a

solvent evaporation process using didodecyldimethylammonium bromide or poly

vinyl alcohol as stabilizer. Nanoparticles were characterized for zeta potential,

particle size, entrapment efficiency, and morphology. Effects of stabilizer

concentration (0.1, 0.25, 0.5, and 1% w/v), drug amount (5, 10, 15, and 20 mg), and

emulsifier (lecithin) on nanoparticle characterization were examined for formula

optimization. The use of 0.1, 0.25, and 0.5% w/v didodecyldimethylammonium

bromide resulted in a more than 5-fold increase in zeta potential and a more than

1.5-fold increase in entrapment efficiency with a reduction in particle size over 35%,

when compared to stabilizer free formulation. Nanoparticle formulations were also

highly influenced by emulsifier and drug amount. Using 0.25% w/v

didodecyldimethylammonium bromide NP formulations, peak zeta potential was

achieved using 15 mg celecoxib with emulsifier (17.15¡0.36 mV) and 20 mg

celecoxib without emulsifier (25.00¡0.18 mV). Peak NP size reduction and

entrapment efficiency was achieved using 5 mg celecoxib formulations with

(70.87¡1.24 nm and 95.55¡0.66%, respectively) and without (92.97¡0.51 nm

and 95.93¡0.27%, respectively) emulsifier. In conclusion, formulations using 5 mg

celecoxib with 0.25% w/v didodecyldimethylammonium bromide concentrations

produced nanoparticles exhibiting enhanced size reduction and entrapment

efficiency. Furthermore, emulsifier free formulations demonstrated improved zeta

potential when compared to formulations containing emulsifier (p,0.01). Therefore,

our results suggest the use of emulsifier free 5 mg celecoxib drug formulations
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containing 0.25% w/v didodecyldimethylammonium bromide for production of

polymeric NPs that demonstrate enhanced zeta potential, small particle size, and

high entrapment efficiency.

Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs) are well established for the

treatment of pain and inflammation. They function by acting on the cyclo-

oxygenase (COX) family of enzymes and inhibiting the conversion of arachidonic

acid to prostaglandins and thromboxanes [1, 2]. The COX enzyme exists as at least

two different isozymes, COX-1 and COX-2. The COX-1 enzyme is constitutively

expressed in most tissue and functions to regulate hemodynamics and maintain

gut integrity. COX-2 is an inducible enzyme found primarily at sites of

inflammation that mediates fever and pain [3–5]. COX-2 has been found to be

constitutively expressed in certain tissue such as the kidneys, the reproductive

tract, and gastric mucosa [6–9]. Traditionally, NSAIDs function by inhibiting

both COX-1 and COX-2 isozymes and provide analgesic and anti-inflammatory

benefits. These benefits are thought to arise primarily from the inhibition of COX-

2, while the adverse effects (e.g. ulceration) were thought to occur from over

inhibition of COX-1 [10–12]. As a result, COX-2-selective inhibitors (COXIBs)

were developed to provide analgesic and anti-inflammatory benefits, while

minimizing the gastrointestinal adverse side effects associated with traditional

NSAID use [10, 13].

Celecoxib (CEL) is a COXIB used in the treatment of pain and inflammation

[11, 12, 14]. Evidence suggests that CEL use effectively reduces clinical gastro-

intestinal events in comparison to other NSAIDs, making it one of the most

commonly prescribed COX-2 specific inhibitors [15–17]. Despite the general

safety of CEL in regard to gastrointestinal tolerability, its use has been associated

with the development of several adverse side effects including cardiovascular

events, and renal toxicity [17, 18]. Many CEL delivery systems have been

developed to reduce CEL associated side effects [19–22]. Studies utilizing

nanoparticle (NP) formulations have shown promising results in overcoming high

dose oral administration of CEL [21, 23–25]. One study showed enhanced drug

retention at the site of action following intra-articular injection of small lipid

nanoparticle formulated CEL in the treatment of joint pain [26]. Another study

showed enhanced anti-inflammatory effects of CEL utilizing NP formulated

transdermal drug delivery [27]. A third study showed enhanced inhibition of

tumor growth with a reduction in side effects using hydroxyapatite-chitosan

nanocomposited CEL in the treatment of colon cancer [28].

Polymer based NPs are commonly used to improve drug bioavailability and/or

reduce drug associated side effects [29]. Poly lactide-co-glycolide (PLGA) is a

polymer that has been commercialized for a variety of drug delivery systems and is
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frequently used in the design of biocompatible NPs [30]. PLGA is approved by the

Food and Drug Administration as a biodegradable polymer that degrades to the

nontoxic tricarboxylic acid cycle intermediates, lactic acid and glycolic acid

[30–32]. Use of PLGA based NPs for enhanced delivery of CEL has been met with

a variety of results [19, 20]. However, known NP stabilizers such as

didodecyldimethylammonium bromide (DMAB) and poly vinyl alcohol (PVA)

have yet to be used in the development of CEL loaded PLGA-NPs.

Previous studies have shown effective use of DMAB and PVA for formulation

of small, highly entrapped NPs [33, 34]. The aim of this study was to characterize

and optimize CEL loaded PLGA-NPs by examining the influence of varying

DMAB and PVA concentrations on NP characterstics. The effect of drug amount

and emulsifier (lecithin) on zeta potential, particle size, entrapment efficiency,

morphology, and stability was also examined.

Materials and Methods

Materials

DMAB, PVA (MW 89,000–98,000 Da, 99.9+% hydrolyzed), PLGA (50:50

copolymer compositions; MW 30,000–60,000 Da), and lecithin (99% phospha-

tidylcholine) were purchased from Sigma-Aldrich (St. Louis, MO, USA). CEL base

powder was obtained from Biovision Incorporated (Milpitus, CA, USA). Acetone,

ethyl acetate, and high-performance liquid chromatography (HPLC)-grade water

were purchased from Fischer Scientific Laboratory (Fair Lawn, NJ, USA).

Preparation of CEL loaded PLGA-NPs

NP formulations were carried out using a previously described solvent

evaporation technique [33, 35]. CEL-loaded NPs were formulated by dissolving

20 mg of CEL and 50 mg PLGA into 3 mL of ethyl acetate. The solution was

stirred for 30 minutes at 750 rpm. Afterwards, 30 mg of lecithin was added to the

organic solution followed by addition of 500 mL acetone as co-solvent. A varying

range of DMAB or PVA concentrations (0.1%, 0.25%, 0.5%, and 1% w/v) was

dissolved in 6 mL of HPLC grade water. Organic phase was then added to

aqueous phase in a drop wise manner under moderate stirring followed by

sonication for 5 minutes at 20 KHz. After sonication, solutions were stirred at

750 rpm for 1 hour to evaporate organic phase. Emulsions were then centrifuged

at 12,000 rpm followed by separation of supernatant from precipitants.

Additional NP formulations for optimization studies were carried out with 0.25%

w/v DMAB concentration. Using the previously described process, emulsifier free

CEL loaded PLGA-NPs were formulated with the exclusion of lecithin; while NP

preparation for observing the effects of drug amount was carried out using various

amounts of CEL (5, 10, 15, and 20 mg).

Nanoparticle Formulation of Celecoxib
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Particle size and zeta potential of CEL-loaded NPs

Intensity weighted mean particle size (diameter) was measured in triplicate by

dynamic light scattering using a NICOMP particle sizer (Particle Sizing Systems,

Port Richy, FL, USA). Zeta potential was estimated on the basis of electrophoretic

mobility under an electrical field.

Drug entrapment efficiency

To measure drug entrapment efficiency, 100 mL NP formulation was added to

300 mL acetonitrile and vortex mixed for 30 seconds. Afterwhich, 100 mL of drug

loaded NP solution was analyzed under ultraviolet–visible spectroscopy

(Eppendorf Biophotometer, Hauppauge, NY, USA) at 260 nm using empty NP

solutions as blank. A standard calibration curve (50,000–2,000,000 ng/mL) was

constructed using titrated dilutions of CEL stock solution dissolved in acetonitrile.

Drug entrapment efficiency was calculated using the following equation:

Entrapment efficiency (%) 5 (Amount of CEL entrapped within nanoparticles/

Total amount of CEL used for formulation) 6100

Morphology

Transmission electron microscopy (TEM) (Tecnai Philips Transmission Electron

Microscope; FEI, Hillsboro, Oregon, USA) was used for evaluation of CEL loaded

PLGA-NP shape and surface morphology. NP emulsions were vortex mixed and

2 mL aliquots were placed on a 200 mesh copper grid covered with Formvar film

(Electron Microscopy Sciences, Hatfield, Pennsylvania). Samples were air dried

for 1 hour then examined at 80 kV.

Stability of CEL loaded PLGA-NPs

CEL loaded PLGA-NP emulsions (5 mL) formulated at various drug amounts (5,

10, 15, and 20 mg) with or without emulsifier (0.25% w/v DMAB) were stored at

4 C̊ for a period of 16 weeks. After 16 weeks samples were removed from storage

and analyzed for particle size, zeta potential, and drug entrapment efficiency.

Particle characteristics were evaluated as previously described.

Data analysis

All experiments were performed in triplicate. NP characteristic data is represented

as mean ¡ standard deviation (SD). A Student’s t-test was used for comparison

of two groups.

Nanoparticle Formulation of Celecoxib
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Results and Discussion

Effect of stabilizer concentration on NP characteristics

CEL encapsulated PLGA-NPs were developed using lecithin as an emulsifier with

DMAB or PVA (Table 1). The use of DMAB or PVA resulted in formation of CEL

loaded PLGA-NPs with surface characteristics that displayed positive and negative

charges, respectively (Fig. 1). Because of the cationic properties of DMAB

[36–38], NPs formulated with inclusion of DMAB showed highly positive surface

charges (Fig. 1A). DMAB formulated CEL loaded NPs reached a peak zeta

potential of 20.03¡0.84 mV at 0.5% w/v concentration. The anionic character-

istics of PVA led to the formation of NPs with slightly negative surface charges

(Fig. 1B). PVA formulated NPs reached a peak zeta potential of 26.09¡1.39 mV

with 0.25% w/v concentration.

When comparing zeta potential as a measure of stability, all CEL-NP

formulations containing DMAB or PVA showed significant alterations in NP

system stability compared to stabilizer free formulations (plain formulation)

(Fig. 1A and Fig. 1B). These results are indicative of altered NP characteristics as a

result of adsorption or inclusion of DMAB and PVA onto or within the NP

polymer shell. The inclusion of cationic and anionic DMAB (Fig. 1A) or PVA

(Fig. 1B) on NP surfaces can effectively alter overall NP charge, in turn, effecting

overall system stability [38–40].

In comparison to plain formulation, a significant reduction in particle size was

seen in formulations incorporating 0.1%, 0.25%, and 0.5% DMAB (Fig. 2).

Particle size was significantly increased in 1% DMAB concentrations when

compared to plain formulation. The largest reduction in particle size was achieved

using 0.25% DMAB concentration (99.97¡3.27 nm) (p,0.01). High concen-

trations of DMAB have been shown to increase system viscosity, resulting in a

direct increase in particle size [41], which may explain the significant rise in

particle size noticed with CEL-NPs formulated using larger amounts of stabilizer.

Furthermore, DMAB can act as a solubilizing agent for known hydrophobic

compounds [35]. It is possible that lower DMAB concentrations may act to

effectively reduce drug crystallization, further reducing NP size, which may

explain NP size reductions seen in our study with lower DMAB concentrations

(Fig. 2). Conversely, a significant increase in CEL solubility brought forth by

higher DMAB content could also function to increase NP drug loading capacity

and increase particle size by means of expanding NP drug content within the

polymer shell.

Formulations using 0.1% w/v PVA did not demonstrate any significant

difference in particle size when compared to plain formulation (p.0.77). Particle

size measurements of 0.25%, 0.5% and 1% PVA formulations were not detectable

by our NICOMP particle sizer due to reduced entrapment efficiency and total

drug concentrations in PVA based NP solution.

The amount entrapped (1.99¡0.01 mg) and entrapment efficiency

(9.94¡0.01%) of CEL in formulations without stabilizer were compared to

DMAB and PVA based formulations (Table 2). All stabilizer based formulations

Nanoparticle Formulation of Celecoxib
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demonstrated significant changes in entrapment efficiency when compared to

plain formulation (Table 2) (P,0.01). All DMAB formulations and 0.1% PVA

formulation exhibited significant increases in the level of CEL entrapment with a

maximum percent entrapment of 61.07¡0.06% reached with 1% DMAB

formulation. All PVA concentrations above 0.1% w/v underwent a significant

reduction in drug entrapment (Table 2). The reduction in drug entrapment can

be explained by elucidation of PVA properties. PVA is a highly hydrophilic

stabilizer, which can result in reduced NP stability in aqueous solutions [42]. As

PVA concentrations increase, the hydrophilic nature of the NP system increases.

The increased inclusion of PVA into the NP polymer shell could increase

hydrophilic properties leading to NP solubilization in the aqueous medium

following organic phase evaporation. The increased hydrophilic properties of

PVA-NP systems could reduce entrapment efficiency leading to an increased loss

of drug in solution precipitant following centrifugation.

In this study, DMAB was shown to effectively increase zeta potential, reduce

particle size, and facilitate drug entrapment when compared to PVA based

formulations. As such, DMAB based NP morphology was visualized and

confirmed under transmission electron microscopy (TEM) (S1 Figure) with

further variable analysis carried out using DMAB formulations.

Analysis of NP characteristics in absence of emulsifier

To analyze the effect of emulsifier on CEL loaded NP characteristics, formulations

containing 0.1%, 0.25%, 0.5%, and 1% w/v DMAB without lecithin were

developed, characterized, and compared to previously observed characteristics of

NP formulations with lecithin (Fig. 3). NP visual identification of emulsifier free

formulations was performed via TEM analysis (S2 Figure). When compared to

emulsifier based formulations, absence of emulsifier resulted in a significant

increase of zeta potential in formulations using 0.25%, 0.5%, and 1% stabilizer

Table 1. NP formulation with varying concentrations of DMAB or PVA.

Formulation Number Ingredients

Ethyl acetate (mL) Water (mL)
DMAB (%
w/v)

PVA
(% w/v)

PLGA
(mg)

Acetone
(mL) Celecoxib(mg)

Lecithin
(mg)

1* 3 6 - - 50 500 20 30

2 3 6 0.1 - 50 500 20 30

3 3 6 0.25 - 50 500 20 30

4 3 6 0.5 - 50 500 20 30

5 3 6 1 - 50 500 20 30

6 3 6 - 0.1 50 500 20 30

7 3 6 - 0.25 50 500 20 30

8 3 6 - 0.5 50 500 20 30

9 3 6 - 1 50 500 20 30

*Stabilizer free (plain) formulation.

doi:10.1371/journal.pone.0113558.t001
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concentrations (Fig. 3A) (P,0.01). These findings indicate that the use of an

emulsifier may function to reduce overall particle repulsion and system stability.

The cationic property of DMAB has become increasingly popular for development

of positively charged NPs [43]. In emulsifier free formulations, we found that

rising zeta potential was associated with increased DMAB concentration. These

results can be indicative of enhanced DMAB inclusion into the NP polymer shell.

Furthermore, lecithin contains low concentrations of phosphatidic acid. The

presence of phosphatidic acid can impart negatively charged, anionic character-

istics during inclusion into NP formulations [44]. As such, the anionic properties

Fig. 1. Zeta potential measurements of A) DMAB and B) PVA formulated NPs of celecoxib. Values are
expressed as mean ¡ SD, n53. *p,0.05, significantly different from plain formulation.

doi:10.1371/journal.pone.0113558.g001
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Fig. 2. Particle size analysis of increasing concentrations of DMAB compared to formulation without stabilizer (plain formulation). Values are
expressed as mean ¡ SD, n53. *p,0.05, significantly different from plain formulation.

doi:10.1371/journal.pone.0113558.g002

Table 2. Effects of stabilizer concentrations on celecoxib entrapment.

Stabilizer Conc. (% w/v) AE (mg) EE (%)

Stabilizer free 0 1.99¡0.01 9.94¡0.01

DMAB 0.1 3.78¡0.01 18.85¡0.07*

0.25 9.94¡0.08 49.70¡0.38*

0.5 6.16¡0.01 30.84¡0.04*

1 12.22¡0.01 61.07¡0.06*

PVA 0.1 9.23¡0.03 46.19¡0.16*

0.25 0.11¡0.02 0.56¡0.03*

0.5 0.06¡0.01 0.33¡0.02*

1 0.66¡0.03 3.28¡0.14*

All values reported as mean ¡ SD (n53). Amount entrapped (AE) per 20 mg celecoxib. EE is the entrapment efficiency.
*P,0.01 compared to plain formulation.

doi:10.1371/journal.pone.0113558.t002
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Fig. 3. Nanoparticle characteristic comparison of A) zeta potential, B) particle size, and C) entrapment efficiency of initial emulsifier based DMAB
formulations with emulsifier free DMAB formulations. Values are expressed as mean ¡ SD, n53. *p,0.05, significantly different from initial
formulations.

doi:10.1371/journal.pone.0113558.g003
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of lecithin can act to reduce polymer surface charge and effectively mask the

cationic charge associated with DMAB inclusion, which would explain the

findings of reduced particle charge seen in emulsifier based NP formulations.

In emulsifier free formulations, particle size increased with increasing stabilizer

concentrations, with peak particle size reaching micron levels at 0.5% and 1%

DMAB concentration (972.93¡547.71 nm and 4849.77¡313.75 nm, respec-

tively) (Fig. 3B). These results indicate that lecithin effectively reduces interfacial

tension between organic and aqueous phases. In solvent evaporation processes,

when organic phase is added to aqueous phase in a drop wise manner, the

resultant organic droplets are stabilized by polymers formed at solute interfaces

[44]. The type of polymer, surfactant, or emulsifier used can act to alter interfacial

tensions between the organic droplets and the aqueous solution. After placement

of organic phase into aqueous phase, interfacial spreading occurs as a result of

diffusion between solvents, providing energy for NP formation [44]. NP size is

dependent on diffusion rate which is dependent on changes in the interfacial

tension between organic and aqueous phases. Lower interfacial tension equates to

smaller NP size properties [44–47]. The addition of compounds such as lecithin

act to effectively change interfacial tension which can alter particle size and NP

formation [47, 48]. Lecithin favors a higher organic phase to aqueous phase

interface [45] that, when added to organic solvents such as ethyl acetate, could

function to alter the rate of solvent diffusion and reduce particle size.

Peak drug entrapment was seen at DMAB concentrations of 1% for

formulations without emulsifier (82.91¡0.67%) (Fig. 3C). In relations to 1%

DMAB formulation carried out with emulsifier, these results equate to an almost

22% increase in NP drug loading (P,0.01). In theory, inclusion of lecithin could

act to offset surface tension allowing for fast organic phase diffusion into the

aqueous phase [49]. The alteration in interfacial tension could also function to

reduce barrier transport of drug outside of the organic phase during solvent

diffusion. Inclusion of lecithin into the polymeric shell with increasing

concentrations of DMAB resulted in a net reduction in drug entrapment

compared to its emulsifier free counterpart. Much like lecithin, DMAB can form

micelle aggregates that function through hydrophobic interactions of DMAB with

the hydrophobic core of the NP [33]. The interactions of the hydrophobic portion

of the stabilizer can function to solubilize the hydrophobic drug entrapped within

the NP core [35]. It is possible that as concentrations of both DMAB and lecithin

increased in formulations, the net rise in hydrophobic interaction resulted in

increased NP and CEL solubility leading to drug leakage and reduced drug

entrapment. Similar results were obtained by Thakkar et al. when using Span-85

as an emulsifying agent during the development of CEL microspheres [50]. In the

study, it was found that formulations using high concentrations of emulsifier (5%

w/w) and stabilizer (2% w/w) resulted in enhanced CEL solubility and dissolution,

which led to a reduction in both particle size and drug entrapment efficiency.

Previously, our lab completed formulation of diclofenac (a non-selective

NSAID) loaded PLGA-NPs using DMAB and PVA [33]. With no change in drug

amount (45 mg) or use of emulsifier, diclofenac loaded PLGA-NPs with DMAB

Nanoparticle Formulation of Celecoxib
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or PVA exhibited negative surface charges and a peak entrapment efficiency as

high as 80.21¡1.21%. The negative NP surface charge associated with diclofenac

NP formulations using DMAB contrast with the highly positive surface charge of

DMAB formulated CEL loaded NPs found in this study. When using diclofenac,

PVA formulated NPs showed smaller negative surface charges, similar to the

negative surface charge characteristics associated with our PVA formulated CEL-

NP formulation. In physiological conditions, diclofenac is a negatively charged

molecule which may play a role in the development of negatively charged NPs

during formulation with DMAB [51]. Conversely, at physiological pH, CEL

presents as a neutrally charged molecule [52] that, when formulated with cationic

DMAB, resulted in formation of positively charged NPs. Particle size analysis

showed a similar pattern when comparing CEL formulation results with that of

diclofenac. Diclofenac NP formulation showed a maximum increase of NP size

(189.9¡4.9 nm) using 1% w/v DMAB. Similarly, results of our CEL formulation

study demonstrated maximum NP size with 1% w/v DMAB concentration

(Fig. 3B). Measurements of entrapment efficiency showed opposite effects. For

diclofenac NPs, a linear reduction in total entrapment efficiency was seen with

regard to increasing DMAB concentrations with the lowest amount of diclofenac

entrapment occurring with 1% w/v DMAB. Conversely, maximum CEL loading

seen within this study was observed at 1% DMAB, which when compared to the

highly polarizable diclofenac [53],

the theory that higher concentrations of DMAB may increase solubility of

lipophilic drugs such as CEL, in turn leading to increases in particle size and drug

entrapment [41].

Effect of drug amount on NP characteristics

To study the effect of drug amount on NP characteristics, formulations consisting

of 0.25% DMAB concentrations were chosen based on their sufficient size and

general representation of drug entrapment and zeta potential. In conjunction with

previously formulated NP systems using 20 mg CEL, new NPs with or without

emulsifier were formulated with increasing amounts (5, 10, and 15 mg) of CEL

(Table 3). Morphological characterization of NPs formulated with (Fig. 4) and

without (Fig. 5) emulsifier at various drug amounts showed spherical shape and

size similar to what was noticed in previous formulation studies [23, 24, 54–58].

All NP formulations without emulsifier displayed significantly higher zeta

potential compared to formulations with emulsifier (Fig. 6A) (p,0.01).

Maximum zeta potential was reached in formulations of 20 mg CEL without

emulsifier (25.00¡0.18 mV). Formulations with emulsifier reached peak zeta

potential using 15 mg CEL (17.15¡0.36 mV). These results further indicate that

use of emulsifiers such as lecithin, can function to mask surface charge of the

incorporated stabilizer thereby reducing overall cationic charge associated with

DMAB formulated NPs [44].

Peak size reduction and entrapment efficiency for formulations with

(70.87¡1.24 nm and 95.55¡0.66%, respectively) and without (92.97¡0.53 nm

Nanoparticle Formulation of Celecoxib
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and 95.93¡0.27%, respectively) emulsifier was achieved using 5 mg drug

amounts (Fig. 6B and Fig. 6C, respectively). These results indicate an important

role for drug solubility on the characterization of CEL loaded NPs.

CEL exhibits poor aqueous solubility and is categorized as a class II drug under

the biopharmaceutical classification system [59–61]. During CEL loaded NP

formulation, several techniques such as size reduction, use of emulsifier, or

surfactants can be applied to help increase the degree of drug solubility in aqueous

media and improve overall NP characteristics [62]. In applications oriented

Table 3. Preparation method for NP formulations with differing drug amounts.

Formulation Number Ingredients

Ethyl acetate (mL) Water (mL)
DMAB (%
w/v)

PLGA
(mg) Acetone (mL)

Celecoxib
(mg)

Lecithin
(mg)

1 3 6 0.25 50 500 20 30

2 3 6 0.25 50 500 15 30

3 3 6 0.25 50 500 10 30

4 3 6 0.25 50 500 5 30

5 3 6 0.25 50 500 20 -

6 3 6 0.25 50 500 15 -

7 3 6 0.25 50 500 10 -

8 3 6 0.25 50 500 5 -

doi:10.1371/journal.pone.0113558.t003

Fig. 4. TEM images illustrating morphology of 0.25% w/v DMAB NP formulations with emulsifier at A)
5 mg drug amount, B) 10 mg drug amount, C) 15 mg drug amount, and D) 20 mg drug amount.

doi:10.1371/journal.pone.0113558.g004
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toward NP production, several of these techniques are often applied in order to

increase drug solubility and prevent drug precipitating out of the NP shell. In this

study, stabilizers and an emulsifier were used to alter drug solubility and optimize

particle characteristics. The use of drug amount was also analyzed as a

measurement of solubility effects on zeta potential, particle size, and drug

entrapment. In an effort to optimize drug entrapment, drug amounts were

titrated to measure extent of effects on NP encapsulation. The solubility of a drug

is related to the ratio of drug surface area to solvent volume [62]. In particle size

reduction, surface area is increased and allows greater interactions with the solvent

which causes an increase in solubility. In conjunction with particle size reduction

via sonication, reduction in drug amount improves drug solubility by further

enhancing the surface-area-to-volume ratio. We found that when drug amount

was decreased in CEL-NP formulations, entrapment efficiency was able to achieve

over 95% loading capacitance (Fig. 6C). This success indicates the importance of

drug amount in conjunction with size reduction for the prevention of drug

precipitation and enhancement of entrapment efficiency during NP formulations.

In this study, we found that as drug amount increased to 20 mg, total

entrapment of CEL was higher in formulations with emulsifier while amounts of

15 mg and 10 mg CEL displayed increasing total drug entrapment in regard to the

emulsifier free formulation (Fig. 6C). It is possible that higher concentrations of

CEL undergo enhanced solubilization in the presence of emulsifier enabling a

larger degree of drug entrapment in the presence of higher drug amounts.

Furthermore, lecithin is a non-ionic emulsifier known to impart steric stabilizing

Fig. 5. TEM images illustrating morphology of 0.25% w/v DMAB NP formulations without emulsifier at
A) 5 mg drug amount, B) 10 mg drug amount, C) 15 mg drug amount, and D) 20 mg drug amount.

doi:10.1371/journal.pone.0113558.g005
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Fig. 6. The effect of varying drug amounts on A) zeta potential, B) NP size, and C) entrapment efficiency. Values are expressed as mean ¡ SD, n53.
*p,0.05, significantly different from formulations with emulsifier.

doi:10.1371/journal.pone.0113558.g006
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effects in colloidal systems, preventing particle collision and reducing drug leakage

[63, 64]. It is possible that as drug amounts increase, lecithin functions to increase

drug solubility, stabilize NP formation, and reduce drug leakage leading to an

increase in drug entrapment. The observation that larger drug amounts undergo

increased NP entrapment in the presence of lecithin may support the idea of

emulsifier use during NP production of high concentrations of lipophilic drugs.

Stability of CEL loaded PLGA-NPs

To avoid particle aggregation and coalescence, the recommended storage

temperature for PLGA-NP systems is 4 C̊ [65]. Therefore, to analyze the stability

of PLGA-NP systems, emulsions of varying drug amounts with or without

emulsifier were kept at 4 C̊ for a period of 16 weeks then characterized to

determine storage effects on zeta potential, particle size, and drug entrapment

efficiency.

Results showed that zeta potential, particle size, and entrapment efficiency were

at or below initial reported NP characterization measurements (Fig. 7 and Fig. 8).

All peak characteristic measurements after 16 weeks of cold storage were noted in

formulations that included emulsifier (Fig. 7). When compared to our initial

formulations (Fig. 6), zeta potential was reduced across all formulations

(p,0.05), with a peak zeta potential seen in formulations using 10 mg drug

amounts with emulsifier (5.92¡0.98 mV) (Fig. 7A). When analyzing particle

diameter, a peak reduction was seen in 10 mg formulations with emulsifier

(63.23¡3.33 nm). Furthermore, when compared to initial characteristic mea-

surements, significant particle size reduction was seen in the 10 mg and 20 mg

CEL formulations with emulsifier (Fig. 7B) (p,0.01), as well as the 5 mg and

15 mg formulations without emulsifier (Fig. 8B) (p,0.01). All formulations

showed a significant reduction (p,0.01) in entrapment efficiency with the highest

level of entrapment maintained in the 5 mg formulation with emulsifier

(79.58¡0.611%) (Fig. 7C). These results indicate the possible role emulsifying

agents may have in maintenance of NP stability. The reduction of zeta potential

observed in all formulations could be a result of possible DMAB dissociation from

the NP shell after 16 weeks. Loss of DMAB would lead to reduced particle charge,

net repulsion, and stability resulting in increased drug leakage, particle size

reduction, and reduced entrapment efficiency [66]. Furthermore, the emulsifier in

our formulation may be exerting unknown effects on drug permeation and NP

aggregation, allowing for enhanced time-dependent stability of PLGA-NPs

formulated with lecithin [67].

Conclusion

In this study, we performed a solvent evaporation technique to developed and

characterize CEL loaded PLGA-NPs using varying concentrations of DMAB or

PVA as stabilizer. NPs were examined and characterized based on zeta potential,

Nanoparticle Formulation of Celecoxib
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Fig. 7. Nanoparticle characteristic comparison of A) zeta potential, B) particle size, and C) entrapment efficiency of initial emulsifier based
formulations with those observed following 16 weeks cold storage at 4˚C. Values are expressed as mean ¡ SD, n53. *p,0.05, significantly different
from initial formulations.

doi:10.1371/journal.pone.0113558.g007
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Fig. 8. Nanoparticle characteristic comparison of A) zeta potential, B) particle size, and C) entrapment efficiency of initial emulsifier free
formulations with those observed following 16 weeks cold storage at 4˚C. Values are expressed as mean ¡ SD, n53. *p,0.05, significantly different
from initial formulations.

doi:10.1371/journal.pone.0113558.g008
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size, drug entrapment efficiency, and morphology. The results of this study

showed that the use of DMAB as stabilizer led to the development of NPs that

displayed sufficient size and stability with moderate increases in drug entrapment

when compared to plain formulation. Of the two stabilizers, DMAB proved to be

highly efficient in developing well characterized CEL loaded PLGA based NPs,

whereas PVA based formulations failed to reach optimum parameters in NP

development. Variables such as emulsifier and drug amount were also analyzed to

further optimize NP formulations. When formulations were carried out in the

presence of emulsifier, a reduction in zeta potential was noted. Emulsifier based

formulations displayed reduced surface charge as a consequence of lecithin

induced anionic interactions and masking of cationic DMAB properties indicating

that in the presence of DMAB based formulations emulsifiers such as lecithin may

act to reduce NP stability and formula optimization. Additional formula

evaluation showed that reduction in drug amount was effective at reducing

particle size and enhancing drug entrapment efficiency further elucidating the role

of drug solubility and the importance of increasing the surface-area-to-volume

ratio for effective development of CEL loaded NPs. Interestingly, while the use of

emulsifier resulted in reduced zeta potential and system stability, time-dependent

stability testing, which looked at zeta potential, size, and entrapment efficiency

after 16 weeks cold storage, showed peak particle characteristics in formulations

with emulsifier. These results may indicate that while emulsifiers, such as lecithin,

reduce overall particle charge during formulation, they could also prolong NP

system stability over an extended period of time. However, further testing is

needed to determine the extent of emulsifier effects on CEL loaded PLGA-NP

stability. Overall, the results of our study indicate that the formulation of PLGA-

NPs using 0.25% w/v DMAB and 5 mg CEL without emulsifier creates highly

entrapped and stable NPs of a sufficient size that could function to enhance the

application of orally delivered CEL and provide a potential effective dosage form

for CEL administration.

Supporting Information

S1 Figure. TEM images of emulsifier based formulation illustrating morphology

of A) 0.1% w/v DMAB formulated NPs, B) 0.25% w/v DMAB formulated NPs, C)

0.5% w/v DMAB formulated NPs, and D) 1% w/v DMAB formulated NPs.

doi:10.1371/journal.pone.0113558.s001 (TIF)

S2 Figure. TEM images of emulsifier free formulations illustrating morphology of

A) 0.1% w/v DMAB formulated NPs, B) 0.25% w/v DMAB formulated NPs, C)

0.5% w/v DMAB formulated NPs, and D) 1% w/v DMAB formulated NPs.

doi:10.1371/journal.pone.0113558.s002 (TIF)
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